40 Algorithms
Every Programmer
Should Know

Imran Ahmad




40 Algorithms Every Programmer Should
Know

Copyright @ 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Kunal Chaudhari
Acquisition Editor: Karan Gupta

Content Development Editor: Pathikrit Roy
Senior Editor: Rohit Singh

Technical Editor: Pradeep Sahu

Copy Editor: Safis Editing

Project Coordinator: Francy Puthiry
Proofreader: Safis Editing

Indexer: Rekha Nair

Production Designer: Nilesh Mohite

First published: June 2020
Production reference: 1120620

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78980-121-7

www.packt.com



Table of Contents

Preface 1

Section 1: Fundamentals and Core Algorithms

Chapter 1: Overview of Algorithms 9
What is an algorithm? 10
The phases of an algorithm 10
Specifying the logic of an algorithm 12
Understanding pseudocode 12

A practical example of pseudocode 13

Using snippets 14
Creating an execution plan 15
Introducing Python packages 16
Python packages 16
The SciPy ecosystem 17
Implementing Python via the Jupyter Notebook 18
Algorithm design techniques 19
The data dimension 20
Compute dimension 21

A practical example 21
Performance analysis 22
Space complexity analysis 23
Time complexity analysis 23
Estimating the performance 24
The best case 24

The worst case 25

The average case 25
Selecting an algorithm 25

Big O notation 26
Constant time (O(1)) complexity 26

Linear time (O(n)) complexity 27
Quadratic time (O(n2)) complexity 27
Logarithmic time (O(logn)) complexity 28
Validating an algorithm 30
Exact, approximate, and randomized algorithms 30
Explainability 31
Summary 32
Chapter 2: Data Structures Used in Algorithms 33
Exploring data structures in Python 34

List 34



Table of Contents

Using lists

Lambda functions

The range function

The time complexity of lists
Tuples

The time complexity of tuples
Dictionary

The time complexity of a dictionary
Sets

Time complexity analysis for sets
DataFrames

Terminologies of DataFrames

Creating a subset of a DataFrame

Column selection
Row selection

Matrix

Matrix operations

Exploring abstract data types

Vector
Stacks

The time complexity of stacks

Practical example
Queues

The basic idea behind the use of stacks and queues

Tree
Terminology
Types of trees
Practical examples
Summary

Chapter 3: Sorting and Searching Algorithms
Introducing Sorting Algorithms
Swapping Variables in Python
Bubble Sort
Understanding the Logic Behind Bubble Sort
A Performance Analysis of Bubble Sort
Insertion Sort
Merge Sort
Shell Sort
A Performance Analysis of Shell Sort
Selection Sort
The performance of the selection sort algorithm
Choosing a sorting algorithm
Introduction to Searching Algorithms
Linear Search
The Performance of Linear Search
Binary Search
The Performance of Binary Search

[ii]



Table of Contents

Interpolation Search
The Performance of Interpolation Search
Practical Applications
Summary

Chapter 4: Designing Algorithms
Introducing the basic concepts of designing an algorithm
Concern 1 — Will the designed algorithm produce the result we expect?
Concern 2 — Is this the optimal way to get these results?
Characterizing the complexity of the problem
Concern 3 — How is the algorithm going to perform on larger datasets?
Understanding algorithmic strategies
Understanding the divide-and-conquer strategy
Practical example — divide-and-conquer applied to Apache Spark
Understanding the dynamic programming strategy
Understanding greedy algorithms
Practical application — solving the TSP
Using a brute-force strategy
Using a greedy algorithm
Presenting the PageRank algorithm
Problem definition
Implementing the PageRank algorithm
Understanding linear programming
Formulating a linear programming problem
Defining the objective function
Specifying constraints
Practical application — capacity planning with linear programming
Summary

Chapter 5: Graph Algorithms
Representations of graphs
Types of graphs
Undirected graphs
Directed graphs
Undirected multigraphs
Directed multigraphs
Special types of edges
Ego-centered networks
Social network analysis
Introducing network analysis theory
Understanding the shortest path
Creating a neighborhood
Triangles
Density
Understanding centrality measures
Degree
Betweenness

71
71
72
74

75
76
77
77
78
81
81
82
82
84
85
86
87
91
a3
93
a3
96
96

97
97
99

100
101
102
103
103
104
104
105
105
106
107
108
108
109
109
109
110
111

[ iii ]



Table of Contents

Fairness and closeness

11

Eigenvector centrality 112
Calculating centrality metrics using Python 112
Understanding graph traversals 114
Breadth-first search 114
Initialization 115
The main loop 115
Depth-first search 118
Case study - fraud analytics 121
Conducting simple fraud analytics 123
Presenting the watchtower fraud analytics methodology 124
Scoring negative outcomes 125
Degree of suspicion 125
Summary 127
Section 2: Machine Learning Algorithms
Chapter 6: Unsupervised Machine Learning Algorithms 129
Introducing unsupervised learning 130
Unsupervised learning in the data-mining life cycle 130
Current research trends in unsupervised learning 133
Practical examples 133
Voice categorization 134
Document categorization 134
Understanding clustering algorithms 135
Quantifying similarities 135
Euclidean distance 136
Manhattan distance 137
Cosine distance 138
K-means clustering algorithm 139
The logic of k-means clustering 139
Initialization 139
The steps of the k-means algorithm 140
Stop condition 141
Coding the k-means algorithm 141
Limitation of k-means clustering 143
Hierarchical clustering 144
Steps of hierarchical clustering 144
Coding a hierarchical clustering algorithm 145
Evaluating the clusters 146
Application of clustering 146
Dimensionality reduction 147
Principal component analysis 148
Limitations of PCA 151
Association rules mining 151
Examples of use 151
Market basket analysis 152
Association rules 153

[iv]



Table of Contents

Types of rule
Trivial rules
Inexplicable rules
Actionable rules
Ranking rules
Support
Confidence
Lift
Algorithms for association analysis
Apriori Algorithm
Limitations of the apriori algorithm
FP-growth algorithm
Populating the FP-tree
Mining Frequent Patterns
Code for using FP-growth
Practical application— clustering similar tweets together
Topic modeling
Clustering
Anomaly-detection algorithms
Using clustering
Using density-based anomaly detection
Using support vector machines

Summary

Chapter 7: Traditional Supervised Learning Algorithms
Understanding supervised machine learning
Formulating supervised machine learning
Understanding enabling conditions
Differentiating between classifiers and regressors
Understanding classification algorithms
Presenting the classifiers challenge
The problem statement
Feature engineering using a data processing pipeline
Importing data
Feature selection
One-hot encoding
Specifying the features and label
Dividing the dataset into testing and training portions
Scaling the features
Evaluating the classifiers
Confusion matrix
Performance metrics
Understanding overfitting
Bias
Variance
Bias-variance trade-off
Specifying the phases of classifiers
Decision tree classification algorithm
Understanding the decision tree classification algorithm
Using the decision tree classification algorithm for the classifiers challenge

153
153
154
154
155
155
156
156
157
157
157
158
158
160
161
163
164
164
164
165
165
165

166

167

168
169
171
172

172
173
173
174
174
175
175
176
176
177
177
178
178
180
180
180
180
181
182
183
184

[v]



Table of Contents

The strengths and weaknesses of decision tree classifiers
Strengths
Weaknesses
Use cases
Classifying records
Feature selection
Understanding the ensemble methods
Implementing gradient boosting with the XGBoost algorithm
Using the random forest algorithm
Training a random forest algorithm
Using random forest for predictions
Differentiating the random forest algorithm from ensemble boosting
Using the random forest algorithm for the classifiers challenge
Logistic regression
Assumptions
Establishing the relationship
The loss and cost functions
When to use logistic regression
Using the logistic regression algorithm for the classifiers challenge
The SVM algorithm
Using the SVM algorithm for the classifiers challenge
Understanding the naive Bayes algorithm
Bayes, theorem
Calculating probabilities
Multiplication rules for AND events
The general multiplication rule
Addition rules for OR events
Using the naive Bayes algorithm for the classifiers challenge
For classification algorithms, the winner is...
Understanding regression algorithms
Presenting the regressors challenge
The problem statement of the regressors challenge
Exploring the historical dataset
Feature engineering using a data processing pipeline
Linear regression
Simple linear regression
Evaluating the regressors
Multiple regression
Using the linear regression algorithm for the regressors challenge
When is linear regression used?
The weaknesses of linear regression
The regression tree algorithm
Using the regression tree algorithm for the regressors challenge
The gradient boost regression algorithm
Using gradient boost regression algorithm for the regressors challenge
For regression algorithms, the winner is...
Practical example — how to predict the weather

Summary
Chapter 8: Neural Network Algorithms

185
185
185
186
186
186
186
187
188
188
188
189
189
191
191
191
192
192
193
194
195
195
196
196
197
197
197
198
199
199
200
200
200
201
202
202
204
205
205
206
206
207
207
208
208
209
209

212
213

[vi]



Table of Contents

Understanding ANNs
The Evolution of ANNs
Training a Neural Network
Understanding the Anatomy of a Neural Network
Defining Gradient Descent
Activation Functions
Threshold Function
Sigmoid
Rectified linear unit (ReLU)
Leaky RelLU
Hyperbolic tangent (tanh)
Softmax
Tools and Frameworks
Keras
Backend Engines of Keras
Low-level layers of the deep learning stack
Defining hyperparameters
Defining a Keras model
Choosing sequential or functional model
Understanding TensorFlow
Presenting TensorFlow's Basic Concepts
Understanding Tensor Mathematics
Understanding the Types of Neural Networks
Convolutional Neural Networks
Convolution
Pooling
Recurrent Neural Networks
Generative Adversarial Networks
Transfer Learning
Case study — using deep learning for fraud detection
Methodology
Summary

Chapter 9: Algorithms for Natural Language Processing
Introducing NLP
Understanding NLP terminology
Normalization
Corpus
Tokenization
Named entity recognition
Stopwords
Sentiment analysis
Stemming and lemmatization
NLTK
BoW-based NLP
Introduction to word embedding
The neighborhood of a word
Properties of word embeddings

214
216
218
218
219
222
222
223
224
225
226
227
228
228
228
229
229
230
232
232
232
233
234
235

235
235

236
236
236
237
238
242

243
244
244
244
245
245
245
245
246
246
247
247
250
251
251

[ vii]



Table of Contents

Using RNNs for NLP 252
Using NLP for sentiment analysis 253
Case study: movie review sentiment analysis 255
Summary 258
Chapter 10: Recommendation Engines 259
Introducing recommendation systems 260
Types of recommendation engines 260
Content-based recommendation engines 260
Finding similarities between unstructured documents 261
Using a co-occurrence matrix 262
Collaborative filtering recommendation engines 263
Hybrid recommendation engines 265
Generating a similarity matrix of the items 265
Generating reference vectors of the users 266
Generating recommendations 266
Understanding the limitations of recommender systems 267
The cold start problem 267
Metadata requirements 268
The data sparsity problem 268
Bias due to social influence 268
Limited data 268
Areas of practical applications 268
Practical example — creating a recommendation engine 269
Summary 272
Section 3: Advanced Topics
Chapter 11: Data Algorithms 274
Introduction to data algorithms 274
Data classification 275
Presenting data storage algorithms 276
Understanding data storage strategies 276
Presenting the CAP theorem 276
CA systems 277
AP systems 278
CP systems 278
Presenting streaming data algorithms 279
Applications of streaming 279
Presenting data compression algorithms 279
Lossless compression algorithms 280
Understanding the basic techniques of lossless compression 280
Huffman coding 281
A practical example - Twitter real-time sentiment analysis 282
Summary 286
Chapter 12: Cryptography 287

[ viii ]



Table of Contents

Introduction to Cryptography

Understanding the Importance of the Weakest Link
The Basic Terminology
Understanding the Security Requirements

Identifying the Entities

Establishing the Security Goals

Understanding the Sensitivity of the Data
Understanding the Basic Design of Ciphers

Presenting Substitution Ciphers

Understanding Transposition Ciphers

Understanding the Types of Cryptographic Techniques

Using the Cryptographic Hash Function

Implementing cryptographic hash functions

Understanding MD5-tolerated
Understanding SHA

An Application of the Cryptographic Hash Function
Using Symmetric Encryption

Coding Symmetric Encryption

The Advantages of Symmetric Encryption

The Problems with Symmetric Encryption
Asymmetric Encryption

The SSL/TLS Handshaking Algorithm

Public Key Infrastructure

Example — Security Concerns When Deploying a Machine Learning

Model
MITM attacks
How to prevent MITM attacks
Avoiding Masquerading
Data and Model Encrpytion
Summary

Chapter 13: Large-Scale Algorithms
Introduction to large-scale algorithms
Defining a well-designed, large-scale algorithm
Terminology
Latency
Throughput
Network bisection bandwidth
Elasticity
The design of parallel algorithms
Amdahl's law

Conducting sequential process analysis
Conducting parallel execution analysis

Understanding task granularity

Load balancing

Locality issues

Enabling concurrent processing in Python
Strategizing multi-resource processing

288
288
289
289
290
200
291
291
202
294
295
295
296
206
297
298
208
299
300
300
300
301
303

304
305
306
307
307

310

311
312
312
312
312
313
313
313
313
314

314
315

317
317
318
318
318

[ix]



Table of Contents

Introducing CUDA 319
Designing parallel algorithms on CUDA 320

Using GPUs for data processing in Python 321
Cluster computing 322
Implementing data processing in Apache Spark 323

The hybrid strategy 325
Summary 325
Chapter 14: Practical Considerations 326
Introducing practical considerations 327
The sad story of an Al Twitter Bot 328
The explainability of an algorithm 328
Machine learning algorithms and explainability 329
Presenting strategies for explainability 329
Implementing explainability 330
Understanding ethics and algorithms 333
Problems with learning algorithms 333
Understanding ethical considerations 334
Inconclusive evidence 334
Traceability 335
Misguided evidence 335

Unfair outcomes 335
Reducing bias in models 335
Tackling NP-hard problems 336
Simplifying the problem 337
Example 337
Customizing a well-known solution to a similar problem 337
Example 337

Using a probabilistic method 338
Example 338

When to use algorithms 338
A practical example — black swan events 339
Four criteria to classify an event as a black swan event 339
Applying algorithms to black swan events 340
Summary 341
Other Books You May Enjoy 342
Index 345

[x]



Preface

Algorithms have always played an important role both in the science and practice of
computing. This book focuses on utilizing these algorithms to solve real-world problems.
To get the most out of these algorithms, a deeper understanding of their logic and
mathematics is imperative. You'll start with an introduction to algorithms and explore
various algorithm design techniques. Moving on, you'll learn about linear programming,
page ranking, and graphs, and even work with machine learning algorithms,
understanding the math and logic behind them. This book also contains case studies, such
as weather prediction, tweet clustering, and movie recommendation engines, that will
show you how to apply these algorithms optimally. As you complete this book, you will
become confident in using algorithms for solving real-world computational problems.

Who this book is for

This book is for the serious programmer! Whether you are an experienced programmer
looking to gain a deeper understanding of the math behind the algorithms or have limited
programming or data science knowledge and want to learn more about how you can take
advantage of these battle-tested algorithms to improve the way you design and write code,
you'll find this book useful. Experience with Python programming is a must, although
knowledge of data science is helpful but not necessary.

What this book covers

Chapter 1, Overview of Algorithms, summarizes the fundamentals of algorithms. It starts
with a section on the basic concepts needed to understand the working of different
algorithms. [t summarizes how people started using algorithms to mathematically
formulate certain classes of problems. It also mentions the limitations of different
algorithms. The next section explains the various ways to specify the logic of an algorithm.
As Python is used in this book to write the algorithms, how to set up the environment in
order to run the examples is explained next. Then, the various ways in which an algorithm's
performance can be quantified and compared against other algorithms are discussed.
Finally, this chapter discusses various ways in which a particular implementation of an
algorithm can be validated.
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Chapter 2, Data Structures Used in Algorithms, focuses on algorithms' need for necessary in-
memory data structures that can hold the temporary data. Algorithms can be data-
intensive, compute-intensive, or both. But for all different types of algorithms, choosing the
right data structures is essential for their optimal implementation. Many algorithms have
recursive and iterative logic and require specialized data structures that are fundamentally
iterative in nature. As we are using Python in this book, this chapter focuses on Python data
structures that can be used to implement the algorithms discussed in this book.

Chapter 3, Sorting and Searching Algorithms, presents core algorithms that are used for
sorting and searching. These algorithms can later become the basis for more complex
algorithms. The chapter starts by presenting different types of sorting algorithms. It also
compares the performance of various approaches. Then, various algorithms for searching
are presented. They are compared and their performance and complexity are quantified.
Finally, this chapter presents the actual applications of these algorithms.

Chapter 4, Designing Algorithms, presents the core design concepts of various algorithms. It
also explains different types of algorithms and discusses their strengths and weaknesses.
Understanding these concepts is important when it comes to designing optimal complex
algorithms. The chapter starts by discussing different types of algorithmic designs. Then, it
presents the solution for the famous traveling salesman problem. It then discusses linear
programming and its limitations. Finally, it presents a practical example that shows how
linear programming can be used for capacity planning.

Chapter 5, Graph Algorithms, focuses on the algorithms for graph problems that are
common in computer science. There are many computational problems that can best be
represented in terms of graphs. This chapter presents methods for representing a graph and
for searching a graph. Searching a graph means systematically following the edges of the
graph so as to visit the vertices of the graph. A graph-searching algorithm can discover a lot
about the structure of a graph. Many algorithms begin by searching their input graph to
obtain this structural information. Several other graph algorithms elaborate on basic graph
searching. Techniques for searching a graph lie at the heart of the field of graph algorithms.
The first section discusses the two most common computational representations of graphs:
as adjacency lists and as adjacency matrices. Next, a simple graph-searching algorithm
called breadth-first search is presented and shows how to create a breadth-first tree. The
following section presents the depth-first search and provides some standard results about
the order in which a depth-first search visits vertices.

[2]
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Chapter 6, Unsupervised Machine Learning Algorithms, introduces unsupervised machine
learning algorithms. These algorithms are classified as unsupervised because the model or
algorithm tries to learn inherent structures, patterns, and relationships from given data
without any supervision. First, clustering methods are discussed. These are machine
learning methods that try to find patterns of similarity and relationships among data
samples in our dataset and then cluster these samples into various groups, such that each
group or cluster of data samples has some similarity, based on the inherent attributes or
features. The following section discusses dimensionality reduction algorithms, which are
used when we end up having a number of features. Next, some algorithms that deal with
anomaly detection are presented. Finally, this chapter presents association rule-mining,
which is a data mining method used to examine and analyze large transactional datasets to
identify patterns and rules of interest. These patterns represent interesting relationships
and associations, among various items across transactions.

Chapter 7, Traditional Supervised Learning Algorithms, describes traditional supervised
machine learning algorithms in relation to a set of machine learning problems in which
there is a labeled dataset with input attributes and corresponding output labels or classes.
These inputs and corresponding outputs are then used to learn a generalized system, which
can be used to predict results for previously unseen data points. First, the concept of
classification is introduced in the context of machine learning. Then, the simplest of the
machine learning algorithms, linear regression, is presented. This is followed by one of the
most important algorithms, the decision tree. The limitations and strengths of decision tree
algorithms are discussed, followed by two important algorithms, SVM and XGBoost.

Chapter 8, Neural Network Algorithms, first introduces the main concepts and components
of a typical neural network, which is becoming the most important type of machine
learning technique. Then, it presents the various types of neural networks and also explains
the various kinds of activation functions that are used to realize these neural networks. The
backpropagation algorithm is then discussed in detail. This is the most widely used
algorithm to converge the neural network problem. Next, the transfer learning technique is
explained, which can be used to greatly simplify and partially automate the training of
models. Finally, how to use deep learning to detect objects in multimedia data is presented
as a real-world example.

Chapter 9, Algorithms for Natural Language Processing, presents algorithms for natural
language processing (NLP). This chapter proceeds from the theoretical to the practical in a
progressive manner. First, it presents the fundamentals, followed by the underlying
mathematics. Then, it discusses one of the most widely used neural networks to design and
implement a couple of important use cases for textual data. The limitations of NLP are also
discussed. Finally, a case study is presented where a model is trained to detect the author of
a paper based on the writing style.

[31]
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Chapter 10, Recommendation Engines, focuses on recommendation engines, which are a way
of modeling information available in relation to user preferences and then using this
information to provide informed recommendations on the basis of that information. The
basis of the recommendation engine is always the recorded interaction between the users
and products. This chapter begins by presenting the basic idea behind recommendation
engines. Then, it discusses various types of recommendation engines. Finally, this chapter
discusses how recommendation engines are used to suggest items and products to different
users.

Chapter 11, Data Algorithms, focuses on the issues related to data-centric algorithms. The
chapter starts with a brief overview of the issues related to data. Then, the criteria for
classifying data are presented. Next, a description of how to apply algorithms to streaming
data applications is provided and then the topic of cryptography is presented. Finally, a
practical example of extracting patterns from Twitter data is presented.

Chapter 12, Cryptography, introduces the algorithms related to cryptography. The chapter
starts by presenting the background. Then, symmetrical encryption algorithms are
discussed. MD5 and SHA hashing algorithms are explained and the limitations and
weaknesses associated with implementing symmetric algorithms are presented. Next,
asymmetric encryption algorithms are discussed and how they are used to create digital
certificates. Finally, a practical example that summarizes all these techniques is discussed.

Chapter 13, Large-Scale Algorithms, explains how large-scale algorithms handle data that
cannot fit into the memory of a single node and involve processing that requires multiple
CPUs. This chapter starts by discussing what types of algorithms are best suited to be run
in parallel. Then, it discusses the issues related to parallelizing the algorithms. It also
presents the CUDA architecture and discusses how a single GPU or an array of GPUs can
be used to accelerate the algorithms and what changes need to be made to the algorithm in
order to effectively utilize the power of the GPU. Finally, this chapter discusses cluster
computing and discusses how Apache Spark creates resilient distributed datasets (RDDs)
to create an extremely fast parallel implementation of standard algorithms.

Chapter 14, Practical Considerations, starts with the important topic of explainability, which
is becoming more and more important now that the logic behind automated decision
making has been explained. Then, this chapter presents the ethics of using an algorithm
and the possibilities of creating biases when implementing them. Next, the techniques for
handling NP-hard problems are discussed in detail. Finally, ways to implement algorithms,
and the real-world challenges associated with this, are summarized.

[4]
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To get the most out of this book

Chapter Software Hardware
P required (with [Free/Proprietary PP OS required
number . specifications
version)
Python version Min 4GB of RAM, 8GB . .
1-14 3.7.2 or later Free +Recommended. Windows/Linux/Mac

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files

You can download the example code files for this book from your account at
www.packt . com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt .com.
Select the Support tab.
Click on Code Downloads.

Enter the name of the book in the Search box and follow the onscreen
instructions.

=N =

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

¢ WIinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/40-Algorithms-Every-Programmer-Should-Know. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

[5]
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Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://static.packt—-cdn.com/downloads/
9781789801217_ColorImages.pdf

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Let's see how to add a new element to a stack by using push or removing an
element from a stack by using pop."

A block of code is set as follows:

define swap(x, v)

buffer = x
X =y
v = buffer

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

define swap(x, y)

buffer = x
X =y
y = buffer

Any command-line input or output is written as follows:
pip install a_package

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"One way to reduce the complexity of an algorithm is to compromise on its accuracy,
producing a type of algorithm called an approximate algorithm."

[6]
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Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt . com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit

authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

[71]



Section 1: Fundamentals and

Core Algorithms

This section introduces us to the core aspects of algorithms. We will explore what an
algorithm is and how to design it, and also learn about the data structures used in
algorithms. This section also gives a deep idea on sorting and searching algorithms along
with the algorithms to solve graphical problems. The chapters included in this section are:

Chapter
Chapter
Chapter
Chapter
Chapter

1, Overview of Algorithms

2, Data Structures used in Algorithms
3, Sorting and Searching Algorithms
4, Designing Algorithms

5, Graph Algorithms



Overview of Algorithms

This book covers the information needed to understand, classify, select, and implement
important algorithms. In addition to explaining their logic, this book also discusses data
structures, development environments, and production environments that are suitable for
different classes of algorithms. We focus on modern machine learning algorithms that are
becoming more and more important. Along with the logic, practical examples of the use of
algorithms to solve actual everyday problems are also presented.

This chapter provides an insight into the fundamentals of algorithms. It starts with a
section on the basic concepts needed to understand the workings of different algorithms.
This section summarizes how people started using algorithms to mathematically formulate
a certain class of problems. It also mentions the limitations of different algorithms. The next
section explains the various ways to specify the logic of an algorithm. As Python is used in
this book to write the algorithms, how to set up the environment to run the examples is
explained. Then, the various ways that an algorithm's performance can be quantified and
compared against other algorithms are discussed. Finally, this chapter discusses various
ways a particular implementation of an algorithm can be validated.

To sum up, this chapter covers the following main points:

¢ What is an algorithm?
* Specifying the logic of an algorithm

Introducing Python packages

Algorithm design techniques

Performance analysis

Validating an algorithm



Overview of Algorithms Chapter 1

What is an algorithm?

In the simplest terms, an algorithm is a set of rules for carrying out some calculations to
solve a problem. It is designed to yield results for any valid input according to precisely
defined instructions. If you look up the word algorithm in an English language dictionary
(such as American Heritage), it defines the concept as follows:

"An algorithm is a finite set of unambiguous instructions that, given some set of initial
conditions, can be performed in a prescribed sequence to achieve a certain goal and that has a
recognizable set of end conditions.”

Designing an algorithm is an effort to create a mathematical recipe in the most efficient way
that can effectively be used to solve a real-world problem. This recipe may be used as the
basis for developing a more reusable and generic mathematical solution that can be applied
to a wider set of similar problems.

The phases of an algorithm

The different phases of developing, deploying, and finally using an algorithm are
illustrated in the following diagram:

Problem
Statement =
@
]
S ¥
9 =
v a
u [
Algorithm Q
k)
a

INPUT——— Computing Device ———— OUTPUT

;'_/

Runtime

[10]



Overview of Algorithms Chapter 1

As we can see, the process starts with understanding the requirements from the problem
statement that detail what needs to be done. Once the problem is clearly stated, it leads us
to the development phase.

The development phase consists of two phases:

¢ The design phase: In the design phase, the architecture, logic, and
implementation details of the algorithm are envisioned and documented. While
designing an algorithm, we keep both accuracy and performance in mind. While
searching for the solution to a given problem, in many cases we will end up
having more than one alternative algorithm. The design phase of an algorithm is
an iterative process that involves comparing different candidate algorithms.
Some algorithms may provide simple and fast solutions but may compromise on
accuracy. Other algorithms may be very accurate but may take considerable time
to run due to their complexity. Some of these complex algorithms may be more
efficient than others. Before making a choice, all the inherent tradeoffs of the
candidate algorithms should be carefully studied. Particularly for a complex
problem, designing an efficient algorithm is really important. A correctly
designed algorithm will result in an efficient solution that will be capable of
providing both satisfactory performance and reasonable accuracy at the same
time.

¢ The coding phase: In the coding phase, the designed algorithm is converted into
a computer program. It is important that the actual program implements all the
logic and architecture suggested in the design phase.

The designing and coding phases of an algorithm are iterative in nature. Coming up with a
design that meets both functional and non-functional requirements may take lots of time
and effort. Functional requirements are those requirements that dictate what the right
output for a given set of input data is. Non-functional requirements of an algorithm are
mostly about the performance for a given size of data. Validation and performance analysis
of an algorithm are discussed later in this chapter. Validating an algorithm is about
verifying that an algorithm meets its functional requirements. Performance analysis of

an algorithm is about verifying that it meets its main non-functional requirement:
performance.

[11]
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Once designed and implemented in a programming language of your choice, the code of
the algorithm is ready to be deployed. Deploying an algorithm involves the design of the
actual production environment where the code will run. The production environment
needs to be designed according to the data and processing needs of the algorithm. For
example, for parallelizable algorithms, a cluster with an appropriate number of computer
nodes will be needed for the efficient execution of the algorithm. For data-intensive
algorithms, a data ingress pipeline and the strategy to cache and store data may need to be
designed. Designing a production environment is discussed in more detail in Chapter

13, Large Scale Algorithms, and chapter 14, Practical Considerations. Once the production
environment is designed and implemented, the algorithm is deployed, which takes the
input data, processes it, and generates the output as per the requirements.

Specifying the logic of an algorithm

When designing an algorithm, it is important to find different ways to specify its details.
The ability to capture both its logic and architecture is required. Generally, just like
building a home, it is important to specify the structure of an algorithm before actually
implementing it. For more complex distributed algorithms, pre-planning the way their
logic will be distributed across the cluster at running time is important for the iterative
efficient design process. Through pseudocode and execution plans, both these needs are
fulfilled and are discussed in the next section.

Understanding pseudocode

The simplest way to specify the logic for an algorithm is to write the higher-level
description of an algorithm in a semi-structured way, called pseudocode. Before writing
the logic in pseudocode, it is helpful to first describe its main flow by writing the main
steps in plain English. Then, this English description is converted into pseudocode, which is
a structured way of writing this English description that closely represents the logic and
flow for the algorithm. Well-written algorithm pseudocode should describe the high-level
steps of the algorithm in reasonable detail, even if the detailed code is not relevant to the
main flow and structure of the algorithm. The following figure shows the flow of steps:

[12]
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Note that once the pseudocode is written (as we will see in the next section), we are ready
to code the algorithm using the programming language of our choice.

A practical example of pseudocode

Figure 1.3 shows the pseudocode of a resource allocation algorithm called SRPMP. In
cluster computing, there are many situations where there are parallel tasks that need to be
run on a set of available resources, collectively called a resource pool. This algorithm
assigns tasks to a resource and creates a mapping set, called Q. Note that the presented
pseudocode captures the logic and flow of the algorithm, which is further explained in the

following section:

1: BEGIN Mapping_Phase
2: Q= {1}

3: k=1

4: FOREACH T.€T

5 w, = RA(A,T,)
6: add {m,,T,} to Q
9

8

9

1

1

state_change,, [STATE 0: Idle/Unmapped]

k=k+1
: IF (k>q)
0: k=1
1: ENDIF

[13
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12:
13:

Let's par

1.
2.

END FOREACH
END Mapping_Phase

se this algorithm line by line:

We start the mapping by executing the algorithm. The Q mapping set is empty.
The first partition is selected as the resource pool for the T, task (see line 3 of the
preceding code). Television Rating Point (TRPS) iteratively calls

the Rheumatoid Arthritis (RA) algorithm for each T, task with one of the
partitions chosen as the resource pool.

The RA algorithm returns the set of resources chosen for the T. task, represented
by o, (see line 5 of the preceding code).

4. T, and w, are added to the mapping set (see line 6 of the preceding code).

5. The state of T, is changed from STATE 0:Idle/Mapping to STATE

1:Idle/Mapped (see line 7 of the preceding code).
. Note that for the first iteration, k=1 and the first partition is selected. For each
subsequent iteration, the value of k is increased until k>q.
If x becomes greater than g, it is reset to 1 again (see lines 9 and 10 of the
preceding code).
This process is repeated until a mapping between all tasks and the set of
resources they will use is determined and stored in a mapping set called €.

Once each of the tasks is mapped to a set of the resources in the mapping phase,
it is executed.

Using snippets

With the

popularity of simple but powerful coding language such as Python, an alternative

approach is becoming popular, which is to represent the logic of the algorithm directly in
the programming language in a somewhat simplified version. Like pseudocode, this
selected code captures the important logic and structure of the proposed algorithm,
avoiding detailed code. This selected code is sometimes called a snippet. In this book,

snippets
step. For

are used instead of pseudocode wherever possible as they save one additional
example, let's look at a simple snippet that is about a Python function that can be

used to swap two variables:

define swap(x, v)
buffer = x
X =y
v = buffer

[14]
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sometimes we abstract many lines of code as one line of pseudocode,
expressing the logic of the algorithm without becoming distracted by
unnecessary coding details.

o Note that snippets cannot always replace pseudocode. In pseudocode,

Creating an execution plan

Pseudocode and snippets are not always enough to specify all the logic related to more
complex distributed algorithms. For example, distributed algorithms usually need to be
divided into different coding phases at runtime that have a precedence order. The right
strategy to divide the larger problem into an optimal number of phases with the right
precedence constraints is crucial for the efficient execution of an algorithm.

We need to find a way to represent this strategy as well to completely represent the logic
and structure of an algorithm. An execution plan is one of the ways of detailing how the
algorithm will be subdivided into a bunch of tasks. A task can be mappers or reducers that
can be grouped together in blocks called stages. The following diagram shows an execution
plan that is generated by an Apache Spark runtime before executing an algorithm. It details
the runtime tasks that the job created for executing our algorithm will be divided into:

Stage 11 (skipped) Stage 12

WholeStageCodegen Exchange

mapPaifftitionsinternal

Note that the preceding diagram has five tasks that have been divided into two different
stages: Stage 11 and Stage 12.

[15]
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Introducing Python packages

Once designed, algorithms need to be implemented in a programming language as per the
design. For this book, I chose the programming language Python. I chose it because Python
is a flexible and open source programming language. Python is also the language of choice
for increasingly important cloud computing infrastructures, such as Amazon Web
Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP).

The official Python home page is available at https://www.python.org/, which also has
instructions for installation and a useful beginner's guide.

If you have not used Python before, it is a good idea to browse through this beginner's
guide to self-study. A basic understanding of Python will help you to better understand the
concepts presented in this book.

For this book, I expect you to use the recent version of Python 3. At the time of writing, the
most recent version is 3.7.3, which is what we will use to run the exercises in this book.

Python packages

Python is a general-purpose language. It is designed in a way that comes with bare
minimum functionality. Based on the use case that you intend to use Python for, additional
packages need to be installed. The easiest way to install additional packages is through the
pip installer program. This pip command can be used to install the additional packages:

pip install a_package

The packages that have already been installed need to be periodically updated to get the
latest functionality. This is achieved by using the upgrade flag:

pip install a_package —--upgrade

Another Python distribution for scientific computing is Anaconda, which can be
downloaded from http://continuum.io/downloads.

In addition to using the pip command to install new packages, for Anaconda distribution,
we also have the option of using the following command to install new packages:

conda install a_package

To update the existing packages, the Anaconda distribution gives us the option to use the
following command:

conda update a_package

[16]
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There are all sorts of Python packages that are available. Some of the important packages
that are relevant for algorithms are described in the following section.

The SciPy ecosystem

Scientific Python (SciPy)—pronounced sigh pie—is a group of Python packages created for
the scientific community. It contains many functions, including a wide range of random
number generators, linear algebra routines, and optimizers. SciPy is a comprehensive
package and, over time, people have developed many extensions to customize and extend
the package according to their needs.

The following are the main packages that are part of this ecosystem:

NumPy: For algorithms, the ability to create multi-dimensional data structures,
such as arrays and matrices, is really important. NumPy offers a set of array and
matrix data types that are important for statistics and data analysis. Details about
NumPy can be found at http://www.numpy.org/.

scikit-learn: This machine learning extension is one of the most popular
extensions of SciPy. Scikit-learn provides a wide range of important machine
learning algorithms, including classification, regression, clustering, and model
validation. You can find more details about scikit-learn at http://scikit-learn.
org/.

pandas: pandas is an open source software library. It contains the tabular
complex data structure that is used widely to input, output, and process
tabular data in various algorithms. The pandas library contains many useful
functions and it also offers highly optimized performance. More details about
pandas can be found at http://pandas.pydata.org/.

Matplotlib: Matplotlib provides tools to create powerful visualizations. Data can
be presented as line plots, scatter plots, bar charts, histograms, pie charts, and so
on. More information can be found at https://matplotlib.org/.

Seaborn: Seaborn can be thought of as similar to the popular ggplot2 library in R.
It is based on Matplotlib and offers an

advanced interface for drawing brilliant statistical graphics. Further details can
be found at https://seaborn.pydata.org/.

iPython: iPython is an enhanced interactive console that is designed to facilitate
the writing, testing, and debugging of Python code.

Running Python programs: An interactive mode of programming is useful for
learning and experimenting with code. Python programs can be saved in a text
file with the . py extension and that file can be run from the console.

[17]
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Implementing Python via the Jupyter Notebook

Another way to run Python programs is through the Jupyter Notebook. The Jupyter

Notebook provides a browser-based user interface to develop code. The Jupyter Notebook

is used to present the code examples in this book. The ability to annotate and describe the
code with texts and graphics makes it the perfect tool for presenting and explaining an
algorithm and a great tool for learning.

To start the notebook, you need to start the Juypter-notebook process and then open
your favorite browser and navigate to http://localhost:8888:

@ localhost:8888

File Edit

B + &

In [4]:

In [2]:

In [4]:

Out[4]:

In [5]:

Out[5]:

In [13]:

Oout[13]:

" Jupyter myEXPFARMS_numpy.np_array_basics Last Gheckpoint: 03/16/2019 (autosaved)

View Insert Cell Kernel Widgets Help

BB a2 + M B C  Makdown )

Create NumPy array using Python's "array like" data type

numpy array is drived from numpy.ndarray
import numpy as np

print(np._ version_ )
1.13.3
my_ list=[-17,0,4,5,9]
my_array from list = np.array(my list)
my_array_from list

array([-17, 0, 4, 5, 91)

my_array_ from list * 10
array([-170, a, 40, 50, 901)
my_tuple = (4,-3.45,5+7])
my_tuple
my_array from tuple = np.array(my_tuple)

my_array from tuple

array([ 4.00+0.3j, -3.45+0.j, 5.00+7.3])
(ESGC + M) for Markdown.

Diff between python and numpy data structures

Chapter 1

[18]
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Note that a Jupyter Notebook consists of different blocks called cells.

Algorithm design techniques

An algorithm is a mathematical solution to a real-world problem. When designing an
algorithm, we keep the following three design concerns in mind as we work on designing
and fine-tuning the algorithms:

e Concern 1: Is this algorithm producing the result we expected?
¢ Concern 2: Is this the most optimal way to get these results?
¢ Concern 3: How is the algorithm going to perform on larger datasets?

It is important to better understand the complexity of the problem itself before designing a
solution for it. For example, it helps us to design an appropriate solution if we characterize
the problem in terms of its needs and complexity. Generally, the algorithms can be divided
into the following types based on the characteristics of the problem:

¢ Data-intensive algorithms: Data-intensive algorithms are designed to deal with
a large amount of data. They are expected to have relatively simplistic processing
requirements. A compression algorithm applied to a huge file is a good example
of data-intensive algorithms. For such algorithms, the size of the data is expected
to be much larger than the memory of the processing engine (a single node or
cluster) and an iterative processing design may need to be developed to
efficiently process the data according to the requirements.

¢ Compute-intensive algorithms: Compute-intensive algorithms have
considerable processing requirements but do not involve large amounts of data.
A simple example is the algorithm to find a very large prime number. Finding a
strategy to divide the algorithm into different phases so that at least some of the
phases are parallelized is key to maximizing the performance of the algorithm.

¢ Both data and compute-intensive algorithms: There are certain algorithms that
deal with a large amount of data and also have considerable computing
requirements. Algorithms used to perform sentiment analysis on live video feeds
are a good example of where both the data and the processing requirements are
huge in accomplishing the task. Such algorithms are the most resource-intensive
algorithms and require careful design of the algorithm and intelligent allocation
of available resources.

To characterize the problem in terms of its complexity and needs, it helps if we study its
data and compute dimensions in more depth, which we will do in the following section.

[19]
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The data dimension

To categorize the data dimension of the problem, we look at its volume, velocity, and
variety (the 3Vs), which are defined as follows:

¢ Volume: The volume is the expected size of the data that the algorithm will
process.

 Velocity: The velocity is the expected rate of new data generation when the
algorithm is used. It can be zero.

 Variety: The variety quantifies how many different types of data the designed
algorithm is expected to deal with.

The following figure shows the 3Vs of the data in more detail. The center of this diagram
shows the simplest possible data, with a small volume and low variety and velocity. As we
move away from the center, the complexity of the data increases. It can increase in one or
more of the three dimensions. For example, in the dimension of velocity, we have the Batch
process as the simplest, followed by the Periodic process, and then the Near Real-Time
process. Finally, we have the Real-Time process, which is the most complex to handle in
the context of data velocity. For example, a collection of live video feeds gathered by a
group of monitoring cameras will have a high volume, high velocity, and high variety and
may need an appropriate design to have the ability to store and process data effectively. On
the other hand, a simple . csv file created in Excel will have a low volume, low velocity,
and low variety:




Overview of Algorithms Chapter 1

For example, if the input data is a simple csv file, then the volume, velocity, and variety of
the data will be low. On the other hand, if the input data is the live stream of a security
video camera, then the volume, velocity, and variety of the data will be quite high and this
problem should be kept in mind while designing an algorithm for it.

Compute dimension

The compute dimension is about the processing and computing needs of the problem at
hand. The processing requirements of an algorithm will determine what sort of design is
most efficient for it. For example, deep learning algorithms, in general, require lots of
processing power. It means that for deep learning algorithms, it is important to have multi-
node parallel architecture wherever possible.

A practical example

Let's assume that we want to conduct sentiment analysis on a video. Sentiment analysis is
where we try to flag different portions of a video with human emotions of sadness,
happiness, fear, joy, frustration, and ecstasy. It is a compute-intensive job where lots of
computing power is needed. As you will see in the following figure, to design the compute
dimension, we have divided the processing into five tasks, consisting of two stages. All the
data transformation and preparation is implemented in three mappers. For that, we divide
the video into three different partitions, called splits. After the mappers are executed, the
resulting processed video is inputted to the two aggregators, called reducers. To conduct
the required sentiment analysis, the reducers group the video according to the emotions.
Finally, the results are combined in the output:

split 0 ~» EUEREal--» resultl

L

Input Dfalta e gplit 19 QUESSCER P tesult2” Output Data

.~

spit2 |- Eel - result3

Phase 1 Phase 2
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Note that the number of mappers directly translates to the runtime
parallelism of the algorithm. The optimal number of mappers and
reducers is dependent on the characteristics of the data, the type of
algorithm that is needed to be used, and the number of resources
available.

Performance analysis

Analyzing the performance of an algorithm is an important part of its design. One of the
ways to estimate the performance of an algorithm is to analyze its complexity.

Complexity theory is the study of how complicated algorithms are. To be useful, any
algorithm should have three key features:

¢ It should be correct. An algorithm won't do you much good if it doesn't give you
the right answers.

¢ A good algorithm should be understandable. The best algorithm in the world
won't do you any good if it's too complicated for you to implement on a
computer.

¢ A good algorithm should be efficient. Even if an algorithm produces a correct
result, it won't help you much if it takes a thousand years or if it requires 1 billion
terabytes of memory.

There are two possible types of analysis to quantify the complexity of an algorithm:

¢ Space complexity analysis: Estimates the runtime memory requirements needed
to execute the algorithm.
¢ Time complexity analysis: Estimates the time the algorithm will take to run.

[22]
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Space complexity analysis

Space complexity analysis estimates the amount of memory required by the algorithm to
process input data. While processing the input data, the algorithm needs to store the
transient temporary data structures in memory. The way the algorithm is designed affects
the number, type, and size of these data structures. In an age of distributed computing and
with increasingly large amounts of data that needs to be processed, space complexity
analysis is becoming more and more important. The size, type, and number of these data
structures will dictate the memory requirements for the underlying hardware. Modern in-
memory data structures used in distributed computing—such as Resilient Distributed
Datasets (RDDs)—need to have efficient resource allocation mechanisms that are aware of
the memory requirements at different execution phases of the algorithm.

Space complexity analysis is a must for the efficient design of algorithms. If proper space
complexity analysis is not conducted while designing a particular algorithm, insufficient
memory availability for the transient temporary data structures may trigger unnecessary
disk spillovers, which could potentially considerably affect the performance and efficiency
of the algorithm.

In this chapter, we will look deeper into time complexity. Space complexity will be
discussed in chapter 13, Large-Scale Algorithms, in more detail, where we will deal with
large-scale distributed algorithms with complex runtime memory requirements.

Time complexity analysis

Time complexity analysis estimates how long it will take for an algorithm to complete its
assigned job based on its structure. In contrast to space complexity, time complexity is not
dependent on any hardware that the algorithm will run on. Time complexity analysis solely
depends on the structure of the algorithm itself. The overall goal of time complexity
analysis is to try to answer these important questions—will this algorithm scale? How well
will this algorithm handle larger datasets?

To answer these questions, we need to determine the etfect on the performance of an
algorithm as the size of the data is increased and make sure that the algorithm is designed
in a way that not only makes it accurate but also scales well. The performance of an
algorithm is becoming more and more important for larger datasets in today's world of "big
data."

[23]
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In many cases, we may have more than one approach available to design the algorithm. The
goal of conducting time complexity analysis, in this case, will be as follows:

"Given a certain problem and more than one algorithm, which one is the most efficient to
use in terms of time efficiency?”

There can be two basic approaches to calculating the time complexity of an algorithm:

e A post-implementation profiling approach: In this approach, different
candidate algorithms are implemented and their performance is compared.

¢ A pre-implementation theoretical approach: In this approach, the performance
of each algorithm is approximated mathematically before running an algorithm.

The advantage of the theoretical approach is that it only depends on the structure of the
algorithm itself. It does not depend on the actual hardware that will be used to run the
algorithm, the choice of the software stack chosen at runtime, or the programming
language used to implement the algorithm.

Estimating the performance

The performance of a typical algorithm will depend on the type of the data given to it as an
input. For example, if the data is already sorted according to the context of the problem we
are trying to solve, the algorithm may perform blazingly fast. If the sorted input is used to
benchmark this particular algorithm, then it will give an unrealistically good performance
number, which will not be a true reflection of its real performance in most scenarios. To
handle this dependency of algorithms on the input data, we have ditferent types of cases to
consider when conducting a performance analysis.

The best case

In the best case, the data given as input is organized in a way that the algorithm will give its
best performance. Best-case analysis gives the upper bound of the performance.

[24]
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The worst case

The second way to estimate the performance of an algorithm is to try to find the maximum
possible time it will take to get the job done under a given set of conditions. This worst-case
analysis of an algorithm is quite useful as we are guaranteeing that regardless of the
conditions, the performance of the algorithm will always be better than the numbers that
come out of our analysis. Worst-case analysis is especially useful for estimating the
performance when dealing with complex problems with larger datasets. Worst-case
analysis gives the lower bound of the performance of the algorithm.

The average case

This starts by dividing the various possible inputs into various groups. Then, it conducts
the performance analysis from one of the representative inputs from each group. Finally, it
calculates the average of the performance of each of the groups.

Average-case analysis is not always accurate as it needs to consider all the different
combinations and possibilities of input to the algorithm, which is not always easy to do.

Selecting an algorithm

How do you know which one is a better solution? How do you know which algorithm runs
faster? Time complexity and Big O notation (discussed later in this chapter) are really good
tools for answering these types of questions.

To see where it can be useful, let's take a simple example where the objective is to sort a list
of numbers. There are a couple of algorithms available that can do the job. The issue is how
to choose the right one.

First, an observation that can be made is that if there are not too many numbers in the list,
then it does not matter which algorithm do we choose to sort the list of numbers. So, if
there are only 10 numbers in the list (n=10), then it does not matter which algorithm we
choose as it would probably not take more than a few microseconds, even with a very
badly designed algorithm. But as soon as the size of the list becomes 1 million, now the
choice of the right algorithm will make a difference. A very badly written algorithm might
even take a couple of hours to run, while a well-designed algorithm may finish sorting the
list in a couple of seconds. So, for larger input datasets, it makes a lot of sense to invest time
and effort, perform a performance analysis, and choose the correctly designed algorithm
that will do the job required in an efficient manner.

[25]
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Big O notation

Big O notation is used to quantify the performance of various algorithms as the input size
grows. Big O notation is one of the most popular methodologies used to conduct worst-case
analysis. The different kinds of Big O notation types are discussed in this section.

Constant time (O(1)) complexity

If an algorithm takes the same amount of time to run, independent of the size of

the input data, it is said to run in constant time. It is represented by O(1). Let's take the
example of accessing the 1" element of an array. Regardless of the size of the array, it will
take constant time to get the results. For example, the following function will return the
first element of the array and has a complexity of O(1):

def getFirst (myList):
return myList [0]

The output is shown as:

In [2]: getFirst([1,2,3])

Out[2]): 1

In [3): getFirat([1,2,3,4,5,6,7,8,9,10])
Out[3): 1

¢ Addition of a new element to a stack by using push or removing an element from
a stack by using pop. Regardless of the size of the stack, it will take the same time
to add or remove an element.

¢ Accessing the element of the hashtable (as discussed in chapter 2, Data
Structures Used in Algorithms).

* Bucket sort (as discussed in chapter 2, Data Structures Used in Algorithms).
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Linear time (O(n)) complexity

An algorithm is said to have a complexity of linear time, represented by O(n), if the
execution time is directly proportional to the size of the input. A simple example is to add
the elements in a single-dimensional data structure:

def getSum (myList):
sum = 0
for item in myList:
sum = sum + item
return sum

Note the main loop of the algorithm. The number of iterations in the main loop increases
linearly with an increasing value of n, producing an O(n) complexity in the following
figure:

In [5]): getSum([1,2,3])
Out[5]: 6

In [6]: getSum([1,2,3,4])
Out[6]: 10

Some other examples of array operations are as follows:

¢ Searching an element
¢ Finding the minimum value among all the elements of an array

Quadratic time (O(n’)) complexity

An algorithm is said to run in quadratic time if the execution time of an algorithm is
proportional to the square of the input size; for example, a simple function that sums up a
two-dimensional array, as follows:

def getSum (myList):
sum = 0
for row in myList:
for item in row:
sum += item
return sum

[27]
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Note the nested inner loop within the other main loop. This nested loop gives the preceding
code the complexity of O(n’):

In [8]: getSum([[1,2],[3,4]])
Oout[8]: 10

In [9]: getSum([[1,2,3],[4,5,6]])
Oout[9]: 21

Another example is the bubble sort algorithm (as discussed in Chapter 2, Data Structures
Used in Algorithms).

Logarithmic time (O(logn)) complexity

An algorithm is said to run in logarithmic time if the execution time of the algorithm is
proportional to the logarithm of the input size. With each iteration, the input size decreases
by a constant multiple factor. An example of logarithmic is binary search. The binary search
algorithm is used to find a particular element in a one-dimensional data structure, such as a
Python list. The elements within the data structure need to be sorted in descending order.
The binary search algorithm is implemented in a function named searchBinary, as
follows:

def searchBinary (myList,item):
first = 0
last = len(myList)-1
foundFlag = False
while( first<=last and not foundFlag):
mid = (first + last)//2
if myList [mid] == item :
foundFlag = True
else:
if item < myList [mid]:
last = mid - 1
else:
first = mid + 1
return foundFlag

The main loop takes advantage of the fact that the list is ordered. It divides the list in half
with each iteration until it gets to the result:
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In [11]: searchBinary(([8,9,10,100,1000,2000,3000], 10)

Out[11]: True

In [12): searchBinary([8,9,10,100,1000,2000,3000], 5)

Qut[1l2]): False

After defining the function, it is tested to search a particular element in lines 11 and 12. The
binary search algorithm is further discussed in chapter 3, Sorting and Searching Algorithms.

Note that among the four types of Big O notation types presented, O(n’) has the worst
performance and O(logn) has the best performance. In fact, O(logn)'s performance can be
thought of as the gold standard for the performance of any algorithm (which is not always
achieved, though). On the other hand, O(n’) is not as bad as O(n”) but still, algorithms that
fall in this class cannot be used on big data as the time complexity puts limitations on how

much data they can realistically process.

One way to reduce the complexity of an algorithm is to compromise on its accuracy,
producing a type of algorithm called an approximate algorithm.

The whole process of the performance evaluation of algorithms is iterative in nature, as
shown in the following figure:
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Validating an algorithm

Validating an algorithm confirms that it is actually providing a mathematical solution to
the problem we are trying to solve. A validation process should check the results for as
many possible values and types of input values as possible.

Exact, approximate, and randomized algorithms

Validating an algorithm also depends on the type of the algorithm as the testing techniques
are different. Let's first differentiate between deterministic and randomized algorithms.

For deterministic algorithms, a particular input always generates exactly the same output.
But for certain classes of algorithms, a sequence of random numbers is also taken as input,
which makes the output different each time the algorithm is run. The k-means clustering
algorithm, which is detailed in chapter 6, Unsupervised Machine Learning Algorithms, is an
example of such an algorithm:
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Algorithms can also be divided into the following two types based on assumptions or
approximation used to simplify the logic to make them run faster:

e An exact algorithm: Exact algorithms are expected to produce a precise solution
without introducing any assumptions or approximations.

¢ An approximate algorithm: When the problem complexity is too much to
handle for the given resources, we simplify our problem by making some
assumptions. The algorithms based on these simplifications or assumptions are
called approximate algorithms, which doesn't quite give us the precise solution.
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Let's look at an example to understand the difference between the exact and approximate
algorithms—the famous traveling salesman problem, which was presented in 1930. A
traveling salesman challenges you to find the shortest route for a particular salesman that
visits each city (from a list of cities) and then returns to the origin, which is why he is
named the traveling salesman. The first attempt to provide the solution will include
generating all the permutations of cities and choosing the combination of cities that is
cheapest. The complexity of this approach to provide the solution is O(n!), where # is the
number of cities. It is obvious that time complexity starts to become unmanageable beyond
30 cities.

If the number of cities is more than 30, one way of reducing the complexity is to introduce
some approximations and assumptions.

For approximate algorithms, it is important to set the expectations for accuracy when
gathering the requirements. Validating an approximation algorithm is about verifying that
the error of the results is within an acceptable range.

Explainability

When algorithms are used for critical cases, it becomes important to have the ability to
explain the reason behind each and every result whenever needed. This is necessary to
make sure that decisions based on the results of the algorithms do not introduce bias.

The ability to exactly identify the features that are used directly or indirectly to come up
with a particular decision is called the explainability of an algorithm. Algorithms, when
used for critical use cases, need to be evaluated for bias and prejudice. The ethical analysis
of algorithms has become a standard part of the validation process for those algorithms that
can affect decision-making that relates to the life of people.

For algorithms that deal with deep learning, explainability is difficult to achieve. For
example, if an algorithm is used to refuse the mortgage application of a person, it is
important to have the transparency and ability to explain the reason.

Algorithmic explainability is an active area of research. One of the effective techniques that
has been recently developed is Local Interpretable Model-Agnostic Explanations (LIME),
as proposed in the proceedings of the 22" Association for Computing Machinery (ACM)
at the Special Interest Group on Knowledge Discovery (SIGKDD) international
conference on knowledge discovery and data mining in 2016. LIME is based on a concept
where small changes are induced to the input for each instance and then an effort to map
the local decision boundary for that instance is made. It can then quantify the influence of
each variable for that instance.
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Summary

This chapter was about learning the basics of algorithms. First, we learned about the
different phases of developing an algorithm. We discussed the different ways of specifying
the logic of an algorithm that are necessary for designing it. Then, we looked at how to
design an algorithm. We learned two different ways of analyzing the performance of an
algorithm. Finally, we studied different aspects of validating an algorithm.

After going through this chapter, we should be able to understand the pseudocode of an
algorithm. We should understand the different phases in developing and deploying an
algorithm. We also learned how to use Big O notation to evaluate the performance of an
algorithm.

The next chapter is about the data structures used in algorithms. We will start by looking at
the data structures available in Python. We will then look at how we can use these data
structures to create more sophisticated data structures, such as stacks, queues, and trees,
which are needed to develop complex algorithms.
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Algorithms

Algorithms need necessary in-memory data structures that can hold temporary data while
executing. Choosing the right data structures is essential for their efficient implementation.
Certain classes of algorithms are recursive or iterative in logic and need data structures that
are specially designed for them. For example, a recursive algorithm may be more easily
implemented, exhibiting better performance, if nested data structures are used. In this
chapter, data structures are discussed in the context of algorithms. As we are using Python
in this book, this chapter focuses on Python data structures, but the concepts presented in
this chapter can be used in other languages such as Java and C++,

By the end of this chapter, you should be able to understand how Python handles complex
data structures and which one should be used for a certain type of data.

Hence, here are the main points discussed in this chapter:

e Exploring data structures in Python
e Exploring abstract data type

e Stacks and queues

e Trees
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Exploring data structures in Python

In any language, data structures are used to store and manipulate complex data. In Python,
data structures are storage containers to manage, organize, and search data in an efficient
way. They are used to store a group of data elements called collections that need to be stored
and processed together. In Python, there are five various data structures that can be used to
store collections:

e Lists: Ordered mutable sequences of elements

Tuples: Ordered immutable sequences of elements

¢ Sets: Unordered bags of elements

¢ Dictionary: Unordered bags of key-value pairs

 Data frames: Two-dimensional structures to store two-dimensional data

Let's look into them in more detail in the upcoming subsections.

List
In Python, a list is the main data structure used to store a mutable sequence of elements.
The sequence of data elements stored in the list need not be of the same type.

To create a list, the data elements need to be enclosed in [ ] and they need to be separated
by a comma. For example, the following code creates four data elements together that are of
different types:

>>> aList = ["John", 33, "Toronto", True]
>>> print (aList)
["Jdohn', 33, 'Toronto', True]Ex

In Python, a list is a handy way of creating one-dimensional writable data structures that
are needed especially at different internal stages of algorithms.

Using lists
Utility functions in data structures make them very useful as they can be used to manage
data in lists.

[34]
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Let's look into how we can use them:

e List indexing: As the position of an element is deterministic in a list, the index

can be used to get an element at a particular position. The following code
demonstrates the concept:

>>> bin_colors=['Red', 'Green', 'Blue', 'Yellow']

>>> bin_colors[1l]
'Green'

The four-element list created by this code is shown in the following screenshot:

Red || Green || Blue || Yellow Values

Indexes

Note that the index starts from 0 and therefore Green, which is the second
element, is retrieved by index 1, thatis, bin_color[1].

e List slicing: Retrieving a subset of the elements of a list by specifying a range of

indexes is called slicing. The following code can be used to create a slice of the
list:

>>> bin_colors=['Red', 'Green', 'Blue', 'Yellow']
>>> bin_colors[0:2]
['Red', 'Green']

Note that lists are one of the most popular single-dimensional data structures in Python.

While slicing a list, the range is indicated as follows: the first number
(inclusive) and the second number (exclusive). For example,
bin_colors[0:2] will include bin_color[0] and bin_color[1] but
not bin_color [2]. While using lists, this should be kept in mind as some
users of the Python language complain that this is not very intuitive.

[35]
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Let's have a look at the following code snippet:

>>> bin colors=['Red', 'Green', 'Blue', 'Yellow']
>>> bin_colors[2:]

['Blue', 'Yellow']

>>> bin_colors[:2]

['Red', 'Green']

If the starting index is not specified, it means the beginning of the list, and if the

ending index is not specified, it means the end of the list. The preceding code
actually demonstrates this concept.

¢ Negative indexing: In Python, we also have negative indices, which count from
the end of the list. This is demonstrated in the following code:

>>> bin_colors=['Red', 'Green', 'Blue', 'Yellow']
>>> bin_colors[:-1]

['Red', 'Green', 'Blue']

>>> bin_colors[:-2]

['Red', 'Green']

>>> bin_colors[-2:-1]

['Blue']

Note that negative indices are especially useful when we want to use the last
element as a reference point instead of the first one.

* Nesting: An element of a list can be of a simple data type or a complex data type.

This allows nesting in lists. For iterative and recursive algorithms, this provides
important capabilities.

Let's have a look at the following code, which is an example of a list within a list
(nesting):

>>> a = [1,2,[100,200,300],6]
>>> max(a[2])

300

>>> a[2][1]

200

e Iteration: Python allows iterating over each element on a list by using a for loop.
This is demonstrated in the following example:

>>> bin_colors=['Red', 'Green', 'Blue', 'Yellow']
>>> for aColor in bin_colors:
print (aColor + " Square")
Red Square
Green Square
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Blue Sqguare
Yellow Square

Note that the preceding code iterates through the list and prints each element.

Lambda functions

There are a bunch of lambda functions that can be used on lists. They are specifically
important in the context of algorithms and provide the ability to create a function on the fly.
Sometimes, in the literature, they are also called anonymous functions. This section
demonstrates their uses:

e Filtering data: To filter the data, first, we define a predicate, which is a function
that inputs a single argument and returns a Boolean value. The following code
demonstrates its use:

>>> list (filter(lambda x: x > 100, [-5, 200, 300, -10, 10, 1000]))
[200, 300, 1000]

Note that, in this code, we filter a list using the 1ambda function, which specifies
the filtering criteria. The filter function is designed to filter elements out of a
sequence based on a defined criterion. The filter function in Python is usually
used with lambda. In addition to lists, it can be used to filter elements from tuples
or sets. For the preceding code, the defined criterionis x > 100. The code will
iterate through all the elements of the list and will filter out the elements that do
not pass this criterion.

¢ Data transformation: The map () function can be used for data transformation
using a lambda function. An example is as follows:

>>> list (map(lambda x: x ** 2, [11, 22, 33, 44,55]))
[121, 484, 1089, 1936, 3025]

Using the map function with a 1ambda function provides quite powerful
functionality. When used with the map function, the 1ambda function can be used
to specify a transformer that transforms each element of the given sequence. In
the preceding code, the transformer is multiplication by two. So, we are using the
map function to multiply each element in the list by two.
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¢ Data aggregation: For data aggregation, the reduce () function can be used,
which recursively runs a function to pairs of values on each element of the list:

from functools import reduce
def doSum(xl,x2):
return xl+x2
x = reduce(doSum, [100, 122, 33, 4, 5, 6])

Note that the reduce function needs a data aggregation function to be defined.
That data aggregation function in the preceding code is functools. It defines
how it will aggregate the items of the given list. The aggregation will start from
the first two elements and the result will replace the first two elements. This
process of reduction is repeated until we reach the end, resulting in one
aggregated number. x1 and x2 in the doSum function represent two numbers in
each of these iterations and doSum represents the aggregation criterion for them.

The preceding code block results in a single value (which is 270).

The range function

The range function can be used to easily generate a large list of numbers. It is used to auto-
populate sequences of numbers in a list.

The range function is simple to use. We can use it by just specifying the number of

elements we want in the list. By default, it starts from zero and increments by one:

>>> x = range(6)
>>> X
(0,1,2,3,4,3]

We can also specify the end number and the step:

>>> oddNum = range (3,29,2)
>>> oddNum
(3, s, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27]

The preceding range function will give us odd numbers starting from 3 to 29.
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The time complexity of lists

The time complexity of various functions of a list can be summarized as follows using the
Big O notation:

Different methods Time complexity

Insert an element O(1)

Delete an element O(n) (as in the worst case may have to iterate the whole list)
Slicing a list O(n)

Element retrieval O(n)

Copy O(n)

Please note that the time taken to add an individual element is independent of the size of
the list. Other operations mentioned in the table are dependent on the size of the list. As the
size of the list gets bigger, the impact on performance becomes more pronounced.

Tuples

The second data structure that can be used to store a collection is a tuple. In contrast to lists,
tuples are immutable (read-only) data structures. Tuples consist of several elements
surrounded by ().

Like lists, elements within a tuple can be of different types. They also allow complex data
types for their elements. So, there can be a tuple within a tuple providing a way to create a
nested data structure. The capability to create nested data structures is especially useful in
iterative and recursive algorithms.

The following code demonstrates how to create tuples:

>>> bin_colors=('Red', 'Green', 'Blue', 'Yellow')
>>> bin_colors[1]

'Green'

>>> bin_colors[2:]

('Blue', 'Yellow")

>>> bin_colors[:-1]

('Red', 'Green', 'Blue')

# Nested Tuple Data structure
>>> a = (1,2, (100,200,300),6)
>>> max(a[2])

300

>>> al[2][1]

200
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Wherever possible, immutable data structures (such as tuples) should be
preferred over mutable data structures (such as lists) due to performance.
Especially when dealing with big data, immutable data structures are
considerably faster than mutable ones. There is a price we pay for the
ability to change data elements in lists, for example, and we should
carefully analyze that it is really needed so we can implement the code as
read-only tuples, which will be much faster.

Note that, in the preceding code, a[2] refers to the third element, which is a
tuple, (100,200,300).a[2] [1] refers to the second element within this tuple, which is
200.

The time complexity of tuples

The time complexity of various functions of tuples can be summarized as follows (using Big
O notation):

Function Time Complexity
Append O(1)

Note that Append is a function that adds an element toward the end of the already existing
tuple. Its complexity is O(1).

Dictionary

Holding data as key-value pairs is important especially in distributed algorithms. In
Python, a collection of these key-value pairs is stored as a data structure called a dictionary.
To create a dictionary, a key should be chosen as an attribute that is best suited to identify
data throughout data processing. The value can be an element of any type, for example, a
number or string. Python also always uses complex data types such as lists as values.
Nested dictionaries can be created by using a dictionary as the data type of a value.

To create a simple dictionary that assigns colors to various variables, the key-value pairs
need to be enclosed in { }. For example, the following code creates a simple dictionary
consisting of three key-value pairs:

>>> bin_colors ={

"manual_color": "Yellow",
"approved_color": "Green",
"refused_color": "Red"

}
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>>> print (bin_colors)

{ 'manual_color': 'Yellow', 'approved_color': 'Green', 'refused_color':
'Red'}

The three key-value pairs created by the preceding piece of code are also illustrated in the
following screenshot:

keys values

‘ 'manual_color'

Yellow’

‘ '‘approved_color

|

l " )
B Green
|

‘Red’

4

‘ 'refused_color'

bin_colors

Now, let's see how to retrieve and update a value associated with a key:

1. To retrieve a value associated with a key, either the get function can be used or
the key can be used as the index:

>>> bin_colors.get ('approved_color')
'Green'

>>> bin_colors|['approved_color']
'Green'

2. To update a value associated with a key, use the following code:

>>> bin_colors['approved_color']="Purple"
>>> print (bin_colors)

{ 'manual_color': 'Yellow', 'approved_color': 'Purple',
'refused color': 'Red'}

Note that the preceding code shows how we can update a value related to a
particular key in a dictionary.
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The time complexity of a dictionary

The following table gives the time complexity of a dictionary using Big O notation:

Dictionary Time complexity
Get a value or a key O(1)
Set a value or a key (1)
Copy a dictionary O(n)

An important thing to note from the complexity analysis of the dictionary is that the time
taken to get or set a key-value is totally independent of the size of the dictionary. This
means that the time taken to add a key-value pair to a dictionary of a size of three is the
same as the time taken to add a key-value pair to a dictionary of a size of one million.

Sets

A set is defined as a collection of elements that can be of different types. The elements are
enclosed within { }. For example, have a look at the following code block:

>>> green = {'grass', 'leaves'}
>>> print (green)
{'grass', 'leaves'}

The defining characteristic of a set is that it only stores the distinct value of each element. If
we try to add another redundant element, it will ignore that, as illustrated in the following:

>>> green = {'grass', 'leaves', 'leaves'}
>>> print (green)
{'grass', 'leaves'}

To demonstrate what sort of operations can be done on sets, let's define two sets:

e A set named yellow, which has things that are yellow
¢ Another set named red, which has things that are red

Note that some things are common between these two sets. The two sets and their
relationship can be represented with the help of the following Venn diagram:
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If we want to implement these two sets in Python, the code will look like this:

>>> yellow = {'dandelions', 'fire hydrant',K 'leaves'}
>>> red = {'fire hydrant', 'blood', 'rose', 'leaves'}

Now, let's consider the following code, which demonstrates set operations using Python:

>>> yellow|red

{ 'dandelions', 'fire hydrant', 'blood', 'rose', 'leaves'}
>>> yellow&red

{'fire hydrant'}

As shown in the preceding code snippet, sets in Python can have operations such as unions
and intersections. As we know, a union operation combines all of the elements of both sets,
and the intersection operation will give a set of common elements between the two sets.
Note the following:

¢ yvellow|redis used to get the union of the preceding two defined sets.
e yellow&red is used to get the overlap between yellow and red.

Time complexity analysis for sets

Following is the time complexity analysis for sets:

Sets Complexity
Add an element O(1)
Remove an element 0O(1)
Copy O(n)

An important thing to note from the complexity analysis of the sets is that the time taken to
add an element is totally independent of the size of a particular set.
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DataFrames

A DataFrame is a data structure used to store tabular data available in Python's pandas
package. It is one of the most important data structures for algorithms and is used to
process traditional structured data. Let's consider the following table:

id name age decision

1 Fares 32 True

2 Elena 23 False
Steven 40 True

Now, let's represent this using a DataFrame.

A simple DataFrame can be created by using the following code:

>>> import pandas as pd
>>> df = pd.DataFrame ([

['1', 'Fares', 32, Truel],
['2', 'Elena', 23, False],
e ['3'", 'Steven', 40, Truell])
>>> df.columns = ['id', 'name', 'age', 'decision']
>>> df
id name age decision
0 1 Fares 32 True
i 2 Elena 23 False
Z 3 Steven 40 True

Note that, in the preceding code, df . column is a list that specifies the names of the
columns.

The DataFrame is also used in other popular languages and frameworks
to implement a tabular data structure. Examples are R and the Apache
Spark framework.

Terminologies of DataFrames

Let's look into some of the terminologies that are used in the context of a DataFrame:

¢ Axis: In the pandas documentation, a single column or row of a DataFrame is
called an axis.
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¢ Axes: If there is more than one axis, they are called axes as a group.

* Label: A DataFrame allows the naming of both columns and rows with what's
called a label.

Creating a subset of a DataFrame

Fundamentally, there are two main ways of creating the subset of a DataFrame (say the
name of the subset is myDF):

e Column selection
¢ Row selection

Let's see them one by one.

Column selection

In machine learning algorithms, selecting the right set of features is an important task. Out
of all of the features that we may have, not all of them may be needed at a particular stage
of the algorithm. In Python, feature selection is achieved by column selection, which is
explained in this section.

A column may be retrieved by name, as in the following:

>>> df[['name’', 'age']]
name age

0 Fares 32

1 Elena 23

2 Steven 40

The positioning of a column is deterministic in a DataFrame. A column can be retrieved by
its position as follows:

>>> df.iloc[:, 3]
0 True

1 False

2 True

Note that, in this code, we are retrieving the first three rows of the DataFrame.
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Row selection

Each row in a DataFrame corresponds to a data point in our problem space. We need to
perform row selection if we want to create a subset of the data elements we have in our
problem space. This subset can be created by using one of the two following methods:

By specifying their position
* By specifying a filter
A subset of rows can be retrieved by its position as follows:
>>> df.iloc[1:3,:]
id name age decision

1 2 Elena 23 False
2 3 Steven 40 True

Note that the preceding code will return the first two rows and all columns.

To create a subset by specifying the filter, we need to use one or more columns to define the
selection criterion. For example, a subset of data elements can be selected by this method, as
follows:

>>> df[df.age>30]

id name age decision
0 1 Fares 32 True
2 3 Steven 40 True

>>> df[ (df.age<35) & (df.decision==True)]
id name age decision
0 1 Fares 32 True

Note that this code creates a subset of rows that satisfies the condition stipulated in the
filter.

Matrix

A matrix is a two-dimensional data structure with a fixed number of columns and rows.
Each element of a matrix can be referred to by its column and the row.
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In Python, a matrix can be created by using the numpy array, as shown in the following
code:

>>> myMatrix = np.array([[11, 12, 13], [21, 22, 23], [31, 32, 33]1)
>>> print (myMatrix)

[[11 12 13]

[21 22 23]

[31 32 33]]

>>> print (type (myMatrix))

<class 'numpy.ndarray'>

Note that the preceding code will create a matrix that has three rows and three columns.

Matrix operations

There are many operations available for matrix data manipulation. For example, let's try
to transpose the preceding matrix. We will use the transpose () function, which will
convert columns into rows and rows into columns:

>>> myMatrix.transpose()

array([([11, 21, 31],
[12, 22, 32],
[13, 23, 331])

Note that matrix operations are used a lot in multimedia data manipulation.

Now that we have learned about data structures in Python, let's move onto the abstract
data types in the next section.

Exploring abstract data types

Abstraction, in general, is a concept used to define complex systems in terms of their
common core functions. The use of this concept to create generic data structures gives birth
to Abstract Data Types (ADT). By hiding the implementation level details and giving the
user a generic, implementation-independent data structure, the use of ADTs creates
algorithms that result in simpler and cleaner code. ADTs can be implemented in any
programming language such as C++, Java, and Scala. In this section, we shall implement
ADTs using Python. Let's start with vectors first.
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Vector

A vector is a single dimension structure to store data. They are one of the most popular
data structures in Python. There are two ways of creating vectors in Python as follows:

¢ Using a Python list: The simplest way of creating a vector is by using a Python
list, as follows:

>>> myVector = [22,33,44,55]
>>> print (myVector)

[22 33 44 55]

>>> print (type (myVector))
<class 'list'>

Note that this code will create a list with four elements.

¢ Using a numpy array: Another popular way of creating a vector is by using
NumPy arrays, as follows:

>>> myVector = np.array([22,33,44,55])
>>> print (myVector)

[22 33 44 55]

>>> print (type (myVector))

<class 'numpy.ndarray'>

Note that we created myVector using np.array in this code.

In Python, we can represent integers using underscores to separate parts.
It makes them more readable and less error-prone. This is especially
useful when dealing with large numbers. So, one billion can be
represented as a=1

Stacks

A stack is a linear data structure to store a one-dimensional list. It can store items either

in Last-In, First-Out (LIFO) or First-In, Last-Out (FILO) manner. The defining
characteristic of a stack is the way elements are added and removed from it. A new element
is added at one end and an element is removed from that end only.
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Following are the operations related to stacks:

¢ isEmpty: Returns true if the stack is empty
¢ push: Adds a new element
e pop: Returns the element added most recently and removes it

The following diagram shows how push and pop operations can be used to add and
remove data from a stack:

[vellow }—,
push
| |
-- Blue Blue ”"!;”
Green Green Green
[ Red | Red Red Reg
pop
| :
Blue Blue """
Green Green Green Green
Red Red Red Red
Stack

The top portion of the preceding diagram shows the use of push operations to add items to
the stack. In steps 1.1, 1.2, and 1.3, push operations are used three times to add three
elements to the stack. The bottom portion of the preceding diagram is used to retrieve the
stored values from the stack. In steps 2.2 and 2.3, pop operations are used to retrieve two
elements from the stack in LIFO format.

Let's create a class named Stack in Python, where we will define all of the operations
related to the stack class. The code of this class will be as follows:

class Stack:
def _ init_ (self):
self.items = []
def isEmpty (self):
return self.items == []
def push(self, item):
self.items.append(item)
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def

def

def

pop (self) :

return self.items.pop()

peek (self) :

return self.items[len(self.items)-1]
size(self):

return len(self.items)

To push four elements to the stack, the following code can be used:

Note that the preceding code creates a stack with four data elements.

Populate the stack

In [2]: stack=Stack
stack.push('Red")
stack.push( 'Green”)
stack.push("Blue™)
stack.push(“Yellow")

Pop

In [3]: stack.pop

Out[3]: “Yellow'

In [7]: stack.isEmpty(

7]: False

The time complexity of stacks

Let's look into the time complexity of stacks (using Big O notation):

Operations Time Complexity
push 0O(1)
pop o)
size Oo(1)
peek o(1)

An important thing to note is that the performance of none of the four operations

mentioned in the preceding table depends on the size of the stack.
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Practical example

A stack is used as the data structure in many use cases. For example, when a user wants to
browse the history in a web browser, it is a LIFO data access pattern and a stack can be
used to store the history. Another example is when a user wants to perform an Undo
operation in word processing software.

Queues

Like stacks, a queue stores n elements in a single-dimensional structure. The elements are
added and removed in FIFO format. One end of the queue is called the rear and the other is
called the front. When elements are removed from the front, the operation is called dequeue.
When elements are added at the rear, the operation is called engueue.

In the following diagram, the top portion shows the enqueue operation. Steps 1.1, 1.2,
and 1.3 add three elements to the queue and the resultant queue is shown in 1.4. Note that
Yellow is the rear and Red is the front.

The bottom portion of the following diagram shows a dequeue operation. Steps 2.2, 2.3, and
2.4 remove elements from the queue one by one from the front of the queue:

QF— T O €
Green Yellow
enqueue e“qie”e E"qieue = ENQUEUE
Green Green GTEeR
[ Red | Red fed =
Yellow Yellow Yellow
Blue Blue
— fr DEQUEUE
Green Green
T dequeue
Red dequeue
Queue
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The queue shown in the preceding diagram can be implemented by using the following
code:

class Queue (object):
def _ init_ (self):
self.items = []
def isEmpty(self):
return self.items == []
def enqueue(self, item):
self.items.insert (0, item)
def dequeue (self):
return self.items.pop()
def size(self):
return len(self.items)

Let's enqueue and dequeue elements as shown in the preceding diagram with the help of
the following screenshot:

Using Queue Class
In [2]: queue = Queue()
In [3]: queue.enqueue( Red")
In [4]: queue.enqueue( Green')
In [5]: queue.enqueue('Blue’)
In [6]: queue.enqueue('Yellow')

In [7]: print(queue.size())

4

In [8]: print(queue.dequeue())

Red

In [2]: print(queue.dequeue())

Green

Note that the preceding code creates a queue first and then enqueues four items into it.
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The basic idea behind the use of stacks and
queues

Let's look into the basic idea behind the use of stacks and queues using an analogy. Let's
assume that we have a table where we put our incoming mail from our postal service, for
example, Canada Mail. We stack it until we get some time to open and look at the mail, one
by one. There are two possible ways of doing this:

e We put the letter in a stack and whenever we get a new letter, we put it on the
top of the stack. When we want to read a letter, we start with the one that is on
top. This is what we call a stack. Note that the latest letter to arrive will be on the
top and will be processed first. Picking up a letter from the top of the list is called
a pop operation. Whenever a new letter arrives, putting it on the top is
called push operation. If we end up having a sizable stack and lots of letters are
continuously arriving, there is a chance that we never get a chance to reach a
very important letter waiting for us at the lower end of the stack.

e We put the letter in pile, but we want to handle the oldest letter first: each time
we want to look at one or more letters, we take care to handle the oldest one first.
This is what we call a quere. Adding a letter to the pile is called
an enqueue operation. Removing the letter from the pile is
called dequeue operation.

Tree

In the context of algorithms, a tree is one of the most useful data structures due to its
hierarchical data storage capabilities. While designing algorithms, we use trees wherever
we need to represent hierarchical relationships among the data elements that we need to
store or process.

Let's look deeper into this interesting and quite important data structure.

Each tree has a finite set of nodes so that it has a starting data element called a root and a set
of nodes joined together by links called branches.
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Terminology

Let's look into some of the terminology related to the tree data structure:

A node with no parent is called the roof node. For example, in the following diagram, the

parent node

Root node root node is A. In algorithms, usually, the root node holds the most important value in the
tree structure.

Level of a The distance from the root node is the level of a node. For example, in the following

node diagram, the level of nodes D, E, and F is two.

Siblings nodes Two nodeg in altree are called siblings if they a}'e at the same level. For example, if we check
the following diagram, nodes B and C are siblings.

Child and A node, F, is a child of node C, if both are directly connected and the level of node C is less

than node F. Conversely, node C is a parent of node F. Nodes C and F in the following
diagram show this parent-child relationship.

Degree of a
node

The degree of a node is the number of children it has. For example, in the following
diagram, node B has a degree of two.

Degree of a
tree

The degree of a tree is equal to the maximum degree that can be found among the
constituent nodes of a tree. For example, the tree presented in the following diagram has a
degree of two.

A subtree of a tree is a portion of the tree with the chosen node as the root node of the
subtree and all of the children as the nodes of the tree. For example, a subtree at node E of

Subtree the tree presented in the following diagram consists of node E as the root node and node G
and H as the two children.
A node in a tree with no children is called a leaf node. For example, in the following figure,
Leaf node

D, G, H, and F are the four leaf nodes.

Internal node

Any node that is neither a root nor a leaf node is an internal node. An internal node will
have at least one parent and at least one child node.

Types o

Note that trees are a kind of network or graph that we will study in
Chapter 6, Unsupervised Machine Learning Algorithms. For graphs and
network analysis, we use the terms link or edge instead of branches. Most
of the other terminology remains unchanged.

f trees

There are different types of trees, which are explained as follows:

¢ Binary tree: If the degree of a tree is two, that tree is called a binary tree. For
example, the tree shown in the following diagram is a binary tree as it has a
degree of two:
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Root-Node
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Note that the preceding diagram shows a tree that has four levels with eight
nodes.

e Full tree: A full tree is the one in which all of the nodes are of the same degree,
which will be equal to the degree of the tree. The following diagram shows the
kinds of trees discussed earlier:

Rpot-Node
Rpot-Node Root-Node (A
| A A I A
A S A
- X D)
- PR ") c
,/;\\ m '/R N C ) Internch.Node InternalNode
Interndi Node InternaFNode Internai Node InternaiNode
- 7 ) ran 7 = 7T (o) (e) () "rl\l
P ~ —_— \ ) ) | F) |
(o) (e) (¢) (o) £) () (1) / Interhal Node \,
. Integhal Node ./ N Interhal Node Leaf Node Leaf Node  Leaf Node
Leaf Nod Leaf Node Leaf Node Leal NWode af Node
k r — ~
.’/g\\ ( "\‘ Ir’ G \, I'fl_{h \
Leaf-Node LenfNode LeafMode LenfNode

Full, perfect tree

Non-full, non-perfect tree Full, non-perfect tree

Note that the binary tree on the left is not a full tree, as node C has a degree of one
and all other nodes have a degree of two. The tree in the middle and the one on
the left are both full trees.

[55]



Data Structures Used in Algorithms Chapter 2

¢ Perfect tree: A perfect tree is a special type of full tree in which all the leaf nodes
are at the same level. For example, the binary tree on the right as shown in the
preceding diagram is a perfect, full tree as all the leaf nodes are at the same level,
that is, level 2.

¢ Ordered tree: If the children of a node are organized in some order according to
particular criteria, the tree is called an ordered tree. A tree, for example, can be
ordered left to right in an ascending order in which the nodes at the same level
will increase in value while traversing from left to right.

Practical examples

An abstract data type tree is one of the main data structures that are used in developing
decision trees as will be discussed in chapter 7, Traditional Supervised Learning Algorithms.
Due to its hierarchical structure, it is also popular in algorithms related to network analysis
as will be discussed in detail in Chapter 6, Unsupervised Machine Learning Algorithms. Trees
are also used in various search and sort algorithms where divide and conquer strategies
need to be implemented.

Summary

In this chapter, we discussed data structures that can be used to implement various types of
algorithms. After going through this chapter, I expect that you should be able to select the
right data structure to be used to store and process data by an algorithm. You should also
be able to understand the implications of our choice on the performance of the algorithm.

The next chapter is about sorting and searching algorithms, where we will be using some of
the data structures presented in this chapter in the implementation of the algorithms.
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Sorting and Searching
Algorithms

In this chapter, we will look at the algorithms that are used for sorting and searching. This
is an important class of algorithms that can be used on their own or can become the
foundation for more complex algorithms (presented in the later chapters of this book). This
chapter starts by presenting different types of sorting algorithms. It compares the
performance of various approaches to designing a sorting algorithm. Then, some
searching algorithms are presented in detail. Finally, a practical example of the sorting and
searching algorithms presented in this chapter is explored.

By the end of this chapter, you will be able to understand the various algorithms that are
used for sorting and searching, and you will be able to apprehend their strengths and
weaknesses. As searching and sorting algorithms are the building blocks for most of the
more complex algorithms, understanding them in detail will help you understand modern
complex algorithms as well.

The following are the main concepts discussed in this chapter:

¢ Introducing sorting algorithms
¢ Introducing searching algorithms
A practical example

Let's first look at some sorting algorithms.
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Introducing Sorting Algorithms

In the era of big data, the ability to efficiently sort and search items in a complex data
structure is quite important as it is needed by many modern algorithms. The right strategy
to sort and search data will depend on the size and type of the data, as discussed in this
chapter. While the end result is exactly the same, the right sorting and searching algorithm
will be needed for an efficient solution to a real-world problem.

The following sorting algorithms are presented in this chapter:

e Bubble sort

e Merge sort

¢ [nsertion sort
e Shell sort

e Selection sort

Swapping Variables in Python

When implementing sorting and searching algorithms, we need to swap the values of two
variables. In Python, there is a simple way to swap two variables, which is as follows:

varl 1

var2 2

varl,var2 = var2,varl
>>> print (varl,wvar2)
>>> 2 1

Let's see how it works:

In [104]: print(varl,var2)

This simple way of swapping values is used throughout the sorting and searching
algorithms in this chapter.

Let's start by looking at the bubble sort algorithm in the next section.
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Bubble Sort

Bubble sort is the simplest and slowest algorithm used for sorting. It is designed in a way
that the highest value in its list bubbles its way to the top as the algorithm loops through
iterations. As its worst-case performance is O(N), as discussed previously, it should be
used for smaller datasets.

Understanding the Logic Behind Bubble Sort

Bubble sort is based on various iterations, called passes. For a list of size N, bubble sort will
have N-1 passes. Let's focus on the first iteration: pass one.

The goal of pass one is pushing the highest value to the top of the list. We will see the
highest value of the list bubbling its way to the top as pass one progresses.

Bubble sort compares adjacent neighbor values. If the value at a higher position is higher in
value than the value at a lower index, we exchange the values. This iteration continues until
we reach the end of the list. This is shown in the following diagram:

1" pass——>

25| 21 | 22 24 | 23|27 | 26 | Exchange

21 |25 |22 | 24 | 23 | 27 | 26 | Exchange

21 |22 |25 [ 24 | 23 | 27 | 26 | Exchange

21 122 24125 |23 | 27 | 26 | Exchange

21122 24| 23| 25|27 | 26 | NoExchange

21 122 24 23|25 |27 | 26 | Exchange

21 122124232526 |27

Bubble Sort

Let's now see how bubble sort can be implemented using Python:

#Pass 1 of Bubble Sort
lastElementIndex = len(list)-1
print (0, list)
for idx in range(lastElementIndex) :

if list[idx]>list[idx+1]:
list([idx],list([idx+1]=1list[idx+1],list[idx]
print (idx+1, list)
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If we implement pass one of bubble sort in Python, it will look as follows:

In [91]: 1 lastElementIndex = len(list)-1
2 print(e,list)
for idx in range(lastElementIndex):
if list[idx]>list[idx+1]:
list[idx],list[idx+1]=1ist[idx+1],list[idx]
print(idx+1,list)

[25, 21, 22, 24, 23, 27, 26]
[21, 25, 22, 24, 23, 27, 26]
[21, 22, 25, 24, 23, 27, 26]
[21, 22, 24, 25, 23, 27, 26]
[21, 22, 24, 23, 25, 27, 26]
[21, 22, 24, 23, 25, 27, 26]
[21, 22, 24, 23, 25, 26, 27]

[= ¥ B PV N e o

Once the first pass is complete, the highest value is at the top of the list. The algorithm next
moves on to the second pass. The goal of the second pass is to move the second highest
value to the second highest position in the list. To do that, the algorithm will again compare
adjacent neighbor values, exchanging them if they are not in order. The second pass will
exclude the top element, which was put in the right place by pass one and need not be
touched again.

After completing pass two, the algorithm keeps on performing pass three and so on until all
the data points of the list are in ascending order. The algorithm will need N-1 passes for a
list of size N to completely sort it. The complete implementation of bubble sort in Python is
as follows:

In [5]: def BubbleSort(list):
# Excahnge the elements to arrange in order

lastElementIndex = len(list)-1

for passNo in range(lastElementIndex,®,-1):

for idx in range(passNo):
if list[idx]>list[idx+1]:
list[idx],list[idx+1]=1ist[idx+1],list[idx]

return list

Now let's look into the performance of the BubbleSort algorithm.

[60]



Sorting and Searching Algorithms Chapter 3

A Performance Analysis of Bubble Sort

It is easier to see that bubble sort involves two levels of loops:

¢ An outer loop: This is also called passes. For example, pass one is the first
iteration of the outer loop.

¢ An inner loop: This is when the remaining unsorted elements in the list are
sorted, until the highest value is bubbled to the right. The first pass will have N-1
comparisons, the second pass will have N-2 comparisons, and each subsequent
pass will reduce the number of comparisons by one.

Due to two levels of looping, the worst-case runtime complexity would be O(r’).

Insertion Sort

The basic idea of insertion sort is that in each iteration, we remove a data point from the
data structure we have and then insert it into its right position. That is why we call this the
insertion sort algorithm. In the first iteration, we select the two data points and sort them.
Then, we expand our selection and select the third data point and find its correct position,
based on its value. The algorithm progresses until all the data points are moved to their
correct positions. This process is shown in the following diagram:

25| 26 |22 24 27 23 21  Insert2s

25 | 26 | 22 24 |27 |23 21  Insert26

22 | 25 | 26 | 24 | 27 | 23 | 21 | Imsert22

22 | 24 | 25 | 26 | 27 23 21  insert24

22024 N2 NENN2TN 23 | 21 | Insertz?

2223|2425 26]27[71 Insert 23

21| 22|23 24|25 26 27 msert21

Insertion Sort

The insertion sort algorithm can be coded in Python as follows:

def InsertionSort(list):
for i in range(l, len(list)):
j o= i-1
element_next = list[i]
while (list[j] > element_next) and (j >= 0):
list[j+1] = list[]]
j=3-1
list[j+1] = element_next
return list
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