s lelR”

w2 €& [Y LS
STEMNEE
GOoae
ilﬁﬁﬂ

UREMIQ
ﬁlaﬁ

H
€ E
ﬁ
a
AEE

1R E
&
2
£
ﬂ

&
1§
& =
&

@anuﬂ@
ANE 2K Q8

5
i
a B
el §

ﬂi@ﬂ

Collective Wisdom
from the Experts

&
QD
=
=
(O
oD
O
Pt

all

Edited by Kevlin Henney

O’REILLY*

9/ ThiNngs

Every Programmer Should Know

Collective Wisdom from the Experts

Edited by Kevlin Henney

O’REILLY"

Beijing - Cambridge - Farnham - K&In - Sebastopol - Taipei - Tokyo

97 Things Every Programmer Should Know
Edited by Kevlin Henney

Copyright © 2010 Kevlin Henney. All rights reserved.
Printed in the United States of America.

Published by O'Reilly Media, Inc. 1005 Gravenstein Highway North, Sebastopol CA 95472

O'Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://my.safaribooksonline.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides Compositor: Ron Bilodeau

Series Editor: Richard Monson-Haefel Indexer: Julie Hawks

Production Editor: Rachel Monaghan Interior Designer: Ron Bilodeau
Proofreader: Rachel Monaghan Cover Designers: Mark Paglietti and

Susan Thompson

Print History:
February 2010: First Edition.

The OReilly logo is a registered trademark of O'Reilly Media, Inc. 97 Things Every Programmer
Should Know and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
clarified as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc.
was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and au-
thors assume no responsibility for errors and omissions, or for damages resulting from the use
of the information contained herein.

Repkoner.
% This book uses Repkover;” a durable and flexible lay-flat binding.
ISBN: 978-0-596-80948-5

[SB]

Contents

Contributions by Category. XV

Preface. XXiii

Act with Prudence 2
Seb Rose

Apply Functional Programming Principles. 4

Edward Garson

Ask, “What Would the User Do?” (You Are Not the User) .. 6
Giles Colborne

Automate Your Coding Standard. 8

Filip van Laenen

Beauty Isin Simplicity 10

Jorn @lmheim

BeforeYou Refactar « iz mn v 2 5 ¢ ¢ vmmme 5 2 5 8 ¢ S5 9% o 12
Rajith Attapattu

Beware the Share. 14
Udi Dahan

The Boy ScoutRule, 16
Robert C. Martin (Uncle Bob)

Check Your Code First Before Looking to Blame Others. . . 18
Allan Kelly

Choose Your ToolswithCare 20

Giovanni Asproni

Code in the Language of the Domain. 22
Dan North

CodelsDesign. o v i i i e e e e e e 24
Ryan Brush

Code Layout Matters., 26

Steve Freeman

Code ReViews o mmez 3 2 s s 0B @ ms ¢ 8 4 £ S 0@ EE & § 8 3 28

Mattias Karlsson

CodingwithReason i .. 30
Yechiel Kimchi

A CommentonComments. 32
Cal Evans

Comment Only What the Code CannotSay. 34
Kevlin Henney

Continuous Learning. 36
Clint Shank

Convenience Is Notan=-ility 38
Gregor Hohpe

vi Contents

Deploy Earlyand Often. 40

Steve Berczuk

Distinguish Business Exceptions from Technical 42
Dan Bergh Johnsson

Do Lots of Deliberate Practice. 44
Jon Jagger

Domain-Specific Languages. 46
Michael Hunger

Don’t Be Afraid to Break Things 48
Mike Lewis

Don’'t Be Cute with Your TestData. 50
Rod Begbie

Don’t lgnore ThatError!. 52

Pete Goodliffe

Don’t Just Learn the Language, Understand Its Culture .. 54

Anders Nords

Don’t Nail Your Program into the Upright Position. 56
Verity Stob

Don’t Rely on “Magic Happens Here” 58
Alan Griffiths

Don’t Repeat Yourself 60

Steve Smith

Cal Evans

Contents vii

Encapsulate Behavior, Not Just State 64

Einar Landre

Floating-Point Numbers Aren'tReal 66
Chuck Allison

Fulfill Your Ambitions with Open Source. 68

Richard Monson-Haefel

The Golden Rule of APIDesign 70
Michael Feathers

The GuruMyth. e 72
Ryan Brush

Hard Work Does Not Pay Off 74
Olve Maudal

HowtoUseaBugTracker 76
Matt Doar

Improve Code by Removing It. 78
Pete Goodliffe

InstallMe 80

Marcus Baker

Interprocess Communication Affects Application

Response TIMe « wwvi « ¢ s s vmmma s 5 ¢ ¢ 80 mass o & ¢ 82
Randy Stafford
Keep the BuildClean. 84

Johannes Brodwall

Know How to Use Command-Line Tools 86

Carroll Robinson

viii Contents

Know Well More Than Two Programming Languages. . . . 88
Russel Winder

Know Your IDE. 0
Heinz Kabutz

KNoOW-YOUr LLimitS : o ¢ wmmsis 5 ¢ ¢ ¢ bomms 8 6 5 & 0 8455 92
Greg Colvin

Know Your Next Commit 94

Dan Bergh Johnsson

Large, Interconnected Data Belongs to a Database 96
Diomidis Spinellis

Learn Foreign Languages. 98
Klaus Marquardt

Learnto Estimate:. : - cuwae s 5 s c vmmme 58 ¢ ¢ 8 55356 100

Giovanni Asproni

Learn to Say, “Hello, World” 102

Thomas Guest

Let Your Project Speak forltself 104

Daniel Lindner

The Linker Is Not a Magical Program 106
Walter Bright

The Longevity of Interim Solutions. 108
Klaus Marquardt

Make Interfaces Easy to Use Correctly
and Hard to Use Incorrectly 1o

Scott Meyers

Contents ix

Make the Invisible More Visible 12
Jon Jagger

Message Passing Leads to Better Scalability
in Parallel Systems N4

Russel Winder

A Message tothe Future 16
Linda Rising

Missing Opportunities for Polymorphism. 18
Kirk Pepperdine

News of the Weird: Testers Are Your Friends 120
Burk Hufnagel

OneBinary e 122

Steve Freeman

Only the Code Tellsthe Truth 124

Peter Sommerlad

Own (and Refactor) theBuild. 126

Steve Berczuk

Pair Program and Feelthe Flow. 128
Gudny Hauknes, Kari Rossland, and Ann Katrin Gagnat

Prefer Domain-Specific Types to Primitive Types 130

Einar Landre

BreventErrtorsica s ae. 5 5 5 § s s st 5 ¢ s 8 8 0@ E S & 4 5 & 132
Giles Colborne
The Professional Programmer. 134

Robert C. Martin (Uncle Bob)

X Contents

Put Everything Under Version Control 136
Diomidis Spinellis

Put the Mouse Down and Step Away from the Keyboard . 138
Burk Hufnagel

Head Codeic: ¢ v : o s wmmeis 5 8 ¢ ¢ bomms 8 6 5 8 0 86055 140

Karianne Berg

Read the Humanities. 142
Keith Braithwaite

Reinvent the Wheel Often 144
Jason P. Sage

Resist the Temptation of the Singleton Pattern. 146

Sam Saariste

The Road to Performance Is Littered

with Dirty'Code Bombs:: wisis 5 ¢ v ¢ swwms 55 ¢ € v v s 148
Kirk Pepperdine
Simplicity Comes from Reduction 150

Paul W. Homer

The Single Responsibility Principle. 152
Robert C. Martin (Uncle Bob)

Start from Yes 154
Alex Miller

Step Back and Automate, Automate, Automate 156
Cay Horstmann

Take Advantage of Code Analysis Tools 158
Sarah Mount

Contents Xi

Test for Required Behavior, Not Incidental Behavior. 160
Kevlin Henney

Test Precisely and Concretely 162
Kevlin Henney

Test While You Sleep (and over Weekends) 164
Rajith Attapattu

Testing Is the Engineering Rigor

of Software Development 166
Neal Ford
ThinkinginStates. 168

Niclas Nilsson

Two Heads Are Often Better Than One 170
Adrian Wible

Two Wrongs Can Make a Right (and Are Difficult to Fix) . 172
Allan Kelly

Ubuntu Coding for Your Friends 174
Aslam Khan

The Unix Tools Are Your Friends 176
Diomidis Spinellis

Use the Right Algorithm and Data Structure 178

Jan Christiaan “JC” van Winkel

Verbose Logging Will Disturb Your Sleep 180
Johannes Brodwall

xii Contents

WET Dilutes Performance Bottlenecks 182
Kirk Pepperdine

When Programmers and Testers Collaborate 184
Janet Gregory

Write Code As If You Had to Support It

for the Rest of Your Life. 186
Yuriy Zubarev
Write Small Functions Using Examples 188

Keith Braithwaite

Write Tests for People., . 190
Gerard Meszaros

You Gotta Care Aboutthe Code 192
Pete Goodliffe

Your Customers Do Not Mean What They Say 194
Nate Jackson

Contributors e 196

INdex 221

Contents xiii

Copyrighted material

Contributions
by Category

Bugs and Fixes

Check Your Code First Before Looking to Blame Others. 18
DontTouch That Codel, s v sms snvms sms o6 96 v s @s 3 62
How toUseaBug Tracker 76
Two Wrongs Can Make a Right (and Are Difficult to Fix) 172

Build and Deployment

Deploy Earlyand Often . . wov v v v vms onnewn v om s s 40
Don't Touch That Code!. 62
InstallMe: . o i sacs amema vims 2w vimas owms ma vars o e o 80
Keep the Build Clean. 84
Let Your Project Speak forltself 104
One Binary e 122
Own (and Refactord)theBuild . . .o ¢ oo v oo vis va vwa va s v 126

Coding Guidelines and Code Layout

Automate Your Coding Standard. 8
Code Layout Matters. e 26
COOCREVIOWS « - s 552 0o s ¢ @ e S0 M5 £ M3 05 F65 £ 6 &s 28
A Commenton Comments.o 32
Comment Only What the Code CannotSay. 34
Take Advantage of Code AnalysisTools 158

XV

Design Principles and Coding Techniques

Apply Functional Programming Principles. 4
Ask, “What Would the User Do?” (You Are Not the User) 6
Beauty Is in SImPpliCitys oz sms smiws s ws smews ems oo 055 b 10
Choose Your Toolswith Care 20
Code in the Language of the Domain. 22
Codels Design. o i i e 24
CodingwithReason it 30
Convenience Is Notan-ility 38
Distinguish Business Exceptions from Technical 42
Don'tRepeat Yourself : .« : :w cmiwn swu s msma gas 05 686 § 60
Encapsulate Behavior, Not Just State 64
The Golden Rule of APIDesign 70
Interprocess Communication Affects Application

Response TiMe o i e e e e 82
Make Interfaces Easy to Use Correctly

and Hardto Use Incorrectly 1o
Message Passing Leads to Better Scalability

inParalleliSystems :wv s sms smims sws smsms $00s 68 585 n4
Missing Opportunities for Polymorphism. n8
Only the Code Tellsthe Truth 124
Prefer Domain-Specific Types to Primitive Types 130
Prevent Errors o e e 132
Resist the Temptation of the Singleton Pattern. 146
The Single Responsibility Principle. 152
Thinking in States: sz s sas vwiws sws smsms g5 sa g5 5 168
WET Dilutes Performance Bottlenecks 182

Domain Thinking

Code in the Language of the Domain. 22
Domain-SpecificLanguages. 0 e 46
Learn Foreign Languages. i a8
Prefer Domain-Specific Types to Primitive Types 130

xvi Contents

Read the Humanities: «: cavws ses ww smws sms w6 i8d 8 38 @4 142
Thinking in States. 168
Write Small Functions Using Examples. 188

Errors, Error Handling, and Exceptions

Distinguish Business Exceptions from Technical 42
Don't Ignore That Errorl. 52
Don’t Nail Your Program into the Upright Position. 56
Prevent Errors 132
Verbose Logging Will Disturb Your Sleep 180

Learning, Skills, and Expertise

ContinUoUs LEArMiNG: « « o vma somne war s mr s oours w6 s s wn s 36
Do Lots of Deliberate Practice. 44
Don’t Just Learn the Language, Understand Its Culture 54
Fulfill Your Ambitions with Open Source. 68
The GUrtIMYEN - - vz e smsme sme s sms cmeme sme S5 e e & 72
Hard Work Does Not Pay Off 74
REAA COAE « . wv s sms smums sms s a8 s ams ¢6 A « @5 @4 140
Read the Humanities. 142
Reinvent the Wheel Often 144

Nocturnal or Magical

Don’'t Rely on “Magic Happens Here” 58
Don't Touch That Code!. 62
The GUraMYEN. : on ¢ s camrms sws ep sms sios v ms S5 4% & fi2
Know How to Use Command-LineTools 86
The Linker Is Not a Magical Program 106
Test While You Sleep (and over Weekends) 164
Verbose Logging Will Disturb YourSleep 180
Write Code As If You Had to Support It

for the Rest of Your Life. 186

Contents Xvii

Performance, Optimization, and

Representation

Apply Functional Programming Principles. 4
Floating-Point Numbers Aren'tReal. 66
Improve Code by Removing It. 78
Interprocess Communication Affects Application

Response Time e 82
Know YourLImitS: csc.a: sm: smims s ms e ns@ms g eb 955 a4 92
Large, Interconnected Data Belongs to a Database 96
Message Passing Leads to Better Scalability

in Parallel Systems 1n4
The Road to Performance Is Littered with Dirty Code Bombs . . 148
Use the Right Algorithm and Data Structure 178
WET Dilutes Performance Bottlenecks 182

Professionalism, Mindset, and Attitude

Continuous Learning. o v e 36
Do Lots of Deliberate Practice. 44
Hard Work Does Not Pay Off 74
The Longevity of Interim Solutions. 108
The Professional Programmer. 134
Put the Mouse Down and Step Away from the Keyboard 138
Testing Is the Engineering Rigor of Software Development. . . . 166
Write Code As If You Had to Support It

forthe Restof Your Lif€: : v s cwvmse sme smems sms s s@y o 186
You Gotta Care AbouttheCode 192

Programming Languages and Paradigms

Apply Functional Programming Principles. 4
DomainzSpecific LanguUagesi. « « s ws s ws s o siws sas 065 606 & 46
Don’t Just Learn the Language, Understand Its Culture 54
Know Well More Than Two Programming Languages. 88
Learn Foreign Languages. o v v v v v e e e e 98

xviii Contents

Refactoring and Code Care

ACEWITR PrUudente « : ..v swvms v s duivm s swe o sus o b a s 2
Before You Refactor 12
The BoviSecolut RUlE & ox smums vms s s@s sae iy Sms S8s @5 i 16
Comment Only What the Code CannotSay. 34
Don’t Be Afraidto Break Things . : « .. . oo v is v e iit vt on s 48
Improve Code by Removing It. 78
KeeptheBuildClean. 84
Know YourfNextCommit:. o c v« vocwwsws smein sme o e ma s 94
The Longevity of Interim Solutions. 108
A Messagetothe Future ne
Only the Code Tellsthe Truth 124
Own (and Refactor)the Build 126
The Professional Programmer. 134
The Road to Performance Is Littered with Dirty Code Bombs . . 148
Simplicity Comes from Reduction 150
Ubuntu Coding for Your Friends 174
You Gotta Care AbouttheCode 192

Reuse Versus Repetition

Bewarethe Share. e 14
Convenience ls Notan-ility 38
Do Lots of Deliberate Practice. 44
Don't RepeatYourself' - o uivw v e in smws s o6 558 85 4w 60
Reinvent the Wheel Often 144
Use the Right Algorithm and Data Structure 178
WET Dilutes Performance Bottlenecks 182

Schedules, Deadlines, and Estimates

ActwithPrudence 2
Code s Design: wx smis s efs s e R IEE ST EE T BEE 9% 3 24
Know Your Next Commit 94
Learnto Estimate. 100
Make the Invisible More Visible, n2

Contents Xix

Simplicity

Beauty Is in SIMPlGIEY: = = cwe cmims sms cmeme swr aw ome oa 10
Learn to Say, “Hello, World” 102
A MessagetotheFuture 16
Simplicity Comes from Reduction 150

Teamwork and Collaboration

COdE REVIEBWS: : o s v o alis Smsinh sy s mids Ais 6 v ws o4 28
Learn Foreign Languages: « a« ca e ws vws o vmis saes o ins o5 98
Pair Program and Feelthe Flow. 128
SEArt oM YesS s oes cms ms cwu omsmp 254 § ME@s SoE 0% G884 154
Two Heads Are Often Better ThanOne. 170
Ubuntu Coding for Your Friends 174
When Programmers and Testers Collaborate 184

Tests, Testing, and Testers

Apply Functional Programming Principles. 4
Code IS DesigN. i« o v m e sms warims oms @@ s s 5w s & e ms s W 24
Don’t Be Cute with Your Test Data. 50
The Golden Rule of APIDesign 70
Make Interfaces Easy to Use Correctly and Hard to Use

Incorrectly no
Make the Invisible More Visible oL n2
News of the Weird: Testers Are Your Friends 120
Test for Required Behavior, Not Incidental Behavior. 160
Test Precisely and Concretely 162
Test While You Sleep (and over Weekends) 164
Testing Is the Engineering Rigor of Software Development. . . . 166
When Programmers and Testers Collaborate 184
Write Small Functions Using Examples. 188
Write Tests for People. 190

XX Contents

Tools, Automation, and Development
Environments

Automate Your Coding Standard. 8
Check Your Code First Before Looking to Blame Others. 18
Choose Your ToolswithCare 20
Don't Repeat Yourself 60
HowtoUseaBugTracker 76
Know How to Use Command-LineTools 86
Know Your IDE. e 90
Large, Interconnected Data Belongs to a Database 96
Learn to Say, “Hello, World” 102
Let Your Project Speak forltself 104
The Linker Is Not a Magical Program 106
Put Everything Under Version Control 136
Step Back and Automate, Automate, Automate 156
Take Advantage of Code AnalysisTools 158
Test While You Sleep (and over Weekends) 164
The Unix Tools Are Your Friends 176

Users and Customers

Ask, “What Would the User Do?” (You Are Not theUser) 6
Domain-Specific Languages. 46
Make Interfaces Easy to Use Correctly and Hard to Use

INCOITECEIV: &« 5w s sms smniw s am s % $65 P9 s 66 s B @ 110
News of the Weird: Testers Are Your Friends 120
PreventErrOrS .« ws - s cm s cd s it s b ams s b £ 9 9% 132
Read the Humanities. 142
Your Customers Do Not Mean What They Say 194

Contents xXi

Copyrighted material

Preface

The newest computer can merely compound, at speed, the oldest problem in the
relations between human beings, and in the end the communicator will be confronted
with the old problem, of what to say and how to say it.

—Edward R. Murrow

PROGRAMMERS HAVE A LOT ON THEIR MINDS. Progra.mming languages,
programming techniques, development environments, coding style, tools,
development process, deadlines, meetings, software architecture, design pat-
terns, team dynamics, code, requirements, bugs, code quality. And more. A lot.

There is an art, craft, and science to programming that extends far beyond
the program. The act of programming marries the discrete world of comput-
ers with the fluid world of human affairs. Programmers mediate between the
negotiated and uncertain truths of business and the crisp, uncompromising
domain of bits and bytes and higher constructed types.

With so much to know, so much to do, and so many ways of doing so, no
single person or single source can lay claim to “the one true way.” Instead, 97
Things Every Programmer Should Know draws on the wisdom of crowds and
the voices of experience to offer not so much a coordinated big picture as a
crowdsourced mosaic of what every programmer should know. This ranges
from code-focused advice to culture, from algorithm usage to agile thinking,
from implementation know-how to professionalism, from style to substance.

The contributions do not dovetail like modular parts, and there is no intent
that they should—if anything, the opposite is true. The value of each contribu-
tion comes from its distinctiveness. The value of the collection lies in how the
contributions complement, confirm, and even contradict one another. There
is no overarching narrative: it is for you to respond to, reflect on, and connect
together what you read, weighing it against your own context, knowledge, and
experience.

xxiii

Permissions

The licensing of each contribution follows a nonrestrictive, open source
model. Every contribution is freely available online and licensed under a Cre-
ative Commons Attribution 3.0 License, which means that you can use the
individual contributions in your own work, as long as you give credit to the
original author:

http://creativecommons.org/licenses/by/3.0/us/

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

On the web page for this book, we list errata and any additional information.
You can access this page at:

http://www.oreilly.com/catalog/9780596809485/

The companion website for this book, where you can find all the contributions,
contributor biographies, and more, is at:

http://programmer.97things.oreilly.com

You can also follow news and updates about this book and the website on Twitter:
http://twitter.com/97 TEPSK

To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and
the O’Reilly Network, see our website at:

http://www.oreilly.com/

Safari® Books Online

Safari Books Online is an on-demand digital library that lets
Safa Il you easily search over 7,500 technology and creative refer-
Bosksonlire ence books and videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our
library online. Read books on your cell phone and mobile devices. Access new

XXiv Preface

titles before they are available for print, and get exclusive access to manuscripts
in development and post feedback for the authors. Copy and paste code sam-
ples, organize your favorites, download chapters, bookmark key sections, cre-
ate notes, print out pages, and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To
have full digital access to this book and others on similar topics from O’Reilly
and other publishers, sign up for free at http://my.safaribooksonline.com.

Acknowledgments

Many people have contributed their time and their insight, both directly and
indirectly, to the 97 Things Every Programmer Should Know project. They all
deserve credit.

Richard Monson-Haefel is the 97 Things series editor and also the editor of
the first book in the series, 97 Things Every Software Architect Should Know, to
which I contributed. I would like to thank Richard for trailblazing the series
concept and its open contribution approach, and for enthusiastically supporting
my proposal for this book.

I would like to thank all those who devoted the time and effort to contribute
items to this project: both the contributors whose items are published in this
book and the others whose items were not selected, but whose items are also
published on the website. The high quantity and quality of contributions made
the final selection process very difficult—the hardcoded number in the book’s
title unfortunately meant there was no slack to accommodate just a few more.
I am also grateful for the additional feedback, comments, and suggestions
provided by Giovanni Asproni, Paul Colin Gloster, and Michael Hunger.

Thanks to O’Reilly for the support they have provided this project, from hosting
the wiki that made it possible to seeing it all the way through to publication in
book form. People at O’'Reilly I would like to thank specifically are Mike Loukides,
Laurel Ackerman, Edie Freedman, Ed Stephenson, and Rachel Monaghan.

It is not simply the case that the book’s content was developed on the Web: the
project was also publicized and popularized on the Web. I would like to thank
all those who have tweeted, retweeted, blogged, and otherwise spread the word.

I would also like to thank my wife, Carolyn, for bringing order to my chaos, and
to my two sons, Stefan and Yannick, for reclaiming some of the chaos.

I hope this book will provide you with information, insight, and inspiration.

Enjoy!

—Kevlin Henney

Preface 1

Act with
Prudence

Seb Rose

Whatever you undertake, act with prudence and
consider the consequences.

—Anon

NO MATTER HOW COMFORTABLE A SCHEDULE LOOKS at the beginning of
an iteration, you can't avoid being under pressure some of the time. If you find
yourself having to choose between “doing it right” and “doing it quick,’ it is
often appealing to “do it quick” with the understanding that you'll come back
and fix it later. When you make this promise to yourself, your team, and your
customer, you mean it. But all too often, the next iteration brings new prob-
lems and you become focused on them. This sort of deferred work is known
as technical debt, and it is not your friend. Specifically, Martin Fowler calls this
deliberate technical debt in his taxonomy of technical debt,” and it should not
be confused with inadvertent technical debt.

Technical debt is like a loan: you benefit from it in the short term, but you
have to pay interest on it until it is fully paid off. Shortcuts in the code make
it harder to add features or refactor your code. They are breeding grounds
for defects and brittle test cases. The longer you leave it, the worse it gets. By
the time you get around to undertaking the original fix, there may be a whole
stack of not-quite-right design choices layered on top of the original problem,
making the code much harder to refactor and correct. In fact, it is often only
when things have got so bad that you must fix the original problem, that you
actually do go back to fix it. And by then, it is often so hard to fix that you really
can't afford the time or the risk.

* htip://martinfowler.com/bliki/ TechnicalDebtQuadrant.html

2 97 Things Every Programmer Should Know

There are times when you must incur technical debt to meet a deadline or
implement a thin slice of a feature. Try not to be in this position, but if the situ-
ation absolutely demands it, then go ahead. But (and this is a big but) you must
track technical debt and pay it back quickly, or things go rapidly downhill
As soon as you make the decision to compromise, write a task card or log it in
your issue-tracking system to ensure that it does not get forgotten.

If you schedule repayment of the debt in the next iteration, the cost will be
minimal. Leaving the debt unpaid will accrue interest, and that interest should
be tracked to make the cost visible. This will emphasize the effect on busi-
ness value of the project’s technical debt and enables appropriate prioritization
of the repayment. The choice of how to calculate and track the interest will
depend on the particular project, but track it you must.

Pay off technical debt as soon as possible. It would be imprudent to do otherwise.

Col\ect\ve Wisdom from the Experts 3

Apply Functional
Programming
Principles

Edward Garson

FUNCTIONAL PROGRAMMING has recently enjoyed renewed interest from the
mainstream programming community. Part of the reason is because emergent
properties of the functional paradigm are well positioned to address the chal-
lenges posed by our industry’s shift toward multicore. However, while that is
certainly an important application, it is not the reason this piece admonishes
you to know thy functional programming.

Mastery of the functional programming paradigm can greatly improve the
quality of the code you write in other contexts. If you deeply understand and
apply the functional paradigm, your designs will exhibit a much higher degree
of referential transparency.

Referential transparency is a very desirable property: it implies that functions
consistently yield the same results given the same input, irrespective of where
and when they are invoked. That is, function evaluation depends less—ideally,
not at all—on the side effects of mutable state.

A leading cause of defects in imperative code is attributable to mutable vari-
ables. Everyone reading this will have investigated why some value is not as
expected in a particular situation. Visibility semantics can help to mitigate
these insidious defects, or at least to drastically narrow down their location,
but their true culprit may in fact be the providence of designs that employ
inordinate mutability.

And we certainly don’t get much help from the industry in this regard. Intro-
ductions to object orientation tacitly promote such design, because they
often show examples composed of graphs of relatively long-lived objects
that happily call mutator methods on one another, which can be dangerous.

4 97 Things Every Programmer Should Know

However, with astute test-driven design, particularly when being sure to
“Mock Roles, not Objects,” unnecessary mutability can be designed away.

The net result is a design that typically has better responsibility allocation with
more numerous, smaller functions that act on arguments passed into them,
rather than referencing mutable member variables. There will be fewer defects,
and furthermore they will often be simpler to debug, because it is easier to
locate where a rogue value is introduced in these designs than to otherwise
deduce the particular context that results in an erroneous assignment. This
adds up to a much higher degree of referential transparency, and positively
nothing will get these ideas as deeply into your bones as learning a functional
programming language, where this model of computation is the norm.

Of course, this approach is not optimal in all situations. For example, in object-
oriented systems, this style often yields better results with domain model
development (i.e., where collaborations serve to break down the complexity of
business rules) than with user-interface development.

Master the functional programming paradigm so you are able to judiciously
apply the lessons learned to other domains. Your object systems (for one) will
resonate with referential transparency goodness and be much closer to their
tunctional counterparts than many would have you believe. In fact, some would
even assert that, at their apex, functional programming and object orientation
are merely a reflection of each other, a form of computational yin and yang.

* http://www.jmock.org/oopsla2004.pdf

Col\ect\ve Wisdom from the Experts 5

Ask, “What Would
the User Do?” (You
Are Not the User)

Giles Colborne

WE ALL TEND TO ASSUME THAT OTHER PEOPLE THINK LIKE US. But they
don’t. Psychologists call this the false consensus bias. When people think or act
differently from us, we're quite likely to label them (subconsciously) as defec-
tive in some way.

This bias explains why programmers have such a hard time putting themselves
in the users’ position. Users don’t think like programmers. For a start, they spend
much less time using computers. They neither know nor care how a computer
works. This means they can't draw on any of the battery of problem-solving
techniques so familiar to programmers. They don't recognize the patterns and
cues programmers use to work with, through, and around an interface.

The best way to find out how a user thinks is to watch one. Ask a user to
complete a task using a similar piece of software to what youre developing.
Make sure the task is a real one: “Add up a column of numbers” is OK; “Cal-
culate your expenses for the last month” is better. Avoid tasks that are too spe-
cific, such as “Can you select these spreadsheet cells and enter a SUM formula
below?”—there’s a big clue in that question. Get the user to talk through his or
her progress. Don’t interrupt. Don’t try to help. Keep asking yourself, “Why is
he doing that?” and “Why is she not doing that?”

The first thing you’ll notice is that users do a core of things similarly. They try
to complete tasks in the same order—and they make the same mistakes in the
same places. You should design around that core behavior. This is different
from design meetings, where people tend to listen when someone says, “What
if the user wants to...?” This leads to elaborate features and confusion over
what users want. Watching users eliminates this confusion.

6 97 Things Every Programmer Should Know

You'll see users getting stuck. When you get stuck, you look around. When
users get stuck, they narrow their focus. It becomes harder for them to see
solutions elsewhere on the screen. It’s one reason why help text is a poor solu-
tion to poor user interface design. If you must have instructions or help text,
make sure to locate it right next to your problem areas. A user’s narrow focus
of attention is why tool tips are more useful than help menus.

Users tend to muddle through. They'll find a way that works and stick with
it, no matter how convoluted. It’s better to provide one really obvious way of
doing things than two or three shortcuts.

You'll also find that there’s a gap between what users say they want and what
they actually do. That’s worrying, as the normal way of gathering user require-
ments is to ask them. It’s why the best way to capture requirements is to watch
users. Spending an hour watching users is more informative than spending a
day guessing what they want.

Col\ect\ve Wisdom from the Experts 7

Automate Your
Coding Standard

Filip van Laenen

YOU’VE PROBABLY BEEN THERE, TOO. At the beginning of a project, every-
body has lots of good intentions—call them “new project’s resolutions.” Quite
often, many of these resolutions are written down in documents. The ones about
code end up in the project’s coding standard. During the kick-off meeting, the
lead developer goes through the document and, in the best case, everybody
agrees that they will try to follow them. Once the project gets underway,
though, these good intentions are abandoned, one at a time. When the project
is finally delivered, the code looks like a mess, and nobody seems to know how
it came to be that way.

When did things go wrong? Probably already at the kick-off meeting. Some of
the project members didn’t pay attention. Others didn't understand the point.
Worse, some disagreed and were already planning their coding standard
rebellion. Finally, some got the point and agreed, but when the pressure in the
project got too high, they had to let something go. Well-formatted code doesn’t
earn you points with a customer that wants more functionality. Furthermore,
following a coding standard can be quite a boring task if it isn’t automated. Just
try to indent a messy class by hand to find out for yourself.

But if it’s such a problem, why is it that we want a coding standard in the first
place? One reason to format the code in a uniform way is so that nobody can
“own” a piece of code just by formatting it in his or her private way. We may
want to prevent developers from using certain antipatterns in order to avoid
some common bugs. In all, a coding standard should make it easier to work in
the project, and maintain development speed from the beginning to the end.
It follows, then, that everybody should agree on the coding standard, too—it
does not help if one developer uses three spaces to indent code, and another
uses four.

8 97 Things Every Programmer Should Know

There exists a wealth of tools that can be used to produce code quality reports
and to document and maintain the coding standard, but that isn’t the whole
solution. Tt should be automated and enforced where possible. Here are a few
examples:

« Make sure code formatting is part of the build process, so that everybody
runs it automatically every time they compile the code.

« Use static code analysis tools to scan the code for unwanted antipatterns.
If any are found, break the build.

o Learn to configure those tools so that you can scan for your own, project-
specific antipatterns.

« Do not only measure test coverage, but automatically check the results,
too. Again, break the build if test coverage is too low.

Try to do this for everything that you consider important. You won’t be able
to automate everything you really care about. As for the things that you can't
automatically flag or fix, consider them a set of guidelines supplementary to
the coding standard that is automated, but accept that you and your colleagues
may not follow them as diligently.

Finally, the coding standard should be dynamic rather than static. As the proj-
ect evolves, the needs of the project change, and what may have seemed smart
in the beginning isn't necessarily smart a few months later.

Col\ect\ve Wisdom from the Experts 9

Beauty Is In
Simplicity

Jorn Qlmheim

THERE IS ONE QUOTE, from Plato, that I think is particularly good for all
software developers to know and keep close to their hearts:

Beauty of style and harmony and grace and good rhythm depends on simplicity.

In one sentence, this sums up the values that we as software developers should
aspire to.

There are a number of things we strive for in our code:
« Readability
« Maintainability
« Speed of development
+ The elusive quality of beauty
Plato is telling us that the enabling factor for all of these qualities is simplicity.

What is beautiful code? This is potentially a very subjective question. Per-
ception of beauty depends heavily on individual background, just as much
of our perception of anything depends on our background. People educated
in the arts have a different perception of (or at least approach to) beauty
than people educated in the sciences. Arts majors tend to approach beauty in
software by comparing software to works of art, while science majors tend to
talk about symmetry and the golden ratio, trying to reduce things to formulae.

In my experience, simplicity is the foundation of most of the arguments from
both sides.

10 97 Things Every Programmer Should Know

Think about source code that you have studied. If you haven’t spent time
studying other people’s code, stop reading this right now and find some open
source code to study. Seriously! I mean it! Go search the Web for some code in
your language of choice, written by some well-known, acknowledged expert.

Youre back? Good. Where were we? Ah, yes...I have found that code that
resonates with me, and that I consider beautiful, has a number of properties in
common. Chief among these is simplicity. I find that no matter how complex
the total application or system is, the individual parts have to be kept simple:
simple objects with a single responsibility containing similarly simple, focused
methods with descriptive names. Some people think the idea of having short
methods of 5-10 lines of code is extreme, and some languages make it very
hard to do, but I think that such brevity is a desirable goal nonetheless.

The bottom line is that beautiful code is simple code. Each individual part
is kept simple with simple responsibilities and simple relationships with the
other parts of the system. This is the way we can keep our systems maintain-
able over time, with clean, simple, testable code, ensuring a high speed of
development throughout the lifetime of the system.

Beauty is born of and found in simplicity.

Collective Wisdom from the Experts 11

Before You

Refactor

Rajith Attapattu

AT SOME POINT, every programmer will need to refactor existing code. But
before you do so, please think about the following, as this could save you and
others a great deal of time (and pain):

- |

N

The best approach for restructuring starts by taking stock of the existing
codebase and the tests written against that code. This will help you under-
stand the strengths and weaknesses of the code as it currently stands,
so you can ensure that you retain the strong points while avoiding the
mistakes. We all think we can do better than the existing system...until
we end up with something no better—or even worse—than the previous
incarnation because we failed to learn from the existing system’s mistakes.

Avoid the temptation to rewrite everything. It is best to reuse as much
code as possible. No matter how ugly the code is, it has already been
tested, reviewed, etc. Throwing away the old code—especially if it was
in production—means that you are throwing away months (or years) of
tested, battle-hardened code that may have had certain workarounds and
bug fixes you aren’t aware of. If you don’t take this into account, the new
code you write may end up showing the same mysterious bugs that were
fixed in the old code. This will waste a lot of time, effort, and knowledge
gained over the years.

Many incremental changes are better than one massive change. Incremen-
tal changes allows you to gauge the impact on the system more easily
through feedback, such as from tests. It is no fun to see a hundred test
failures after you make a change. This can lead to frustration and pressure
that can in turn result in bad decisions. A couple of test failures at a time
is easier to deal with, leading to a more manageable approach.

97 Things Every Programmer Should Know

« After each development iteration, it is important to ensure that the existing
tests pass. Add new tests if the existing tests are not sufficient to cover the
changes you made. Do not throw away the tests from the old code with-
out due consideration. On the surface, some of these tests may not appear
to be applicable to your new design, but it would be well worth the effort
to dig deep down into the reasons why this particular test was added.

o Personal preferences and ego shouldn’t get in the way. If something isn't
broken, why fix it? That the style or the structure of the code does not
meet your personal preference is not a valid reason for restructuring.
Thinking you could do a better job than the previous programmer is not
a valid reason, either.

o New technology is an insufficient reason to refactor. One of the worst reasons
to refactor is because the current code is way behind all the cool technol-
ogy we have today, and we believe that a new language or framework can
do things a lot more elegantly. Unless a cost-benefit analysis shows that
a new language or framework will result in significant improvements in
functionality, maintainability, or productivity, it is best to leave it as it is.

o Remember that humans make mistakes. Restructuring will not always
guarantee that the new code will be better—or even as good as—the pre-
vious attempt. I have seen and been a part of several failed restructuring
attempts. It wasn't pretty, but it was human.

Collective Wisdom from the Experts 13

Beware the Share
Udi Dahan

IT WAS MY FIRST PROJECT AT THE COMPANY. Id just finished my degree
and was anxious to prove myself, staying late every day going through the
existing code. As I worked through my first feature, I took extra care to put
in place everything I had learned—commenting, logging, pulling out shared
code into libraries where possible, the works. The code review that I had felt so
ready for came as a rude awakening—reuse was frowned upon!

How could this be? Throughout college, reuse was held up as the epitome of
quality software engineering. All the articles I had read, the textbooks, the
seasoned software professionals who taught me—was it all wrong?

It turns out that T was missing something critical.
Context.

The fact that two wildly different parts of the system performed some logic
in the same way meant less than I thought. Up until I had pulled out those
libraries of shared code, these parts were not dependent on each other. Each
could evolve independently. Each could change its logic to suit the needs of the
system’s changing business environment. Those four lines of similar code were
accidental—a temporal anomaly, a coincidence. That is, until I came along,.

14 97 Things Every Programmer Should Know

The libraries of shared code I created tied the shoelaces of each foot to the
other. Steps by one business domain could not be made without first synchro-
nizing with the other. Maintenance costs in those independent functions used
to be negligible, but the common library required an order of magnitude more
testing.

While I'd decreased the absolute number of lines of code in the system, I had
increased the number of dependencies. The context of these dependencies is
critical—had they been localized, the sharing may have been justified and had
some positive value. When these dependencies aren’t held in check, their ten-
drils entangle the larger concerns of the system, even though the code itself
looks just fine.

These mistakes are insidious in that, at their core, they sound like a good idea.
When applied in the right context, these techniques are valuable. In the wrong
context, they increase cost rather than value. When coming into an existing
codebase with no knowledge of where the various parts will be used, I'm much
more careful these days about what is shared.

Beware the share. Check your context. Only then, proceed.

Collective Wisdom from the Experts 15

Robert C. Martin (Uncle Bob)

THE BOY SCOUTS HAVE A RULE: “Always leave the campground cleaner than
you found it” If you find a mess on the ground, you clean it up regardless of
who might have made it. You intentionally improve the environment for the
next group of campers. (Actually, the original form of that rule, written by
Robert Stephenson Smyth Baden-Powell, the father of scouting, was “Try and
leave this world a little better than you found it”)

What if we followed a similar rule in our code: “Always check a module in
cleaner than when you checked it out”? Regardless of who the original author
was, what if we always made some effort, no matter how small, to improve the
module? What would be the result?

I think if we all followed that simple rule, we would see the end of the relentless
deterioration of our software systems. Instead, our systems would gradually
get better and better as they evolved. We would also see teams caring for the
system as a whole, rather than just individuals caring for their own small part.

I don’t think this rule is too much to ask. You don’t have to make every mod-
ule perfect before you check it in. You simply have to make it a little bit better
than when you checked it out. Of course, this means that any code you add
to a module must be clean. It also means that you clean up at least one other
thing before you check the module back in. You might simply improve the
name of one variable, or split one long function into two smaller functions.
You might break a circular dependency, or add an interface to decouple policy
from detail.

16 97 :Fﬁinés: E;ers; Pr?)érémmer Should Know

Frankly, this just sounds like common decency to me—like washing your
hands after you use the restroom, or putting your trash in the bin instead of
dropping it on the floor. Indeed, the act of leaving a mess in the code should be
as socially unacceptable as littering. It should be something that just isn’t done.

But it's more than that. Caring for our own code is one thing. Caring for the
team’s code is quite another. Teams help one another and clean up after one
another. They follow the Boy Scout rule because it’s good for everyone, not just
good for themselves.

Collective Wisdom from the Experts 17

Check Your Code
First Before Looking
to Blame Others

Allan Kelly

DEVELOPERS—ALL OF US!—often have trouble believing our own code is bro-
ken. It is just so improbable that, for once, it must be the compiler that’s broken.

Yet, in truth, it is very (very) unusual that code is broken by a bug in the com-
piler, interpreter, OS, app server, database, memory manager, or any other
piece of system software. Yes, these bugs exist, but they are far less common
than we might like to believe.

I once had a genuine problem with a compiler bug optimizing away a loop vari-
able, but I have imagined my compiler or OS had a bug many more times. I have
wasted a lot of my time, support time, and management time in the process, only
to feel a little foolish each time it turned out to be my mistake after all.

Assuming that the tools are widely used, mature, and employed in various tech-
nology stacks, there is little reason to doubt the quality. Of course, if the tool is
an early release, or used by only a few people worldwide, or a piece of seldom
downloaded, version 0.1, open source software, there may be good reason to
suspect the software. (Equally, an alpha version of commercial software might
be suspect.)

Given how rare compiler bugs are, you are far better putting your time and
energy into finding the error in your code than into proving that the compiler
is wrong. All the usual debugging advice applies, so isolate the problem, stub
out calls, and surround it with tests; check calling conventions, shared libraries,
and version numbers; explain it to someone else; look out for stack corrup-
tion and variable type mismatches; and try the code on different machines
and different build configurations, such as debug and release.

18 97 Things Every Programmer Should Know

Question your own assumptions and the assumptions of others. Tools from
different vendors might have different assumptions built into them—so too
might different tools from the same vendor.

When someone else is reporting a problem you cannot duplicate, go and see
what they are doing. They may be doing something you never thought of or
are doing something in a different order.

My personal rule is that if I have a bug I cant pin down, and I'm starting
to think it’s the compiler, then it’s time to look for stack corruption. This is
especially true if adding trace code makes the problem move around.

Multithreaded problems are another source of bugs that turn hair gray and
induce screaming at the machine. All the recommendations to favor simple
code are multiplied when a system is multithreaded. Debugging and unit tests
cannot be relied on to find such bugs with any consistency, so simplicity of
design is paramount.

So, before you rush to blame the compiler, remember Sherlock Holmes’s
advice, “Once you eliminate the impossible, whatever remains, no matter how
improbable, must be the truth,” and opt for it over Dirk Gently’s, “Once you
eliminate the improbable, whatever remains, no matter how impossible, must
be the truth”

Collective Wisdom from the Experts 19

Choose Your

Tools with Care

Giovanni Asproni

MODERN APPLICATIONS ARE VERY RARELY BUILT FROM SCRATCH. They
are assembled using existing tools—components, libraries, and frameworks—
for a number of good reasons:

« Applications grow in size, complexity, and sophistication, while the time

available to develop them grows shorter. It makes better use of devel-
opers’ time and intelligence if they can concentrate on writing more
business-domain code and less infrastructure code.

Widely used components and frameworks are likely to have fewer bugs
than the ones developed in-house.

There is a lot of high-quality software available on the Web for free,
which means lower development costs and greater likelihood of finding
developers with the necessary interest and expertise.

Software production and maintenance is human-intensive work, so buying
may be cheaper than building.

However, choosing the right mix of tools for your application can be a tricky
business requiring some thought. In fact, when making a choice, you should
keep in mind a few things:

« Different tools may rely on different assumptions about their context—e.g.,

20

surrounding infrastructure, control model, data model, communication
protocols, etc.—which can lead to an architectural mismatch between the
application and the tools. Such a mismatch leads to hacks and workarounds
that will make the code more complex than necessary.

Different tools have different lifecycles, and upgrading one of them may
become an extremely difficult and time-consuming task since the new func-
tionality, design changes, or even bug fixes may cause incompatibilities with

97 Things Every Programmer Should Know

the other tools. The greater the number of tools, the worse the problem
can become.

« Some tools require quite a bit of configuration, often by means of one or
more XML files, which can grow out of control very quickly. The applica-
tion may end up looking as if it was all written in XML plus a few odd lines
of code in some programming language. The configurational complexity
will make the application difficult to maintain and to extend.

o Vendor lock-in occurs when code that depends heavily on specific ven-
dor products ends up being constrained by them on several counts:
maintainability, performances, ability to evolve, price, etc.

« Ifyou plan to use free software, you may discover that it’s not so free after
all. You may need to buy commercial support, which is not necessarily
going to be cheap.

« Licensing terms matter, even for free software. For example, in some
companies, it is not acceptable to use software licensed under the GNU
license terms because of its viral nature—i.e., software developed with it
must be distributed along with its source code.

My personal strategy to mitigate these problems is to start small by using only
the tools that are absolutely necessary. Usually the initial focus is on removing
the need to engage in low-level infrastructure programming (and problems),
e.g., by using some middleware instead of using raw sockets for distributed
applications. And then add more if needed. I also tend to isolate the external
tools from my business domain objects by means of interfaces and layering,
so that I can change the tool if T have to with a minimal amount of pain. A
positive side effect of this approach is that I generally end up with a smaller
application that uses fewer external tools than originally forecast.

Collective Wisdom from the Experts 21

Code in the
Language of
the Domain

Dan North

PICTURE TWO CODEBASES. In one, you come across:

if (portfolioldsByTraderId.get(trader.getId())
.containsKey(portfolio.getId())) {...}

You scratch your head, wondering what this code might be for. It seems to be
getting an ID from a trader object; using that to get a map out of a, well, map-
of-maps, apparently; and then seeing if another ID from a portfolio object
exists in the inner map. You scratch your head some more. You look for the
declaration of portfolioIdsByTraderId and discover this:

Map<int, Map<int, int>> portfolioldsByTraderId;

Gradually, you realize it might have something to do with whether a trader has
access to a particular portfolio. And of course you will find the same lookup
fragment—or, more likely, a similar but subtly different code fragment—
whenever something cares whether a trader has access to a particular portfolio.

In the other codebase, you come across this:
if (trader.canView(portfolio)) {...}

No head scratching. You don’t need to know how a trader knows. Perhaps
there is one of these maps-of-maps tucked away somewhere inside. But that’s
the trader’s business, not yours.

Now which of those codebases would you rather be working in?

Once upon a time, we only had very basic data structures: bits and bytes and
characters (really just bytes, but we would pretend they were letters and punc-
tuation). Decimals were a bit tricky because our base-10 numbers don’t work
very well in binary, so we had several sizes of floating-point types. Then came
arrays and strings (really just different arrays). Then we had stacks and queues
and hashes and linked lists and skip lists and lots of other exciting data struc-
tures that don’t exist in the real world. “Computer science” was about spending

22 97?%{;5 E\?@I’}} F;réé rammer Should Know

lots of effort mapping the real world into our restrictive data structures. The
real gurus could even remember how they had done it.

Then we got user-defined types! OK, this isn't news, but it does change the
game somewhat. If your domain contains concepts like traders and portfolios,
you can model them with types called, say, Trader and Portfolic. But, more
importantly than this, you can model relationships between them using domain
terms, too.

If you don’t code using domain terms, you are creating a tacit (read: secret)
understanding that this int over here means the way to identify a trader,
whereas that int over there means the way to identify a portfolio. (Best not
to get them mixed up!) And if you represent a business concept (“Some trad-
ers are not allowed to view some portfolios—it’s illegal”) with an algorithmic
snippet—say, an existence relationship in a map of keys—you aren’t doing the
audit and compliance guys any favors.

The next programmer to come along might not be in on the secret, so why
not make it explicit? Using a key as a lookup to another key that performs an
existence check is not terribly obvious. How is someone supposed to intuit
that’s where the business rules preventing conflict of interest are implemented?

Making domain concepts explicit in your code means other programmers can
gather the intent of the code much more easily than by trying to retrofit an algo-
rithm into what they understand about a domain. It also means that when the
domain model evolves—which it will, as your understanding of the domain
grows—you are in a good position to evolve the code. Coupled with good encap-
sulation, the chances are good that the rule will exist in only one place, and that
you can change it without any of the dependent code being any the wiser.

The programmer who comes along a few months later to work on the code will
thank you. The programmer who comes along a few months later might be you.

Collective Wisdom from the Experts 23

Code Is Design

Ryan Brush

IMAGINE WAKING UP TOMORROW and learning that the construction indus-
try has made the breakthrough of the century. Millions of cheap, incredibly
fast robots can fabricate materials out of thin air, have a near-zero power cost,
and can repair themselves. And it gets better: given an unambiguous blueprint
for a construction project, the robots can build it without human intervention,
all at negligible cost.

One can imagine the impact on the construction industry, but what would
happen upstream? How would the behavior of architects and designers change
if construction costs were negligible? Today, physical and computer models are
built and rigorously tested before investing in construction. Would we bother
if the construction was essentially free? If a design collapses, no big deal—just
find out what went wrong and have our magical robots build another one.
There are further implications. With models obsolete, unfinished designs
evolve by repeatedly building and improving upon an approximation of the
end goal. A casual observer may have trouble distinguishing an unfinished
design from a finished product.

Our ability to predict timelines will fade away. Construction costs are more
easily calculated than design costs—we know the approximate cost of install-
ing a girder, and how many girders we need. As predictable tasks shrink toward
zero, the less predictable design time starts to dominate. Results are produced
more quickly, but reliable timelines slip away.

Of course, the pressures of a competitive economy still apply. With construc-
tion costs eliminated, a company that can quickly complete a design gains an

24 97 Things Every Programmer Should Know

edge in the market. Getting design done fast becomes the central push of engi-
neering firms. Inevitably, someone not deeply familiar with the design will see
an unvalidated version, see the market advantage of releasing early, and say,
“This looks good enough?”

Some life-or-death projects will be more diligent, but in many cases, consum-
ers learn to suffer through the incomplete design. Companies can always send
out our magic robots to “patch” the broken buildings and vehicles they sell.
All of this points to a startlingly counterintuitive conclusion: our sole premise
was a dramatic reduction in construction costs, with the result that quality got
worse.

It shouldn’t surprise us that the preceding story has played out in software.
If we accept that code is design—a creative process rather than a mechanical
one—the software crisis is explained. We now have a design crisis: the demand
for quality, validated designs exceeds our capacity to create them. The pressure
to use incomplete design is strong.

Fortunately, this model also offers clues to how we can get better. Physical
simulations equate to automated testing; software design isn't complete until
it is validated with a brutal battery of tests. To make such tests more effective,
we are finding ways to rein in the huge state space of large systems. Improved
languages and design practices give us hope. Finally, there is one inescapable
fact: great designs are produced by great designers dedicating themselves to
the mastery of their craft. Code is no different.

Collective Wisdom from the Experts 25

Code Layout
Matters

Steve Freeman

AN INFEASIBLE NUMBER OF YEARS AGO, | worked on a Cobol system where
staff members weren't allowed to change the indentation unless they already
had a reason to change the code, because someone once broke something by
letting a line slip into one of the special columns at the beginning of a line. This
applied even if the layout was misleading, which it sometimes was, so we had
to read the code very carefully because we couldn’t trust it. The policy must
have cost a fortune in programmer drag.

There’s research suggesting that we all spend much more of our programming
time navigating and reading code—finding where to make the change—than
actually typing, so that’s what we want to optimize for. Here are three such
optimizations:

Easy to scan

People are really good at visual pattern matching (a leftover trait from the
time when we had to spot lions on the savannah), so I can help myself
by making everything that isn’t directly relevant to the domain—all the
“accidental complexity” that comes with most commercial languages—
fade into the background by standardizing it. If code that behaves the
same looks the same, then my perceptual system will help me pick out
the differences. That’s why I also observe conventions about how to lay
out the parts of a class within a compilation unit: constants, fields, public
methods, private methods.

26 97 Things Every Programmer Should Know

Expressive layout

We've all learned to take the time to find the right names so that our code
expresses as clearly as possible what it does, rather than just listing the
steps—right? The code’s layout is part of this expressiveness, too. A first cut
is to have the team agree on an automatic formatter for the basics, and then
I might make adjustments by hand while I'm coding. Unless there’s active
dissension, a team will quickly converge on a common “hand-finished”
style. A formatter cannot understand my intentions (I should know, I once
wrote one), and it's more important to me that the line breaks and groupings
reflect the intention of the code, not just the syntax of the language. (Kevin
McGuire freed me from my bondage to automatic code formatters.)

Compact format

The more I can get on a screen, the more I can see without breaking con-
text by scrolling or switching files, which means I can keep less state in my
head. Long procedure comments and lots of whitespace made sense for
eight-character names and line printers, but now I live in an IDE that does
syntax coloring and cross linking. Pixels are my limiting factor, so I want
every one to contribute to my understanding of the code. I want the layout
to help me understand the code, but no more than that.

A nonprogrammer friend once remarked that code looks like poetry. I get
that feeling from really good code—that everything in the text has a purpose,
and that it’s there to help me understand the idea. Unfortunately, writing code
doesn’t have the same romantic image as writing poetry.

Collective Wisdom from the Experts 27

Code Reviews

Mattias Karlsson

YOU SHOULD DO CODE REVIEWS. Why? Because they increase code quality
and reduce defect rate. But not necessarily for the reasons you might think.

Because they may previously have had some bad experiences with code
reviews, many programmers tend to dislike them. I have seen organizations
that require that all code pass a formal review before being deployed to pro-
duction. Often, it is the architect or a lead developer doing this review, a
practice that can be described as architect reviews everything. This is stated in
the company’s software development process manual, so the programmers
must comply.

There may be some organizations that need such a rigid and formal process,
but most do not. In most organizations, such an approach is counterproductive.
Reviewees can feel like they are being judged by a parole board. Reviewers
need both the time to read the code and the time to keep up to date with all the
details of the system; they can rapidly become the bottleneck in this process,
and the process soon degenerates.

Instead of simply correcting mistakes in code, the purpose of code reviews
should be to share knowledge and establish common coding guidelines. Shar-
ing your code with other programmers enables collective code ownership.
Let a random team member walk through the code with the rest of the team.
Instead of looking for errors, you should review the code by trying to learn
and understand it.

28 97 Things Every Programmer Should Know

Be gentle during code reviews. Ensure that comments are constructive, not
caustic. Introduce different roles for the review meeting to avoid having orga-
nizational seniority among team members affect the code review. Examples
of roles could include having one reviewer focus on documentation, another
on exceptions, and a third to look at the functionality. This approach helps to
spread the review burden across the team members.

Have a regular code review day each week. Spend a couple of hours in a review
meeting. Rotate the reviewee every meeting in a simple round-robin pattern.
Remember to switch roles among team members every review meeting, too.
Involve newbies in code reviews. They may be inexperienced, but their fresh
university knowledge can provide a different perspective. Involve experts for
their experience and knowledge. They will identify error-prone code faster
and with more accuracy. Code reviews will flow more easily if the team has
coding conventions that are checked by tools. That way, code formatting will
never be discussed during the code review meeting.

Making code reviews fun is perhaps the most important contributor to suc-
cess. Reviews are about the people reviewing. If the review meeting is painful
or dull, it will be hard to motivate anyone. Make it an informal code review
whose principal purpose is to share knowledge among team members. Leave
sarcastic comments outside, and bring a cake or brown-bag lunch instead.

Collective Wisdom from the Experts 29

Coding with
Reason

Yechiel Kimchi

TRYING TO REASON about software correctness by hand results in a formal
proof that is longer than the code, and more likely to contain errors. Auto-
mated tools are preferable but not always possible. What follows describes a
middle path: reasoning semiformally about correctness.

The underlying approach is to divide all the code under consideration into
short sections—from a single line, such as a function call, to blocks of less
than 10 lines—and argue about their correctness. The arguments need only be
strong enough to convince your devil's advocate peer programmer.

A section should be chosen so that at each endpoint, the state of the program
(namely, the program counter and the values of all “living” objects) satis-
fies an easily described property, and so that the functionality of that section
(state transformation) is easy to describe as a single task; these guidelines
will make reasoning simpler. Such endpoint properties generalize concepts
like preconditions and postconditions for functions, and invariants for loops
and classes (with respect to their instances). Striving for sections to be as inde-
pendent of one another as possible simplifies reasoning and is indispensable
when these sections are to be modified.

Many of the coding practices that are well known (although perhaps less well
followed) and considered “good” make reasoning easier. Hence, just by intend-
ing to reason about your code, you already start moving toward a better style
and structure. Unsurprisingly, most of these practices can be checked by static
code analyzers:

» Avoid using goto statements, as they make remote sections highly
interdependent.

« Avoid using modifiable global variables, as they make all sections that use
them dependent.

30 97 Things Every Programmer Should Know

« Each variable should have the smallest possible scope. For example, a
local object can be declared right before its first usage.

« Make objects immutable whenever relevant.

» Make the code readable by using spacing, both horizontal and vertical—e.g.,
aligning related structures and using an empty line to separate two sections.

+ Make the code self-documenting by choosing descriptive (but relatively
short) names for objects, types, functions, etc.

« If you need a nested section, make it a function.

» Make your functions short and focused on a single task. The old 24-line
limit still applies. Although screen size and resolution have changed,
nothing has changed in human cognition since the 1960s.

« Functions should have few parameters (four is a good upper bound). This
does not restrict the data communicated to functions: grouping related
parameters into a single object localizes object invariants, which simplifies
reasoning with respect to their coherence and consistency.

» More generally, each unit of code, from a block to a library, should have
a narrow interface. Less communication reduces the reasoning required.
This means that getfers that return internal state are a liability—don’t ask
an object for information to work with. Instead, ask the object to do the
work with the information it already has. In other words, encapsulation is
all—and only—about narrow interfaces.

« Inorder to preserve class invariants, usage of setters should be discouraged.
Setters tend to allow invariants that govern an object’s state to be broken.

As well as reasoning about its correctness, arguing about your code helps you
better understand it. Communicate the insights you gain for everyone’s benefit.

Collective Wisdom from the Experts 31

A Comment on
Comments

Cal Evans

IN MY FIRST PROGRAMMING CLASS IN COLLEGE, my teacher handed out
two BASIC coding sheets. On the board, the assignment read, “Write a pro-
gram to input and average 10 bowling scores” Then the teacher left the room.
How hard could this be? I don’t remember my final solution, but I'm sure it had
a FOR/NEXT loop in it and couldn’t have been more than 15 lines long in total.
Coding sheets—for you kids reading this, yes, we used to write code out long-
hand before actually entering it into a computer—allowed for around 70 lines of
code each. I was very confused as to why the teacher would have given us two
sheets. Since my handwriting has always been atrocious, I used the second one
to recopy my code very neatly, hoping to get a couple of extra points for style.

Much to my surprise, when I received the assignment back at the start of the
next class, I received a barely passing grade. (It was to be an omen to me for the
rest of my time in college.) Scrawled across the top of my neatly copied code
was “No comments?”

It was not enough that the teacher and I both knew what the program was sup-
posed to do. Part of the point of the assignment was to teach me that my code
should explain itself to the next programmer coming behind me. It’s a lesson
I've not forgotten.

32 97 Things Every Programmer Should Know

Comments are not evil. They are as necessary to programming as basic branch-
ing or looping constructs. Most modern languages have a tool akin to javadoc
that will parse properly formatted comments to automatically build an API
document. This is a very good start, but not nearly enough. Inside your code
should be explanations about what the code is supposed to be doing. Coding
by the old adage, “If it was hard to write, it should be hard to read,” does a
disservice to your client, your employer, your colleagues, and your future self.

On the other hand, you can go too far in your commenting. Make sure that
your comments clarify your code but do not obscure it. Sprinkle your code
with relevant comments explaining what the code is supposed to accomplish.
Your header comments should give any programmer enough information to
use your code without having to read it, while your inline comments should
assist the next developer in fixing or extending it.

At one job, I disagreed with a design decision made by those above me. Feel-
ing rather snarky, as young programmers often do, I pasted the text of the email
instructing me to use their design into the header comment block of the file. It
turned out that managers at this particular shop actually reviewed the code when
it was committed. It was my first introduction to the term career-limiting move.

Collective Wisdom from the Experts 33

