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INTRODUCTION
Richard Brown

Elegant geometry



Mathematicians often ‘see’ mathematical objects like equations using geometry. This is a

visual proof of the famous Pythagorean Theorem, a® + b? = ¢

It is said that mathematics is the art of pure reason. 1t is the fundamental
logical structure of all that exists, and all that doesn’t exist, in this reality of ours.
Far removed from the simple calculations that allow us to balance our accounts
and calculate our everyday affairs, mathematics helps us to order and understand
the very notion of everything we can imagine in life. Like music, art and language,
the essential symbols and concepts of mathematics, many of which are defined
and discussed in this book, allow us to express ourselves in amazingly intricate
ways and to define unimaginably complex and beautiful structures. While the
practical uses for mathematics are rife, what makes mathematics so magical is its
elegance and beauty outside of any real application. We give the concepts in
mathematics meaning only because they make sense and help us to order our
existence. But outside of the meaning we give these elements of maths, they do
not really exist at all except in our imagination.

The natural and social sciences use mathematics to describe their theories and
provide structure to their models, and arithmetic and algebra allow us to conduct
our business and learn how to think. But beyond these practical applications lies
the true nature of the discipline; mathematics is the framework and provides the
rules of engagement for the entire system of structured thought.

This text is a glimpse into the world a mathematician sees in everyday life.
Herein lies a set of some of the more basic and fundamental elements in the field
today, with definitions, a little history, and some insight into the nature of many
basic mathematical concepts. This book contains 50 entries, each of which centres
on an important topic in mathematics. They are ordered into seven categories,
which roughly help to define their context. In Numbers & Counting, we explore
the basic building blocks that allow us to enumerate our surroundings. We study
some of the operations and structures on numbers in Making Numbers Work.
These entries basically describe the arithmetic system that helps us to use
mathematics in our everyday lives. In Chance is a Fine Thing, we detail some
ideas and consequences when using mathematics to understand random events
and chance happenings. Next, we lay out some of the deeper, more complex



structures of numbers in Algebra & Abstraction. It is here that the path towards
higher mathematics begins. In turn, we explore the more visual aspects of
mathematical relationships in Geometry & Shapes. Since mathematical
abstraction is one of pure imagination, we then explore what happens outside of
our three dimensions in Another Dimension. And finally, in Proofs & Theorems,
we discuss some of the more profound ideas and facts that our mathematical path
has led us to.

Individually, each entry is a brief glimpse into one of the more beautiful and
important ideas central to mathematics today. Each topic is presented in the same
format, aimed at facilitating a proper introduction; the 3-second sum offers the
briefest overview, the 30-second maths goes into further depth on the topic, and a
3-minute addition begins the process of pondering the deeper connections
between the idea and its importance in the world. It is hoped that, taken together,
these elements will help to open your eyes to a closer understanding of the nuts
and bolts of what mathematics is really all about.

When used as a reference text, this book will provide the basics of some of the
more profound ideas in mathematics. When read in full, this text may provide a
glimpse into another world as rich and meaningful as the one you live in now: the
world of mathematics.



Dimensional beauty



There are only five ways to construct a three-dimensional solid using regular polygons. It is
not hard to see why. But does that make these objects special? Mathematicians think so.
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NUMBERS & COUNTING



NUMBERS & COUNTING
GLOSSARY

algebra One of the main branches of pure mathematics which studies operations
and relations on numbers, Elementary algebra involves studying the rules of
arithmetic on expressions involving variables, Advanced algebra involves studying
these operations and relations on mathematical objects and constructions other
than numbers.

algebraic number Any number that is a root of a non-zero polynomial that has
integer coefficients. In other words algebraic numbers are solutions to polynomial
equations (see here), such as x% - 2 =0, where x = v2. All rational numbers are
algebraic, but irrational numbers can be either algebraic or not. One of the best-
known algebraic numbers is the golden ratio (1.6180339...), which is usually
written @.

binary (base 2) The counting system in which only the numbers 1 and 0 feature.
Just as in our base 10 system there is a 1s column (10° = 1), 10s column (10) and
100s (102) column, and so on, in base 2 there is a 1s (2°) column, a 2s column (21 =

1), a 4s column (22), and so on. For example, the binary version of 7 is written 111,
asinlx1+1x2+1x4,

coefficient A number that is used to multiply a variable; in the expression 4x = 8, 4
is the coefficient, x is the variable. Although usually numbers, symbols such as a
can be used to represent coefficients. Coefficients that have no variables are called
constant coefficients or constant terms.

complex number Any number that comprises both real and imaginary number
components, such as a + bi, in which a and b represent any real number and i
represents V-1. See imaginary number.

factor One of two or more numbers that divides a third number exactly. For



example 3 and 4 are factors of 12, as are 1, 2, 6 and 12.

figurate number Any number that can be represented as a regular geometric
shape, such as a triangle, square or hexagon.

fractional number (fraction) Any number that represents part of a whole. The
most common fractions are called common or vulgar fractions, in which the
bottom number, the denominator, is a non-zero integer denoting how many parts
make up the whole, whereas the top number, the numerator, represents the
number of equal divisions of the whole. Proper fractions represent a value of less
than 1, e.g., %, whereas improper fractions represent a value greater than 1, e.g.,
3/2, or 1.

imaginary number A number that when squared provides a negative result. As no
real number when squared provides a negative result, mathematicians developed
the concept of the imaginary number unit i, so that i x i = -1 or put another way i =
V-1. Having an imaginary number unit that represents v-1 helps solve a number
of otherwise unsolvable equations, and has practical applications in a number of
fields.

integer Any natural number (the counting numbers 1, 2, 3, 4, 5 and so on), 0 or the
negative natural numbers.

irrational number Any number that cannot be expressed as a ratio of the
integers on a number line. The most commonly cited examples of irrational
numbers are 1 and V2. A good way of identifying an irrational number is to check
that its decimal expansion does not repeat. Most real numbers are irrational
numbers.

number line The visual representation of all real numbers on a horizontal scale,
with negative values running indefinitely to the left and positive to the right,
divided by zero. Most number lines usually show the positive and negative
integers spaced evenly apart.

polynomial An expression using numbers and variables, which only allows the



operations of addition, multiplication and positive integer exponents, i.e., x%. (See
Polynomial Equations.)

rational number Any number that can be expressed as a ratio of the integers on a
number line; or more simply any number that can be written as a fraction,
including whole numbers, Rational numbers are also identified by finite or
repeating decimals.

real number Any number that expresses a quantity along a number line or
continuum, Real numbers include all of the rational and the irrational numbers.

transcendental number Any number that cannot be expressed as a root of a non-
zero polynomial with integer coefficients; in other words non-algebraic numbers.
7 is the best-known transcendental number, and following the opening definition
n therefore could not satisfy the equation n? = 10. Most real numbers are
transcendental.

whole number Also known as a natural or counting number, a whole number is
any positive integer on a number line or continuum. Opinion varies, however, on
whether 0 is a whole number.



FRACTIONS & DECIMALS
the 30-second maths

The whole numbers, 0, 1, 2, 3..., are the bedrock of mathematics, and have
been used by humans for millennia. But not everything can be measured using
whole numbers, If 15 hectares of land are divided between 7 farmers, each will
have 15/7 (or 21/,) hectares. The simplest non-whole numbers can be expressed in

a fractional form like this. But for other numbers, such as 7, this is awkward or
impossible. With the development of science came the need to subdivide
quantities ever more accurately. Enter the decimal system, an efficient column-
based method using Hindu-Arabic numerals. Here, the number 725 has three
columns, and stands for 7 hundreds, 2 tens and 5 units. By adding a decimal point
after the units, and extra columns to its right, this approach easily extends to
numbers smaller than a unit. So 725.43 stands for 7 hundreds, 2 tens, 5 units, 4
tenths (of a unit) and 3 hundredths. By incorporating ever more columns to the
left or to the right, numbers both large and small can be written as precisely as
needed. In fact every number in between the whole numbers can be expressed as a
decimal (but not as a fraction), giving us the ‘real’ number system.

3-SECOND SUM
The starting point for mathematics is the system of whole numbers, 0, 1, 2, 3... But many
things fall between the gaps, and there are two ways to measure them.

3-MINUTE ADDITION

Translating between fractions and decimals is not always straightforward. It is easy to
recognize 0.25, 0.5 and 0.75 as %, ¥ and % respectively. But the decimal equivalent of !, is
0.333333..., where the string of 3s never ends, and 1/7 is 0.142857142857142857..., also
with a never-ending repeating pattern. It turns out all fractional numbers have repeating
patterns in their decimal, while non-fractional numbers like © have decimals that do not
repeat. These are the irrational real numbers.
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Whole numbers can be subdivided into fractions, and decimals express these
divisions even more precisely.



RATIONAL & IRRATIONAL NUMBERS
the 30-second maths

Real numbers consist of positive numbers, negative numbers and 0, and
these values can be categorized in several ways. The most fundamental way is to
distinguish the real numbers that can be expressed as the fraction of two integers,
such as % or -7/3 (called rational numbers), from those that cannot (called
irrational numbers). The ancient Greeks believed all numbers were rational, until
a follower of Pythagoras proved that v2 is not rational. You can tell if a number is
rational or irrational by looking at its decimal expansion - if the digits ultimately
repeat, the number is rational (think 3/11 = 0.272727...). Decimal expansions of
irrational numbers (for example, r = 3.14159265...) have digits that do not repeat.
But there’s more. Rational numbers and many irrational numbers have something
in common - they are algebraic, that is they are solutions to polynomial equations
with integer coefficients. For example, V2 solves x> - 2 = 0 (see Polynomial
Equations). But many more irrational numbers are not algebraic, and n is one
example. Numbers that are not algebraic are called transcendental - only
irrational numbers can be transcendental.

3-SECOND SUM

‘Real’ numbers — the numbers used to express quantities and representable via a decimal
expansion — are either rational or irrational. But some irrationals are more unusual than
others.

3-MINUTE ADDITION

The philosophy of the ancient Greeks held that all things measurable are, at worst, the
ratio of whole numbers. Anecdotal history holds that the Pythagoreans were so
distraught to discover that V2 is irrational that Hippasus of Metapontum was murdered
to prevent revelation of this truth to the world. A number like n is perhaps more
intuitively irrational, but it was only 250 years ago that this was proved true, and another
century would pass before 1 was proved to be transcendental.
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Be real - numbers are rational if they can be written as a fraction. Otherwise they
are irrational.



IMAGINARY NUMBERS
the 30-second maths

Over the years, mathematicians have enlarged the number system several
times. An early expansion was the inclusion of negative numbers. In business, for
example, if +4 represents being in profit by 4 units, then -4 stands for being 4 units
in debt. Negative arithmetic has a surprising property. Multiply a positive number
by a negative, and you get a negative result: e.g., -4 x 3 = -12, But multiply one
negative number by another, and you get a positive result: -4 x -3 = 12. So there
was no number (positive or negative) which, when multiplied by itself, gives a
negative answer. This meant that some simple equations, such as x? = -1, could
never be solved, which was an obstacle to solving more sophisticated equations,
even when solutions existed. This was corrected by a new ‘imaginary’ number i,
defined as the square root of -1; that is to say i x i = -1. This started off as a cheat to
assist in calculations and was controversial early on; Descartes coined the term
‘imaginary’ as a derogatory term. Over time, however, it has become as accepted
as all other types of number. Today, the number system that mathematicians
prefer is termed ‘complex numbers’, comprising the likes of 2 + 3i, or % -%i, or
more generally a + bi, where a and b are any ‘real’ (that is to say decimal) numbers.

3-SECOND SUM
Today’s mathematicians work in an expanded number system, which includes a new
‘imaginary” number i, the square root of -1.

3-MINUTE ADDITION

The complex numbers allow for solutions to equations like x x x = -1. One might ask next
whether there are solutions to x x x = i, for example, or whether we have to expand the
system yet again. As it turns out, the complex numbers contain solutions to all possible
polynomial equations, meaning that they are all we will ever need. This wonderful fact is
known as the fundamental theorem of algebra.
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Positive and negative integers weren’t enough for some mathematicians - they
needed imaginary numbers.



COUNTING BASES

the 30-second maths

When we count numbers beyond nine, we are used to putting a ‘1’ in the
next column and reusing the symbols. This is because we use the base 10 or
decimal system. But base 10 has not always been the preferred system. Ancient
Babylonians used base 60 (the sexagesimal system), for counting. Rather than
stopping at nine and moving into the next column, they stopped at 59. Some
reminders of this system include the continued use of 60 minutes in an hour, and
360° in a circle. References to base 12 counting, the duodecimal system, give us the
concepts of dozen and gross (a dozen dozen). Base 20 counting, the vigesimal
system, was common in early Europe (the ‘score’ in Abraham Lincoln’s famous
Gettysburg Address line, ‘4 score and 7 years ago’, is 20). Modern computers use
the base 2 or binary number system, where only 0 and 1 are used. Here it was easy
to produce early systems for counting where only two mutually exclusive states
are needed, like an open or closed electrical circuit. In any base, addition and
multiplication are well-defined and one can do algebra. Try that the next time
someone asks you for the value of 1 plus 1. It is obviously 10 (in binary arithmetic)!

3-SECOND SUM
A base refers to the number of unique digits that a counting system uses to represent
numerical values.

3-MINUTE ADDITION

The Mayans of Central America also used base 20 for the ‘long count’ of their calendar,
although they ‘corrected’ the third column from the normal 400 = 20 = 20 part to 18 20 =
360, maybe to reflect the approximate number of days in a year. If we prefer base 10
simply because our fingers are good calculators, did the Mayans see the value of their
open-shoed toes in this endeavour?
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The most commonly used counting system is base 10 - the Babylonians thought big
with 60 unique digits. Computer code keeps it simple with a mere two digits.



PRIME NUMBERS
the 30-second maths

Most whole numbers will factor into smaller parts. For example, 100 = 4 x 25.
It's also true that 100 = 20 x 5, If we take either of those and break the factors into
still smaller factors, we ultimately come to the prime factorization of 100:100 = 2 x
2 x5 x5, We cannot break down the factors further - they are prime, divisible only
by 1 and themselves, When mathematicians started listing the prime numbers,
they searched for a pattern but did not see one. They raised the question of
whether the list was finite or if one could find larger and larger primes. Euclid
gave an elegant proof in his Elements that there are infinitely many primes.
17,463,991,229 is a large prime. How do we know it’s prime? We could try dividing
this integer by all smaller integers and find no factors other than 1, then declare it
prime. This is slow, however, and there are better ways. The largest known primes
have over 10,000,000 digits, and clever methods are required to establish them as
such. Finding large primes might seem frivolous, but a revolutionary idea in the
1970s created a technique to effect secure communications by use of a system
requiring the generation of large prime numbers. This technique pervades the
internet, allowing us to shop online in safety.

3-SECOND SUM
A prime number is a positive integer that is divisible only by 1 and itself. Primes cannot
be ‘broken apart’, and are to integers as the elements are to matter.

3-MINUTE ADDITION

When we take prime factorizations of numbers, it seems obvious that we will always get
the same prime numbers at the end. The more one studies numbers, however, the less
obvious this fact becomes. It’s true, and is so important, that this fact bears the title of
the fundamental theorem of arithmetic. Although no formula will generate each prime
number in turn, the prime humber theorem gives us an idea of what proportion of whole
numbers are prime.
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NUMBER THEORY
EUCLID’S ELEMENTS

3-SECOND BIOGRAPHIES

EUCLID
fl. 300 BCE

CARL FRIEDRICH GAUSS
1777-1855

JACQUES HADAMARD
1865-1963

CHARLES JEAN DE LA VALLEE-POUSSIN
1866-1962

30-SECOND TEXT
David Perry







Only divisible by 1 and themselves, prime numbers have fascinated mathematicians
for centuries. The discovery of large primes has practical applications today.



FIBONACCI NUMBERS

the 30-second maths

In the Fibonacci sequence 1,1, 2,3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ... each
term is the sum of the previous two terms. The resulting sequence, which plays a
special role in number theory, possesses many curious numerical properties. If
you add the terms in the Fibonacci sequence up to a certain point, the sum is
always one less than a Fibonacci number; e.g., 1+ 1+ 2+ 3 + 5 + 8 is one less than
the Fibonacci 21. Adding the squares of these numbers produces a product of two
Fibonacci numbers: 1+ 1 + 4+ 9 + 25 + 64 = 8 x 13. The ratios 1:1, 2:1, 3:2, 5:3, 8:5, ...
approach the golden ratio @ = 1.618. Geometrically, squares whose sides are
Fibonacci numbers in length fit together nicely to form a golden spiral. Long
before humans became fascinated with these patterns, plants had discovered the
economy of Fibonacci numbers. The leaves or buds of many plants with a spiral
structure - such as pineapples, sunflowers and artichokes - exhibit a pair of
consecutive Fibonacci numbers. Examining a pineapple, you'll find 8 rows
spiralling around in one direction and 13 in the other direction. In the animal
kingdom, a honeybee has a Fibonacci number of ancestors in each generation.

3-SECOND SUM
A simple rule, adding the two previous terms to get the next term, produces one of
Mother Nature’s favourite sequences of numbers,

3-MINUTE ADDITION

In 1202, Leonardo Pisano, also known as Fibonacci, posed a riddle about breeding rabbits
in his book Liber Abaci (The Book of the Abacus). Fibonacci posited, perhaps unrealistically,
that after every month, each pair of adult rabbits produces one pair of baby rabbits, and
baby rabbits take one month to become adults. If you start with a single pair of baby
rabbits in January, you will have 144 pairs of rabbits by December!



Fibonacci numbers appear in the ancestral tree of a honeybee. Each male bee has
only a female parent, while each female has two parents, one male and one female.



PASCAL’S TRIANGLE
the 30-second maths

What comes next in this sequence: (1 1), (121),(133 1), (146 4 1),...7 This
riddle is an important problem in algebra, known as ‘expanding brackets’, Start
with the expression (1 + x) and multiply it by itself. This gives (1 + x)? = 1+ 2x + 1x.
Multiplying three brackets gives (1 + x)> = 1 + 3x + 3x + 1x°. Four produces (1 + x)* =
1+ 4x + 6x% + 4x3 + Ix% 1t is not the algebra which is difficult here, but the numbers.
The next expression will look something like this: (1 +x)% =1+ 7x+ 2x% + 7> + 2x* +
1x°. But what are the right numbers to fill in here? Blaise Pascal wanted a way to
find the answer quickly, and find it he did, in the rows of his famous triangle. It
begins with a 1. Below that, there are two more 1s. Pascal’s insight was that the
process could be continued, with each number coming from the two above it,
added together. (Earlier thinkers had come to similar conclusions, including the
Indian thinker Pingala, over a thousand years earlier.) This process is simple to do:
just a little addition and no complicated algebra. Each row then gives the answer
to a bracket expanding problem. So to find (1 + x), just read the numbers along
the sixth row: 1, 5, 10, 10, 5, 1.

3-SECOND SUM
Blaise Pascal’s celebrated triangle not only contains many fascinating numerical
patterns, it is also an essential tool in algebra.

3-MINUTE ADDITION

Pascal’s triangle contains many fascinating patterns. The first diagonal is a row of 1s, and
the second counts: 1, 2, 3, 4, ... But the third comprises what are known as the triangular
numbers: 1, 3, 6, 10, 15, ... If you want to arrange balls into a triangle (at the start of a
game of pool, for example), these are the numbers that work. The Fibonacci numbers are
also hiding in the triangle, as the totals of successive ‘shallow diagonals’ - see if you can
find them!
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Pascal’s triangle contains numerous mathematical patterns and provides a neat
solution to some algebraic problems.
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NUMBER THEORY
the 30-second maths

Number theory is the study of interesting properties that numbers possess.
For example, choose any odd prime number and divide it by 4. The remainder will
be either 1 or 3. It can be proven that if the remainder is 1, you can find two
square numbers that add up to that prime. For example, dividing 73 by 4 gives 18
with a remainder of 1. After a short search, you can determine that 73 = 9 + 64 = 32

+ 82, On the other hand, a remainder of 3 means that no matter how hard you look,
it is impossible to find two squares that add up to that prime (try 7 or 59). This begs
the question: why? Mathematicians are never satisfied with discovering this kind
of interesting behaviour - they want to prove that such properties are always
true. Ancient Greek mathematicians began exploring properties of divisibility of
integers, leading them to study prime numbers. They also enjoyed studying
figurate numbers and their interrelationships. If you have a number of stones that
can be arranged into an equilateral triangle, or a square, or a pentagon, and so
forth, it is called figurate. Euclid even provided a formula for when any two
squares add up to a third square. Pondering similar equations led Pierre de Fermat
to conjecture what became his famous Last Theorem.

3-SECOND SUM
Number theory is the discipline devoted to the study of properties and the behaviour of
various classes of numbers.

3-MINUTE ADDITION

Carl Friedrich Gauss declared that mathematics was the queen of the sciences and that
number theory was the queen of mathematics. G. H. Hardy echoed this sentiment some
70 years ago, relishing an area of mathematics that is only studied for the surprising
beauty of the discovered truths, an area unsullied by practical application. When number
theory later began to show unanticipated application to cryptology, few thought the
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MAKING NUMBERS WORK
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