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Some time ago a very intelligent young lady about to enter high school

asked me about the work of Archimedes as it is related to his calcula-
tion of the areas of polynomials. I had to admit that I did not know but
said that I would look into it. This led me to write a whole bouquet of
numbers which is the first essay in this collection. It is typical in the
sense of how I work. Something strikes my fancy and I am off. I am only
satisfied when I understand enough so that I can explain it usually by
writing an essay. The subject matter of these essays is very diverse but

I will explain how I got to write them as we go along.



ere are some things that I have learned about numbers. I don't
know what kids learn about these things now. Maybe you al-

ready know everyﬂ]ing I am going to describe but T didn’t

A Bouquet of Numbers for Olivia

learn about them until I went to college.

I am going to stick to the decimal system 1,2,3.... by and large.
We have this system because we have ten fingers. But it is not the only

system that is possible. The Babylonians used a wondertful system based

on 60.

Y1
fr 2
i fE
W
B>
w6
]
W
/o

{10

{7 11
{yr 12
{7 13
{® 14
{® 15
MW 16
¥ 17
¥ 1
W 19
« 20

Image on Wikimedia.

Ly 21
«r 22
«yy 23
€ 24
€@ 25
«RB 26
€T 27
« 28
“FF 20
4 30

4«7 1
«rr 32
«nT 33
W 34
HWW 35
WH 6
& 37
WEF 38
W 30
€ a0

Wy 4
Wy 42
Wy 43
Wy a4
@ s
W 46
WE 47
W s
W

€y 51
Wy 52
<« 53
W 54
W 55
&Py 56
W 57
3 s
&H 5o



How would you like to do division in that system?

Computers use “bits” — ones and zeros. Here is a short list

12
13

1

10
11
100
101
110
111
1000
1001
1010
1011
1100
You do it.

Adding binary numbers we have to carry the ones. Suppose we

add 11 + 11 which should give us six which is 110. So 11 + 11 gives us

adding from the right 0 and if we carry the 1 the left hand 1 become 10

to which we add 1 to give 11 and hence the 110. \Vhy don’t you try to add

7 to 6 once you get the binary for 13.

It is fun to think of the trinomial system with 0,1,2
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Now let us stick to ordinary positive decimal integers. How many

are there? Put another way is there a biggest one? Here we use a proof
by contradiction of which we shall see several examples.

Let us assume there is a biggest one. Call it m. But m + 1 is big-
ger so the claim that there is a biggest one is false. The number of pos-
itive integers is infinite. This form of infinity is given a name * aleph .”
N, . Aleph is the first letter in the Hebrew alphabet. Now we shall see
the first of the paradoxes of infinity. We considered the positive integers.
Now let us look at the negative ones — 1, =2, =3 and so on. The same
argument as before tells us that there is no largest negutive integet To
each positive integers there is a negative one so their total number is also
N, . So the total number is 28,. But if you add X, to X, you still get
X, . This is one of the properties of infinity. If you add them you get the
same infinity and likewise if you multiply them together. This plays a role
when we consider fractions — ratios of integers 5/3,3/4,7/8 and so on.
Each one of them corresponds to a pair of integers. How many pairs are
there? If you think about it there are

(X)) )? = R, pairs. It looks like we can never get away from X,.
We will later see that we can. But before we get to that I want to discuss
“prime” numbers.

A prime number is only divisible by itself and one. Thirteen is a
prime. So is seven. No even number is a prime since they can be divided
by two. Some odd numbers are primes and some are not. Nineteen is a
prime by twenty one which is 7 x 3 is not. All numbers can be factored
into products of primes. For example 100 = 25 x 4 = 5% x 2% If you
don’t have a computer program which you can find on the web finding
the prime factorization of large numbers is not easy. I will tell you a
story. I used to work from time to time at a big physics laboratory in Ge-
neva called CERN. When I first went there, there was a famous mental
calculator named Wim Klein. He could do unbelievable calculations in
his head. He loved prime factorization. Once he called me and told me

the prime factorization of my phone number 2129827489. It is equal to



59 x 36098771. If you don’t believe me do the multiplication. When 1

was going to tell this story here I could not find the piece of paper on
which Mr. Klein had written down this answer. So I looked up a prime
factorization program on the web. There are several. The one I chose
found this factorization almost as fast as I could write the Phone number.
Mr. Klein was beaten by the computer. Try to find the prime factoriza-
tion of your own phone number.

How many positive prime numbers are there? I will give you an
argument which is attributed to Euclid. T do not think that Euclid was
a person. There was a think tank of Greeks on an Island in the Aegean.
They wore togas and ate grapes and olives. When they decided to go
public with their work they made up the name “Euclid” and we have
been stuck with it ever since. Here is how the argnment goes.

Suppose we could make a finite list of all primes p,....p_where

p,, is the biggest one. We could now consider the number

P, Xp,X...p, +1

m

Thus number is bigger than p_ so it cannot be a prime. Thus
it must be divisible by one of the primes in the list. But this is impos-
sible because that prime would divide the product but not the one. Thus
there is no such finite list. The positive primes are a subset of all positive
integers. We have seen that there are X, positive integers so this must be
the number of primes since X is the smallest infinity.

Now I am going to tell you about another discovery due to the
Greeks. The story goes that this bothered them so much that they took
the man who discovered it out on a boat and pushed him overboard.
We have discussed fractions that are ratios of integers such as 3/4 or
7/8. T am now going to show youa number that cannot be written as a
ratio of integers. For the Greeks this number appeared in the Pythag-
orean theorem. Suppose we have a right triangle both of whose sides
are 1. Thus 172 + 172 =2. Thus there must be a number whose square
is 2. This is of course the square root of 2. But what kind of number is

this? Can we write it as the ratio of integers like any decent number?



Let us suppose we do it. \/Ez p/q where p and q are nice decent

integers. The first thing we can do is to divide out any common factors
in the ratio. We know for example that 8/10 = 4/5 where we have di-
vided out the common factor of 2. If we square the equation above we
have 2 = p*q°. The square of any even number is an even number and
the square of any odd number is an odd number. To see this second
statement remember that any odd number cam be written as 2n + 1
so the square is 4(n® + n) + 1 which is again an odd number. So p and
q cannot both be odd. In fact p* = 2q* so p* is even and then so is p. It
is divisible by 2 so that p? is divisible by 4. Therefore ¢* must be even
and so must q. So the ratio has a common factor of 2 which contradicts
the assumption we made that all the common factors were divided out.
This is a simple argument to write down but it is tricky so make sure
vou understand it. Numbers like the square root of 2 are called “irra-
tional” maybe because they drove the Greeks crazy, I next want to turn

to the decimal expansion of numbers. I will begin with a few examples.
1/3 = .3333333333.......

1/4 = .2500000000....

1/2 = .50000000......

V2 1.4142135623730950488016887242096980785696718753769480
7317667973799073247584621
0703885038753432764157273501384623091229702492483605585073
7212644121497099935831

4132226659275055927557999505011527820605714701095599716059
7027453459686201472857

7418640889198609552329230484308714321450839762603627995251
4079896872533965463318

0882964062061523835239505474575028775996172983557522033753
1857011354374603408498



§471603868999706990048150305440277903164542478230684929369
1862158057846311159666

§713013015618568987237235288509264861249497715421833420428
5686060146824720771435

8548741556570696776537202264854470158588016207584749226572
2600208558446652145839

8893944370926591800311388246468157082630100594858704003186
4803421948972782906410

4507263685131373985525611732204024509122770022694112757362
7250495738108967504018

3698683684507257993647290607629969413804756548237289971803
2680247442062926912485

9052181004459842150591120249441341728531478105803603371077
3091828693147101711116

8391658172688941975871658215212822951848847208969463386289
1562882765952635140542

267653239........

I am not trying to snow you but to make a point. This decimal expansion
goes on forever and there is never a repeating pattern. On the other
hand fractions of integers always lead to a repeating pattern if you wait

long enough and vice versa. To see how this works take
1.063636363... =x
Now

10x = 10.636363 while 1000x = 1063.636363. 1000x—10x = 990x = 1053.

So x =1053/990. Try it and see that it works.

The ratio of the circumference of a circle to the diameter as you

know is called m — pi. The first digits in the expansion are



3.141592653589793238462643383279502884197169399375105820974
944592307816406286

2089986280348253421170679821480865132823066470938446095505
82231725359408128481

1174502841027019385211055596446229489549303819644288109756
65933446128475648233
7567831652712019091456455669234603456104543266482133936072
60249141273724587006
60631555881748815209209628292540917153643678925903600113305
30548820466521354146
9519415116094330572703657595919530921861173819326117931051
18548074462379962749
5673518857527248912279381830119491298336733624406566430860
21394946395224737190

7021798609437027705392171762931767523846748184676694051320
00568127145263560827

78577T13427577896091736371787214684409012249534301465495853
T1050792279689258923

5420199561121290219608640344181598136297747713099605187072
11349999998372978049

9510597317328160963185950244594553469083026425223082533446
85035261931188171010

0031378387528865875332083814206171776691473035982534904287
55468731159562863882

3537875937519577818577805321712268066130019278766111959092
16420198938095257201

0654858632788659361533818279682303019520353018529689957736
22599413891249721775



2834791315155748572424541506959508295331168617278558890750
98381754637464939319255060.. ...

To show that the expansion never repeats requires more sophisticated
mathematics than we are doing here. But I will tell you another story.
When I was in Geneva I got to know a friend of Klein’s named Hans
Eberstark. He could do all the mathematical tricks that Klein could do.
Sometimes they gave shows together. But he was also a linguist and knew
about thirty languages. He worked as an interpreter. The first time I met
him is was at an apartment of friend. He had a Philippine cook. Eber-
stark asked what her language was. It turned out to be a language he did
not know. He asked her to give him twelve words and to be sure to write
them down so she would remember them. At the end of the evening she
came back in and not only did he tell us the twelve words but he was
able to say something about them. The word for “apple” was “manzana”.
Eberstark noted that this was a Spanish word because the Spaniards
had imported apples to the Philippines. For the fun of it he memorized
11,944 djgits of pi. He chose this number to beat some kind of record.
The next thing I want to tell you about is the inﬁnity of Georg
Cantor. Cantor was a German mathematician whose dates were 1845—
1918. He did a number of important works in mathematics but I want
to tell you about his “diagonal” argument. Suppose all the numbers with

decimal expansions could be arrayed as the figure below.

n o1 2 k] 4 ] i T 5 9 10
[ | 3 G 1} 15 21 2R OMW 45 LD
L2 4 7 11 16 220029 T 4G 56 67
2005 8 12 17 2 MW 38 47 M 68 &)
J 9 13 18 24 31 39 43 58 60 81 M
4014 19 25 32 40 49 59 TO A2 93 109
5020 W 3% 41 50 60 71 OBE B6 10 125
G627 M 42 51 @6l T2 B4 97 111 126 142
T35 43 562 62 73 By 94 112 127 143 160
El44 53 63 74 8 060 113 128 144 161 179
a4 64 THOAT 100 114 129 145 162 180 1499
1065 T6 BE 101 115 130 146 163 181 200 X




A Bouquet of Numbers and Other Scientific

These numbers could then be enumerated and the total would
be R,. But there is at least one number missing. You take the first row
and replace the first 0 by a 1. Then you take the second row and replace
second 4 by a 5 and you go down the diagonal making these replace-
ments. When you get done you have the decimal expansion of a num-
ber that was not in our enumeration. The full set of these numbers is a
larger infinity than ;. When I first learned about this I thought that it
was wonderful and that I wanted to study more mathematics. Maybe
you will feel the same. In the meanwhile here is something about pi that
you might like. You need to know that if you have a right triangle then

sine(a) = a/c. This is trigonometry.

Regular Octagon
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A triangle divided into two right triangles.

The first thing we need is not something I can provide a simple
proof for. It is actually follows from a theorem of Euclid — him again!
Here is a web site where you can find the details.

www.themathpage.com/aTrig/circle.htm

The question we need to answer, and this theorem does it for us,
is the following. We know that for any circle the circumference is pro-
portional to the radius. That is C = ar. But is a the same for any circle?
The answer — and the theorem helps us to get there — is yes. This is
how piis defined. Pi is a constant that applies to any circle. The equation
C = 2nar applies to any circle. This is what Euclid understood and this
is why pi is so important. Now I want to use an argument that in some
form was invented by Archimedes to find the numerical value at least
approximately for pi. But I will end up with a formula involving the sine
function which is not what Archimedes did as far as I know. He was such
a genius that God knows what he ended up with.

The first drawing above is of a regular octagon. Note that it is
inscribed inside a circle. Archimedes also studied the case of a regu-
lar octagon and other regular polygons drawn outside the circle. I will
explain Why later. We are only going to discuss in detail the first case. Let
me call a side of the octagon S. Then the Perimeter of the octagon Pis

8S. But P is less than the circumference of the circle. So
8S < 2xr

or
> 4S5/,

So if we could find S we would have an upper bound for . Here is where
the trigonometry comes in. Look again at the druwing of the octagon
with its circumscribed triangles. The angle formed where the sides hit
the center of the octagon is 360/8 = 45. But these triangles are not right
triangles so T will replace each of them by two right triangles a shown

in the next drawing. This splits the angle in two so it is now 22.5. But



this gives the base of the triangles S/2. Now we can use our sine formula
sine(22.5) = 1/S/2 or S = sine(22.5)2r. Thus we have © > 8sine(22.5). Now
we can out in the numbers and find that in the case of the octagon n >
3.061467458. This is true but we are still a little far off. You can gener-

alize this to the n-gon and show that n > nsine(180/n). Why don’t you

take n = 96 and see what happens. This is what Archimedes did. How
he did the arithmetic no one knows. Maybe he was like Mr. Klein. As
n approaches infinity the answer is more and more exact. That is the

calculus limit.
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Here is a second essay I wrote for the same young lady.



Was Einstein Smart?

ome years ago my then New Yorker colleague John McPhee was in

the process of writing a profile of the physicist Ted Taylor. Taylor

had begun his career as a nuclear weapons designer a Los Alamos.
One of his creations was the largest purely fission bomb ever detonated —
the so-called Ivy King — which was exploded in November of 1952, in the
Pacific. By 1956, he had become disillusioned with working on nuclear
weapons for military purposes and he allowed himself to be recruited to
lead a new, visionary, indeed incredible, project — the Orion — to design
a space ship to be used for planetary exploration that would be powered
by a sequence of small nuclear explosions. This enterprise — which ended
unsuccessfully in 1965 — was located at the then new General Atomics
Company in La Jolla, California. Taylor, in turn, began recruiting other
scientists to join him in La Jolla. One of his early, and most important,
recruits was Freeman Dyson. Dyson, who was a professor at the Institute
for Advanced Study in Princeton, was known throughout the physics com-
munity as a mathematical genius. This was McPhee’s dilemma.

He had been told by everyone that Dyson was a genius, and
he had interviewed him several times, but, as a good reporter, McPhee
wanted his own evidence that this was true. That is why he approached
me. He knew that I had worked with Dyson on the Orion and that we
had remained good friends, so he thought I might have an idea of how
he could go about this. The problem was that McPhee did not know any

mathematics. He was in the position of someone who wanted to write



about Bach, but was tone deaf. Such an individual would have to take

the word of others that Bach was a great musician. I gave the matter
some thought and finally came up with a suggestion. I would give McPhee
a mathematics problem he could understand, one that I thought was
pretty tricky. He could then try to solve it and, after in all likelihood,
failing, he could go to Dyson and ask for help. He could first find out if
Dyson had heard of the problem — hopefully not — then he could give
him it to him and watch what happened. The problem I gave McPhee
was that of the twelve balls. You have twelve balls that appear to be
identical. However one of them — the “guilty" ball — is either hghter or

heavier than the others. You also have a balance scale — a scale in which

you have platforms on either side of a balance on which you can put
some of the balls. For example you might try to balance two balls against
two balls. If the scale was, say, unbalanced, you would know the guilty
ball was among the four. The problem is to devise a method by which, in
at most three weighings, you can find which ball is guilty and whether it
is heavier or lighter. I told McPhee my history with this problem. I had
heard of it when I was a junior in college. I was up most of the night until
I finally solved it. I was very pleased with myself. I had a date the next
(lzly to play chess with the most brilliant undergraduute in mathematics
and 1)hysics in my class. As we were setting up the pieces I gave him
the problem. Not only did he solve it before we finished setting up the
pieces but he was generalizing it. Suppose you have m balls how many
weighings n would it take. You can’t do it with two balls and, with three,
it takes two weighings, and so on. There is smart, and there is smart.

As far as I know, McPhee never tried this so I dont know
what would have happened. Historically speaking, it would have been
interesting to see what Einstein would have done with such a problem.
I am not aware that he had much interest in puzzles like this. I don’t
think he played chess and I doubt that he played bridge. Besides, there
is always the difference between being smart and seeming smart. For

example, Niels Bohr who was after Einstein the greatest physicist of the

=}
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for Advanced Study as was Lee. They won it for a discovery they had

made involving elementary particles, but this work was almost a distrac-
tion from what they were spending most of their time on — statistical
mechanics. This is the discipline that was created in the 19" century that
studies the average behavior of systems of particles so numerous that it
is a practical impossibility to describe them individually. It was a field
that Einstein was particularly fond of. His first papers in physics — the
ones that preceded the relativity paper of 1905 — concerned its founda-
tions. This work was never especially recognized because what followed
it overshadowed it, and because others did more or less the same ‘[hing.
But throughout his life Einstein kept returning to statistical mechanics.
Lee, who told me about it, and Yang decided that they would call on
Einstein and tell him what they had done in that field. Lee was not sure
what to expect. This was, although they did not know it, close to the
time of Einstein’s death. He was in his mid-seventies and Lee was not
sure if he still had any interest in the subject. Two things surprised him
about the visit. The first was Einstein’s hands. To Lee they seemed very
large and very powerful. He seemed like a physically strong man. The
second thing he did not expect was Einstein’s almost instantaneous grasp
of what he and Yang had been doing. The subject had evolved tremen-
dously since Einstein’s work on it, but he nonetheless understood the
new developments and even asked some searching questions.

This persuades me that Einstein was smart, but T have the
advantage of having studied his physics for decades. I already knew he
was smart. To fully convince you, I would have to give you a course in
modern physics. I would have to explain to you that Einstein’s foot print
is everywhere. To give a few examples: in 1916, he published a paper on
the emission and absorption of radiation which is the basis of the laser.
This was a year after he had published his paper on the general theory of
relativity and gravitation which replaced Newton’s theory of gravitation.
It was the year before he published a codicil to the theory that introduced

the idea of a “cosmological constant” which may be the basis of the dark
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with clocks. It is subject to the vagaries of the clocks we have at hand.

Newton formulated his physics in terms of absolute time. He published
his detailed theory in 1686, in the Principia, and for the next two cen-
turies it went pretty much unchallenged. People simply accepted this
notion of an absolute time common to all observers. We now come to
1905. Einstein was twenty-six and working in the Swiss National Patent
Office in Berne. This was a serious job — examining patents — which he
took seriously. The physics he did on the side.

For about a decade he had been puzzling over the following.
In Newton’s Physics there is a Principle of relativity. It had been
emphasized first by Galileo. As far as I know, it was Professor Frank who
introduced the term “Galilean relativity” to describe it. Suppose, Galileo
noted, vou are on a sailing ship which is at rest with respect to the sea.
Furthermore, suppose you drop an object from the mast so that it falls
straight down. The object will land at the base of the mast. Now suppose
the ship is in motion and that this motion is perfectly uniform — no
acceleration — and you perform the same experiment, where will the
object land? The answer is in exactly the same place. We might think of
this by imagining that the ship is stationary and the sea is somehow being
moved underneath it with a uniform motion. In this case we are not sur-
Pn'sed at the result above. Galilean relativity, which is built into Newton’s
laws, is the proposition that we can never distinguish by any mechanical
experiment of this kind between a moving ship and a stationary sea and
a stationary ship and a moving sea providing that these motions do not
involve accelerations. But Einstein realized that there is more to Phys—
ics than Newtonian mechanics. In particular, there is electromagnetism
which included the propagation of light, which is an electromagnetic wave.

He imagined an experiment with light. For this one, we will use
a train. Our train is, in the beginning, at rest with respect to the tracks.
I want to shave in my compartment, so I rig up a mirror and a bulb
behind my head. From its reflection I can see myself. Now we imagine

that the train is set into uniform motion and we perform the same activity.



If I emit a sound wave by, say, banging on a drum, I can catch up to it by

moving faster than the speed of sound. That is what supersonic airplanes
do. Einstein’s postulate says that you can never have a superluminous
airplane. The speed of light ¢ is the universal speed limit. Once a light
wave is emitted you can never catch up to it. At the time that Einstein
made this assumption there was no direct experimental evidence to
support it. Now we have elementary particles produced in accelerators
that move almost at the speed of light so we can observe what happens.
But there was no direct evidence against it. It was even suggested by
the theory of e]ectricity and magnetism that had been invented in the
mid-nineteenth century by the Scottish physicist James Clerk Maxwell.
On the other hand, if you believed in Newton’s dynamical theory this
speed limit was impossible. According to Newton, if you applied a force
to an object long enough you could accelerate it to any speed you liked.
Thus Einstein had to choose between Newton and Maxwell and he
chose Maxwell. Many years ago I had the chance to visit Einstein’s house
in Princeton. It was soon enough after his death so that his study was
about the same as when he used it. He had an etching of Maxwell on the
wall. There had been an etching of Newton, but it had come out of its
frame and had been replaced by a bit of modern art.

A radical assumption like this must have radical consequences.
It does and I would like to explore what it implies about time. The only
kind of time that interests me is what Newton called “common” time —
the kind that is measured by clocks. In truth, I can make no precise
sense out of what Newton meant by “absolute” time. Common time is
good enough for me: clock time. A clock is any mechanism that has a
periodic behavior. This can be the oscillating of an atom or the beating
of a human heart. There are good clocks and bad clocks depending on
how dependable the periodic behavior is. Time is measured in terms of
the number of these oscillations that occur between events. I am going
to analyze in detail a particularly simple clock — a so-called “light clock.”

We will make use of the figure below.
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Bogdan Giuged — Public domain (PD), based on the image

here are two very nice seasons in New York — spring and fall.
The winters can be very tough. The winds come off the East
River and the Hudson and produce a damp cold which is hard
to dress for. Sometimes we have ice which makes the sidewalks a sort of
malignant ice rink. And the summers are infernal. 1 gather that in Calcutta
a mitigating plea for a crime of violence is that it was committed in the

pre-monsoon season. If you have even been there at that time you will



