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INTRODUCTION

‘Mathematics is the gate and key of the sciences. ...
Neglect of mathematics works injury to all knowledge,
since he who is ignorant of it cannot know the other
sciences or the things of this world. And what is
worse, men who are thus ignorant are unable to
perceive their own ignorance and so do not seek a
remedy.’

Roger Bacon, 1214-1292

The language of mathematics has changed the way we
think about the world. Most of our science and technology
would have been literally unthinkable without mathematics,
and it is also the case that countless artists, architects,
musicians, poets and philosophers have insisted that their
grasp of the subject was vital to their work. Clearly mathe-
matics is important, and in this book I hope to convey
both the poetry of mathematics and the profound cultural
influence of various forms of mathematical practice. For
better or worse, you can’t comprehend the influence of
math until you have some understanding of what mathe-
maticians actually do. By way of contrast, you don’t need
to be an engineer to appreciate the impact of technological
change, but it is hard to comprehend the power and
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influence of mathematical thought without an under-
standing of the subject on its own terms.

Most people are numerate, and have learned a handful
of rules for calculation. Unfortunately the arguments and
lines of reasoning behind these techniques are much less
widely known, and far too many people mistakenly believe
they cannot hope to understand or enjoy the poetry of
math. This book is not a training manual in mathematical
techniques: it is an informal and poetic guide to a range
of mathematical thoughts. I disregard some technicalities
along the way, as my primary aim is to show how the
language of math has arisen over time, as we attempt to
comprehend the patterns of our world. My hope is that
by writing about the development of mathematical ideas
I can inspire some of my readers, shake up some lazy
assumptions about pure and applied mathematics, and
show that an understanding of math can help us to arrive
at a richer understanding of facts in general.

Mathematics is often praised (or ignored) on the
grounds that it is far removed from the lives of ordinary
people, but that assessment of the subject is utterly
mistaken. As G. H. Hardy observed in A Mathematician’s

Apology:

Most people have some appreaatlon of mathematics,
just as most people can enjoy a pleasant tune; and
there are probably more people really interested in
mathematics than in music. Appearances suggest the
contrary, but there are easy explanations. Music can
be used to stimulate mass emotion, while mathematics
cannot; and musical incapacity is recognized (no doubt
rightly) as mildly discreditable, whereas most people
are so frightened of the name of mathematics that
they are ready, quite unaffectedly, to exaggerate their
own mathematical stupidity.
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The considerable popularity of sudoku is a case in point.
These puzzles require nothing but the application of
mathematical logic, and yet to avoid scaring people off,
they often carry the disclaimer ‘no mathematical know-
ledge required’! The mathematics that we know shapes
the way we see the world, not least because mathematics
serves as ‘the handmaiden of the sciences’. For example,
an economist, an engineer or a biologist might measure
something several times, and then summarize their mea-
surements by finding the mean or average value. Because
we have developed the symbolic techniques for calculating
mean values, we can formulate the useful but highly
abstract concept of ‘the mean value’. We can only do this
because we have a mathematical system of symbols.
Without those symbols we could not record our data, let
alone define the mean.

Mathematicians are interested in concepts and patterns,
not just computation. Nevertheless, it should be clear to
everyone that computational techniques have been of vital
importance for many millennia. For example, most forms
of trade are literally inconceivable without the concept
of number, and without mathematics you could not
organize an empire, or develop modern science. More
generally, mathematical ideas are not just practically
important: the conceptual tools that we have at our
disposal shape the way we approach the world. As the
psychologist Abraham Maslow famously remarked, ‘If
the only tool you have is a hammer, you tend to treat
everything as if it were a nail.” Although our ability to
count, calculate and measure things in the world is prac-
tically and psychologically critical, it is important to
emphasize that mathematicians do not spend their time
making calculations. The real challenge of mathematics
1S tO CONStruct an argument.

Pythagoras’ famous Theorem provides an excellent
example of how the nature of mathematical thought is
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widely misunderstood. Most educated people know that
given any right-angled triangle, we can use the formula
a* +b* = ¢* to find all three lengths, even if we have only
been told two of them. As they have been asked to repeat-
edly perform this kind of calculation, people mistakenly
conclude that mathematics is all about applying a given
set of rules. Unfortunately, far too few people can give a
convincing explanation as to why Pythagoras’ Theorem
must be true, despite the fact that there are literally
hundreds of different proofs. One of the simplest argu-
ments for showing that it’s true hinges around the following
diagram:

2
a a a

b bz b

2 a a b

Pythagoras: The shapes on either side of the equals sign
are contained inside a pair of identical squares, whose sides
are a4 + b units wide. The one on the left contains a square
a units wide, a square b units wide plus four right-angled
triangles. The one the right contains a square ¢ units wide
plus four right-angled triangles. We can convert the picture
on the left into the one on the right simply by moving the
four triangles, and moving a shape does not change its
area. Since the white area is the same in each of the draw-
ings, this demonstrates that a” + b* = ¢* for any right-angled
triangle.

Sceptic: How can you be certain that we always get a
square on the right-hand side? More specifically, how do



INTRODUCTION 5

you know that your triangles always meet at a point, what-
ever the values of @ and 4?

Pythagoras: Both drawings are of equal height (a + & units
high). This tells us that the two triangles that are just to
the right of the equals sign must touch at a point, because
they only just manage to fit inside the containing square.
Similarly, the two triangles on the bottom of the right-hand
side touch at a point, because the total length along this
sideisa + b, which equals b + a (the width of the containing
squares).

Sceptic: OK, but how do you know that the triangles on
the right-hand side always meet at right angles? In other
words, how do you know that the shape on the right-hand
side is really a square?

Pythagoras: You agree that we have four sides of equal
length, and all four corners are the same?

Sceptic: Yes. Rotating the picture on the right by 90°, 180°
or 270° leaves the diagram unchanged.

Pythagoras: And despite these facts you still aren’t
convinced that it’s a square? No wonder they call you a
sceptic!

My aim in writing this book is to show how the language
of mathematics has evolved, and to indicate how mathe-
matical arguments relate to the broader human adventure.
This book is related to the work of various philosophers
(particularly Ludwig Wittgenstein), but it is not a history
of non-mathematical ideas, or an attempt to draw battle
lines between conflicting ‘big pictures’ from the philosophy
of math. I will have succeeded if my writing provokes
thought, but I have also tried to argue against the idea that
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mathematicians discover facts about abstract objects, just
like scientists discover facts about physical objects. Mathe-
matical language does not make sense because abstract
objects existed before mathematicians! Contrariwise, we
can only become cognisant of abstract objects because
mathematical language is something that humans can actu-
ally use.

Itis fundamental to human understanding that our theo-
ries or accounts of the physical world are expressed through
language. People make statements of fact, and the reflective,
systematic study of our ability to make statements leads
us into the world of math. Indeed, our understanding of
mathematics always begins with a clear, comprehensible
case, from which we form a notion of the abstract prin-
ciples at play. For example, children learn the counting
song, and they are then initiated into the practice of
counting actual, physical objects. This concrete experience
grounds our sense of number, as we abstract away from
a particular experience of counting things, justifiably
believing that we could set about counting any collection
of objects. That is to say, number words become meaningful
for an individual as they use those words on some particular
occasion, in the presence of actual, countable objects, but
once that person has acquired a language, the language
itself enables them to think in terms of number, whatever
they might wish to count.

Some people mistakenly believe that to do mathematics,
we simply need to follow certain rules. I suspect that people
arrive at this erroneous position because in order to satisfy
their teachers and examiners, all they need to do is apply
some rules correctly. In fact, higher mathematics is an
essentially creative pursuit that requires imagination. That
said, rules are never far behind our creative insights, because
in order to contribute to the body of mathematical know-
ledge, mathematicians need to be able to communicate
their ideas. The formal discipline that we require to fully
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state our arguments is an essential constraint on the shape
of mathematical knowledge, but the mathematics that we
know also reflects the problems, challenges and cultural
concerns that have motivated the various members of the
mathematical community.

I hope that reading this book persuades you that mathe-
maticians are explorers of patterns, and formal, logical
proofs that can be methodically checked are the ultimate
test of mathematical validity. The clarity of a strictly formal
proof is a beautiful thing to comprehend, and I think it
is fair to say that an argument is only mathematical if it is
apparent that it can be formalized. However, while we
can gain a sense of understanding by learning to use a
particular formal scheme, it is certainly possible to check
each step in a formal argument without understanding
the subject at hand. Indeed, a computer could do it, even
though a computer is no more a mathematician than a
photocopier is an artist.

I have taken a more intuitive approach as my aim is not
to train the reader in the appropriate formal techniques,
but simply to make the heart of each argument as compre-
hensible as possible. That said, the subject matter of this
book is subtle and sophisticated, so there is no escaping
the need to take certain arguments carefully and slowly.
Mathematics is a subject where you must read the same
sentence several times over, and as with poetry, you must
read at an appropriate pace.

Over the course of my book I trace out a history of
mathematical practice, with a focus on conceptual innova-
tions. I do not claim to have covered all of the key ideas,
but I have tried to sketch the major shifts in the popular
understanding of math. The book is structured by a combi-
nation of historical and thematic considerations, and its
thirteen chapters can be grouped into four main sections.
I begin by discussing the number concept, from a specu-
lative and rhetorical account of prehistoric rituals to
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mathematics in the ancient world. I examine the relation-
ship between counting and the continuum of measurement,
and try to explain how the rise of algebra has dramatically
changed our world.

The first section ends with ‘mathematical padlocks’ of
the modern era, but in the second section I step back in
time. More specifically, I discuss the origins of calculus,
and the conceptual shift that accompanied the birth of
non-Euclidean geometries. In short, I try to explain how
modern mathematics grew beyond the science of the
Greeks, the Arabs, or other ancient cultures.

In the third section I turn to the most philosophically
loaded terms in mathematics: the concept of the infinite, and
the fundamentals of formal logic. I also discuss the genius
of Alan Turing, and try to elucidate the subtle relation-
ship between truth, proof and computability. In particular,
I focus on a proof of the infinite richness of addition
and multiplication (as demonstrated by Matiyasevich’s
Theorem), and examine Kurt Godel’s celebrated theorems
on the Incompleteness of Arithmetic.

In the final section I consider the role of mathematics
in our attempts to comprehend the world around us. In
particular, I describe the importance of models, and the
role of mathematics in biology. I conclude by taking a step
back from any particular theorem, and try to use what we
have learned about mathematical activity to think about
thinking in general.

One of the challenges in writing this book was doing
justice to the weight of simple, teachable statements.
Some statements are like paper darts: you can follow
them with a lightness of contemplation, if you know to
where they float. If your only guide is to cling to the
words themselves, they cannot carry you, as their target
has not been spoken. Other statements possess gravitas,
as in their accessible simplicity they act like stones,
pulling us down to what can and has been said.
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Unfortunately, people tend to underestimate the value
of simple, understandable statements, as we more often
praise ideas by suggesting they are hard to grasp. As the
great thinker Blaise Pascal remarked in The Art of
Persuasion, ‘One of the main reasons which puts people
off the right way they have to follow is the concept they
first encounter that good things are inaccessible by being
labelled great, mighty, elevated, sublime. That ruins
everything. I would like to call them lowly, commonplace,
familiar. These names befit them better. I hate these
pompous words ...”

The great edifice of mathematical theorems has a crys-
talline perfection, and it can seem far removed from the
messy and contingent realities of the everyday world.
Nevertheless, mathematics is a product of human culture,
which has co-evolved with our attempts to comprehend
the world. Rather than picturing mathematics as the study
of ‘abstract’ objects, we can describe it as a poetry of
patterns, in which our language brings about the truth
that it proclaims. The idea that mathematicians bring about
the truths that they proclaim may sound rather myste-
rious, but as a simple example, just think about the game
of chess. By describing the rules we can call the game of
chess into being, complete with truths that we did not
think of when we first invented it. For example, whether
or not anyone has ever actually played the game, we can
prove that you cannot force a competent player into
checkmate if the only pieces at your disposal are a king
and a pair of knights. Chess is clearly a human invention,
but this fact about chess must be true in any world where
the rules of chess are the same, and we cannot imagine
a world where we could not decide to keep our familiar
rules in place.

Mathematical language and methodology present and
represent structures that we can study, and those structures
or patterns are as much a human invention as the game of
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chess. However, mathematics as a whole is much more
than an arbitrary game, as the linguistic technologies that
we have developed are genuinely fit for human purpose.
For example, people (and other animals) mentally gather
objects into groups, and we have found that the process
of counting really does elucidate the plurality of those
groups. Furthermore, the many different branches of
mathematics are profoundly interconnected, to art, science
and the rest of mathematics.

In short, mathematics is a language, and while we may
be astounded that the universe is at all comprehensible,
we should not be surprised that science is mathematical.
Scientists need to be able to communicate their theories,
and when we have a rule-governed understanding, the
instructions that a student can follow draw out patterns
or structures that the mathematician can then study. When
you understand it properly, the purely mathematical is
not a distant abstraction — it is as close as the sense that
we make of the world: what is seen right there in front
of us. In my view, math is not abstract because it has to
be, right from the word go. It actually begins with linguistic
practice of the simplest and most sensible kind. We only
pursue greater levels of abstraction because doing so is a
necessary step in achieving the noble goals of modern
mathematicians.

In particular, making our mathematical language more
abstract means that our conclusions hold more generally,
as when children realize that it makes no difference
whether they are counting apples, pears or people. From
generation to generation, people have found that numbers
and other formal systems are deeply compelling: they can
shape our imagination, and what is more, they can enable
comprehension. The story of math is fascinating in its
own right, but in writing this book I hoped to do more
than simply sketch a history of mathematical ideas. I am
convinced that the history and philosophy of math provide
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an invaluable perspective on human nature and the nature
of facts, and I hope that my book conveys the subject’s
cultural, aesthetic and philosophical relevance, as well as
the compelling drama of mathematical discovery.
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Chapter I:
BEGINNINGS

“There can be no doubt that all our knowledge begins
with experience. ... But though all our knowledge
begins with experience, it does not follow that it all
arises out of experience.’

Immanuel Kant, 1724-1804

Language and Purpose

Researchers working with infants and animals have found
compelling evidence that we have an innate sense of quan-
tity. More specifically, humans, birds and many other
animals can recognize when a small collection has changed
in size, even if they do not observe the change taking
place. For example, birds can recognize when one of their
eggs is missing, even if they did not witness the egg’s
removal, Similarly, many animals will consistently pick
the larger of two collections when they are given a choice.
Presumably, this sensitivity to quantity is a necessary
precondition for the development of math, and it is inter-
esting to note that some animals are quicker than humans
at intuitively sensing differences in quantity. Nevertheless,
although such abilities constitute evidence for animal intel-
ligence, it is rather inaccurate to claim that ‘birds count
their eggs’.
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I would argue that ‘proto-mathematical’ thinking can
only begin once we have developed language, and that this
kind of understanding is fundamental to many types of
human behaviour, not just what we ordinarily think of as
‘understanding math’. Of course, any account of the life-
style of our Stone Age ancestors is bound to be highly
speculative, but despite the lack of conclusive evidence, I
think it is helpful to imagine how our ancestors first devel-
oped rational capabilities, and the enormously complex
thing that we call language.

Humans are not the only animals to use tools, and for
millions of years our primate ancestors extended their
abilities by utilizing what was found at hand. Sticks,
stones, fur, leaves, bark and all manner of food stuffs
were used in playful ways that we can only guess. Flesh
was scraped from fur, sticks were sharpened and adapted
to a purpose, and stones were knapped to produce effec-
tive butchery kits. Most importantly, about 1.8 million
years ago Homo erectus started using fire to cook, which
reduced the amount of energy needed for digestion,
making it possible to grow larger brains and smaller diges-
tive tracts.

As human intelligence evolved, our vocalizations and
patterns of interaction developed into something that
deserves to be called language. One very plausible specu-
lation is that more intelligent hominids were more
successful in making the most from the complex dynamics
of their social situation, providing the selective advantage
that led to increasing intelligence. In any case, communi-
cative aspects of modern language are common to many
animals. For example, many animals can convey a state of
panic when they see a predator. It is therefore clear that
complex, communicative forms of interaction massively
predate the development of the proto-mathematical, or
any conception that language might be the thing of interest,
rather than the people who were making the sounds.
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This idea is worth elaborating, so as an example of
how a culture of interactions can evolve to something
greater, imagine a woman who lives in a community with
a particular culture of responses: Men who give me tasty
food will hear me hum, but those who grab me without
giving me tasty food will hear me growl. If a man was
trying to establish a sexual relationship with this woman,
he would want to hear the humming sound, because a
woman who hums is much more likely to be interested
in sex than a woman who growls. Consequently, the man
would wilfully do a bit of cooking prior to any sexual
advance, acting to establish the circumstances that he
associates with the humming sound.

By living in such a social context, we came to feel the
sense of our own actions. In other words, we responded
to changing social occasions with increasingly sophisticated
forms of motivated strategy, and were mindful of complex
goals whose achievement required actions beyond those
in the immediate present. For example, the occasion of
preparing an especially tasty meal is not the same occasion
as hearing a woman make the humming sound, but we see
that one is motivated by the other.

Social norms and the vocabulary of praise and blame
are both potent forces for shaping the imagination. It is
absolutely fundamental that we find words with which to
judge our actions, and our judgements work with words.
An example of this endlessly subtle process can be found
in the following conversation:

‘Let’s break into that house.’
‘I don’t know, that seems like a bad idea.’
‘Go on, don’t be chicken.’

We are fearful that our reasoning will compel us to name
ourselves cowards, idiots, or many other kinds of undesired
utterance. The will to avoid such experience is part of our
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humanity, as is the compelling nature of the reasons that
we find. As Blaise Pascal observed, we are most compelled
by the reasons of our own devising, but such complexities
can be closely shared and instinctively taught to others.
The caveman is compelled by the fact that the woman has
established reasons for growling, if he fails to meet the
expectations of an established practice. It is a process of
judgement that he has a feeling for, and the weight of the
utterance is that it is not felt to be arbitrary. Similarly, our
potential thief is pulled by the fact that he too can reason
himself a coward, and does not wish to do so.

However, it is crucial to note that in each of these exam-
ples, the significance of an utterance is inseparable from
the fact that another person has decided to say the state-
ment in question. In other words, we reached the point
of very sophisticated communication long before we ever
considered ‘language’ as a thing in itself, separate from the
people who were speaking.

Human Cognition and the Meaning of Math
The literature of mathematics is largely composed of argu-
ments of the form ‘If A and B are true, then it follows
that C is also true’, and it is worth pausing to wonder
how it is that humans developed the capacity for deductive
reasoning. We are not the only animals who are alert to
the range of possible consequences of our actions, and we
might suppose that our grasp of logical consequence is
only possible because we have evolved the cognitive abili-
ties needed to predict the practical consequences of the
things that we might do. For example, imagine a hungry
ape looking at another ape with some food. It might think
to itself, ‘If I grab the food, that big guy will hit me. I
don’t want to be hit, so therefore I should restrain myself
and not grab the food.’

The fact that we use language fundamentally changes
the character of our reasoning, but it is easy to believe
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that imagining the consequences of potential actions is
an ancient ability that confers an evolutionary advantage.
However, it is hard to see how the evolution of this kind
of ‘reasoning’ about actions and their consequences could
enable abstract thought. After all, the scenario I have
described is all about judging the way to behave in a
complex context, where any new information might
change our prediction of what will happen next, and we
ought to be open to noticing further clues. For example,
if our ape saw the other ape make a friendly gesture, it
might be wise to grab the food instead of letting it go.
That is very different from working out logical conse-
quences, where one thing follows from another,
regardless of any further information that could plausibly
come our way.

Because the social cunning of animals depends on their
grasp of entire contexts, where there are always further
clues, it is difficult to see how that kind of understanding
could provide the cognitive abilities that a mathematician
requires. In contrast, our capacity for spatial reasoning
is much less open ended, and human beings do not need
to be trained to make valid spatial deductions. For
example, suppose that there is a jar inside my fridge.
Now suppose that there is an olive inside the jar. Is the
olive inside the fridge? The answer is yes, of course the
olive is inside the fridge, because the olive is in the jar,
and the jar is in the fridge. Now imagine that the jar is
in the fridge but the olive is not in the fridge. Is the
olive in the jar? Of course not, because the jar is in the
tridge, and I have just told you that the olive is not in
the fridge.

In reasoning about the location of the olive, it is suffi-
cient to bear a thin skeleton of facts in mind. Additional
information will not change our thinking, unless it contra-
dicts the facts that form the basis of our deduction. Also
note that in order to make these deductions, we do not
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need to be initiated into some or other method of symbol-
izing. All humans can reason in this way, so it is plausible
to claim that there are innate neural mechanisms that
underpin our grasp of the logic of containers. Of course,
in order to pose these questions I need to use some words,
but humans (and other animals) find it very easy to under-
stand that containers have an inside and an outside, and
this kind of understanding provides a structure to our
perceptual world.

There is strong empirical evidence that before they learn
to speak, and long before they learn mathematics, children
start to structure their perceptual world. For example, a
child might play with some eggs by putting them in a
bowl, and they have some sense that this collection of eggs
is in a different spatial region to the things that are outside
the bowl. This kind of spatial understanding is a basic
cognitive ability, and we do not need symbols to begin to
appreciate the sense that we can make of moving something
into or out of a container. Furthermore, we can see in an
instant the difference between collections containing one,
two, three or four eggs. These cognitive capacities enable
us to see that when we add an egg to our bowl (moving
it from outside to inside), the collection somehow changes,
and likewise, taking an egg out of the bowl changes the
collection. Even when we have a bowl of sugar, where we
cannot see how many grains there might be, small children
have some kind of understanding of the process of adding
sugar to a bowl, or taking some sugar away. That is to
say, we can recognize particular acts of adding sugar to a
bowl as being examples of someone ‘adding something to
a bow!l’, so the word ‘adding’ has some grounding in
physical experience.

Of course, adding sugar to my cup of tea is not an
example of mathematical addition. My point is that our
innate cognitive capabilities provide a foundation for our
notions of containers, of collections of things, and of
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adding or taking away from those collections. Furthermore,
when we teach the more sophisticated, abstract concepts
of addition and subtraction (which are certainly not
innate), we do so by referring to those more basic, phys-
ically grounded forms of understanding. When we use
pen and paper to do some sums we do not literally add
objects to a collection, but it is no coincidence that we
use the same words for both mathematical addition and
the physical case where we literally move some objects.
After all, even the greatest of mathematicians first under-
stood mathematical addition by hearing things like ‘If you
have two apples in a basket and you add three more, how
many do you have?’

As the cognitive scientists George Lakoff and Rafael
Nuifiez argue in their thought-provoking and controversial
book Where Mathematics Comes From, our understanding
of mathematical symbols is rooted in our cognitive capa-
bilities. In particular, we have some innate understanding
of spatial relations, and we have the ability to construct
‘conceptual metaphors’, where we understand an idea or
conceptual domain by employing the language and patterns
of thought that were first developed in some other domain.
The use of conceptual metaphor is something that is
common to all forms of understanding, and as such it
is not characteristic of mathematics in particular. That is
simply to say, I take it for granted that new ideas do not
descend from on high: they must relate to what we already
know, as physically embodied human beings, and we
explain new concepts by talking about how they are akin
to some other, familiar concept.

Conceptual mappings from one thing to another are
fundamental to human understanding, not least because
they allow us to reason about unfamiliar or abstract things
by using the inferential structure of things that are deeply
tamiliar. For example, when we are asked to think about
adding the numbers two and three, we know that this
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operation is like adding three apples to a basket that
already contains two apples, and it is also like taking
two steps followed by three steps. Of course, whether
we are imagining moving apples into a basket or thinking
about an abstract form of addition, we don’t actually
need to move any objects. Furthermore, we understand
that the touch and smell of apples are not part of the
facts of addition, as the concepts involved are very
general, and can be applied to all manner of situations.
Nevertheless, we understand that when we are adding
two numbers, the meaning of the symbols entitles us to
think in terms of concrete, physical cases, though we are
not obliged to do so. Indeed, it may well be true to say
that our minds and brains are capable of forming abstract
number concepts because we are capable of thinking
about particular, concrete cases.

Mathematical reasoning involves rules and definitions,
and the fact that computers can add correctly demonstrates
that you don’t even need to have a brain to correctly
employ a specific, notational system. In other words, in a
very limited way we can ‘do mathematics’ without needing
to reflect on the significance or meaning of our symbols.
However, mathematics isn’t only about the proper, rule-
governed use of symbols: it is about ideas that can be
expressed by the rule-governed use of symbols, and it
seems that many mathematical ideas are deeply rooted in
the structure of the world that we perceive.

Stone Age Rituals and Autonomous Symbols

Mathematicians are interested in ideas, not just the manipu-
lation of ‘meaningless’ symbols, but the practice of
mathematics has always involved the systematic use of
symbols. Mathematical symbols do not merely express
mathematical ideas: they make mathematics possible.
Furthermore, even the greatest mathematicians need to be
taught the rules before they can make a contribution of
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their own. Indeed, the very word mathematics is derived
from the Greek for ‘teachable knowledge’. The question
is, how and why did human cultures develop a system of
rules for the use of symbols, and how did those symbols
change our lives?

It seems fair to claim that the most fundamental and
distinctive feature of human cognition is our boundless
imagination. We don’t just consider our current situation,
we imagine various ways that the future could pan out,
and we think about the past and how it could have been
different. In general, we inhabit imaginable worlds that
follow certain principles, and compared to other animals,
our thoughts are not overly constrained by our current
situation or perceptions. In particular, we can think about
objects that are not ready at hand, and it is reasonable to
assume that in the distant past, our ancestors would feel
distressed if their desire to act was frustrated by the absence
of some object or tool.

As an animal might express the presence of predators,
our ancestors would gesture, ‘T am missing a flint’. By using
their vocal cords, facial expressions and bodily posture,
they would express their motivated looking. Fellow primates
would respond to this signal in a manner appropriate to
the occasion, having an empathic grasp of what it is to
search in such a fashion. Over countless generations, our
ancestors must have developed ways of conveying a desire
for certain objects, even though those objects were currently
out of sight. Furthermore, at some point our ancestors
must have made the vital step of imbuing those expressive
gestures with an essentially mathematical meaning. This
remarkable feat was not achieved by the discovery of
abstract objects: it was achieved by developing rituals.

Suppose, for example, that there was a pre-existing form
of expression that conveyed the speaker’s irritation over
missing a flint. Now imagine the earliest people running
their hands over their treasured tool kit of flints. As a
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person checked their tools time and time again, they may
have expressed their familiarity with these objects by
reciting a sequence of names. As each tool was touched
in turn, we can imagine our ancestors repeating a distinc-
tive sequence of rhythmic speech, with one word for each
tool, like someone saying ‘Eeny-meeny-miney-mo’. If this
ritual was left unfinished by the time there were no more
objects left to touch, Stone Age humans could see that
they had a reason for making the gesture ‘I am missing a
flint”.

This is not the same as counting with an abstract concept
of number, as whether or not they deserve to be called
mathematicians, even the youngest of children will not
mistake ‘Eeny-meeny-miney’ for ‘Eeny-meeny-miney-mo’.
Sensitivity to the incompleteness of a habitual action is
clearly innate, and this is very close to the sing-song voice
of baby talk and our natural sense of rhythm. When our
ancestors expressed this failure of correspondence between
the present tools and the familiar ritual, the other people
would also know that something was missing, because they
recognized that the ritual had been performed correctly. In
other words, it is the r7t#al that tells us that a flint is missing,
and not just the individual who performed it.

By possessing such a clear sense of justified speech,
people could find grounded meanings in their utterances,
and strategically approach the issues that concerned them
(namely, ‘Is it the case that all the familiar devices are
present?’). In this way, expressive gesture came to signify
more than an immediate cultural resonance, and the primal
gestures that conveyed the sense ‘I am irate over a
missing flint’ become something deeper. The common
sense of valid reasoning gave new weight to our commu-
nications, as by means of the common practice a statement
of fact can be established. In particular, note that the
fact’s appearance in the world is dependent on the prac-
tice itself, not the individual who carried it out. This
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process of language speaking for itself emphatically does
not require the abstract concept of number, and I would
argue that proto-mathematical thought had a gradual
evolution that predates counting by many tens of thou-
sands of years.

The origin of number words as we understand them
today isn’t known for certain, but there are some interesting
theories supported by linguistic evidence. It may be that
practices closely related to counting arose spontaneously
throughout the world, more or less independently from
place to place. However, the mathematician and historian
of science Abraham Seidenberg (1916-1988) proposed that
counting was invented just once, and then spread across
the globe. Number words are often related to words for
body parts, and Seidenberg claimed that the similarities in
number words from very distant places constitutes evidence
for his theory. He also made the intriguing observation
that in almost every numerate culture, there is an ancient
assoclation between the odd numbers and the male, while
the even numbers are female.

There is certainly plenty of evidence that animals are
aware of who is first in the pecking order, who is second,
third and so on. Seidenberg suggests that counting origi-
nated in rituals based on rank and priority, arguing that
counting ‘was frequently the central feature of a rite, and
that participants in the rite were numbered’. Whether the
first numbers or number-like words were applied to an
ordered sequence of people, or used to assess the plurality
of a collection of tools, it is clear that the human mind
has been capable of learning how to count for tens of
thousands of years.

Itis important to note that mathematics is not a universal
human trait, as some cultures have no words for numbers
larger than three. Furthermore, some people have a highly
cultured sense of quantity even though they cannot really
count, as their language has too few number words.
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For example, the Vedda tribesman of Sri Lanka used to
‘count’ coconuts by gathering one twig for each coconut.
The people who did this clearly understood that there was
a corresponding plurality between the twigs and the coco-
nuts, but if asked how many coconuts a person had
collected, they could only point to the pile of twigs and
say ‘that many’.

The first expressions of quantity are lost deep in the
mists of time, but it is surely safe to assume that long
before the advent of abstract number words, people had
one word for ‘hand’, and a different word for ‘pair of
hands’. The move from words that convey quantities of
specific physical things to an abstract or universally appli-
cable language of number is an example of logic at work.
That is to say, once we have a sequence of words for
‘counting’ something or other, it is possible to recognize
that it is the words themselves that form an ordered, rule-
governed sequence, and they need not be bound to any
particular thing that people are used to counting.

Making Legible Patterns
As human beings we live in a world of people and things,
sights and sounds, tastes and touches. We don’tsee a pattern
on our retina: we see people, trees, windows, cars, and
other things of human interest. This relates to the fact that
we use language to think about our world, doing thmgs
like naming obJects or creating accounts of people or situ-
ations. My point is that human beings conceptually
structure the perceptual flux in which we live, so our use
of symbols, images and words is central to making sense.
For example, imagine a young child drawing a picture
of Daddy: a stick-man body with a circle for a head, two
dots for eyes and a U-shape for a smile. It is significant
that each part of this drawing can be named, as we under-
stand, for example, that two dots can represent the eyes.
The art of 30,000 B¢ was probably somewhat similar to a
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child’s drawing, not because our ancestors were simple
minded, but because drawing nameable things is such a
basic, human skill. Indeed, we can say that children’s draw-
ings are understandable precisely because we can talk our
way about them.

Our ancestors decorated caves with vivid illustrations
of large mammals, but they also used simpler marks
(arrangements of dots, V-shapes, hand prints, etc.). Just as
a child might not need to draw ears and a nose before
their marks become a face, so the caveman artist may have
drawn some tusks and already seen a mammoth. Such
stylized, intelligible drawings are not the same as writing,
but there is a related logic of meaningful marks, and it is
surely safe to assume that our ancestors talked about their
drawings. As another example of Stone Age pattern making,
archaeologists in central Europe found a shinbone of a
wolf marked with fifty-seven deeply cut notches. These
marks were arranged in groups of five, and carbon dating
indicates that this bone is over 30,000 years old.

People and animals alike are good at spotting patterns.
In particular, many birds and mammals are demonstrably
sensitive to changes in quantity. Time and time again
humans have discovered a basic technique for clearly
showing quantity: we group elements together in a regular
way, so that a single ‘counting’ operation is broken into
a combination of simpler assessments. For example, we
can recognize four as a pair of pairs, or ten as a pair of
fives. This means that even before one can count, it is
easier to assess the plurality of things if they are arranged
in regular groups, rather than scattered in a disordered
fashion. Furthermore, once we have words for numbers,
this practical idea can lead us to the concept of multiplica-
tion. This suggests that by the time that our ancestors had
articulated an abstract concept of number, people were
counting by dividing their things into regular groups and
counting off five, ten, fifteen, twenty (say). In other words,



26 MATHEMATICALTHOUGHT

the times tables may be just as old as abstract number
words themselves.

Mathematics has been described as the language of
patterns, and there is a deep relationship between our
innate tendency to recognize patterns, and our cultured
sense of shape and number. Long before we developed
proper number words, ancient peoples must have recog-
nized the reality of patterns, and explored some formal
constraints. Very ancient peoples must have known that
triangles can be arranged to produce certain shapes or
patterns, but there are some shapes (e.g. a circle) that
cannot be made from triangles. People have been
exploring patterns for tens of thousands of years, using
their material ingenuity (e.g. pottery and basket weaving),
music, dance and early verbal art forms. For example, it
is an evident truth that if you clap your hands every
second heartbeat, and stamp your feet every third one,
there necessarily follows one particular combined rhythm
and not others.

FEETERTF
» 2 D -

The meaningfulness of mathematical statements did not
appear from nowhere, and we don’t need ‘proper’ mathe-
matics to first be aware of quantity and shape. Before
people developed counting or abstract number words, they
might have used a phrase like ‘as many bison as there are
berries on a bush’, or shown a quantity with an artistic
abundance of marks. After all, our artist ancestors surely
strove to be eloquent, and someone must have been keen
to show the size of a massive herd. Many generations later,
the advent of counting gave birth to the concept of number:
a great advance in our ability to conceptually distinguish
between different pluralities.

At first our ancestors must have only used their counting
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words in particular situations, but over time we realized
that in order to count any collection of objects, we do not
need to keep our eyes on the qualities of the objects them-
selves. In a sense we can count any collection of objects,
so long as we can give each object a name (e.g. by attaching
labels). From that point on we can play the counting game
simply by reviewing the sequence of names that we
ourselves have given, even if our labels become detached
from their associated objects.

Many, many social needs require calculation and number,
and over the long arc of prehistory mathematics continued
to evolve along with the social systems that supported
mathematical techniques. In return, more sophisticated
mathematics enabled more complex social structures. For
example, an inheritance cannot be distributed unless certain
facts about division are known, and at a more sophisticated
level, tax rates and monetary systems are literally incon-
ceivable without the concept of number.

The development of agriculture revolutionized our
ways of life, and according to many ancient historians,
geometry (Greek for earth-measuring) came into being
as people needed to speak authoritatively and unconten-
tiously about the size of fields. In particular, every year
Egyptian mathematicians needed to replace the property
markers that were washed away from the flood plains of
the Nile. The story of geometric techniques arising with
the need to measure fields is certainly plausible, but there
were also prehistoric traditions for communicating
specific plans for temples and other buildings, which
necessarily involves a language of shape, so this claim
may not actually be correct. What is known for certain
is that by the third millennium Bc, civilizations with
sophisticated mathematical practices had developed along
the fertile banks of many of the world’s great rivers. The
Nile, the Tigris and Euphrates, the Indus, the Ganges,
the Huang He and the Yangtze all provided ground for
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these new ways of life. Furthermore, mathematics had a
central role to play in the emergence of large-scale civi-
lizations, not least in the development of trade, measured
and planned construction, administrative techniques,
astronomy and time keeping.

The Storage of Facts

You might guess that the oldest recorded numbers would
be fairly small, but in fact archaeologists have found that
some of the oldest unambiguously numerical records refer
to the many thousands of cattle that Mesopotamian kings
had claimed through war. It is also interesting to note that
no civilization has ever become literate without first
becoming numerate, and almost every numerate civilization
is known to have used some kind of counting board or
abacus. In other words, tools for recording the counting
process are much, much older than tools for recording
speech. Greeks and Romans used loose counters, the
Chinese had sliding balls on bamboo rods, and the Ancient
Hindu mathematicians used dust boards, with erasable
marks written in sand.

Because of geographical distance, it is assumed that the
development of mathematics in the Americas was
completely independent from that of Europe and Asia. It
is therefore remarkable to note that around 1,500 years
ago, the Maya were employing number symbols much as
we do today. The Incas were a more recent civilization
than the Maya, and although the Incas never developed a
system for making records of the spoken word, they could
record information by using a system of knotted cords
called guipus. These were colour coded to represent the
various things that were counted, and scribes would read
the clusters of knots by pulling the cord through their
hands. Each cluster of knots represented a digit from one
to nine, and a zero was represented by a particularly large
gap between clusters.
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Quipus with as many as 1,800 cords have been found,
and as different-coloured threads signified different kinds
of information, these fascinating objects demonstrate that
sophisticated record keeping is not the exclusive domain
of the written word. Very few quipus have survived, and
given that they are far more distant than the Incas, it is
plausible that many prehistoric civilizations possessed
long-lost means of embodying data. It is worth remem-
bering that only a tiny subset of equipment survives the
ravages of time, and if people kept records by arranging
pebbles or making scratches on bark, we might have no
way of knowing. As the mathematical historian Dirk Struik
has suggested, the builders of ancient monuments like
Stonehenge must have had some idea of what it was that
they were building. Many of the regular features of this
construction cannot be accidental, and it seems highly
unlikely that the builders didn’t know what they would
do with the stones until they got them on site. Their
means of communicating intent may well have involved
physical artefacts that embodied data unambiguously. For
example, they may have made shadow casting models that
showed exactly how many stones were going to be
arranged, and their orientation in relation to the sun’s
path.

The ancient civilizations of Asia used bamboo, bark and
eventually paper to keep records of numerical information.
Although the origins of their mathematical knowledge
remain obscure, certain pieces of Chinese mathematics have
been faithfully passed down through hundreds of genera-
tions. For example, consider the following ‘magic square’,
known as the Lo-Shu. Legend has it that this mathematical
pattern emerged from the Yellow River on the back of a
giant turtle about 4,000 years ago. We can’t really be certain
about the true age of the Lo-Shu, but we do know that it
was considered to be truly ancient knowledge as far back
as the Han dynasty (206 sc—aD 220).



