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1
A Discipline of Multiprogramming

1.1 Wide-Area Computing

The main software challenge in developing application programs during the
1960s and the 1970s was that the programs had to operate within limited
resources, i.e., slow processors, small memories, and limited disk capacities.
Application programming became far more widespread during the 1980s be-
cause of the falling prices of hardware (which meant that more processing
power and storage were available for the same cost) and a better under-
standing of the application programming process. However, most applica-
tions still ran on mainframes or over a cluster of machines in a local-area
network; truly distributed applications that ran over wide-area networks
were few because of the latency and bandwidth limitations of long-haul
communication. The 1990s saw great strides in broad-band communica-
tion, and the World Wide Web provides a giant repository of information.
This combination promises development of a new generation of distributed
applications, ranging from mundane office tasks —e.g., planning a meeting
by reading the calendars of the participants— to real-time distributed con-
trol and coordination of hundreds of machines —e.g., as would be required
in a recovery effort from an earthquake.!

The obvious problems in applications design that are related to the char-
acteristics of wide-area communication are security and fault-tolerance.

1T am indebted to my colleague Harrick Vin for this example and extensive discussions
on related topics.
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These issues were present even when most computing was done on a single
processor, but they have been magnified because messages can be inter-
cepted more easily over a wide-area network, and it is more likely that some
node will fail in a 1,000-node network. We contend that growth in appli-
cations programming is hindered only slightly by these technical problems;
the crucial barrier is that distributed application design is an extremely
difficult task because it embodies many of the complezities associated with
concurrent programming.

The distributed applications we envisage have the structure that they
collect data from a number of sources, compute for a while, and then dis-
tribute the results to certain destinations. This simple paradigm hides a
multitude of issues. When should an application start executing— when
invoked by a human, by another application, periodically, say, at midnight,
or triggered by an event, say, upon detection of the failure of a communica-
tion link? How does an application ensure that the data it accesses during a
computation is not altered by another concurrently executing application?
How do communicating parties agree on the structure of the data being
communicated? How are conflicts in a concurrent computation arbitrated?
In short, the basic issues of concurrent computing, such as exclusive access
to resources, deadlock, and starvation, and maintaining consistent copies
of data, have to be revisited in the wide-area context.

One set of issues arises from the current structure of the World Wide
Web. The Web sites are designed today under the assumption that their
users are humans, not machines. Therefore, the sites are suitable for nav-
igation by humans, and the browsers make it pleasant —by permitting
clicks on hyper-links, for instance— for humans to visit related sites from a
given site. The emphasis on human interaction has made it difficult, unfor-
tunately, for machines to extract data from one or more sites, compute, and
distribute the results to a number of users. For instance, given a database
of news sites, it is not easy to “display all stories about cyclones published
in the last 3 days”. Given that professors in a department produce a grade
sheet for each course they teach, it is currently a major effort to collate this
information and produce the grade sheets for all students. Nor is it easy to
arrange a meeting of professors all of whose calendars are available online.

Proposal for a programming model

There seems to be an obvious methodology for designing distributed appli-
cations: represent each device (computer, robot, a site in the World Wide
Web) by an object and have the objects communicate by messages or by
calling each others’ methods. This representation maps conveniently to the
underlying hardware, and it induces a natural partition on the problem that
is amenable to stepwise refinement. We start with this model as the basis,
and simplify and enhance it so that it is possible to address the concurrent
programming issues.
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The current view of wide-area programming typically requires a human
being to invoke a method, and the method provides its results in a form
suitable for human consumption. A program that runs each week to plan
a meeting of a set of professors —by scanning their calendars, reserving a
room for that time, and notifying the affected parties— is quite cumber-
some to design today (see the example in section 1.2). Such programs that
run autonomously based on certain conditions —once a week, whenever
a grade is posted for a student, or when the stock market crashes— are
called actions in this book. The coding of methods and actions are essen-
tially identical, and we treat them similarly in the programming model.

We espouse a more elaborate view of methods (and actions) that is ap-
propriate for wide-area computing. It may not always be possible for a
method to be executed because the state of the object may not permit it.
Such is the case for a P-method on a semaphore [58] when the semaphore
value is zero, or a monitor [90] procedure that is called to remove an item
from a buffer when the buffer is empty. The traditional approach then is to
queue the caller, accept calls on other methods that may change the object
state, and complete a queued call only when the object state permits it.
Therefore, it is possible for a caller to be queued indefinitely.

We adopt a different approach: a call should be accepted by a method
only if its completion is guaranteed, and rejected otherwise; a rejected caller
may attempt its call in the future. Callers are not queued, and each caller
is guaranteed a response from the called procedure in finite time.

The programming model proposed in this book and the associated theory
have been christened Seuss. The major goal of Seuss is to simplify multi-
programming?. To this end, we separate the concern of concurrent imple-
mentation from the core program design problem. A program execution is
understood as a single thread of control —sequential executions of actions
that are chosen according to some scheduling policy— yet program imple-
mentation permits concurrent executions of multiple threads (i.e., actions).
As a consequence, it is possible to reason about the properties of a program
from its single execution thread, whereas an implementation may exploit
the inherent concurrency for efficient execution. A central theorem estab-
lishes that multiple execution threads implement single execution threads;
i.e., for any concurrent execution of actions there exists an equivalent serial
execution of those actions.

The programming model is minimal; all well-known constructs of con-
current programming —process, message communication, synchronization,
rendezvous, waiting, sharing, and mutual exclusion— are absent. However,
the built-in primitives are powerful enough to encode all known communi-
cation and synchronization protocols succinctly. The fundamental concepts

2We use the terms “multiprogramming” and “concurrent programming” synony-
mously.
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in the model are objects and procedures; a procedure is a method or an
action. No specific communication or synchronization mechanism, except
procedure call, is built in.

Seuss proposes a complete disentanglement of the sequential and con-
current aspects of programming. We expect large sections of concurrent
programs to be designed, understood, and reasoned about as sequential
programs. A concurrent program merely orchestrates executions of its con-
stituent sequential programs, by specifying the conditions under which each
sequential program is to be executed.

1.2 An Example: Planning a Meeting

To illustrate the intricacies of concurrent programming and motivate dis-
cussion of the programming model, we consider a small though realistic
example.

1.2.1 Problem description

Professors in a university have to plan meetings from time to time. Each
meeting involves a nonempty set P of professors; the meeting has to be
held in one of a specified set R of rooms. A meeting can be held at time ¢
provided that all members of P can meet at ¢t and some room in R is free
at t. Henceforth, time is a natural number and each meeting lasts one unit
of time. The calendar of professor p can be retrieved by calling procedure
p.next with a time value as argument: p.next(t) is the earliest time at or
after t when p can meet. Similarly, for room r, r.next(t) is the earliest time
at or after ¢ when r is free. Thus, p.next(t) = t denotes that p can meet at
t, and there is a similar interpretation of r.next(t) = t.

Our goal is to write a procedure plan that returns the earliest meeting
time within an interval [L,U), where the interval includes L and excludes
U, given P and R as arguments; if no such meeting time exists, that fact is
reported. Once a suitable meeting time and the associated room are deter-
mined, the calendars of the affected professors and the room are changed to
reflect that they are busy at that time. To this end, each professor or room
z has a procedure z.reserve; calling z.reserve(t) reserves z for a meeting
at t.

A simpler version of this problem appears in [32, section 1.4] and is also
treated in sections 5.5.2 and 6.5.2 of this book. In these versions, room
allocation is not a constraint. In the current version, professors impose a
universal constraint —all professors in P have to meet at the scheduled
time— and the rooms impose an existential constraint —some room in R
should be free then.
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1.2.2  Program development

Assume that rooms are represented by integers so that they can be numer-
ically compared. Also, for any professor or room z, z.next is ascending and
monotonic; i.e., for all times s and ¢,

t < z.next(t), and
s <t = z.next(s) < z.next(t) .

See section 5.5.2 for a discussion of these requirements.

Notation The notations for arithmetic and boolean expressions used in
this example are explained in appendix A.2.1. In this section

(Vz: z € P: t=znext(t))
means that all professors in P can meet at ¢,
(Jy: y€ R: t=y.next(t))
means that some room in R is free at t,
(maz p: p € P: pnext(t))
is the maximum over all p in P of p.next(t), and
(miny: y € RAt=y.next(t): y)
is the smallest (numbered) room in R that is free at ¢.
The value of the expression is oo if no room is free at t. O

Define time t to be a common meeting time (abbreviated to com) if all
professors in P can meet and some room in R is free at t. That is,

com(t) =
(Vz: z€P: t=z.next(t)) A (Jy: y€ R: t=ymnext(t)).

Note that,

(Vr: z€ P: t==zxnert(t)) = (t=(maxp: p€ P: pnext(t))).
Similarly,

(Fy: yeR: t=y.next(t)) = (t=(minr: r € R: rnext(t))).
Therefore,

com(t) =
t=(maxp: p€ P: pnext(t)) A t=(minr: rc R: rnext(t)).

In the following procedure, variable ¢ is repeatedly assigned values of the
expressions in the two given conjuncts of com(t) (in a specific order, though
any order would do) until com(t) holds or ¢ falls outside the interval [L,U).
If there is a common meeting time in [L,U), then t is set to the earliest
such time and r to a room in R that is free at ¢. If there is no such time
in [L,U), t is set to a value above the interval, i.e., t > U; the value of r is
then irrelevant. We assert without proof that L < t is an invariant of the
main loop in procedure plan given next.
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procedure plan(P,R,L, U, t,r)

t:= L;

while —com(t) A t<U do
t:=(maz p: p€ P: pmext(t));
t:=(minr: reR: rnext(t))

enddo ;

{({L<t) A (com(t) vV t>U)}

if t<U then {com(t) A L<t<U}

{reserve the professors in P at t}
for p€ P do p.reserve(t) endfor ;

{find a room in R and reserve it at t}
r:=(miny: y€ R A t=ynext(t): y);
r.reserve(t)

endif
end {plan}

1.2.3 Correctness and performance of plan

There are two ways to look at the correctness question: (1) plan is correct if
none of the calendars (of the professors or the rooms) is changed during its
execution by another program, and (2) plan is correct even when the cal-
endars are changed during its execution. The first proposition, sequential
correctness, is considerably easier to establish. For the current discussion,
sequential correctness is not the central issue. There are well-known meth-
ods to establish such results; we refer the reader to sections 5.5.2 and 6.5.2
of this book for a thorough treatment of a variation of this problem. 3

The second problem listed, correctness under concurrent execution, is
very hard. Procedure plan may not work correctly if the calendar for some
member of P or R is changed during its execution. In particular, concurrent
executions of two instances of plan may reserve a room (or a professor) for
two meetings simultaneously.

The problem is eliminated if each instance of plan gains exclusive access
to the shared data, by explicitly locking the calendars of the members of P

3Correctness arguments can be based on the following facts: (1) any common meeting
time in the interval [L,U) is at least t (therefore, if plan returns such a time, t is the
earliest common meeting time), and (2) if —com(t) At < U holds, t will be increased
eventually (therefore, either a common meeting time will be found or ¢ > U will hold).
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and R before it commences execution. A more sophisticated strategy is to
employ two-phase locking [20, 67]: all locks are acquired before any unlock-
ing. Additionally, if the locks are acquired in a specific order, deadlock can
be avoided. The programmer can introduce explicit locks into the code, or
a compiler can insert them. Another possible protocol is as follows: each
professor or room tentatively commits to a time whenever next is invoked
and a commitment becomes permanent when reserve is invoked.

To execute several instances of plan concurrently, we can also exploit
some of the properties of the program. For instance, if two instances of
plan have disjoint sets of professors and disjoint sets of rooms or disjoint
intervals [L,U), their executions are non-interfering, and they can be ex-
ecuted concurrently. A more sophisticated scheme is to run exactly one
iteration of the loop in each invocation of plan; if the iteration finds a com-
mon meeting time, then the rest of the procedure is executed to reserve the
room and the professors and inform the caller; if no such time is found and
t < U after an iteration, then the call is rejected, i.e., the caller is asked
to retry the call in the future. Thus, each call of plan locks the required
data for only one iteration. Successive calls to plan may start with differ-
ent calendars, and the requirement of the earliest meeting time may have
to be replaced with any meeting time. However, such strategies are prob-
lem dependent; we cannot expect a program analyzer to deduce program
properties and implement such strategies automatically.

1.3 Issues in Multiprogram Design

1.3.1 Concurrency is not a primary issue in design

We espouse the thesis that programmers should be concerned primarily
with the problems they are solving and only secondarily with the imple-
mentation issues, such as concurrency. We have advocated this thesis for
a number of years and demonstrated it in a number of examples in [32].
We continue to advocate that explicit concurrency considerations do not
belong in program design, at least not in the early stages. A concurrent
program should be designed as if each component in it will be executed
in isolation; all other programs in the universe are suspended in favor of
the executing component, and all state changes are attributable to this
component alone.

The immediate consequence of this suggestion is that concurrent pro-
gramming is now a vastly simpler task. Unfortunately, it is also a vastly
impractical task because of severe degradation in performance. We exam-
ine these two issues next —correctness in this section and performance in
section 1.3.3.

As we argued in section 1.2.3, correctness is much easier to establish if
each component of a program is executed in isolation. In this book, the



8 1. A Discipline of Multiprogramming

unit of uninterrupted execution, called an action, is a sequential program.*
If several actions have to be executed, they are executed in arbitrary, but
serial, order; i.e., their internal steps are never interleaved. Thus, execution
of an action completes before another is started.

Correctness of an individual action is established using traditional theo-
ries. An action is specified by a pair of predicates, its pre-condition and
post-condition, and its correctness criterion is as follows: starting in a
state where the pre-condition holds, execution of the action terminates
in a state where the post-condition holds. (Termination is discussed later.)
This aspect of programming and proof theory is in the domain of sequen-
tial programming, and we have little to say about it in this book. We are
concerned largely with how to compose programs from objects and ob-
jects from procedures. We develop notations, methodology, and logic for
designs of such programs. Correctness of a program can be deduced from
the specifications of its constituent actions using some flavor of tempo-
ral logic [32, 118, 127, 128, 138, 139]; we develop an enhanced version of
UNITY logic [32] in this book.

The constraint on executions of actions —execution of an action com-
pletes before another is started— has the consequence that “waiting” is
now a meaningless concept. Since an action is executed alone, it cannot
wait for another action to establish a condition for continuation of its exe-
cution. A process may wait neither to receive data along its input channel
nor for a resource that it has requested to be granted; queuing up for a
semaphore is a fruitless activity. Rendezvous-based communication that
requires simultaneous participations of a sender and a receiver is outside
our programming model. Our actions are all wait-free. Further, if an action
is executed forever, it prevents execution of every other action. Therefore,
execution of each action must be guaranteed to terminate (when started in
an appropriate state). Termination guarantee is part of sequential correct-
ness and is an obligation on the programmer. Qur concern, therefore, is to
develop a theory of programs consisting of wait-free, terminating actions.

1.3.2  Structuring through objects, not processes

The unit of abstraction in a typical concurrent program is a process. Pro-
cesses are executed autonomously and concurrently, and they communicate
with each other either through global shared variables or messages. Our
model —a program is a set of wait-free, terminating actions— admits a
different style of structuring, consisting of objects, and process communi-
cation is replaced by method call.

4An action can be a parallel program as long as its semantics can be specified by a
pre-condition and a post-condition.
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A program consists of a set of objects. Each object includes a set of pro-
cedures, where a procedure is either a method or an action. Actions and
methods are similar; the only difference is that an action is executed au-
tonomously, while a method is executed when it is called, as p.next and
r.next are executed by being called from plan. The rule for action execution
obeys a weak fairness condition: each action is executed infinitely often.
(Therefore, a program execution is nonterminating, though each compo-
nent action execution terminates.) Execution of a procedure —action or
method— is strictly sequential: if a procedure calls a method of another
object, the caller is suspended and resumes only on completion of the called
method. Recall that completion of each method is guaranteed.

For the meeting planning problem, imagine that each committee of pro-
fessors is represented by an object; this object may include an action that is
executed periodically, say, at the start of each workweek to plan a meeting
for that week. Procedure plan is a method that belongs to another object.
Also, each professor and room is a separate object that includes the meth-
ods next and reserve. Execution of the action in committee initiates a call
to plan, with professors in that committee and a set of appropriate rooms
as arguments. Execution of plan calls on methods next and reserve of pro-
fessor and room objects, as shown earlier. On completion of its execution,
plan returns control to the calling action in committee. That action may
then inform the members of the meeting time and the room (or that no
meeting can be planned for that week).

Observe that there is no need to explicitly lock or unlock the calendars
of the professors and rooms, because at most one instance of plan is exe-
cuting at any moment. The program can be studied entirely as a sequential
program, because concurrency aspects have been excluded during program
design.

1.8.3 Implementation for efficient execution

The suggested execution strategy of one action execution at a time is only
an illusion. The strategy makes it easier to design and understand pro-
grams, but it is totally impractical since it does not permit any concurrent
execution; no two sites in the universe can have programs executing simul-
taneously.® What we want, ideally, is for the actions of a program to be
executed concurrently for performance reasons, yet for humans to under-
stand the program as if the actions are executed sequentially.

Two actions that are completely independent —i.e., no object is accessed
or modified by both— can be executed simultaneously without causing
interference. The notion of independence can be refined to allow concurrent

5Purists may argue that simultaneity is a meaningless concept in an Einsteinian
universe.



10 1. A Discipline of Multiprogramming

executions of actions if their executions have the same effect as their serial
executions in some order. In chapter 10, we define a binary relation, called
compatibility, over the procedures and show that concurrent executions of
compatible actions are equivalent to some serial executions of these actions.

Operations P and V on general semaphores are compatible and so are
put and get over unbounded first-in—first-out channels. That is, whenever a
call on get can be accepted, an execution of put before or after get has the
same effect on the program state. However, operations read and write on a
shared file are not compatible, as would be expected; the outcome of a read
may depend on whether a write precedes or follows it. For the planning
problem, p.next and g.next are compatible for all professors and rooms p
and ¢ (including p = q). However, p.next and p.reserve are not compatible
because executing them in different order may yield different outcomes.
Therefore, two invocations of plan cannot be executed concurrently if one
may possibly call p.next and the other p.reserve.

Programmers have been successful in writing concurrent programs be-
cause, we believe, most pairs of actions are compatible. A scheduler can
be employed to ensure that only compatible actions are executed concur-
rently; see an implementation in chapter 11. The programmer need only
specify the pairs of methods in each object that are compatible; an effi-
cient algorithm determines compatibility for all pairs of procedures given
this information. The programmer’s specification may be incomplete; if no
pairs are specified to be compatible, the program is still executed correctly
but with a reduced amount of concurrency. The scheduler in chapter 11
effectively simulates acquisition and release of locks. The scheduler can be
distributed. Other implementation schemes, inspired by database commit
protocols, can also be developed.

1.8.4 Transformational and reactive procedures

What happens when a procedure calls a method to request a resource and
the resource is unavailable, such as attempting to receive a message from
a channel that is empty? The called method can return an exception code
to denote that it cannot be executed successfully. However, this type of
interaction is common enough in concurrent programming that we distin-
guish between methods that always accept calls (execute their codes and,
possibly, return some values) and those that may reject a call (to denote
that the method cannot be executed in the present state). The former are
called total methods and the latter partial methods. This distinction plays
a central role in the programming model as well as in the development of
the theory of concurrent execution.

A procedure in traditional sequential programming —to sort an array
of integers, for instance— is a total method in our model. A procedure
such as a P operation on a semaphore or a get operation on a channel
is a partial method, because P and get can cause a caller to wait. Since
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our model does not admit waiting, partial methods reject a call whenever
completion cannot be guaranteed. In fact, a rejection should happen as
early as possible in the execution of an action. In our model, rejection
takes place before any change in the caller’s state, and rejection itself does
not affect the caller’s state. Therefore, the caller is oblivious to rejection. In
database terminology, rejection is “abort”, and abort, in general, requires
a rollback of the system to a valid state. However, our model avoids this
problem because a call is rejected before causing any state change that
requires rollback.

A rejection represents a transient condition, whereas acceptance repre-
sents a stable condition. In traditional concurrent programming, if a pro-
cess polls its incoming channel and finds it empty, it cannot assert that
it is empty (and, hence, start a computation based on channel emptiness)
because the condition may be falsified even before the start of the compu-
tation.

A total procedure represents a transformational program; a partial pro-
cedure, a reactive program, in the terminology of Manna and Pnueli [127].
We exploit the distinction between total and partial procedures to get a
weaker definition of compatibility (i.e., more pairs of actions are compatible
—hence, more pairs can be executed concurrently— than would be possi-
ble if all methods were regarded as total). See section 3.4.1 for a longer
discussion on partial and total procedures.

1.4 Concluding Remarks

Most process control systems —e.g., telephony, avionics— are conveniently
represented using actions. Even an operating system can be structured in
this manner. Typical actions in an operating system may be for garbage
collection, response to a device failure, and allocation of resources in re-
sponse to a request. A process control system includes actions that receive
and process data from external sources, update internal data structures,
and detect dangerous operating conditions. Each of these actions may in-
volve a large amount of computation, but at the level of program design
it makes sense to regard each action as a unit and design a larger system
based on the units.

Programming of individual actions is a much-studied subject in the arena
of sequential programming. This book contributes little to that effort. The
emphasis in this book is on the compositions of actions and objects. Com-
position is fundamental for designs of complex software systems. Our work
addresses some of the issues in program composition, including specifica-
tions of interfaces, predictions of system properties from the component
properties, and design principles for “safe” compositions of subsystems.



12 1. A Discipline of Multiprogramming

A programming model is incomplete without an appropriate theory to aid
its user in the analysis of programs. This is particularly true for concurrent
programs because they tend to be harder. An action is often designed
by assuming that the starting state, i.e., its pre-condition, satisfies some
invariant. The obligation of the action is to reestablish the invariant as a
post-condition. Additionally, establishment of progress properties, such as
that execution of each action achieves a certain goal —planning a meeting,
for instance— requires a theory that is more general than the study of
invariants. We propose such a theory in this book.

1.5 Bibliographic Notes

The programming model that most closely resembles the approach pre-
sented here is transaction processing. There is a vast amount of literature
on that subject; we refer the reader to Gray and Reuter [78] for a compre-
hensive survey. Bernstein and Lewis [19] contains a thorough treatment of
concurrency issues in database systems. See Broy [26] for another approach
to designs of distributed applications. Feijen and van Gasteren [69] have
developed a beautiful approach, based on the classic work of Owicki and
Gries [145], for designs of multiprograms, and they illustrate the approach
convincingly on a large number of examples. It is yet to be seen if their
work will scale up for larger problems. Jackson [95] discusses a number of
thought-provoking issues in specification and programming methodology.
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Action Systems

In chapter 1 we suggested that a program be structured as a set of objects.
Each object consists of actions and/or methods, where the actions are exe-
cuted autonomously (following a specific execution rule) and the methods
are executed when they are called. In this chapter, we consider a simpler
version of this model; we eliminate the methods altogether, retaining only
actions. The immediate consequence of this decision is that the objects
can no longer communicate through procedure calls; we require the objects
to communicate via shared variables. Actions from different objects can
read/write into these variables. However, at most one action is executed at
any time, so there is no possibility of concurrent write into a variable.

This is an appropriate model for programs where communications among
components play a minor role; computations of a single component are of
the primary interest. We have chosen to study this simpler model —called
action systems— because many of the basic concepts of the general model
can be explained within it. The simpler model suffices for many problems;
we can express the solution to a problem as an action system and study its
properties employing a simple logic, which we develop in chapters 5 to 9.
We describe the general programming model in chapter 3 and a logic for it
in chapter 12.



16 2. Action Systems

of a program are restricted by the following fairness condition: each action
is executed infinitely often in each execution.

It may seem that an infinite execution is meaningless if the computa-
tion is guaranteed to terminate. A terminating computation continues to
execute its actions, but no action execution has any effect; therefore, the
final state repeats forever. The execution rule defines a logical view of the
execution; in an implementation, once it is detected that a final state has
been reached, the execution may be stopped and the resources released
for other tasks. However, the logical view is convenient for developing a
uniform treatment of terminating and nonterminating computations.

Variable types The basic types used for variables in this book are inte-
ger, boolean, and nat (for natural, i.e., non-negative integers). Enumerated
type with values {a, b, ¢, d}, for instance, is written as enum {a, b, c,d}. We
simply write type to denote a polymorphic type, when type information
has no relevance to the discussion. The structured types used are record,
set, bag, array, and seq (for sequence). For a structured variable the type
of its elements is also specified, and for each array its bounds. We write ( )
for an empty sequence, and () for both empty set and empty bag. O

2.3 Properties of Action Systems

A thorough treatment of program properties is given in chapters 5 and 6.
Here, we describe two of the main concepts —invariant and fized point—
that are necessary for understanding the examples in this chapter. Progress
properties —that a program eventually reaches a desired state— are de-
scribed in detail in chapter 6; for the moment, we rely on the reader’s
intuition to establish progress properties.

2.83.1 Invariant

An invariant is a predicate that is initially true and is preserved by ex-
ecution of each action. Therefore, an invariant is always true during an
execution. (The states reached during an execution are the initial state
and the state following the execution of each action. The states that are
reached during execution of an action are invisible; we can observe the
states only before and on completion of each action execution.) Formally,
predicate p is an invariant if both of the following conditions hold.

initial condition = p
for each action of the form g — s, {pAg} s {p}

Here, {p A g} s {p} denotes that any execution of s started in a state
that satisfies p A g terminates in a state that satisfies p; see appendix A.4.1
for details about this notation.
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As an example, consider a program that consists of the following box
only.

box small
integer z,y = 0,0,

r<y = z:=z+1
| v:=mazx(z,y)+1
end {small}

We claim that z < y is an invariant for this program. We have
initially 2 =0 A y=0
which implies < y. We can show that

{z<yANz<y} z:=2+1 {z <y}
{z <y} y:=maz(z,y)+1 {z <y}

The notion of invariant is perhaps the most important foundational con-
cept in this book. It is essential for writing specifications and designing
programs.

2.3.2  fized point

A fixed point of a program is a state that remains unchanged by execution
of any action. Therefore, once a fixed point is reached, further execution
of the program has no effect. The set of all fixed points is described by a
predicate called FP.

It is possible to compute FP from the code of a program provided that
we know the states left unchanged by each action. Consider a program
whose action 7 is of the form g; — s;. Let predicate b; hold in exactly
those states where the execution of s; has no effect. Then

FP = (Vi: g, = b;)

Observe that FP holds in any state where all g;s are false.

It is easy to compute b; if s; is an assignment statement. For the as-
signment statement x := e the corresponding predicate is = e. That is,
execution of x := e has no effect exactly when z = e holds prior to the
execution. This observation may easily be extended to sequences of assign-
ments and conditional statements; see section 5.3.2 for details. For program
small of section 2.3.1, we compute’

ISee appendix A.2.1 for an explanation of the proof format used here.
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FP
= {from the definition of FP}
(z<y=>z=z+1) A (y=maz(z,y)+1)
{arithmetic and predicate calculus}
(z = y) A (false)
= {predicate calculus}
false

i

That is, each state of small can potentially be changed.

There is no direct method for computing the FP if the command portion
of an action contains loops.

Most of the systems we consider in this book are never expected to reach
a fixed point; they should run forever, so their FP should be false. In many
cases, though, a box may reach a fixed point, but then a change in a shared
variable by some other box may cause its F'P to become false, and enable
some of its actions to be executed effectively.

2.4 Examples

2.4.1 Finite state machine

Finite state machines are conveniently represented by action systems: the
machine state can be encoded in a variable, and each state transition is an
action. Alternatively, it may be possible to define a set of variables where
the variable values encode the states and each transition affects only a small
number of variables.

We show two different representations of a finite state machine that ac-
cepts binary strings that have an even number of zeroes and an odd number
of ones. A pictorial representation of the machine is given in Fig. 2.1. In
this figure, the initial state is a and state c is the only accepting state.

Figure 2.1: Finite state machine accepting even number of 0’s and odd 1’s

A box FSM1 that represents this finite state machine follows. Variable
state assumes one of the values a,b,c, and d. Variable x holds the next
binary digit to be scanned. Some external box E stores a value into x after
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FSM1 has scanned the digit; E is usually called the environment of FSM1.
The following protocol is used by E and FSM1 to read/write into z. The
value of = is ¢ when there is no value to be scanned; in this case box E
may store a binary digit in . Box FSM1 reads a value from z if x # ¢ and
then it sets z to ¢.

box FSM1
enum {a,b,c,d} state = a;
enum {0,1, ¢} =;

x=0 — if state =a then state:=b
elseif state =b then state :=a
elseif state = c¢ then state .=d
else {state = d} state :=c
endif ; £ := ¢

| =1 — if state =a then state:=c
elseif state = b then state:=d
elseif state = c¢ then state:=a
else {state = d} state :=b
endif ; £ := ¢
end {FSM1}

Box FSM1 reaches a fixed point when z #0 A z # 1, i.e,, z = ¢. Then
FSM1 is merely waiting for input from its environment.

In the following box, we encode the state by two boolean variables p0
and pl, where p0 is true iff the number of scanned 0’s is even; pl is simi-
larly defined. Thus, states a, b, c,d are encoded by the following values of
p0, pl, respectively: (true, true), (false, true), (true, false), (false, false). Note
that the resulting box is considerably simpler because of the choice of vari-
ables that represent the states.

box FSM2
boolean p0, pl = true, true;
enum{0, 1, ¢} z;

z=0 — p0:=-p0;z:=¢
| =1 = pl:=—-pliz:=¢
end {FSM2}

Let n0 and nl denote, respectively, the number of 0’s and 1’s scanned.
Variables n0 and nl are auriliary variables that can be introduced into



20 2. Action Systems

FSM2: initially, both of these variables are 0; n0 is incremented in the first
action and nl in the second. It can be shown that

invariant p0 = even(n0)
invariant pl = even(nl)

2.4.2 Odometer

We consider a three-digit odometer whose state is described by the values
of the variables d0, d1, and d2 (d0 is the least significant and d2 the most
significant digit). An external process, the environment of the odometer,
sets variable c0 to true to signify that the odometer should be incremented.
The odometer is incremented eventually if c0 remains true, and then 0 is
set to false (to denote that the incrementation has been completed).

In the first design, we have a single action that increments the odometer
when 0 is found to be true.

box Odometerl
enum(0..9) d0,d1,d2 = 0,0,0;
boolean c0;

0 — c0:= false
d0 := (d0 + 1) mod 10;
if d0=0 then dl:= (dl+ 1) mod 10;
if d1=0 then d2:= (d2+ 1) mod 10 endif
endif
end {Odometer!}

Observe that if ¢c0 becomes true, from the fairness condition, the odome-
ter will be incremented and c0 set to false.

There is a deficiency in our modeling of a physical odometer as an action
system. We cannot guarantee that the odometer will be incremented within
a very short time of c0 being set to true; the guarantee that the odometer
is incremented eventually may have little value in practice if several miles
elapse before an incrementation. We discuss this issue in some detail in
chapter 6.

A note on the notation We have not distinguished variable 0 from vari-
ables d0, d1, and d2 syntactically, even though the latter variables are local
to the box (i.e., they cannot be changed by an external action) whereas c0
can be changed by an external action. We introduce a syntactic distinction
in section 8.2.1. 0O
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FP
= {from the definition of FP}
(m>n) = (myn=m-n,n)) A
((n>m) = (myn=m,n—m))
{Simplify}
(m>n)=(n=0)) A {(n>m)=(m=0))

Any fixed point reached by the box satisfies the invariant and this FP;
hence, at a reachable fixed point

P A{(m>n)=(n=0) A {((n>m)=(m=0))

= {P=>n>0Andm>n = n=0.Som<n.
Similarly, n < m}

m<n An<m A gedim,n) = ged(M, N)
= {arithmetic}

m=n A ged(m,n) = ged(M,N)
= {gcd(z,z) = z, for any positive integer x}

m = ged(M, N)

The remaining proof obligation is that every execution of GCD eventu-
ally reaches a fixed point. This result does not follow from anything we
have proved so far: if we replace m —n with m +n and n — m with n+m,
all the proof steps remain valid, yet the box will never reach a fixed point.
Since we have not developed a theory of progress, we provide an opera-
tional argument to justify that a fixed point will be reached. Observe that
if m # n, execution of one of the actions changes m or n, thus decreas-
ing m + n, whereas the other action has no effect. From the fairness rule
that each action is eventually executed, we conclude that m + n will be
decreased eventually if m # n. Since both m and n are always positive
(see the invariant), m + n can be decreased a finite number of times only.
Hence, within finite time m = n, and this implies FP.

2.4.4 Merging sorted sequences

This example demonstrates that message-communicating processes may
be represented easily as action systems. We design a box that merges the
data received along three input channels. Each channel carries an increasing
sequence of positive integers; the output of the box is an increasing sequence
that includes all (and only) the received values, and this sequence is sent
along an output channel. Since the output sequence is increasing, no value
appears more than once in the output channel, even though the same value
may appear in different input channels. This box is used as part of a larger
example in section 4.5.

The shared variables in this example are channels. A channel is an un-
bounded sequence; an empty channel is denoted by the empty sequence,
(). Sending value z along channel ¢ has the same effect as
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ci=cHzx

where -+ is the concatenation operator. Receiving a value from c into v
is effected by

c# () — wv,c:=chead, ctail

In this example, some external box appends values to the input channels,
and box Merge, shown below, removes values from these channels. Dually,
Merge appends values to the output channel, and some external box re-
ceives those values. The protocol shown here guarantees that the channels
are first-in—first-out (fifo).

The algorithm used in Merge is as follows. The input channels are called
f, g, and h, and the output channel, out. Each input channel has an integer
variable associated with it —uvf, vg, and vh with f, g, and h, respectively—
that holds the last value read from the channel that has not yet been output;
in case all values read from a channel have been output, the corresponding
variable value is 0 (recall that the channels carry only positive integers). A
value is read from channel f and stored in uf provided that uf = 0 and the
channel is nonempty; similarly for the other channels. A value is output
only if uf, vg, and vh are all nonzero; in that case, the smallest of these
values is output, and vf, vg, vh are appropriately modified.

box Merge
seq fsgrh! OUt;
integer uf,vg,vh =0,0,0;
integer m;

of =0 A f#() — of, f := fhead, ftail
| vg=0 A g#() — vg, g := g.head, g.tail
| vh=0 A h#{) — vh, h := h.head, h.tail
| of#0 A vg#0 A vh#0 —

m = min(vf,vg,vh); out := out + m;
if m =vf then vf:=0 endif;
if m =vg then vg:=0 endif;
if m =wvh then vh:=0 endif
end {Merge}

Box Merge expects a never-ending stream of values along each input
channel. In case a channel carries a finite number of values, some of the
values from the other channels may never be output (for instance, if f
carries some values and g and h are permanently empty). In that case,
each finite sequence should be terminated by a special end marker, say oo,
and the box should be modified to ignore that channel after receiving the
special value.
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The properties of Merge that are of interest are as follows.
1. Each value in out is from f, g, or h.
2. out is a strictly increasing sequence.
3. Each value from f, g, and h appears eventually in out.

The first two properties can be stated as invariants of Merge and the last
one is a progress property.

2.4.5 Mutual exclusion

Mutual exclusion is a classic problem in concurrent computing. We treat
the problem here not because of its intrinsic difficulty or its central place in
concurrent computing but as an illustration of refinement in action systems.

Two or more processes each have a section of code called the critical
section, and it is required that at most one process execute its critical
section at any time. Therefore, if two processes attempt to execute their
critical sections simultaneously, then one of them will be forced to wait at
least until the other has completed execution of its critical section. Addi-
tionally, a reasonable progress requirement is that some process eventually
executes its critical section if there are processes waiting to enter their crit-
ical sections. A stronger progress requirement is that every waiting process
eventually be allowed to enter its critical section.

The Merge example of section 2.4.4 is part of a loosely coupled system,
where the components —boxes that write into the input channels of Merge
and read from its output channel, and the Merge box itself— can be devel-
oped and understood without detailed understanding of the other compo-
nents. These components interact only through the shared channels, and
such interactions are easy to understand. The thesis in this book is that all
large programs should be loosely coupled. In contrast to Merge, a solution
to the mutual exclusion problem is usually tightly coupled; such a solution
is difficult to understand by examining the code of each process in isola-
tion. The shared variables are manipulated in an intricate manner, and it
is preferable to study the program, consisting of all its components, in its
entirety.

In this section, we develop a mutual exclusion algorithm due to Peter-
son [151]. We start with a high-level solution that is loosely coupled. Next,
we refine this solution, implementing a complex shared data structure using
elementary data structures. Ultimately, we represent Peterson’s solution as
a single action system. To show the power of refinement, we derive a second
mutual exclusion algorithm from the same high-level program.
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From multiple assignments to single assignments The preceding
algorithm is almost identical to Peterson’s two-process mutual exclusion
algorithm. The remaining step is to decouple the assignments to u and
turn in process u (and similarly v and turn in process v). We can show
that (see Misra [134, note 13]) it is safe to replace

u,turn = true, true

by
U = true; turn := true O

Note Switching the order of the two assignments for either process makes
the program incorrect. To see this, suppose that processes u and v have
the following codes.

process u:: u:= true; turn := true
process v:: turn = false; v := true

Consider an execution in which process u sets u to true, process v sets
turn to false, and u then sets turn to true. Now u enters its critical section
(—v holds); then, process v sets v to true and enters its critical section
(because turn holds), thus violating mutual exclusion. 0

Peterson’s algorithm as an action system

It is easy to translate the two-process mutual exclusion program into an
action system. First, we rewrite the program using two explicit program
counters —m for process u and n for process v— that take on integer values
between 0 and 3.

program MutualEzclusionRefined!
boolean u,v = false, false,
integer m,n = 0, 0;

process u process v

loop loop
noncritical section; noncritical section;
u, m := true, 1; turn, m := true, 2; v, n = true, 1, turn,n := false, 2;
v V -~turn — skip; -u Vturn — skip;
{enter critical section} m := 3; {enter critical section} n := 3;
critical section; critical section;
u, m := false, 0 v, n = false,0

end end

end { MutualEzclusionRefined! }
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We translate this program to the action system shown below. In the
translation, we introduce predicates u.h and v.h, which are controlled by
external boxes. Predicate u.h is set to true to denote that process u is
waiting to enter its critical section, and it is set to false while process u is
in its critical section; v.h is manipulated similarly.

The fact that every critical section is eventually completed is simulated
by setting m to 0 sometime after it becomes 3 (similarly for n).

program mutez
boolean u, v = false, false;
integer m,n =0,0;

{process u's box}
wh A m=0 — u,m:=true,l
| m=1 — turn,m := true,2
| m=2 A (—v V oturn) - m:=3
| m=3 = u,m:= false,0

{process v’s box}
| v.h A n=0 — v,n:=truel
| n=1 — turn,n = false,2
| n=2 A (-u V turn) - n:=3
| n=3 — wv,n:= false,0
end{mutez}

Proof of mutual exclusion

We constructed program muter through a series of transformations start-
ing from the program that used a shared queue. Since muter is a correct
refinement of a correct mutual exclusion algorithm it also enforces mutual
exclusion. That is, m and n cannot both be 3 simultaneously:

invariant -(m =3 A n=23)

This fact cannot be proved directly from the program text; we prove
invariants (I1) and (I2), given below, from which this fact can be deduced.

invariant (m#0 = u) A {(m=3) = (—vV-turn)) (1)
invariant (n #0 = v) A {((n=3) = (-uV turn)) (I2)

Invariants (I1) and (I2) can be proved by showing that they hold initially
and that every action preserves the truth of each of these predicates. The
proof is straightforward, and we leave it to the reader. Given (I1) and (12),
we conclude from their conjunction that both processes cannot be in their
critical sections simultaneously, as follows.
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program MutualExclusionRefined?2
boolean u,v = false, false;

boolean p;

process u process v

loop loop
noncritical section; noncritical section;
p,u =, true; p,v 1= —u, true;
-p — skip; p — skip;
critical section; critical section;
P, u = true, false p,v := false, false

end end

end { MutualEzclusionRefined2}

This program has the advantage over Peterson’s that exactly one boolean
variable has to be checked in the guarded command. Unfortunately, the pro-
gram requires assignments of the form p := v and p := —u, naming shared
variables on both sides of an assignment, which are difficult to implement
as atomic actions.

The multiple assignment statements can be replaced by the following
sequences of single assignments; see [134, note 13| and also see the note on
page 28.

p,u:=v,true by w:=true;p:=v
p,v = —wu,true by v:= true; p:=-u

2.4.6 Shortest path

Dijkstra’s shortest path algorithm [56] has by now become a classic (the
cited paper is officially designated “classic” by the Citation Index Service).
Typical descriptions (and derivations) of this algorithm start by postu-
lating that the shortest paths be enumerated in the order of increasing
distances from the source. In this section, we present a derivation that is
quite different in character. We view the problem as the computation of
a “greatest solution” of a set of equations. We prescribe an action system
whose implementation results in Dijkstra’s algorithm.

The bulk of the work in our derivation is in designing the appropriate
heuristics that guarantee termination (i.e., reaching a fixed point); this is
in contrast to traditional derivations, where most of the effort is directed
toward postulating and maintaining the appropriate invariant.
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