Ol
A1 Tln'l\n@s E.\IGN

Cloud Engineer
Should o

Ul INU 3
A

&

Edited by Emily Freeman & Nathen Harvey

97 Things Every Cloud Engineer Should Know
by Emily Freeman and Nathen Harvey

Copyright © 2021 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://oreilly.com). For more information, contact our

corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jennifer Pollock Indexer: Potomac Indexing, LLC
Development Editor: Sarah Grey Interior Designer: David Futato
Production Editor: Christopher Faucher Cover Designer: Randy Comer
Copyeditor: Sharon Wilkey lllustrator: O’Reilly Media, Inc.

Proofreader: Rachel Head
December 2020: First Edition

Revision History for the First Edition
2020-12-04: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492076735 for release details,

The OReilly logo is a registered trademark of O'Reilly Media, Inc. 97 Things Every Cloud Engi-
neer Should Know, the cover image, and related trade dress are trademarks of O’Reilly Media,

Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s
views. While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and the
authors disclaim all responsibility for errors or omissions, including without limitation respon-
sibility for damages resulting from the use of or reliance on this work. Use of the information
and instructions contained in this work is at your own risk. If any code samples or other tech-
nology this work contains or describes is subject to open source licenses or the intellectual
property rights of others, it is your responsibility to ensure that your use thereof complies with
such licenses and/or rights.

978-1-492-07673-5

(LSI]

Table of Contents

Partl. Fundamentals

1.

What Isthe Cloud®?. ... e 2
Nathen Harvey
Why the CloUud . .o ittt 4
Nathen Harvey

. Three Keys to Making the Right Multicloud Decisions..... 6

Brendan O’Leary

. Use Managed Services—Please..........c.coiiiiiiiiiinnn. 8
Dan Moore
. Cloud for Good Should Be Your Next Project............. 10

Delali Dzirasa

. A Cloud Computing Vocabulary...........cocoviiiiiiinn, 12
Jonathan Buck
. Why Every Engineer Should Be a Cloud Engineer........ 15

Michelle Brenner

8. Managing Up: Engaging with Executives on the

(@1 T YU o 17
Reza Salari

Partll. Architecture

9. The Future of Containers: What's Next?................... 20

Chris Hickman

10. Understanding Scalability. ... 23
Duncan Mackenzie

11. Don’t Think of Services, Think of Capabilities............. 25
Haishi Bai

12. You Can Cloudify Your Monolith................ccocoiiiat 27
Jake Echanove

13. Integrating Microservices in Cloud Native
Architecture. 29
Kasun Indrasiri

14. Containers Aren't MagiC. ..ot e 32
Katie McLaughlin

15. Your CIO Wants to Replatform Only Once................ 34
Kendall Miller

16. Practice Visualizing Distributed Systems.................. 36
Kim Schlesinger

17. Know Whereto Scale.....o i 39
Lisa Huynh

18. Serverless Bad Practices......covviiii i 41
Manasés Jesiis Galindo Bello

19. Getting Started with AWS Lambda........................ 43

Marko Sluga

Vi Table of Contents

20. It's OK if You're Not Running Kubernetes................. 46
Mattias Geniar

21. KNow Thy TOROIOOY. ot 48
Nikhil Nanivadekar

22. System Fundamentals Will Still Bite You.................. 51
Noah Abrahams

23. Cloud Processing Is Not About Speed..................... 53
Rustem Feyzkhanov

24. How Serverless Simplifies the Developer Experience.... 55
Wietse Venema

Partlll. Migration

25. People Will Expect Things—Help Them Expect Right.... 59
Dave Stanke

26. Failing a Cloud Migration. ..., 61
Lee Atchison

27. Optimizing Processes for the Cloud: Patterns and
Antipatterns. ... e e 63
Mike Kavis

28. Why the Lift-and-Shift Model Is Unlikely to Succeed.... 66
Mike Silverman

PartIV. Security and Compliance

29. Security at Cloud Native Speed. ..., 69
Chris Short

30. Essentials of Modern Cloud Governance................... 72
Derek Martin

Table of Contents vii

31. Know Where the Secrets Are Kept and How.............. 75
Emmanuel Apau

32. Don’t SSH into Production......covvviviiiiii i 78
Fernando Duran

33. Identity and Access Management in Cloud
CoOMPULING. . e 80
Isuru . Ranawaka

34. Treat Your Cloud Environment as if It Were On
=Y 0 T 7 83
Iyana Garry

35. You Can’t Get Information Security Right Without
Getting Identity Right. ... 85
Sarah Cecchetti

36. Why Are Good AWS Security Policies So Difficult?...... 87
Stephen Kuenzli

37. Side Channels and Covert Communications in Cloud
ENVIirONmMENtS. . e 90
Will Deane

PartV. Operations and Reliability

38. Whenin Doubt, Test It Out..........oo i 94
Dan Moore

39. Never Take a Single Region Dependency............c..... 96
Derek Martin

40. Test Your Infrastructure with Game Days................. 98
Fernando Duran

41. Improve Your Monitoring with Visualizations and
Dashboards.o 101

Jason Katzer

viii Table of Contents

42,

43,

44,

45,

46.

47.

48.

49,

50.

51.

52.

53.

REvisitingthe Rsof SRE. ... 103
J. Paul Reed

The Power of Vulnerability........coooiiiiiiiiiiiiian, 105
Ken Broeren

The Basics of Service-Level Objectives................... 107
Kit Merker, Brian Singer, and Alex Nauda

Oh, NO: NO LOGS. i 110
Laura Santamaria

Use Checklists to Manage Risk.....ooviiiiiiiiiiiiinnt. 112
Lisa Huynh

Everything Is a DNS Problem: How to (Im)prove........ 114
Michael Friedrich

What'sthe Time?. .. e 116
Nikhil Nanivadekar

Monitor Your Model Dependencies!........c.covvviiinens, 118
Ori Cohen

There’s No Such Thing as a Development

Environment. ... o e 120
Peter McCool

Incident Analysis and Chaos Engineering:
Complementary Practices......oviiiiiiiiiiiiiiiiiinnns, 122

Ryan Frantz

How Should | Organize My AWS Accounts?............. 125
Stephen Kuenzli
Resiliency and Scalability AreKey. 128

Tidjani Belmansour

Table of Contents ix

54,

55.

56.

Monitor, YOU Will. ..o oo e 130

Tidjani Belmansour

Reliable Systems Don’t Happen by Accident............ 133
Zach Thomas

What Is Toil, and Why Are SREs Obsessed with It?..... 135
Zachary Nickens

PartVI. Software Development

57.

58.

59.

60.

61.

62.

63.

64.

65.

The Cloud Doesn’t Care if It Works on Your Machine... 138

Alessandro Diaferia

R E 3T o 140
Chris Proto

Maintaining Service Levels with Feature Flags.......... 142
Dawn Parzych

Working Upstream. ... 145

Eric Sorenson

DO MOre With LeSs. ..ttt neennes 148

Ivan Krnié

Everything Is Just Ones and Zeros. 150
Lukas Ruebbelke

Be Preparedto Repeat.......oooiiiiiiii 152
Ricardo Miranda

Your Greatest Products Are Not the Applications and

Services YoU ProducCe. ..o 154
Ryan Bell
Avoid Big Rewrites. ... 156

Simon Aronsson

Table of Contents

66. Lean QA: The QA Evolving in the DevOps World.......
Theresa Neate

67. Source Code Management for Software Delivery.......
Tiffany Jachja

PartVIl. Cloud Economics and Measuring Spend

68. FinOps: How Cloud Finance Management Can Save
Your Cloud Program from Extinction.....................

Deepak Ramchandani Vensi

69. How Economies of Scale Work in the Cloud.............

Jon Moore

70. Managing Network Transit Costs in the Cloud...........
Ken Corless

71. Managing the Cloud Migration Cost Spike...............
Manjeet Dadyala

72. Damn It, Jim! I'm a Cloud Engineer, Not an

Michael Winslow

73. Effectively Monitoring Cloud Services Requires
PlaNNING. . s

Scott Pantall

PartVIll. Automation

74. Principles, Patterns, and Practices for Effective
Infrastructure as Code. ...t

Adarsh Shah

75. Red, Green, Refactor for Infrastructure...................
Annie Hedgpeth

Table of Contents

Xi

76.

77.

78.

Judy Johnson

Beyond the Portal: Manage Your Cloud with the CLI... 187
Marcello Marrocos

Treat Your Infrastructure like Software................... 190
Zachary Nickens

PartIX. Data

79.

80.

81.

So You Want to Migrate Oracle Database into AWS

Asha Kalburgi

DataOps: DevOps for Data Management................. 196
Banjo Obayomi

Data Gravity: The Importance of Data Management in
the Cloud. ... e e 198

Geoff Hughes

PartX. Networking

82.

83.

84.

Even in the Cloud, the Network Is the Foundation...... 202
David Murray

Networking First. ..o e 204
Derek Martin

Handling Network Failures inthe Cloud.................. 206
Shayon Mukherjee

PartXI. Organizational Culture

85.

Silos by Any Other Name. ..., 209
Brittany Woods

xii

Table of Contents

86.

87.

88.

89.

90.

91.

92.

93.

Focus on Your Team, Notonthe Cost..............ooot. 211

Guillaume Blaquiere

Cloud Engineering Is About Culture, Not Containers... 213
Holly Cummins

The Importance of Keeping Working Systems
WOOrKING. oo 215

Jan Urbariski

Effectively Navigating Organizational Politics........... 217

Joshua Zimmerman

The Cloud Is Not Aboutthe Cloud........................ 220
Ken Corless

The Cloud Is Bigger than IT: Enterprise-Wide Training

Strategies. . oo 222
Mike Kavis
Systems Thinking and the Support Pager................ 224

Theresa Neate

Curating a DevOps Culture and Experience.............. 226
Tiffany Jachja

PartXIl. Personal and Professional Development

94.

95.

96.

97.

Read the Documentation—Then Reread It............... 230

Jennine Townsend

StAY CUM OUS. ottt i i it e et neaes 232
Laziz Turakulov

Empathy as Code. ... 234
Nirmal Mehta

From Zero to Cloud Engineer in Less Than a Year...... 236
Rachel Sweeney

Table of Contents xiii

Xiv Table of Contents

Preface

Ideas about cloud computing have been around since at least the 1960s. Our
modern understanding of the cloud can be traced back to about 2006, when
Amazon first launched Elastic Compute Cloud (EC2). The rise and adoption
of cloud technologies has changed the shape of our industry and our global
society. The cloud has made getting started less expensive and growing to
global scale feasible, and is helping turn every organization into a technology
organization—or at least an organization that uses technology as a strategic
enabler of delivering value.

A cloud engineer is, broadly defined, someone who creates, manages, oper-
ates, or configures systems running in the cloud. This could be a system
administrator responsible for building base images, a software developer
responsible for writing applications, a data scientist building machine learn-
ing models, a site reliability engineer responding to pages when things go
awry, and more. In some organizations, all of those functions are handled by
one single human; in others, hundreds of people may be in each one of those
roles.

This book is a collection of articles from a diverse set of professional cloud
engineers. We have authors from around the world. Some are early in their
cloud journeys, and others have decades of experience. Each and every
author brings their own perspective and experience to the article that they’ve
shared as part of this book. Our intent is to help you find one, two, or maybe
even ninety-seven things that inspire you to dig deeper and expand your
own career. Just as the cloud has many facets, this book has many types of
articles for you to check out. Start with some cloud fundamentals, and then
read more about software development approaches in the cloud. Or start
with a couple of articles about how to improve your organization, then dig
into new approaches to operations and reliability. It really is up to you!

XV

This book was written in 2020, a year marked by a global pandemic, an
amplification of and broader awakening to the injustices of systemic racism,
and many other changes that will have an effect on generations to come. The
events of this year have touched every one of us on a personal level. Compa-
nies and organizations are not immune to these events either: 2020 saw some
companies experience explosive growth, while others had to face their swift
demise. The cloud has played a role in all of these things too—whether pro-
viding new ways for us to connect while remaining socially distant, rapidly
spreading information and misinformation, or providing scientists the tech-
nology required for testing, tracing, and learning more about a pernicious
virus.

We would like to thank the authors of each article. They have generously
shared their insights and knowledge in an effort to inform and inspire as you
continue your own journey as a cloud engineer. Use this book to spark a
conversation among cloud engineers, connect on a human level, and learn
from one another.

Enjoy the book!

— Nathen Harvey and Emily Freeman

Xvi Preface

O’Reilly Online Learning

" , For more than 40 years, O'Reilly Media has provided
O REILLY technology and business training, knowledge, and

insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live train-
ing courses, in-depth learning paths, interactive coding environments, and a
vast collection of text and video from O’Reilly and 200+ other publishers.
For more information, visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at https://oreil.ly/97-things-
cloud-engineers.

Email bookquestions@oreilly.com to comment or ask technical questions
about this book.

Visit http://oreilly.com for news and information about our books and
courses.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface xvii

Copyrighted material

PART |
Fundamentals

What Is the Cloud?

Nathen Harvey

Developer Advocate at Google

Before you get too deep into the articles in this book, let’s establish a com-
mon understanding of the cloud.

Wikipedia says that cloud computing is “the on-demand availability of com-
puter system resources, especially data storage (cloud storage) and comput-
ing power, without direct active management by the user.” The term is
generally used to describe datacenters available to many users over the inter-
net.

At its most basic level, the cloud is essentially a datacenter that you access
over the internet. However, viewing the cloud as “someone else’s datacenter”
does not really allow you or your team to take full advantage of all that the
cloud has to offer.

The National Institute of Standards and Technology (NIST) defines the
cloud model in “SP 800-145: The NIST Definition of Cloud Computing”.
This publication covers the essential characteristics of cloud computing. It’s
a quick read and well worth your time.

NIST outlines five essential characteristics of the cloud model:

On-demand self-service
Cloud resources of all varieties—compute, storage, databases, container
orchestration platforms, machine learning, and more—are available at
the click of a button or by calling an API. As a cloud engineer, you
should not need to call someone, open a ticket, or send an email to pro-
vision, access, and configure resources in the cloud.

Broad network access
As a cloud engineer, you should be able to utilize the self-service capa-
bilities of the cloud wherever you are. A cloud provides authorized users
access to resources over a network that you can connect to using a vari-
ety of devices and interfaces. You may be able to restart a service from

2 97 Things Every Cloud Engineer Should Know

your mobile phone, ask your virtual assistant to provision a new test
environment, or view monitors and logs from your laptop.

Resource pooling

Cloud providers pool resources and make them available to multiple
customers—with security and other protections in place, of course!
Practically speaking, a cloud engineer does not need to know the physi-
cal location of the CPU in the datacenter. Pooling also provides higher
levels of abstraction. A cloud engineer may specify the compute and
memory requirements for an application, but not which physical
machines provide the computing resources. Likewise, a cloud engineer
may specify a region where data should be stored but would not have
any say over which datacenter rack houses the primary database.

Rapid elasticity

A cloud engineer should not need to worry about the physical capacity
of a particular datacenter. Resources in the cloud are designed to scale
up to meet demand. Likewise, when demand for a service decreases,
cloud resources are designed to contract. Remember, elasticity goes both
ways: scale up and scale down. This scaling may happen at the request of
a cloud engineer, made via a user interface or API call, though in many
instances it will happen automatically with no human intervention.

Measured service
Consumption of cloud resources is measured and is usually one compo-
nent of the cost. One of the promises of the cloud is that you pay for
what you use, and no more. Having visibility into how much of each
type of resource every service is using gives you visibility into your costs
that is typically not feasible in a traditional datacenter.

NIST’s definition goes beyond these five characteristics of cloud computing
to define service models like infrastructure as a service (IaaS), platform as a
service (PaaS), and software as a service (SaaS). The article also describes
various deployment models, including private and public.

Keep these five characteristics in mind as you explore the cloud. Use them to
help evaluate whether you are taking advantage of the cloud or simply treat-
ing it as someone else’s datacenter.

Collective Wisdom from the Experts 3

Why the Cloud?

Nathen Harvey

Developer Advocate at Google

In the early 2000s, I worked in the IT department of a publicly traded soft-
ware company. My team was not responsible for building the software that
our company delivered to customers, but we were responsible for our cus-
tomer and partner extranet, building a software delivery center that would
allow our customers to download the software instead of waiting for com-
pact discs, our internal sales operations tools, and more. We were using tech-
nology to enable the business. All of our systems ran in datacenters that we
managed. Expanding capacity for our systems required procuring, installing,
and configuring new hardware. This cycle could take up to 18 months.

In 2007 that company was acquired, and IT fell under the CIO of the new
organization. That person had one primary objective: cut costs. The CIO met
with our team and encouraged us to immediately stop working on anything
that cost money. We protested: our work supports and enables the business
to be more efficient, keeps our customers happy, and leads to more revenue,
we argued. But this was no concern of the CIO, whose objective was clear,
focused, and dispassionate: keep costs down.

By 2008, I'd left that company and joined my first start-up. We were a small,
scrappy team with a singular focus: launch. This was my first exposure to the
power of the cloud. A procure-and-provision process that used to take 18
months was now completed in minutes. The cloud has been a fundamental
enabler of my career for over a decade now, and I've picked up a few lessons
along the way.

Understand the Role of Technology

Yes, it is true that every company is now or is becoming a technology com-
pany. It is important to listen to the words and watch the actions of leaders
in your organization. Technology can be a path to cost savings, or it can be a
key enabler and amplifier of the business. Sure, it can be both at the same
time, but your leaders are likely more focused on one of these two outcomes.
Pay attention and let their goals help drive the work that you do, or even

4 97 Things Every Cloud Engineer Should Know

where you work. Misaligned incentives can lead to friction, burnout, and
unsatisfied customers.

Automate the Cloud

In my preceding article, “What Is the Cloud?” I shared NIST’s list of capabil-
ities that define the cloud. It is easy to fall into the trap of not utilizing the
cloud properly. Being able to provision resources at the click of a button or
the call of an API is just the beginning. How long does it take to go from
provisioned to useful? Invest time in learning how to automate and com-
press that cycle. Doing so opens up a multitude of new ways to manage
infrastructure and applications.

Measure Progress

How do you know whether the cloud is working for you? When migrating
from a traditional datacenter environment, you will feel and see many
immediate improvements. But what if the applications you are responsible
for were born in the cloud? One thing is certain: there is always room for
improvement. I recommend starting with high-level measures for each team
or application and allowing improvements across those metrics to guide
your team’s investment in improvement. The four keys identified by the
DORA research led by Dr. Nicole Forsgren are a great place to start:

+ Lead time
« Deploy frequency
« Time to restore

« Change fail percentage

Getting Started > Getting Finished

Aligning incentives, building up your team’s automation capabilities, and
measuring progress takes time and energy. Matching the success of the best
in the industry can seem daunting, or even unachievable. The truth is that
you must take an iterative approach. Remember, getting started with
improvements is more important than getting finished with them.

Collective Wisdom from the Experts 5

Three Keys to Making the
Right Multicloud
Decisions

Brendan O’Leary

Senior Developer Evangelist at GitLab

In recent years, there has been a lot of discussion about the possibility of
multicloud and hybrid-cloud environments. Many business and technology
leaders have been concerned about vendor lock-in, or an inability to leverage
the best features of multiple hyperclouds. In regulated industries, there can
still be a hesitancy to move “everything” to the cloud, and many want to keep
some workloads within their physical datacenters.

The reality in the enterprise is that multicloud and hybrid-cloud are already
here. A 2019 State of the Cloud report found that 84% of organizations are
already using multiple clouds. On average, they use more than four clouds.
At the same time, we know that software excellence is the new operational
excellence. “Software has eaten the world,” and our competitiveness depends
on our ability to deliver better products faster.

Based on those realities, the question isn’t whether you will be a multicloud
or hybrid-cloud company. The question is, are you ready to be better at it
than your competition? If we accept that a multicloud strategy is required,
we need to systemize our thinking. There are three key enablers here to con-
sider: workload portability, the ability to negotiate with suppliers, and the
ability to select the best tool for a given job. The cloud promises to remove
undifferentiated work from our teams. To realize that potential, we must
have a measured approach.

The most critical enabler is workload portability. No matter what environ-
ment a team is deploying to, we must demand the same level of compliance,
testing, and ease of use. Thus, creating a complete DevOps platform that is
cloud-agnostic allows developers to create value without overthinking about
where the code deploys.

6 97 Things Every Cloud Engineer Should Know

In considering both the platform your developers will use and how to make
the right multicloud decisions, there are three keys: visibility, efficiency, and
governance.

Visibility means having information where it matters most, a trusted single
source of truth, and the ability to measure and improve. Whenever consider-
ing a multitool approach—whether it is a platform for internal use or the
external deployment of your applications—visibility is crucial. For a DevOps
platform, you want real-time visibility across the entire DevOps life cycle.
For your user-facing products, observability and the ability to correlate pro-
duction events across providers will be critical for understanding the system.

Efficiency may seem straightforward at first, but there are multiple facets to
consider. We must always be sure we are efficient for the right group. If a
tools team is selecting tools, the bias may be to optimize for that team’s effi-
ciency. But if a selection here saves the tools team, which has 10 people, an
hour a week but costs 1,000 developers even a few extra minutes a month, a
negative impact on efficiency results. Your platform of choice must allow
development, QA, security, and operations teams to be part of a single con-
versation throughout the life cycle.

Finally, governance of the process is essential regardless of industry. How-
ever, it has been shown that working governance into the day-to-day pro-
cesses that teams use allows them to move quicker than a legacy end-of-cycle
process. Embedded automated security, code quality, vulnerability manage-
ment, and policy enforcement practices enable your teams to ship code with
confidence. Regardless of where the deployment happens, tightly control
how code is deployed and eliminate guesswork. Incrementally roll out
changes to reduce impact, and ensure that user authentication and authori-
zation are enforceable and consistent.

These capabilities will help you operate with confidence across the multi-
cloud and hybrid-cloud landscape.

Collective Wisdom from the Experts 7

Use Managed Services—
Please

Dan Moore

Principal at Moore Consulting

Use managed services. If there was one piece of advice I could shout from the
mountains to all cloud engineers, this would be it.

Operations, especially operations at scale, are a hard problem. Edge cases
become commonplace. Failure is rampant. Automation and standardization
are crucial. People with experience running software and hardware at this
scale tend to be rare and expensive. The knowledge they’ve acquired through
making mistakes and learning from different situations is hard-won.

When you use a managed service from one of the major cloud vendors,
you're getting access to all the wisdom of their teams and the power of their
automation and systems, for the low price of their software.

A managed service is a service like Amazon Relational Database Service
(RDS), Google Cloud SQL, or Microsoft Azure SQL Database. With all three
of these services, youre getting best-of-breed configuration and manage-
ment for a relational database system. Configuration is needed on your part,
but hard or tedious tasks like setting up replication or backups can be done
quickly and easily (take this from someone who fed and cared for a MySQL
replication system for years). Depending on your cloud vendor and needs,
you can get managed services for key components of modern software
systems, including these:

» File storage
» Object caches
» Message queues

» Stream processing software

« Extract, transform, load (ETL) tools

8 97 Things Every Cloud Engineer Should Know

(Note that these are all components of your application, and will still require
developer time to thread together.)

There are three important reasons to use a managed service:

+ It’s going to be operated well. The expertise that the cloud providers can
provide and the automation they can afford to implement will likely sur-
pass your own capabilities, especially across multiple services.

« It’s going to be cheaper. Especially when you consider employee costs.
The most expensive Amazon RDS instance costs approximately
$100,000 per year (full price). It’s not an apples-to-apples comparison,
but in many countries you can’t get a database architect for that salary.

« It’s going to be faster for development. Developers can focus on con-
necting these pieces of infrastructure rather than learning how to set
them up and run them.

A managed service doesn’t work for everyone, though. If you need to be able
to tweak every setting, a managed service won'’t let you. You may have strin-
gent performance or security requirements that a managed service can’t
meet. You may also start out with a managed service and grow out of it.
(Congrats!)

Another important consideration is lock-in. Some managed services are
compatible with alternatives (Kubernetes services are a good example). If
that is the case, you can move clouds. Others are proprietary and will require
substantial reworking of your application if you need to migrate.

If you are working in the cloud and need a building block for your applica-
tion, like a relational database or a message queue, start with a managed ser-
vice (and self-host if it doesn’t meet your needs). Leverage the operational
excellence of the cloud vendors, and you’ll be able to build more, faster.

Collective Wisdom from the Experts 9

Cloud for Good Should
Be Your Next Project

Delali Dzirasa
Founder and CEO of Fearless

I don’t know about you, but being stuck on an endless phone call with an
automated system drives me crazy. Usually, I'm trying to solve a simple
problem or access a service, but it can feel like I'm trapped in an endless loop
of pressing 1 or 2 to respond to questions rather than getting answers myself.

Why is it that I can press a few buttons on my phone and, in minutes, have a
car or food waiting for me, but I can’t figure out how to easily pay my water
bill online?

The cloud powers everything these days. Or, at least, it powers everything
that you enjoy using, usually because the tech it supports makes your day-to-
day life easier in some way. But, oddly, the real-world problems that most
people care about—problems around things like education, healthcare, and
food security—don’t get nearly enough attention.

For groups dealing with meaningful social issues, tech can be the last thing
on their list. There often just isn’t enough focus, energy, or resources avail-
able to make meaningful tech improvements.

On a macro level, this speaks to a real gap in the market: there simply aren’t
enough digital services firms focused on helping to support civic tech or
cloud for good. Fearless, the company I founded in 2009, has a mission of
building software with a soul. We take on only projects that empower users
and change lives.

One of the places we’re working to build software with a soul is the Centers
for Medicare & Medicaid Services (CMS), where we’re helping the agency
modernize its technology. When programs are inefficient, recipients don’t
receive the best care, costs are high, and, at the end of the day, it's American
taxpayers who pay the price. Improving these technologies makes the health-
care system work better for everyone.

10 97 Things Every Cloud Engineer Should Know

The ideas that power cloud for good have been around for a long time—
longer than the terms civic tech or cloud for good themselves. For me, cloud
for good really came into the forefront of my mind when HealthCare.gov
failed. People wanted to help, and a bunch of digital services firms came in to
help.

I've heard from a lot of people who are saying, “How can I use my tech pow-
ers for good? I want to work on projects that solve problems.” I believe this
speaks to the larger movement of people looking for meaning in the work
that they do and wanting humanity and our world to be better.

Get involved with local meetups, especially ones centered around solving
problems in the cloud-for-good space in your community. Code for America
brigades are a good place to start if you're looking for outlets that you can
work with.

If there’s a nonprofit organization in your area that you would like to sup-
port, donate your time to help build software. Think of the needs of civic
tech when you're writing code. Open source software allows more people to
benefit from and use software solutions. By building open source, you enable
others to leverage your tech to support more projects.

In my city, we have Hack Baltimore. The tech movement teams up commu-
nity advocates, nonprofits, technologists, and city residents to design sus-
tainable solutions for the challenges impacting Baltimore. Find an
organization like Hack Baltimore in your community, or start one.

The cloud isn’t inherently good or bad,; it’s all based on the intent of the end
users and those of us who wield our “tech powers” to power applications
around the world. We can help power amazing social missions that too often
get left behind. So while you're off building the cloud, consider using some
of that energy to build the cloud for good.

Collective Wisdom from the Experts 11

A Cloud Computing
Vocabulary

Jonathan Buck

Senior Software Engineer at Amazon Web Services

In any profession, being able to speak and understand the vernacular goes a
long way toward feeling comfortable in your role and working effectively
with your colleagues. If you're just starting your career as a cloud engineer,
you will likely hear these terms throughout your workplace:

Availability

The amount of time that a service is “live” and functional. This is often
expressed in percentage terms. For example, if someone says their ser-
vice has a yearly availability of 99.99%, that means it will be unavailable
for only 52.56 minutes in an entire year.

Durability

Even for the most reliable devices, any data stored on a computer is
ephemeral over a long enough time frame. Durability refers to the
chance that data will be accidentally lost or corrupted over a given time
period. Like availability, it’s typically expressed as a percentage value.

Consistency

Consistency refers to the notion that when you write data to a data store,
it (or the latest version of it) might not be immediately available. This is
because cloud-based data stores are built on distributed systems, and
distributed systems are subject to the CAP theorem. (Also known as
Brewer’s theorem, it holds that there are three things a distributed data
store can guarantee—consistency, availability, and partition tolerance—
but it can never guarantee all three at the same time.) Different cloud
environments and services will handle this differently, but the important
thing is to be aware of this nuance in designing cloud-based software
applications.

12

97 Things Every Cloud Engineer Should Know

Elasticity

One of the main advantages of the cloud is elasticity: the ability to
dynamically match hardware or infrastructure with the demands being
placed on an application at any given time. Elasticity has benefits in two
directions. Sometimes, like during high-traffic periods, you might need
more resources; at other times, you might need fewer. Because your
resource cost will be proportional to your provisioned resources, elastic-
ity is a means of better matching your costs with the actual load on your
application.

Scalability

Scalability is similar to elasticity. Whereas elasticity refers to the notion
of dynamically increasing or decreasing your resources, scalability refers
to how your resources are actually augmented. Typically, scalability is
decomposed into two concepts: horizontal scaling and vertical scaling.
Horizontal scaling refers to adding host machines in parallel to meet
application demand. Vertical scaling refers to adding resources within a
given machine (such as adding RAM). These scaling approaches have
advantages and disadvantages, and are appropriate in different scenar-
ios. The proper choice depends on your system architecture.

Serverless

Serverless refers to modern technology that allows you to run application
code without managing servers, hardware, or infrastructure. Sometimes
this capability is also referred to as function as a service (FaaS). Many
cloud providers offer their own forms of this. These serverless offerings
also provide the benefits of high availability and elasticity, concepts dis-
cussed previously. Before serverless technologies, deploying software
involved managing and maintaining servers, as well as working to make
them available and scalable to meet traffic needs. Using serverless com-
pute environments saves you from the burden of managing and main-
taining servers in this fashion so you can focus your time and energy on
the application code. However, various trade-offs are involved.

Fully managed
In the early days of cloud computing, we typically interacted with basic
computing resources that were made available in the cloud: servers, data
stores, and databases. While this provided significant advantages, the
responsibilities of the software engineer were largely the same as those in
on-premises datacenters: managing and maintaining low-level hardware
resources. Fully managed resources are cloud resources that are offered
at a higher level of abstraction. The cloud provider takes responsibility

Collective Wisdom from the Experts 13

for some aspects of these resources, rather than the software engineer.
The trade-off is that fully managed services are typically more expensive
as a result, and often introduce various limitations or restrictions as
compared to operating on the more basic resources.

14

97 Things Every Cloud Engineer Should Know

Why Every Engineer
Should Be a Cloud
Engineer

Michelle Brenner

Senior Software Engineer

I am a lazy engineer. If I have the option to copy, reference, or install a tool
to get my job done faster, I say thanks and move on. I started my tech career
working in entertainment, where you don’t have sprints or quarters to finish
tools. Studios need the work done yesterday, because they want to get the
best art possible before the release date. As an engineer, I know I can solve
any problem, but I've realized that I can have a much greater impact using
available tools.

Most of us are not working on groundbreaking technology; we’re solving
problems for customers. I want to focus on delighting my clients, not fid-
dling with a problem a thousand engineers have already tackled. Tt is a com-
mon misconception that cloud computing is just servers in someone else’s
warehouse. While you can get that bare-metal setup, there are so many other
teatures that no single person can know them all. If you can define a problem
in a general way, such as log in using social accounts, store information
securely, or scale service to meet demand, you can find a cloud tool to do it.

As a backend engineer, I was building APIs and designing databases. Learn-
ing cloud technologies meant I could get my own code live faster, more
easily, and more reliably. A colleague was not always available to help me
improve the deployment pipeline or debug production problems. Learning
how to make these changes myself made the whole team more efficient and
effective. Expanding my skill set opened doors to career opportunities and
made it easier to accomplish personal projects.

Before I got started in cloud computing, I often abandoned personal projects
because deploying them seemed so daunting. But after gaining a sufficient
understanding of the systems involved, not only could I complete projects, I
could even use them to help with seemingly unrelated ones, like hosting a

Collective Wisdom from the Experts 15

podcast. I knew that most podcasts don’t make money, so I decided that if
the costs started to add up, I would not continue. After doing some research,
I realized that hosting costs for podcasts had three main features:

+ Hosting the public files (audio and images)
» Formatting an XML file for the podcast aggregators
» Tracking episode playbacks

Why would I pay $10 to $15 a month for that when Amazon Simple Storage
Service (S3) can host my files for pennies? Hosting myself also meant I did
not have to worry about a third party handling my content or data. [set up a
public bucket for the audio and image files. Then I wrote up my XML file for
the aggregators and put it in the same bucket. To track playbacks, I added
logging on those files and analyzed them using Amazon Athena. I learned
that I don’t have many listeners, but that’s OK since my AWS bill is less than
$1 a month.

Now that I have you completely convinced to become a cloud engineer, here
is some rapid-fire advice I wish I'd gotten before I got started:

» Turn on billing alerts before you do anything else. It’s possible you could
follow a tutorial, not really knowing what you’re doing, and suddenly get
a huge bill. Hypothetically.

» Get as many free credits as you can. Your provider is competing with
other cloud-hosting providers for your business. Make them earn it.

+ The documentation often focuses on features rather than user stories.
Independent content creators are great for filling in those gaps. Dev.to is
your friend.

« Change only one setting at a time.

» No one understands identity and access management (IAM).

Finally, if I have inspired you to learn and create something new, I'd love to
hear about it. Learning new tools will increase your impact, but teaching oth-
ers how to use them will expand it exponentially.

16 97 Things Every Cloud Engineer Should Know

Managing Up: Engaging
with Executives on the
Cloud

Reza Salari

Business Information Security Officer

In job descriptions for cloud engineers, you will often see a lot written about
the technology stack, programming/scripting languages, and years-of-
experience requirements that sometimes exceed how long the technology has
actually been available. However, arguably one of the most important job
requirements rarely makes the list. It is frequently what makes or breaks
your ability to implement a new capability, and it can help you avoid expect-
ations that were never really based in reality anyway. Master it, and you can
unlock resources, support, and opportunities for you and your team. Failure,
on the other hand, often leads to frustration as your ideas seem to die on the
vine or you find yourself saddled with objectives that just can’t be met.

We often focus on managing down, but learning to manage up and commu-
nicate with executives can, and should, be your (not so) secret weapon!
Although this skill takes years to cultivate, you can do some practical things
now to show them you can talk at their level. Here are my top five tips:

Understand what executives really need for the business.
Sure, it’s exciting when a new technology hits the market, and as tech-
nologists we can’t wait to put it to good use. However, our focus should
be on choosing the right capabilities to answer the unmet needs of the
business.

Tell them why what you're proposing will meet their needs, in their language.
You’ve found the perfect new capability that will solve a real business
problem, but when you tell them about the features, they just can’t con-
nect the dots. Drop the jargon, talk about the outcomes, and tell the
story of how their experience will improve.

Collective Wisdom from the Experts 17

Be a trusted voice in a world of marketing buzzwords and sky-high
expectations.

The cloud is one of the great innovations driving technology and busi-
nesses forward. There are plenty of real wins and successes to point to.
Executives are flooded with sales calls, marketing emails, and anecdotal
stories of how some large company built things better, faster, and
cheaper, so their company should be able to too. You, as a cloud engi-
neer, have an opportunity to guide them through the noise to set realis-
tic expectations and identify trade-offs. Pragmatism goes a long way!

Know the numbers,

The cloud relies on consumption-based usage for its cost model,
whereas legacy on-premises datacenters rely more on making the most
of fixed capacity. For example, if you have a grid-computing workload
that runs a model for two hours, three times a week, moving that to the
cloud may seem to make perfect sense. In a greenfield environment, it
certainly would. However, knowing that you have hardware in your
datacenter that has already been purchased and has three more years of
depreciation left could change which solution you advocate for. Adding
financial context to your recommendations demonstrates business acu-
men and gets to the root of most of their questions.

Know how your executive’s performance is measured.

We all are motivated to succeed, and how we measure success as well as
how others measure our success guides us. Learn what motivates your
executives and what goals they are working toward. Show them you
want to be a partner in their success and that of the business.

You have a wealth of insight and knowledge that executives are craving; now
go out and tell them all about it in their language!

18

97 Things Every Cloud Engineer Should Know

PART Il
Architecture

The Future of Containers:
What’s Next?

Chris Hickman
VP of Technology at Kelsus

Deciding which technology to use for running your cloud native applications
is a question of trade-offs.! Virtual machines provide great security and
workload isolation but require significant computing resources. Containers
offer better performance and resource efficiency but are less secure because
they share a single operating system kernel.

What if we didn’t have to make these trade-offs? Let’s explore two of the
most promising technologies that combine the best of virtual machines and
containers: microVMs and unikernels.

MicroVMs

MicroVMs are a fresh approach to virtual machines. Rather than being
general-purpose and providing all the functionality an operating system may
require, microVMs specialize for specific use cases.

For example, a cloud native application needs only a few hardware devices,
such as for networking and storage. There’s no need for devices like full key-
boards, mice, and video displays.

By implementing a minimal set of features and emulated devices, microVM
hypervisors can be extremely fast with low overhead. Boot times can be
measured in milliseconds (as opposed to minutes for traditional virtual
machines). Memory overhead can be as little as 5 MB of RAM, making it
possible to run thousands of microVMs on a single server.

A big advantage of containers is that they virtualize at the application level,
not the server level used by virtual machines. This is a natural fit with our

1 A version of this article was originally published at Upstart.

20 97 Things Every Cloud Engineer Should Know

development life cycle—after all, we build, deploy, and operate applications,
not servers.

A better virtual machine by itself doesn’t help us much if we have to go back
to deploying servers and give up our rich container ecosystem. The goal is to
keep working with containers but run them inside their own virtual machine
to provide increased security and isolation.

Most microVM implementations integrate with existing container runtimes.
Instead of directly launching a container, the microVM-based runtime first
launches a microVM and then creates the container inside that microVM.
Containers are encapsulated within a virtual machine barrier, without any
impact on performance or overhead.

It’s like having our cake and eating it too. MicroVMs give us the enhanced
security and workload isolation of virtual machines, while preserving the
speed, resource efficiency, and rich ecosystem of containers.

Unikernels

Unikernels aim to solve the same problems as microVMs but take a radically
different approach.

A unikernel is a lightweight, immutable OS compiled to run a single applica-
tion. During compilation, the application source code is combined with the
minimal device drivers and OS libraries necessary to support the application.
The result is a machine image that can run without a host operating system.

Unikernels achieve their performance and security benefits by placing severe
restrictions on execution. Unikernels can have only a single process. With no
other processes running, less surface area exists for security vulnerabilities.

Unikernels also have a single address space model, with no distinction
between application and operating system memory spaces. This increases
performance by removing the need to context switch between user and ker-
nel address spaces.

However, a big drawback with unikernels is that they are implemented
entirely differently than containers. The rich container ecosystem is not
interchangeable with unikernels. To adopt unikernels, you will need to pick
an entirely new stack, starting with choosing a unikernel implementation.
There are many unikernel platforms to choose from, each with its own con-
straints. For example, to build unikernels with MirageOS, you’ll need to
develop your applications in the OCaml programming language.

Collective Wisdom from the Experts 21

So, What’s Next?

If you are using containers, microVMs should be on your road map.
MicroVMs integrate with existing container tooling, making adoption rather
painless. As microVMs mature, they will become a natural extension of the
runtime environment, making containers much more secure,

Unikernels, on the other hand, require an entirely new way of packaging
your application. For specific use cases, unikernels may be worth the invest-
ment of converting your workflow. But for most applications, containers
delivered within a microVM will provide the best option.

22 97 Things Every Cloud Engineer Should Know

Understanding Scalability

Duncan Mackenzie

Developer Lead at Microsoft

A scalable system can handle varying degrees of load (traffic) while main-
taining the desired performance. It is possible to have a scalable system that
is slow, or a fast site that cannot scale. If you can handle 100 requests per
second (RPS), do you know what to do if traffic increases to 1,000 RPS? The
cloud is well suited to producing a reliable and scalable system, but only if
you plan for it.

Scaling Options

To increase the capacity of a system, you can generally go in two directions.
You can increase the size/power of individual servers (scaling up) or you can
add more servers to the system (scaling out). In both cases, your system must
be capable of taking advantage of these changes.

Scaling Up

Consider a simple system, a website with a dependency on a data store of
some kind. Using load testing, you determine that the site gets slower above
100 RPS. That may be fine now, but you want to know your options if the
traffic increases or decreases. In the cloud, the simplest path is usually to
scale up the server that your site or database is running on. For example, in
Azure, you can choose from hundreds of machine sizes, all with different
CPU/memory and network capabilities, so spinning up a new machine with
different specifications is reasonably easy.

Increasing the size of your server may increase the number of requests you
can handle, but it is limited by the ability of your code to take advantage of
more RAM, or more CPU cores. Changing the size often reveals that some-
thing else in your system (such as your database) is the limiting factor. It is
possible to scale the server for your database as well, making higher capacity
possible with the same architecture.

Collective Wisdom from the Experts 23

It is worth noting that you should also test scaling down. If your traffic is
only 10 RPS, for example, you could save money by running a smaller
machine or database.

Scaling up is limited by the upper bound of how big a single machine can be.
That upper limit may cover your foreseeable needs, but it is still an example
of a poorly scalable system. Your goal is a system that can be configured to
handle any level of traffic.

An infinitely scalable system is hard, as you will hit different limits. A rea-
sonable approach is to plan for 10 times your current traftic and accept that
work will be needed to go further.

Scaling Out

Scaling out is the path to high scalability and is one of the major benefits of
building in the cloud. Increasing the number of machines in a pool as
needed, and then reducing it when traffic lowers, is difficult to do in an on-
premises situation. In most clouds, adding and removing servers can happen
automatically, so that a traffic spike is handled without any intervention.
Scaling out also increases reliability, as a system with multiple machines can
better tolerate failure.

Unfortunately, not every system is designed to be run on multiple machines.
State may be saved on the server; for example, requiring users to hit the same
machine on multiple requests. For a database, you will have to plan how data
is split or kept in sync.

Keep Scalability in Mind, but Don’t Overdo [t

Consider how your system could scale up or down as early as possible,
because that decision will guide your architecture. Do you need to know the
upper bound? Does everything have to automatically scale? No! Optimizing
for high growth too early is unnecessary. Instead, as you gather usage data,
continue testing and planning.

24 97 Things Every Cloud Engineer Should Know

Don’t Think of Services,
Think of Capabilities

Haishi Bai

Principal Software Architect at Microsoft

Acquiring a continuous power supply is a fundamental capability of a mobile
device. Most of us are familiar with sight of people flocking around charging
stations at airports (before the pandemic happened). As a matter of fact,
because this capability is so critical, we use a mixture of methods to provide a
continuous power supply to our precious phones—integrated batteries (in a
software sense, in-process libraries), portable power banks (local Docker
containers or services), or power plugs (service-oriented architecture, or
SOA).

To get your phone working, you don’t really care whether the power comes
from a plug or a power bank; you just need the capability to acquire power.
Capability-oriented architecture (COA) aims to provide a set of languages
and tools for developers and architects to design applications based on capa-
bilities, regardless of where and how these capabilities are delivered, which is
an operational concern.

COA is especially relevant to edge-computing scenarios. For an edge solu-
tion to keep continuous operation, it often needs to switch between service
providers when network conditions change. For example, a smart streetlight
system sends high-resolution pictures to a cloud-based AI model to detect
wheelchairs on a crosswalk and extends the green light as needed. When the
network connection degrades, it switches to low-resolution images. And
when the network is completely disconnected, it switches to a local model
that gives lower detection rates but allows business continuity. This is a
sophisticated system with various integration points and decision logic. With
COA, all the complexity is abstracted away from developers. All developers
need to do is to have a wheelchair detection capability delivered, one way or
another.

Collective Wisdom from the Experts 25

COA is also relevant to cloud developers for two reasons. First, the cloud
and the edge are converging, and compute is becoming ubiquitous. As a
cloud developer or architect, you'll face more and more situations that
require you to push compute toward the edge. COA equips you with the
necessary abstractions to keep your architecture intact while allowing maxi-
mum mobility of components. You can imagine your solution as a puddle of
quicksilver that spans and flows across the heterogeneous computing plane,
across the cloud and the edge. Second, COA offers additional abstractions on
top of SOA so that your applications are decoupled from specific service
vendors or endpoints. COA introduces a semantic discovery concept that
allows you to discover capability offerings based on both functional and
nonfunctional requirements, including service-level agreements (SLAs), cost,
and performance merits. This turns the service world into a consumer mar-
ket, as consumers are granted more flexibility to switch services, even
dynamically, to get the best possible returns on their investments. COA also
allows traditional cloud-based services to be pushed toward the edge, onto
telecommunications infrastructure or even household devices (such as in-
house broadband routers). This will be the foundation of a new breed of dis-
tributed cloud without central cores that can’t be shut down (think of Skynet
in the Terminator movies).

With developments in natural language processing, we can imagine COA
capability discovery being conducted in natural language. In such cases,
users describe their intention with natural language, and COA gathers poten-
tial offers and runs an auction to choose the best one. This means a human
user can interact with the capability ecosystem without the constraints of
specific applications—no matter where users are and what they’re using,
they’re able to consume all capabilities in the ecosystem without switching
contexts. Multitasking becomes a thing of the past because everything can
happen in every context. Instead of switching between tasks or contexts,
users are in a seamless, continuous flow.

When you design a system, don’t think of services; think of capabilities. It
might seem to be a subtle change, but you’ll thank yourself later that you've
made the switch.

26 97 Things Every Cloud Engineer Should Know

You Can Cloudify Your
Monolith

Jake Echanove

Senior VP for Solutions Architecture at Lemongrass Consulting

Application rationalization exercises often determine that monolithic work-
loads are better left on premises, insinuating that cloud benefits can’t be real-
ized. But monoliths don’t have to be migrated to cloud native or
microservices architectures to take advantage of cloud capabilities. Many
methods can be employed to help legacy applications, such as SAP and Ora-
cle apps, realize the agility, scalability, and metered billing advantages of the
cloud.

First, it is important to have a deep understanding of the application archi-
tecture to ensure that the future landscape is flexible enough to be scalable.
For instance, many applications employ architectures consisting of web
servers, application servers, and databases. Sometimes these tiers are com-
bined in single-instance deployments, which is a disadvantage in the cloud.
If the tiers are combined on a non-86 platform, they should be separated
when migrating to an x86-based cloud platform. This will help ensure that
the web, app, and database tiers are loosely coupled and can grow and shrink
without affecting the other tiers.

Second, it is key to be able identify and understand workload tendencies.
Let’s take an enterprise resource planning (ERP) financial system as an
example. The month-end close is a busy time for the system, because many
users are running reports, running close scenarios, and performing other
activities occurring only at the month’s end. Other times of the month are
less busy, thus requiring less resources. In the cloud, administrators can
bring up extra application servers at month’s end and shut them down for
the rest of the month to save on costs or reallocate resources for other pur-
poses. Having knowledge of workload characteristics is key to help admins
understand when to scale to meet requirements and when to shut down sys-
tems to save on costs.

Collective Wisdom from the Experts 27

Third, it is imperative to know that automation isn’t just for cloud native
applications. Scaling monolithic applications without user intervention is
possible if the cloud admin understands the inner workings of the applica-
tion. It is common knowledge that autoscaling is often used with cloud
native technologies. For example, cloud native apps may be monitored for
metrics such as high CPU utilization and then can trigger an event to deploy
a new container to spread the workload. Legacy applications often require a
different approach, because they don’t function with containers or leverage
microservices. The work processes within the application would need to be
monitored. This is not merely monitoring an OS process, but interfacing at
the application layer to determine whether the application is taxed. If so, the
next step would be to trigger an event to spawn additional application
servers. It is also possible to recognize a workload decrease to then safely
shut down application servers without losing transactions.

Last, advanced methods can create DevOps-like deployment models, use
AIOps methodologies for day 2 support, and extend the legacy core func-
tionality using a microservices architecture. Many customers have deployed
these methods into their production landscapes to make their legacy apps
more cloud native-like, but deploying some of these operating models
requires a shift in mindset and a deep understanding of the applications
being moved to the cloud. The possibilities are extensive for those cloud
admins who also possess application expertise with legacy workloads or that
work closely with application owners.

28 97 Things Every Cloud Engineer Should Know

Integrating Microservices
in Cloud Native
Architecture

Kasun Indrasiri

Product Manager and Senior Director at WS02

When we construct cloud-based applications, we embrace cloud native
architecture in the design to meet agility, scalability, and resiliency require-
ments. A cloud native application is designed as a collection of microservices
that are built around business capabilities.

These microservices interact with each other and with external applications
through interprocess communication techniques. These interactions can
range from invoking other microservices to creating composite microservi-
ces by combining multiple microservices and other systems, building an
event consumer or producer service leveraging an event/message broker,
creating a microservice facade for a legacy monolithic system, and so on. The
process of building the interactions between these microservices is known as
microservices integration.

The integration of services, data, and systems has long been a challenging yet
essential requirement in the context of enterprise software application devel-
opment. In the past, we used to integrate all of these disparate applications
using a point-to-point style, which was later replaced by a centralized inte-
gration middleware layer known as an enterprise service bus (ESB) with ser-
vice-oriented architecture (SOA). Here the ESB acts as the middleware layer
that provides all the required abstractions and utilities to integrate other sys-
tems and services. But in the cloud native era, we no longer use a central,
monolithic shared layer containing all our integration logic. Rather, we build
microservice integrations as part of the microservice’s business logic itself.

For example, suppose you are designing an online retail application using a
microservices architecture and you have to develop a checkout service that
needs to integrate with other services: inventory, shipping, and a monolithic
enterprise resource planning application. In the ESB era, you would have

Collective Wisdom from the Experts 29

developed the checkout service as part of the ESB by plumbing in all the
required services and systems. But in the context of microservices, you don’t
have an ESB, so you build all the business and integration logic as part of the
checkout service’s business logic.

If we take a closer look at microservice integration logic, one portion of that
logic is directly related to the business logic of the service while the other
portion is pretty much about interprocess communication. For instance, in
our example, the composition logic where we invoke and compose the
responses of all the downstream services and systems is part of the business
logic of the checkout service, and the network communication between the
services and systems (using techniques such as circuit breakers, retries, wire-
level security, and publishing data to observability tools) is agnostic of the
business logic of the service. Having to deal with this much complexity as
part of microservice development persuades us to separate the commodity
features that we built as part of the network communication from the ser-
vice’s business logic.

This is where a service mesh comes into the picture. A service mesh is an
interservice communication layer where you can offload all the network
communication logic of the microservices you develop. In the service mesh
paradigm, you have a colocated runtime, known as a sidecar, along with each
service you develop. All the network communication-related features, such
as circuit breakers and secured communication, are facilitated by the sidecar
component of the service mesh and can be centrally controlled via the ser-
vice mesh control plane.

With the growing adoption of Kubernetes, service mesh implementations
(such as Istio and Linkerd) are increasingly becoming key components of
cloud native applications. However, the idea that a service mesh is an alter-
native to the ESB in a microservices context is a common misconception. As
mentioned previously, it caters to a specific aspect of microservice integra-
tion: network communication. The business logic related to invoking multi-
ple services and building composition still needs to be part of the service’s
business logic. Also, we need to keep in mind that most of the existing
implementations of the service mesh are designed only for synchronous
request/response communication. The concepts used in the service mesh
and sidecar architecture have been further developed to build solutions such
as Dapr, where you can use a sidecar that can be used for messaging, state
management, resilient communication, and so on.

To cater to the requirements of microservices integration and help you avoid
building all these complex integrations from scratch, various cloud native

30 97 Things Every Cloud Engineer Should Know

integration frameworks are available, such as Apache Camel K, Micronaut,
and WSO2 Micro Integrator. When you develop a cloud native application,
based on the nature of the microservice that you’re developing, you can use
such an integration framework to build your microservice while leveraging
the service mesh for all the network communication-related requirements.

Collective Wisdom from the Experts 31

Containers Aren’t Magic

Katie McLaughlin
Developer Advocate at Google Cloud

Containers, and the Open Container Initiative (OCI) image format specifica-
tions, aren’t magic cure-alls. Popularized by Docker in the mid-2010s, the
concept of having a definition create an isolated space for software to live in
isn’t unique and isn’t a panacea.

Isolation standards have existed for years: virtual machines (VMs) are an
isolation mechanism. Your VM may not touch your neighbor’s VM, unless
you specifically allow it to (typically, through network firewalls). However,
that doesn’t mean you can’t have vulnerable software and malicious pro-
grams on your system,

Containers can be seen as just an iteration on VMs, but in a smaller form
factor. VMs allowed more isolation environments on bare-metal servers.
Containers serve the same purpose, and are vulnerable to the same issues as
VMs. Indeed, Docker itself has been shown to be reproducible in a mere 100
lines of bash. The mechanisms by which we achieve isolation are not unique
or new, and the advantages they give us don’t outweigh the considerations
we need to keep in mind.

Downloading a random executable from the internet without knowing what
it does and running it on your local machine is something that should cause
a tickle in the back of any programmer’s head. So why would you include a
FROM in your Dockerfile without knowing the origin? If you can’t see the
source of the image you're downloading from Docker Hub, anything could
be in there.

Just as containers can contain anything to start with, the packages that they
are intended to contain won’t always be benign. In any given month multiple
vulnerability websites may be launched, using cute logos and punny names
for at least a vague semblance of a marketing strategy. All this effort is not
just to draw attention to the researchers who find the issues (though it
helps), but to make sure everyone who runs the affected systems and needs
to apply fixes knows about them and can adjust their systems accordingly.

32 97 Things Every Cloud Engineer Should Know

But while vendors can update the operating systems of the hardware that’s
hosting container platforms to apply security patches, the contents within
the containers can be the issue. Throwing a bunch of legacy code in a con-
tainer to “keep it safe” won’t help when the code itself contains something
that no container isolation environment can prevent escaping.

Using container scanning services to periodically check the contents of your
images for the latest known issues is just one way to ensure that you know of
any problems as soon as possible—implementing security standards when
the images are created is a better defense.

For containers that don’t require complex system calls, running these in a
strict container sandbox—a system that itself can’t call destructive com-
mands—may be the best way to go. That way, even if your Eldritch horror
escapes its confinement, the damage it can do is minimal. You can’t call sys-
tem commands that don’t exist.

You can create secure containers that you can’t break out of, but this
requires effort, security awareness, and constant vigilance.

Collective Wisdom from the Experts 33

Your CIO Wants to
Replatform Only Once

Kendall Miller

President of Fairwinds

When you work for a small consultancy that helps companies modernize
their infrastructure, you get the rare opportunity to touch many kinds of
infrastructure. When you arrive at a client site, you can roll up your sleeves,
get knee deep in unbelievably rotten spaghetti infrastructure code, and
decide to put in place something you know is considered best practice but
that you've never gotten to play with before. And then, uniquely, on the next
engagement, you can try something else that’s new: you've heard about an
even shinier way to do infrastructure, so you want to go chase that squirrel.
Learning is fascinating, and solutions will continue to evolve.

If you work for a product company, however, and if your infrastructure has
been replatformed in the last five years, your CIO (or CTO, or VP of engi-
neering, or...uh...marketing director—let’s be honest, it happens) is going
to have zero patience for a new platform for the sake of a new platform. You
might be bored out of your mind, or your pager might be going off every
night for totally fixable reasons. But that doesn’t mean your leadership team
has the capacity to stomach a change in tooling or believes that “pouring a
gallon of Kubernetes on things” is going to make all of your problems go
away.

So, if you're an engineer stuck with an age-old infrastructure, you need a
strategy for picking and then pitching a replatforming.

When you pitch your proposal to the executives in charge, include the rea-
sons why this particular change will increase velocity, why it will help you
ship faster, and—for goodness’ sake—why it will be the last replatforming
the company needs to do for another 5 to 10 years. The pitch needs to cover
a wide range of factors proving that your suggestion offers that Goldilocks
combination of ease and flexibility. You need to almost sing and dance about
how your changes will reduce the need for new headcount and enable scala-
bility, security, efficiency, and future proofing.

34 97 Things Every Cloud Engineer Should Know

Then, pick something with tremendous community backing. Today that’s
Kubernetes; in a few years it may be something different, or something built
on top of Kubernetes. Kelsey Hightower (a principal engineer at Google)
once said, “I'm convinced the majority of people managing infrastructure
just want a PaaS. The only requirement: it has to be built by them.” Kuber-
netes today is the ultimate PaaS builder, but it also enables something as
close to cloud agnosticism as is possible right now. Your CIO will love the
words cloud agnosticism.

As a systems engineer at a product company, your desire to learn can some-
times feel like it’s in direct conflict with your CIO’s desire for stability.
Understanding that the company wants to replatform only once (and all the
incentives this directly impacts) is the only hope you have for a successful
pitch to make that replatforming happen during your tenure.

Everyone deals with infrastructure spaghetti code (if they’re lucky enough to
find infrastructure as code at all), whether it’s the engineer who wrote that
code or the one who builds the platform everything runs on. Get rid of it by
convincing your CIO that this is the time, and you are the person, for that
once-ever replatforming.

Collective Wisdom from the Experts 35

Practice Visualizing
Distributed Systems

Kim Schlesinger

Site Reliability Engineer at Fairwinds

Before cloud computing, ops engineers were more likely to have seen, held,
and physically maintained their servers. The primary reason for the
industry-wide shift from on-premises datacenters to cloud service providers
is that cloud providers carry the burden of maintaining the physical comput-
ers and hardware they rent, which allows cloud engineers to focus on design-
ing cloud infrastructure, continuous integration and continuous delivery
(CI/CD) pipelines, and applications. It also means that servers are far away
and invisible.

Highly skilled cloud engineers are able to imagine parts of the systems they
build and maintain, and they can visualize how a request flows from one
component to another. This isn’t a skill most of us are born with, but with
determination and practice, you can begin imagining and understanding
your invisible systems, and this will help you be a better engineer.

While there are several ways to begin visualizing your cloud infrastructure,
no matter the path you take, it is important that you construct these visuali-
zations yourself, not just look at diagrams or graphs created by someone else.
The act of wrestling part of your system into a diagram or model will be the
fastest path to understanding, even if your model isn’t perfect.

Start with a part of your distributed system that has two or three compo-
nents. For example, imagine you have a Node.js application that stores and
retrieves data from a MongoDB database, and both components are
deployed as containers on two separate instances on a public cloud like
AWS. A quick way to start visualizing is by drawing these parts as a block
diagram and showing the HTTP requests as arrows.

36 97 Things Every Cloud Engineer Should Know

MongoDB

As you draw this diagram, you will likely ask yourself, “How is the initial
request from the user getting from the internet to my application, which is
inside a virtual private cloud (VPC)?” Then you add the virtual private cloud
and ingress.

.CL- S

User

Ingress

® MongoDB

You could add regions and availability zones, Secure Sockets Layer (SSL) ter-
mination, the flow of authentication and authorization, replicas, load balanc-
ers, and more until your diagram is the size of a small city, but that’s not the
point, and you have to stop eventually. The goal of this exercise is to make
sense of one part of your system, and through that understanding you are
freeing up your cognitive energy to improve that part or to begin under-
standing something else.

Block diagrams are an easy way to get started, but they are limited by their
two dimensions. Other tools include data visualizations like those in the
D3.js library, web sequence diagrams that show how requests play out over
time, and physical 3D models like the solar system you built in the fourth
grade. The 3D model takes a lot of time and effort to build, but it’s fun as
hell, and you can start to feel out the size of components, how “far away”
they are from each other, and the states they share (or don’t), like memory
and the network.

Collective Wisdom from the Experts 37

Being able to imagine your distributed systems will help you suss out cause-
and-effect relationships that will make your debugging (and response to
incidents!) faster and more accurate. Once you do two or three visualization
exercises, you will start identifying cloud infrastructure patterns that you can
apply in a more senior role like cloud architect. If you practice visualizing
with your team, you’ll have valuable debates about the best way to model
your system, which will increase your team’s collective understanding.
Finally, if you practice visualizing your distributed systems, your monitoring
graphs and observability tools will be a rich layer of data in addition to your
strong understanding of your cloud infrastructure and your applications.

Cloud engineers have superpowers. We can change one line of configuration
code and turn off a computer on another continent, or run a command that
will quadruple the number of nodes, unlocking access to an application for
users from all over the world. Being able to manipulate machines that are
unseen is a wizard’s trick, but it also makes our systems opaque and hard to
understand. It’s worth your time to begin understanding your cloud infra-
structure by practicing how to visualize distributed systems.

38 97 Things Every Cloud Engineer Should Know

Know Where to Scale

I 7

Lisa Huynh
Lead Software Engineer at Storyblocks

Most of the time, if all goes well, an application will hit a point where it
needs to grow. Outside of “the application is timing out,” however, deter-
mining an acceptable level of performance can be subjective. Someone
whose customers are all in Canada may not care about response times in
Japan.

Whatever your metrics, let’s say you're there. Typically, we can upgrade our
systems by scaling up or out, also called vertical and horizontal scaling,
respectively. With vertical scaling, we upgrade a resource in our existing
infrastructure. With horizontal scaling, we add more instances. But which
one should you be doing?

Vertical Scaling

You’re hitting the CPU limit, so you upgrade your instance from one with 8
CPUs to 16. Or maybe you’re running out of storage space, so you go from
100 GiB to 500 GiB. With this easiest and simplest way to scale, you're run-
ning the same application but on more powerful resources.

Most relational databases use vertical scaling so that they can guarantee data
validity (atomicity, consistency, isolation, and durability, or ACID proper-
ties) and support transactions. So, for applications requiring a consistent
view of the data, such as in banking, you'd typically stick to vertical scaling.

Unfortunately, this type of scaling often involves downtime. If there’s
nowhere else to divert traffic, customers have to wait while the instance is
upgraded. Hardware also gets expensive and has its limits.

Horizontal Scaling

On the other hand, if your application is stateless or works with eventual
consistency, you can use horizontal scaling. Just increase the number of
machines that run the application and distribute the work among them. This

Collective Wisdom from the Experts 39

is great for handling dynamic loads, such as normal fluctuations throughout
the day, and avoiding the “hug of death” from a surge of traffic.

If your application relies on state, you may need to change it in order to use
horizontal scaling. NoSQL databases can scale out because they make trade-
offs of weaker consistency; during updates, invalid data could be returned.
Also, you will need some way to distribute traffic across your instances. The
application could handle this itself, or a dedicated load balancer resource
could handle routing the traffic to instances.

Smart routing should also bring reliability and allow changes without down-
time, as it should avoid “bad” or unavailable instances. Numerous policies
can be applied to more smartly shape your traffic. For instance, if you're try-
ing to serve a global audience, you may end up being constrained by the time
it takes for requests to travel from an end user to your server. In that case,
you may consider adding instances in multiple regions, and you’ll need a
balancer that will route to the closest available server.

If you are attempting to improve the response time of static assets (such as
HTML pages), consider specialized services called content delivery networks
(CDNs). A CDN handles distributing your assets across its global network of
servers and routing each end user to the most optimal server. This can be a
lot simpler than building out that network yourself.

Conclusion

In the end, which strategy you use to scale will depend on your system’s
requirements and bottlenecks. As a rule of thumb, vertical scaling is simpler
to manage and great for applications requiring atomicity and consistency—
but upgrading can be expensive and require downtime. Horizontal scaling is
elastic and brings reliability, yet is more complicated to manage.

40 97 Things Every Cloud Engineer Should Know

Serverless Bad Practices

Manasés Jestis Galindo Bello

Software Architect at Cumulocity loT by Software AG

Amazon’s launch of AWS Lambda, launched in 2014 made it the first cloud
provider with an abstract serverless computing offering. Serverless is the
newest approach to cloud computing, enabling developers to run event-
driven functions in the cloud without having to administer the underlying
infrastructure or set up the runtime environment. The cloud provider man-
ages deployment, scaling, and billing of the deployed functions.

Serverless has become a buzzword that attracts developers and cloud engi-
neers. The most relevant implementation of serverless computing is the
function as a service (FaaS). When using a FaaS, developers only have to
deploy the code of the functions and choose which events will trigger them.
Although it sounds like a straightforward process, certain aspects have to be
considered when developing production-ready applications, thus avoiding
the implementation of a complex system.

Deploying a Lot of Functions

Faa$ follows the pay-as-you-go approach; deployed functions are billed only
when they are run. As there are no costs for inactive serverless functions,
deploying as many functions as you want might be tempting. Nevertheless,
this may not be the best approach, as it increases the size of the system and
its complexity—not to mention that maintenance becomes more difficult.
Instead, analyze whether there is a need for a new function; you may be able
to modify an existing function to match the change in the requirements, but
make sure it does not break its current functionality.

Calling a Function Synchronously

Calling a function synchronously increases debugging complexity, and the
isolation of the implemented feature is lost. The cost also increases if the two
functions are being run at the same time (synchronously). If the second
function is not used anywhere else, combine the two functions into one
instead.

Collective Wisdom from the Experts 41

Calling a Function Asynchronously

It is well known that asynchronous calls increase the complexity of a system.
Costs will increase, as a response channel and a serverless message queue
will be required to notify the caller when an operation has been completed.
Nevertheless, calling a function asynchronously can be a feasible approach
for one-time operations; e.g., to run a long process such as a backup in the

background.

Employing Many Libraries

There is a limit to the image size, and employing many libraries increases the
size of the application. The warm-up time will increase if the image size limit
is reached. To avoid this, employ only the necessary libraries. If library X
offers functionality A, and library Y offers functionality B, spend time inves-
tigating whether a library Z exists that offers A and B.

Using Many Technologies

Using too many frameworks, libraries, and programming languages can be
costly in the long term, as it requires people with skills in all of them. This
approach also increases the complexity of the system, its maintenance, and
its documentation. Try limiting the use of different technologies, especially
those that do not have a broad developer community and a well-documented
APL

Not Documenting Functions

Failing to document functions is the bad practice of all times. Some people
say that good code is like a good joke—it needs no explanation. However,
this is not always the case. Functions can have a certain level of complexity,
and the people maintaining them may not always be there. Hence, docu-
menting a function is always a good idea. Future developers working on the
system and maintaining the functions will be happy you did it.

42 97 Things Every Cloud Engineer Should Know

Getting Started with
AWS Lambda

Marko Sluga

Cloud Consultant and Instructor

AWS Lambda is a serverless processing service in AWS. When programming
with Lambda, a logical layout of your application is literally all you need.
You simply need to make sure each component in the layout maps directly
to a function that can independently perform exactly one task. For each
component, code is then developed and deployed as a separate Lambda
function.

AWS Lambda natively supports running any Java, Go, PowerShell, Node.js,
C#, Python, or Ruby code package that can contain all kinds of extensions,
prerequisites, and libraries—even custom ones. On top of that, Lambda even
supports running custom interpreters within a Lambda execution environ-
ment through the use of layers.

The code is packaged into a standard ZIP or WAR format and added to the
Lambda function definition, which in turn stores it in an AWS-managed S3
bucket. You can also provide an S3 key directly to Lambda, or you can
author your functions in the browser in the Lambda section of the AWS
Management Console. Each Lambda function is configured with a memory
capacity. The scaling of capacity goes from 128 MB to 3,008 MB, in 64 MB
increments.

The Lambda section of the Management Console allows you to manage your
functions in an easy-to-use interface with a simple and efficient editor for
writing or pasting in code. The following example shows how to create a
simple Node.js Lambda function that prints out a JSON-formatted response
after you input names as key/value pairs.

Collective Wisdom from the Experts 43

Building an Event Handler and Testing the
Lambda Function

Start by opening the AWS Management Console, going to the AWS Lambda
section, and clicking Function and then “Create function.”

Next, replace the default code with the code shown here. This code defines
the variables for the key/value pairs you will be entering in your test proce-
dure and returns them as JSON-formatted values:

exports.handler = async (event) => {
var mynamel = event.namel;

var myname2

event.name2;

var myname3 = event.name3;

var item = {};

item [mynamel] = event.namel;

item [myname2] = event.nameZ;

item [myname3] = event.names3;

const response = {

body: [JSON.stringify('Names:'), JSON.stringify(mynamel), JSON.
stringify(myname2), JSON.stringify(myname3)],
b

return response;

1

When you are done creating the function, click the Save button at the top
right.

Next, you need to configure a test event for entering your key/value pairs.
You can use the following code to create your test data:

{

"namel": "jenny",
"name2": "simon",
"name3": "lee"

1

Once you've entered that, scroll down and click Save at the bottom of the
Configure Test Event dialog box. Next, run the test, which invokes the func-
tion with your test data. The response should be a JSON-formatted column
with the value Names, and then a list of the names that you entered as test
data.

44 97 Things Every Cloud Engineer Should Know

In the execution result, you also have information about the number of
resources the function consumed, the request ID, and the billed time. At the
bottom, you can click the “Click here” link to go to the logs emitted by
Lambda into Amazon CloudWatch.

In CloudWatch, you can click the log stream and see the events. By expand-
ing each event, you get more detail about the request and duration of the
execution of the Lambda function. Lambda also outputs any logs created by
your code into this stream because the execution environment is stateless by
default.

In this example, you've seen how easy it is to create, deploy, and monitor an
AWS Lambda function—and that serverless truly is the future of cloud com-
puting. Enjoy coding!

Collective Wisdom from the Experts 45

It’s OK if You’re Not
Running Kubernetes

Mattias Geniar
Cofounder of Oh Dear

I love technology.! We're in an industry that is fast-paced, ever improving,
and loves to be cutting-edge and bold. It’s this very drive that gives us excit-
ing new tech like HTTP/3, Kubernetes, Golang, and so many other interest-
ing projects.

But I also love stability, predictability, and reliability. And that’s why I'm
here to say that it’s OK if you're not running the very latest flavor-du-jour
insert-new-project-here.

The Media Tells Us Only Half the Truth

If you were to read or listen to only the media headlines, you might believe
everyone is running their applications on top of an autoscaling, load-
balanced, geo-distributed Kubernetes cluster backed by only a handful of
developers who set the whole thing up overnight. It was an instant success!

Well, no. That’s not how it works. The reality is, most Linux or open source
applications today still run on a traditional Debian, Ubuntu, or CentOS$
server—as a VM or a physical server.

I've managed thousands of servers over my lifetime and have watched tech-
nologies come and go. Today, Kubernetes is very hot. A few years ago, it was
OpenStack. Go back some more, and you’ll find KVM and Xen, paravirtuali-
zation, and plenty more.

I’'m not saying all these technologies will vanish—far from it. Each project or
tool has merit; they all solve particular problems. If your organization can
benefit from something that can be fixed that way, great!

1 A version of this article was originally published at SYSADVENT.

46 97 Things Every Cloud Engineer Should Know

There’s Still Much to Improve on the Old and
Boring Side of Technology

My background is mostly in PHP. We started out using the Common Gate-
way Interface (CGI) and FastCGI to run our PHP applications and have
since moved from mod_php to php-fpm. For many system administrators,
that’s where it ended.

But there’s so much room for improvements here. The same applies to
Python, Node.js, or Ruby. We can further optimize our old and boring set-
ups (you know, the ones being used by 90% of the web) and make them even
safer, more performant, and more robust.

Were you able to check every configuration and parameter? What does that
obscure setting do, exactly? What happens if you start sending malicious
traffic to your box? Can you improve the performance of the OS scheduler?
Are you monitoring everything you should be? That Linux server that runs
your applications isn’t finished. It requires maintenance, monitoring,
upgrades, patches, interventions, backups, security fixes, troubleshooting...

Please don’t let the media convince you that you should be running Kuber-
netes just because it’s hot. You have servers running that you know still have
room for improvements. They can be faster. They can be safer.

Get satisfaction in knowing that you're making a difference for your business
and its developers because your servers are running as best they can. What
you do matters, even if it looks like the industry has all gone for The Next
Big Thing.

But Don’t Sit Still

Don’t take this as an excuse to stop looking for new projects or tools, though.
Have you taken the time yet to look at Kubernetes? Do you think your busi-
ness would benefit from such a system? Can everyone understand how it
works? Its pitfalls?

Ask yourself the hard questions first. There’s a reason organizations adopt
new technologies. It’s because they solve problems. You might have the same
problems!

Every day new projects and tools come out. I know because I write a weekly
newsletter about it. Make sure you stay up-to-date. Follow the news. If some-
thing looks interesting, try it! But don’t be afraid to stick to the old and bor-
ing server setups if that’s what your business requires.

Collective Wisdom from the Experts 47

Know Thy Topology

Nikhil Nanivadekar
Director at BNY Mellon

In today’s era of cloud computing, it is imperative to understand the struc-
ture of a system. A holistic view of the system topology is important to
understand how a system works and to figure out the multiple moving com-
ponents. A few main aspects to consider are modularity, deployment strat-
egy, and datacenter affinity.

Modularity

When creating a modular system, the simplest rule to follow is to ensure sep-
aration of concerns between functionality. A particular microservice should
be responsible for carrying out a single function and its related processing.
This helps microservices have a small footprint. Microservice instances
should be stateless, replaceable, and scalable. If a microservice instance is
replaced by another instance of the same microservice, the output should be
the same. If a microservice instance is scaled by adding more instances, the
system should still function properly.

Deployment Strategy

Deployment means releasing a new version of an application to production.
Deployment strategies need to be considered while upgrading an applica-
tion, as they directly backward compatibility. Multiple deployment strategies
are used today, including:

Re-create
The old version is shut down; the new version is rolled out.

Rolling update (incremental)
The new version is incrementally rolled out to replace the old version.

Blue/green
The new version is fully released while the old version is working, and
traffic is directed from the old version to the new version.

48 97 Things Every Cloud Engineer Should Know

Canary
The new version is released to a small group of users before releasing it
broadly.

A/B testing
In this extension of a canary deployment, the new version is released to a
small group of users, and depending on the adoption of new features,
the features are rolled out broadly.

Shadow (prod-parallel)
The new version is released, and both the old and new versions serve the
same requests.

In choosing a strategy, the key consideration is how many versions of the
application need to be functional at the same time. If multiple versions of the
same application need to run at the same time, maintaining backward com-
patibility is necessary.

Datacenter Affinity

In a multi-datacenter architecture, services run in multiple datacenters. This
approach provides redundancy, disaster recovery, and scalability.

Depending on your needs, you may deploy every service or a only subset of
the services. In an all-active model, all the deployed services across all data-
centers serve the requests. In an active-passive model, one set of datacenters
is deemed active, and a second set is deemed passive. All traffic is directed to
services in the active datacenters. If a disaster recovery activity occurs and
the datacenters need to be switched, in an active-passive scenario, all the
requests from the active datacenters are directed to the passive datacenters.

While a multi-datacenter architecture provides numerous benefits from a
resiliency perspective, it can cause latency issues. Each time service-to-
service calls occur, data needs to be transferred from one location to another.
If the services are colocated, the data transmission time is minimal. If not,
latency can be significant. Consider four services across two datacenters:
datacenter 1 has services A and C, and datacenter 2 has services B and D.
Assume there is a 5-millisecond transmission time between datacenters. So,
if A calls B, B calls C, and C calls D, then the latency becomes 15 ms. If the
same process is followed serially for 1,000 calls, the latency adds up to 15 sec-
onds, thereby causing a slow response time.

Collective Wisdom from the Experts 49

In a distributed world, multiple moving components exist. The topology of
the system becomes an important piece of the puzzle to control them. As
long as you have a solid understanding of the topology, these multiple mov-
ing components can prove to be a boon when delivering software solutions.

50 97 Things Every Cloud Engineer Should Know

