Bob Walraet

A Discipline of

Software
Engineering

North-Holland

A Discipline of
Software
Engineering

BobWALRAET

Ethica/ Coopers & Lybrand
Brussels, Belgium

NH
3
[=
1991

NORTH-HOLLAND
AMSTERDAM - LONDON - NEW YORK - TOKYO

ELSEVIER SCIENCE PUBLISHERS B.V.
Sara Burgerhartstraat 25
P.O. Box 211, 1000 AE Amsterdam, The Netherlands

Distributors for the United States and Canada:

ELSEVIER SCIENCE PUBLISHING COMPANY INC.
655 Avenue of the Americas
New York, N.Y. 10010, U.S.A.

1991 ACM classification: D2 Software Engineering (K.6.3), H1 Models and Principles,
J1 Administrative Data Processing, K6 Management of Computing and Information Systems.

Library of Congress Cataloging-in-Publication Data

Walraet, Bob.
A discipline of software engineering / Bob Walraet.

p. cm.
ISBN 0-444-89131-5
1., Software engineering. I. Title.

QA76.758.W37 1991

005. 1~~dc20 91-3990

cIp

ISBN: 0444891315
© Elsevier Science Publishers B.V., 1991

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or

transmitted in any form or by any means, electronic, mechanical, photocopying, recording or

otherwise, without the prior written permission of the publisher, Elsevier Science Publishers
B.V./Academic Publishing Division, P.O. Box 103, 1000 AC Amsterdam, The Netherlands.

Special regulations for readers in the U.S.A. — This publication has been registered with the

Copyright Clearance Center, Inc. {CCC), Salem, Massachusetts. Information can be obtained from

the CCC about conditions under which photocopies of parts of this publication may be made in

the U.S.A. All other copyright questions, including photocopying outside of the U.S.A.. should be
referred to the publisher.

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property
as a matter of products liability, negligence or otherwise, or from any use or operation of any
methods, products, instructions or ideas contained in the material herein.

Printed in The Netherlands

TABLE OF CONTENTS

OVERTURE

Prefacec.coiuiiiiiiiii i vii

Tableof contentsciiineaniiiaaanas xv

Table of Insert BOXescooieiiiiiiinannns xxi

CHAPTER 1: The State of the House

Curtains for programmingoiiiiiiiiiiiiiiiaiaaans 3
Inthe methods jungle i i, 5
Not programming but software engineeringo ivinn. 7
Thelife-cycle oo i i i i i i s 8

The analysis phase | The solution design and data structure design phase /
Program implementation phase | Why lifecycle?

Thestate of theuniono uuiieinan. e 14
Can quality be achieved? iiiiiiiia 16
Quality: a matter of responsibility e 19
Design revisited or divide and conquer 20
The houses of Ret Up MOC oo 23
Manyroadsleadto Romecciiiuieeienerinannnnanan 24
The data-driven world i it 26
The abstraction rounds it 27
So, whatisamethod? iiiiiiiiianaarenrennnnan 28
Software Engineering is a social €xercisec.ouuveinnnnnns 30

ENTITY 1: INFORMATION
CHAPTER 2: The Semantics of Data

Preamble: Codd’s relational model 35
Datahasalifeofitsown i i il 44
Bachman diagramming i i 45
Bachman example: orderentry o i 53
Subject data-bases go corporate iiiiiiiiiiian. 33
More semantics: Chenmodellingcc.iiiiiieinn. 57
E/R example I: order entryieiiiiiiiiiiiiiiiiia 62
Higher order extensionsc.cooiiiiieiiiiiiainneas 63
E/R example 2: the transportation company 64
MERISE, entities and relationships & la Frangaise 67
NIAM or data@ is @G priSORerouuiiieineeiinersiiieanennias 68
More constrainis it s 79
NIAM example 1: orderentryuiiieeuiinnennnnnn. 80
NIAM example 2: a school management 83
Meaning, awareness and visibility oo 85

Has-part and Is-a networks (ter Bekke modelling) 91

Example: order processing i i 96
ObJect BASEst 97
The object subjectivismi e 99
The semantics in frames e, 102
More power in semantic networks 0 0. 104
A repository of structures: the meta-model 106
CHAPTER 3: The Fine Art Of Data Modeling
Entities and data stores have attributes 113
Environment decomposition: user views c..i.au. 114
How important is meaning? cceiienieian. 115
All the various keys and attributescciiiiian. 119
Concatenated kKeys ...t 120
Primary keys: well-behaved creatures 121
Multiple relationships i, 124
Anexample and amethod 124
The Many t0 MARY MESSttt e 126
Nested SIUCIIFES e 126
Key to key relationships i 127
Case Study - A transporiation COMpanycceeveenn. 128

Problem statement [View I: Truck management [View 2: Journey management [
View 3: Delivery companies & consignments [View 4: Waybill |

View 5: Freight agents & containers | View 6: Containers

View 7: Load/unload management.

Key-only forms e 146
View CONSISIENCY QSPECES .. u vttt eiia e 148
Suggested repoSItOry SIUCHIIESo uvvi ittt iiiiais. 149
CHAPTER 4: The Makings of a Logical Data Model
Putting the parts together ciciiiiiiiiane. 155
The problem of homonyms 158
Synonyms and paronyms i 162
Cycles over primary keys ciiiiiiiiiiiiiiiiiiiaas 164
The merging process: algorithmco i iiiinian e 167

nun relationships [ID-n defined atrributes | Master indexes /
Cascading of concatenated keys | Empty keys | Semantic cross-checking

Case study: finalization of the transportation company 171
Stability QssUranCe i 183
Final logical model: topological 190
Final logical model: tabularccciiiiiviiiin.. 192
Suggested repository SIUCIUIESo uiii it aiaenas 195

Responsibility & ownership, 196

RELATIONSHIP BETWEEN ENTITY1 AND ENTITY 2 :
ORGANIZATION

CHAPTER 5: Semantic Action Model

Gettingat thedata ishalf the fun 201
What is a system? e 204
Once again: what is a system? 0 i ittt 206
Responsibility and ownershipo 207
APPROACH 1: THE INFORMATION FLOW PARADIGM 208
Processes controlled by messages 00 208
Information flow isthe key it 210
Case study: information flow of the transportation company 214
The message flow model iiiiiiiiiiiiiins 217
Consistency of the messagemodel 220
Ownership of messages iiiiiiiiiiii .. 2271
Extensions to the message processingmodel 222
Cycles in the message processingmodel 227
Different types of messages it i 231
Dynamic coherence of a message flowmodel 232
Processes that store and retrieve dat@ 235
An example: order processing o it 237
Good behaviour with data stores 238
Ownership of data storesc..cciviiiiiiiiiiinnnn. 239
Case study: DFD/MFD of the transportation company 241
APPROACH 2: AWORLD OF FUNCTIONScooul. 243
What is a function? euieiiiieiinaaiannaenns 243
Information architecture el 246
APPROACH 3: THE OBJECT-ORIENTED PARADIGM 250
Objects that live through actionscoieriiiianinnnns 250
Example: object lifecycles in the School Management 258
Object-oriented Analysis i i 260
APPROACH 4: THE SYSTEM STATEMODEL 265
Systems: invariants, actions and states 265
The repository descriptionc..ciiiiiiiiiiaia. 269
ENTITY 2: ACTIONS
CHAPTER 6: Function & Task Design
Tasks: what'sinaname? iiiiiiinininnnnn. 281
Random tasks [Planned tasks | Query & browse tasks
Task normalization i 285

xvil

xvili

About ownership | About the input messages [About output messages |
About reports [About report distribution | Normalization of output messages

Normalizing the processes ciiiiiiiiiiinn. 288
Defining data stores and data views ovieiienns 290
Case study: the transportation COMpanyc...... 292
OLTPIaSKSt et e a e 295
OLTP tasks have a SIUCIUTEciinriienniineinnnennn 296
Ownership re-consideredc.cuiiiiiiiieiainaenn. 299
Subtasks and co-tasks i 300
Menus: a dinnerof dialogs i .. 303
Ownership and sharability i 303
Jobs and planned tasks i i, 306
Object-oriented design: what are tasks?ccoou... 310
Cooperative processing and the client-server model 311
Aworld of GUIsinwindowst 319
The structure of the taskin awindowccouo... 324
Prototyping: the American wayouieieineraennnnns 329
The repository iMageovuiiieeieiine i e i, 333
CHAPTER 7: Program Design

Moving towards the programsc.oiiiiiiiienenannnns 343
Batch programs: another paradigm 344
Modular decompositiont 346
Component hierarchies rather than networks 348
Commonmodulescooiiii ittt 351
Ownershipofmodulest 351
The usage of SUBrOULINeSc.ouuuuuiieeiiiiiaannnnnns 352
SHUCIUring USINg CO-TOULINESooouurviiiniiiaaiiaanainnns 354
Programs and data viewst 335
View ownership re-visitedc.coiiiiiiiiiiiiii .. 360
Decision tables: a matter of style? 361
The case of structured programmingooeuveeeeininn. 363
Michael Jackson's complaint cociiiiiiian. 364
Michael Jackson’s methodcccciiiiiiiiiiin, 367
Example 1 e 368
Example 2 ..o o e e e 370
JSPand thesubroutine....................ciiiiiiiiiiiiiiinns 377
JSP-apanacea? i 377
Program structure and data-base traversal 378
State-driven programmingc...ciiiiiiiiii i, 380
Entity lifecycles and state diagramscoiiiiii 385
The object-oriented paradigm for programming 387
Suggested reposifory SIUCIUIESo iviiviienviiniininraersrnns 389

APPENDICES
CHAPTER 8: Normalization is With Us To Stay

Firstnormalform i 395
Secondnormal form 397
Third normal form i i 398
Here comesthe fourthc.oiiiiiiiiiiiniiniiieninnnn, 399
And then therewas the fifth 401
Normalize versus de-normalizeccoviiviiiinnenns 403
The difficulty of normalizingo, 404
Other deCOMPOSItIONScoiuuiiiiiiiiii i anens 405
CHAPTER 9: About the Bill Of Materials
Recursion in data structures?t 407
What is a recursive model?ottt 407
The I:NCASE ..o ittt 409
Terminology and definitionscooiiii i, 411
Explosion & implosion (levels orno levels) 412
Some examplest e e, 413
Trees and Retworks ...t i 415
Example:theroadmap iiiiiiiiiiiiininnns 417
Example: the marriageo it 418
Extensions: higher-order BOMcccoiiiieiinninnnnnes 419
The genealogy modelccoiiiiiiiiiiiiiniiiienn.. 421
Extensions: BOM of BOMciiiiiiiiiiiiiiiiiin s 421
The universe s@a BOMco i iieiiiianiinanns 423
An incursion into repository technologyo.000 423
An example: repository registration of a system 425
Definition of n-ary and nth-order relationships 427
A first eXtension e 427
Conceptual extension of the repositorymodel 428
Gnoson/synergon model: a PROGRAM/FILE example 429
Implementation: a proposal using the basic model 430

A bachman equivalent for relationships: the junction entity |
The System example | Additional observation

Repository: objects that communicatecccueuuui. 432
SQL and the BOMttt iieiaaaineanans 432
Programming the BOM: recursive programs 433
Program group 1: produce explosionfimplosion 436
JSPandthe BOM c.ooiiiiiiiiiiiiiiiiiiiiiiiinans 441
Circularity in recursive data structures e 441
Program group 2: verify circularityc.c. i 443
Program group 3: avoid circularity 0 iiiia. 447

xix

CHAPTER 10: About Structured Programming

D-structures and DREC SIUCIUIESoovvinviiiiinnniennns 455
Away with duplicate actions 0., 459
Procedural abstraction: the subroutine 462
Subroutines considered harmful, 462
Co-routines: a conversation of cycles 465
Design languageso e 468
CHAPTER 11: Object-oriented Programming
The programming of objects 471
What is a program? e 474
Facets of 0bjects c.uui i e e e 475
Object-oriented programming, once more with flavours 479
Programs are also objects i il 480

Object-orientedness: the end of the problems? 483

TABLE OF INSERT BOXES

Summary of the Relational Model and its Clones 42
Rules of Good Behaviour with Viewscooviiiieiienenan. 43
Overview of the Subject Data-base Architecture 54
Abstraction, the Essence of Desigh e 87
Quality of Semantic Data Modelsc.ccooeuun. 109
Checklist for Object Models ciiiiiiiiiiiainns 109
About Some Powerful Modelling Extensionsc.coo... 110
Qualityof a Primary Keyccoiiiiiiniiiiiiinnnninninns 123
Whatisa User View?ouiiiiiiiiiiiiiiiiiniiiiniinnnn. 151
View Normalization Integritycoiiiiinieiiannnnnn. 152
Summary of the User View Approach 153
Normalized FOrms iiiiiiiiiiiiiiiaiiaerinna, 157
SYRLhesis ProCessouuiiiiin et aaaaaneeann, 167
Finalization Stepscoiuiiiiiii it iinnaiiiiannnns 167
Stability CheckliStoouuiii i iiiiiiaean. 185
A Brief Overview of Information Theory 209
Quality of Information Flow Diagramscoeu... 213
Quality of Message Flow Diagramsc.ccovviieenns 233
Quality of Data Flow Diagramsccciuiieiianannnn 239
Graphical Syntax of Object Lifecycle 256
Checklist for Object-oriented Analysis & Design 263
Infocentre - An Ownership Situation par excellence 271
Modeling of Material Sequences (Petri Nets) 273
Task Normalization Rules cciiiiiii.. 289
Additional Normalization Aspects for OLTP Tasks 305
Job Normalization & Qualityccciiiiiieennn. 309
Client Server Protocolt 311
OLTP Task Quality Checklistccoiiiiiiiiiaininnnnns 335
Data Ownership & (Meta-)Normalization (an essay) 336
The Crystal Ball of Effort Evaluation Metrics 340
Coupling Quality of Componentsccoeieriiiennens 350
Usage of Subroutines & Co-routinesc.ccveuineiniinnnnnns 355
Module Structure Quality e 390
Checklist for Object-oriented Programs 392
Summary of Data Normalizationc...cc..... 405
Definition of A Recursive Structureccceviuuenn.. 411
Rules of Structured Programmingccoeeiiinnnnnn. 470
Some Object-oriented Programming Languages 472
A Brief Incursion into Abstract Data Typesccuiiaeiinnn. 481

xxi

This page intentionally left blank

OVERTURE

« If the System is a potato, then I don’t know
what I'm writing about.

« If the System is a load of bricks, then you
should not read this book.

This page intentionally left blank

CHAPTER 1
The State of the House

Curtains for programming

Many still claim that programming is an art. Today it is more accurate to say
that programming is an engineering craft which is based upon a formal apparatus
of great depth, that has every chance of being complete and correct. But theory
does not do the one thing that everyone expects: explain how one programs. True
enough, theory gives correctness proofs. But they are of overwhelming complexity
in all practical cases, and cannot be used. Composing a program is an act of cre-
ation which can be compared to that of solving a problem of geometry. In some
way the composer must see, almost feel, a potential solution to the problem on
hand. Next, he must fill in the necessary material which establishes the truth of his
solution. Some people can do this, some can’t and never will be able to.

That programs have a structure is not at all surprising, but structure is not the
target in itself. In fact it is the problem to be solved that contains the structure.
Perception of the structure, which is a work of abstraction, is the creative act. And
again, there are those whose mental powers allow them to see that structure, even
when it is masked by problem specification of an intricate nature. For a long time,
many people have believed that structured programming was going to help them.
How wrong they were! Structured Programming is nothing more than style. And
style alone does not allow the novelist to write a successful book: the story must be
conceived before any point of style appears... It suffices to take a look at many
programs to see what has happened: an effort to disguise bad concept (non-solu-
tions in fact!) by flourishing texts, written in an extravagant style. Scratching only
the merest bit reveals the emptiness of the program: many flag settings for later
testing, merely avoiding non-structured writing, but not fundamentally solving the
problem. Programs of today are just as error-prone as before. Just as difficult to
maintain or expand.

An impressive number of authors have tried their best to improve things. They
have invented methods. We must certainly give credit to the people who did so:
their work was and remains extremely valuable. They, the visionaries, realized an
important fact: a problem must be analyzed so as to make structure appear. The
problem must be decomposed into more elementary structures that are somehow
connected. And we should note that it is the problem, i.e. the real world, nor the
program, that must be so mastered. In almost all cases, the problem will appear to

3

CHAPTER 1 - The State of the House

have an overall structure, but it becomes confused because of the number of excep-
tions. These must be analyzed just as deeply since they have an important influence
upon the whole body. The authors therefore proposed disciplines, steps as it were,
to do the work. But the major problem remains: analyzing (decomposing) an
amount of work must have a starting point somewhere. It is not clear how to begin
the decomposition. In other words, in order to do it, one needs a global insight into
the structure from the start. Which completes the circle. Alas, no method gives that
initial spark.

Moreover, methods are largely subjective: the methods proposed by the authors
are those that fit their own intellectual approach. That particular author is very
good at his particular method because that is the way his brain “feels” structure.
And this is a process that cannot be transferred to other people. It can definitely
not be taught. In a way methods have failed.

Fortunately, the application world abounds in paradigm situations. Quite a num-
ber of problems are more than similar, and a global solution certainly can be
adapted to many particular situations. The systematic approach, via a method, at
least prevents DP people from re-inventing the wheel. That alone, of course, is an
interesting aspect. But whenever a totally new problem occurs, the programmers
are at a loss. They have nothing to rely on: the whole thing is untouched wilderness
in which roads will have to be cut without any means of orientation. This also ex-
plains the failure of relying upon experience. Experience induces duplicate solu-
tions. A new problem will be solved along the lines used for all or some of the
problems previously solved by that programmer. As a result, experience only helps
when one remains in the same domain. It is no help for novelties... And, education
is just as bad. First: not everyone can be trained to become a programmer. It is a
story of haves and have-nots. But next, whatever education has brought is either
specific to a given domain, and thus confines the student, or it is very general but
then it has no depth so that it remains void... Moreover, many educational systems
lay the accent upon rather trivial matters, idiosyncrasies of the tutors, so quite often
biasing results.

There is another point that has considerably confused the issue: the abundance
of programming languages. A very common mistake is the confusion between
fluency in a language and aptitude at programming. Surely, a problem that gets
solved must eventually be expressed in a programming language. The argument
should however be: choose the language at the end of the conception process and
select the one most indicated. Unfortunately this is never really allowed. A lan-
guage is imposed by company standards (and usually it is COBOL, of all things!).
As a result, the idiosyncrasies of the language affect the design in the earliest stage,
since it is definitely not true that languages are general purpose (with the possible
exception of ADA). Educating programmers so that they become good Cobolists
(or anything else) is a gratuitous exercise and is harmful rather than solving any-
thing.

4

CHAPTER 1 - The State of the House

I believe that correct data specification is a key factor in success. Identification
of problem data is certainly a large part of the analysis. Indeed, programs are data
transformers, in other words they are transfer functions that can be described as
the “ratio” between output data and input data. Therefore, data analysis is an es-
sential aspect. Not only should one devote careful attention to the static structure
of data (as enforced by data-base technology) but also the evolution of data must
be taken into account. In that field also, errors are commonplace. Methods abound,
but, again, they only help if the designer has the initial spark. Data structures are
not there for the fun of it. They must express a reality. The same problem exists as
for programming: normalization (i.e. structuring) of data is seen as the target. It
should be the means instead.

In the methods jungle

Every DP professional uses the words method, methodology, technique and
technology. These words have become very fashionable. But they serve to cover up
one of the major crises of DP: a lack of solid tradition. After all, DP is still very
young; there can not yet be traditions...

Let us be clear about the terminology: a method is a set of rules (a discipline as
it were) which, when followed, will achieve a very precise (and predictable) result.
The method may be facilitated by means of a tool that implements it'. Methodology
is the study of methods. The usage of the word as a synonym of method is utterly
wrong. A technigue is the sum of all methods, theories and knowledge that concern
and build a well-delimited view of reality. Technology, then, is the study of all the
techniques covering a consistent and closed part of reality. By metonymy, the word
technology is also used to stand for the set of techniques. Thus, 4th generation
development is a technology. Structured programming is a technique; Nasi-
Shneiderman diagramming is a method to achieve structured programming. As
usual, definitions like these, which are somewhat philosophical and not without
emotion, are debatable. But I think the real point is the following:
method = discipline.

In no other domain of technology? do we have as many methods as in DP. There
is no way to compare them. Most of them are named by acronyms: SDM, LSDM,
ISS, ISAAC, NIAM,... a new vocabulary, used in a way similar to car names. Al-
though there is almost no difference between two cars of a same category, you'll
find that both have their totally convinced drivers. Emotion crept into the game.
The users of one method explicitly despise those of other methods. Moreover,
methods are made fashionable by containing the usage of “brilliant” techniques!
See how it evolved: a method contains techniques! It should be the other way

1. Computer Aided Software Engineering (CASE) tools are in that category.

2. Notice the use of the word “technology”, taken here to mean: that part of reality that can be
(re)-constructed by pure human endeavour.

CHAPTER 1 - The Siate of the House

around... Methods have overshot their goal. Some of the best ones tend to confuse
project management and development technology in one single (huge) set of com-
mandments. If they could, they would tell you how to set up the furniture of your
office! Most of the methods get clobbered by the incredible amount of documenta-
tion they produce. They become document-management systems, and get hopeless-
ly lost in the volumes involved... I still have to meet an analyst who actually re-uses
the documentation. I remember one particular DP project, of rather average size;
its documentation covered 5600 pages (26 binders!). There were endless discussions
about storing away this volume.

Methods have one advantage, though: everyone can use them. Just follow the
rules. Don’t try to understand them! Many of the methods have killed creativity and
reduced the demands upon human intelligence. Rather sad, this. Admittedly, there
are methods that work in another way. They tend to channel creativity rather than
crush it. Such methods are much more acceptable, but unfortunately, they are
somewhat ill-considered because of the degrees of freedom they contain. In fact,
the management feels a method is good when it is heavily prescriptive. Descriptive
methods, on the other hand, are seen as rather worthless. Still, it is my belief that
descriptive methods are much better in guiding the developer to a quality result.
Such methods tell you what to do, but don’t impose how.

There is another point as well: whatever method is chosen (and everyone
chooses a method), the issue is further obscured by standards. All entities used in a
DP development trajectory, to start with fields, have names. As an example, a very
“obvious” way to give a field a name is: ENM-0415C3-BW035. In more human
terms, the field means employee-name. Don’t look for any cryptographic explana-
tion, however. It is easier than that: ENM means Employee NaMe; 0415 is the
identification of the record of which this is a field (this record would be called
R0415, of course!); C3 indicates a computational-3 usage of the field (Cobol stuff);
BW are the initials of the developer and 035 is the project for which this field was
conceived. Obvious, no? Someone has clearly overlooked the fact that we have data
dictionaries and repositories in which fields can be registered with a convivial name
and attributes that further connect the field into its environment. A good dictionary
will deliver any cross-reference required, just at the stroke of a key. Other stand-
ards: how is the address of a person recorded? 20 positions or 30 positions? House
number before or after street name?

The common pitfall of standards is that they are too drastic, too involved. There
is no incentive to apply them other than reprimand. One wonders: what is the true
need for a standard? From the answer follows what the standard should then be,
provided all other ways to achieve the same goal have been explored, and found
unsatisfactory. It is my belief that the best effect standards can achieve is to avoid
quality degeneration by imposing one choice at places where the development sys-
tems offer a multiple choice possibility. Something like:

— all relational tables should have a primary key (even if the system does not
require this);

CHAPTER 1 - The State of the House

— there should be no sorting in on-line programs;

— for reasons of performance a 4th generation application module should not
have more than approximately 400 code statements (notice the word approxi-
mately: a standard must be flexible)...

To cut a long and painful story short, I could cite a classic aphorism: It doesn’t
matter which method you use, provided you use one. There is a lot of truth in this
sentence. Indeed, known methods intend to achieve a stated goal. In essence, the
method is guaranteed to reach that goal. So, if the goal is not debatable, the
method is OK as far as I am concerned. However, use sound judgement along the
way. The interpretation of the discipline should be indicative rather than impera-
tive. Deviate where it is indicated. Allow for creativity. Having no method, on the
other hand, means that one is going to re-invent the wheel, most obviously by trial
and error. A time-consuming and demotivating process. Adopt a method, but don’t
spend too much time in selecting one. I repeat: they are all acceptable (provided
you throw away the heavy body of standards).

The worst one could do is see the method as a goal in itself. Unfortunately, this
happens more often than not.

Not programming but software engineering

Creating a good program appears to be a rather delicate job. But making pro-
grams is not the only thing a DP professional undertakes. There is more, much
more that has to be done at an earlier stage. Programming is the last part of the
job.

In fact, what people create today are systems. In their technological implementa-
tion, systems are huge conglomerates of many programs that together deliver a
solid and well-defined closed functionality. The making of such a system creates
immense problems. The major one is in mastering the sheer size of the whole thing.
Just imagine that an application of rather conventional nature takes something be-
tween 10,000 and 100,000 lines of (3rd generation) code! And that is small com-
pared to some medical systems or NASA systems (tens of millions of lines of
code!). Such volumes cannot be mastered by just one person any more. An ac-
cepted statistic states that one programmer produces 2000 lines of code in one year
(from pre-study to accepted result). In order to solve this kind of problem, we need
many people working together. And this is not a linear rule either: people have
communication problems which increase quadratically with the number of people.
A team of 10 people is considered a maximum. When a project is bigger than 10
people can manage to produce in a reasonable time interval, the project must be
cut up in separate pieces and given to various teams. And this creates new com-
munication problems. But even for a smaller subject, there is the problem of how
one divides the project over the team members. This in itself is far from trivial, as
we will see in the next section.

CHAPTER 1 - The State of the House

The situation further complicates because the business problem we try to auto-
mate is itself moderately to very complex, due to the great amount of detail one
must master and the incredible number of exceptions that must be taken into ac-
count (many of them with related second-order effects). The result of such endeav-
ours constitutes a package which does not have a linear behaviour: small changes in
the code may induce disproportionate consequences in the outcome, so that one
can never assume that safety margins are really obeyed. And if this weren’t enough,
systems once finished start to evolve, either because one must correct errors they
still contain (corrective maintenance), but mostly because the reality evolves so that
the systems must be continuously adapted lest they become obsolete much too soon
(perfective maintenance). Also modifications for the sake of performance must be
brought into the system (tuning). As a result, there is a continuous drop in quality
because of the unsound haste with which such corrections and adaptations have to
be realized. Implemented systems obsolesce very fast...

The discipline that groups all techniques and methods used to create a compu-
terized system is called software engineering. Unfortunately, software engineering
has no scientific grounds whatsoever. Apart from planning methods that allow a
project leader to keep (some) track of what is currently happening, there is no
method guaranteeing a quality result. At present, therefore, the only way is to
achieve quality control at every moment of the implementation. This is done by
continuous prototyping (evolutive prototyping) and keeping the knowledgeable
end-user tightly involved. Nevertheless, managing a software development project is
one of the most nerve-wrecking jobs ever.

The fact that most budget makers have unbelievably unrealistic requirements as
to deadlines, does not help at all.

The life-cycle

The creation of a software system (even a system comprising only one program,
however simple) is a work which proceeds in phases, not unlike the phases we find
in, for instance, automobile industry when a new car type must be developed. In the
automobile analogy we can certainly recognize three major phases:

- a phase of study, where the needs for the new type, its constraints, the wish
Iist and some state of the art considerations are put together; this is the ana-
lysis phase;

— a second phase during which the new model is conceived, plans are made,
prototypes and models are built and tried; this is the design phase;

— the last phase, when the first production car of the new type is assembled; this
is the implementation phase.

Although the phases of software development are not exactly identical in detail,
we find the three same general steps: analysis, design and implementation.

CHAPTER 1 - The State of the House

1) The analysis phase

A problem to be solved needs a clear problem statement. Usually however, this
is missing or is formulated in the vaguest of ways. Therefore, it is required to push
the investigation: what is really needed? How is the problem handled today (i.e.
before automation)? Is there a problem solution (even if only in principle) without
the need for a computer? Is this solution adequate on a computer also? Can it be
improved by computer usage? If there is no “exact” manual solution, is there an
approximate (or heuristic or good-sense) solution? Can this solution be computer-
based?

In order to answer these questions, one has to go and capture the reality, in the
world of every day®. In a business application this can be a straightforward activity,
although it often involves a vast amount of work. Most of such applications are a
link in an information flow network. Information coming from the outside world is
input and results in the creation of transformed and usable information, which in
turn serves as input for yet another process. Thus, investigation of the functional
information flow in the company’s departments is the key to this part of the work.
This will require interviews, observation and quite a lot of communication psycho-
logy. The result is a set of specifications, usually (but not necessarily) expressed as a
set of input values (possibly with an involved structure), corresponding to a set of
output values. In this light, an automated package is a transfer function, creating a
mapping between the input and the output set.

If the analysis work is to be complete, the model of information flow should be
analyzed so as to find unproductive situations: processes that are never executed,
data that serves no one, loops that do not really produce anything. Formal methods
such as Petri networks (and its derivatives such as event diagrams) may be used
here.

The mental process needed during analysis is one of abstraction or, put more
pragmatically, generalization of the detail information gathered by investigation.
Here it is of paramount importance to perceive the fundamental structure in the
mass of detail (and exception) cases. The information needed by the processes (and
external to them) must also be investigated, so as to detect its static structure. It is
important at this stage to perceive the data structure as independent from the pro-
grams: it pre-exists by essence and should therefore be represented in a natural,
application-independent way.

The major part of the analysis work relies upon a “carefully conducted” dia-
logue with the concerned (and hopefully strongly involved) end user. Such a dia-
logue is difficult, even under ideal conditions, because the end user is not very apt
at expressing abstractions. A way to structure the dialogue is by breaking the func-
tions down into manipulations of user views. This is certainly a good thing to do. But

3. This world, in which end vsers manipulate objects and understand objects is often referred to as
the world of discourse.

CHAPTER 1 - The State of the House

being able to build a prototype, even at this early stage, would help even more. A
prototype is a quick and easy (hopefully not too dirty) mixture of means that emu-
lates the problem solution (preferably on-line) and shows the user what function-
ality can be expected. The prototype is a truly operational object, and will serve to
refine both the user’s and the analyst’s perception of the problem. It is precisely by
using fourth generation techniques in association with relational data-bases and a
number of “tools” (such as query languages (e.g. SQL, report writers, screen map-
pers, spreadsheets, graphics,... not to forget data dictionaries) that prototypes can
be realized, the cost of them becoming justifiable.

The analysis stage ends with the production of a set of specifications and re-
quirements. It also produces some models: a process model representing the acti-
vities with their information-carrying user views such as take place in the applica-
tion domain, an information model which represents the major entities carrying the
information, their fields and their inter-relationships and finally an organization
model representing the relationships between people and the company’s activities.
It should also deliver a choice of solution outlines.

In some connotations, the analysis phase is called study phase, conceptual level®,
enterprise level. A question of what’s in a name.

2) The solution design and data structure design phase

Having established the problem specifications and requirements, one now deter-
mines a solution. In essence, the work proceeds from the models obtained during
analysis, by chosing where choice exists, by filling in detail where detail is missing,
by correcting erroneous situations where they exist. More specifically, the design
phase will represent the solution in some normalized model, that is a model which
obeys easy and strictly enforceable rules. This model will emphasize the functions
which will be offered to the users of the application, the user interface (screens,
reports,...) as it will manifest itself to the user. It will also indicate the new informa-
tion flow. Where appropriate, standards will be formulated: for instance in order to
achieve a consistent user interface throughout the system.

The design of the fine data structures that must hold the long term information
constitutes half of the design work: programs become less complicated, more
visible, when the data structures are correct.

The methods used for designing a software system are essentially the same as
those that can be used for the analysis. It is a matter of shifted accent.

4. This notion of level is advocated by ISO. It is based upon the idea that there are three ways to
look at a software system: a conceptual look (understanding what it is all about), an external look
(understanding how to use it) and an internal look (understanding how it is built).

IBM’s AD-cycle methodology speaks about an enterprise level (perception of a software system as it
is articulated in the enterprise reality), a design level (how does it work), a technology level (how is
it built).

10

CHAPTER 1 - The State of the House

3) Program Implementation phase

This phase contains two strongly connected activities. One is the creation of the
algorithms® and of the physical representation of the data-base (if any). The other
is the actual writing of the programs and the setting up of the data-base (if any).
While on-line algorithms in business DP are usually quite simple, algorithm cre-
ation for batch processes calls on all the craftsmanship of the programmer. A great
amount of knowledge is required, especially of typical solutions to a vast number of
situations. However, if the problem to be solved has been decomposed deeply
enough and the associate data structures and resources have been well described,
most algorithms will usually be mere transducers and fairly easy to establish. The
more difficult ones tend to be isolated; it is not every day that a programmer must
solve Hanoi tower problems.

On the other hand, if the problem to be solved is in a specific area, such as text
processing or syntax handling, there are sufficient well-documented solution profiles
in literature. Writing the algorithms should be straightforward.

There is another important aspect: notwithstanding the claims of formalists, the
algorithm’s profile depends on the chosen programming language. This is a rather
sensitive field: instead of allowing programmers to choose the most appropriate
language for a given algorithm, there is usually a company-imposed language such
as COBOL. There may be economic arguments for this (although I strongly doubt
their validity) but it is a truly sad fact. No language is perfect, so that the mere
choice of a language entails the need to use a number of tricks. The major respon-
sibility of the programmer is to produce highly readable code which espouses the
algorithm as closely as possible. This is a matter of producing good syntax: bear in
mind all the syntactic structuring items the language offers and use them in the
cleanest of ways. Don’t misuse a structure to simulate something with! Good pro-
gramming standards (but do they exist?) are certainly helpful. A rule of thumb is to
isolate black boxes in procedures which are replaceable as a whole (or paragraphs
in COBOL). This, incidentally, is the gist (in reverse) of stepwise refinement. And
don’t forget the programming of the accesses to information (pragmatically: data
access). Acceptance of and commitment to the concept of data independence is an
absolute must: a programmer should never go physical on data. Instead, use SQL
or something similar (and better). And don’t ever forget this basic truth: structured
programming is not a goal in itself; a program must be structured so as to reflect (in
some way) the structure of the objects it works with (data, knowledge, events, informa-
tion as it were); structures in the syntax (connectives and the likes) are only a way to
divide and conguer, but of course, you must know what to divide and how to divide it!

5. This sub-phase is sometimes called technical design; the phase which I called design is then called
functional design, by contradistinction.

1"

CHAPTER 1 - The State of the House

Why lifecycle?

The three phases that we have seen are always present. Their border lines may
vary according to the authors or the culture. Some authors speak about the water-
fall metaphor: one phase flowing into the other; there can also be a flow up stream:
from design back to analysis, from implementation back to design, from testing
back to implementation. But there is more to it. After implementation, there is the
important phase of testing. Here a software package is verified for its precision and
reliability. This phase is also called the qguality assurance phase.

A SIMPLIFIED

STUDY PRESENT SYSTEM
LIFECYCLE

DETERMINE FEASABILITY

IMPLEMENTATION:

ACCEPT
TRAIN USERS
CONVERT

figure 1

Testing takes place
at various levels of in-
tegration: unit testing
regards a program or
set of programs, stand-
alone testing regards
the software system
taken by itself, integra-
tion testing is the test
of the system in its real
environment. There
are various policies for
testing and this con-
stitutes a fascinating
domain; it is however
beyond the scope of
this book.

After the testing the
software package is
formally accepted® and
is installed in its pro-
duction environment.
This is when things
start happening. Soon

(much too soon) parts of the software system must be modified, either because

6. Although rejection is also possible, 1 have never seen it happen. At this late stage, companies
prefer to accept a software system, even if not completely satisfactory, and will learn to live with it.

12

CHAPTER 1 - The Siate of the House

errors must be cor-
rected, or because
company rules have
changed or because
new cases must be
added. The part of
the system that
undergoes the
change goes back to
development, so
that we start a new
cycle of analysis, de-
sign, implementa-
tion and testing (see
figure 1). This cyclic
way of doing things
is typical for soft-
ware”: in most other
domains one works
with fixes or merely
throws away the un-
satisfactory product.
Of course, there are
situations in which
software will be
temporarily fixed
(the temporary
plaster becoming a
definite wart). And
it is also clear that
the moment will
come when the
package will be thrown away. But in the meantime many “life” cycle rounds will
have been fought through. Yet another (equivalent) way of illustrating the lifecycle
notion is given in figure 2. It has the advantage of stressing the different environ-
ments: what happens during development and what happens during operations. In

RUN-TIME

figure 2

7. It sounds obvious today, but it took DP a long time to come to the lifecycle idea. In the beginning,
development was done according to a code-and-fix philosophy (not unlike the proverbial trial and
error approach). Needless to say, programs were never correct. The idea of phases (analysis, design,
code,...) came next. The waterfall metaphor emerged as the discipline for going through the phases:
one phase feeds the immediatelyfollowing one. An extension was the retrofit possibility: one phase
is capable of causing a return to the preceding phase. The cyclic idea of an application going back
into blueprint stage came to the minds many years later and it was eventually tempered by the
double lifecycle philosophy.

13

CHAPTER 1 - The State of the House

the latter environment, the cycle starts by taking the system into production and
running it. At some moment (possibly because of problem reporting & assessment)

COST OF SOFTWARE DEVELOPMENT

CODING

TESTING DESIGN

7%

7
25% %

ANALYSIS

1%

an evaluation is held which results in the deci-
sion to undertake (and the definition of) small
scale corrections and enhancements, which are
then brought into the system as mere modifi-
cations. The cycle can then proceed into the
production phase. After several such rounds,
there will be more dramatic enhancements
needed, which cause the system to return to

the development environment.

According to various sources, the effort in-
volved in the various phases is rather differ-
ent; it is remarkable that coding amounts to
less than 10% of the total effort, whereas ana-
lysis and design take the lion’s part. But, and
this is perhaps more spectacular, 50% of the
total effort put in a software system is spent
in maintaining the system (see figure 3).

MAINTENANCE 50%

figure 3

The state of the union

Apart from the what does it cost? question, the major pre-occupation of system
makers is end quality.

Literature indicates certain criteria that allow a qualitative definition of quality.
They are:

— Precision: the degree of conformity of the finished system to its initial specifi-
cations, assuming, of course, that the specifications are precise themselves;

- Reliability: the degree to which the finished system behaves without errors
when it is used according to its original specifications (assuming that the speci-
fications describe such uses);

- Efficiency: the acceptability of the cost of using the finished system (in terms
of computer, human and time resources);

- Security: the discipline by which the system avoids unauthorized access;

- Usability: the ease of learning to use the system; this includes the coherence
of the user interface (the same microscopic functions of different subsystems
have the same look and feel; this applies even across different systems);

— Maintainability: the case (for the programmer) of bringing corrections to the
system,

— Flexibility: the ease (for the programmer) of bringing enhancements to the
finished system and the resilience to obsolescence;

14

ORIGIN OF ERRORS

STUDY & ANALYSIS
56%

DESIGN

e OTHERS

CODING 27%

7%

figure 4

and is twice as bad as expected! This re-
sults in a cascade of effects. Since it has
taken longer to develop the system, the
human pressure during development
was high (deadline pressure) so that
the precision and reliability came to
suffer even more. Moreover, the time
used to develop the system reduced the
time for developing other systems so
that backlogs of years come into exist-
ence (5 to 8 years is an accepted fig-
ure). On the other hand, the delivered

CHAPTER 1 - The State of the House

— Integratability: the ease of using
this system in conjunction with
other systems, either over a com-
mon data resource (a data-base)
or as a sub-system.

When we investigate systems of
today against the above criteria, we
cannot help but notice that most sys-
tems do not comply. The most com-
mon complaint is that although the de-
velopment of the system has taken
much more time (and money) than
foreseen, it is neither precise nor re-
liable. The common saying is: the sys-
tem has taken twice as long to develop

COST OF CORRECTING AN ERROR
(FINISHED PRODUCT)

STUDY & ANALYSIS

82%

figure 5

100,

50

02

systems being neither
precise nor reliable,
they need frequent
corrections. Not only
are the programs
usually not easily
maintainable, but
maintenance must
also be done at cata-
strophic moments (ac-
cording to Murphy’s
| law). As a result, pro-

ANALYBIS DEBIAN CODING

DEVELOPMENT ACCEPTANCE
TEBT TEST

grams obsolesce much
faster than foreseen,

OPERATION

figure 6

so that the mainten-
ance effort increases

15

CHAPTER 1 - The State of the House

over time, causing increased backlogs and faster obsolescence. On the other hand,
obsolescence is not readily recognized, and people keep mending programs that are
beyond salvation.

The general symptom is that the users are extremely dissatisfied, both because
of the number of errors in the systems and their difficulty of use. The backlog is
also a factor that users have to live with.

When, trying to do a more scientific survey of the state of matters, one notices
that most of the errors in a finished system originate in the analysis phase (see
figure 4). The correction of these errors during the productive life of a system
amounts to over 80% of the corrective effort (figure 5). In general, the later the
phase of the life-cycle in which an error (of any origin) is corrected, the more ex-
pensive the correction is (figure 6) and the more obsolescence it tends to create.

The conclusion is obvious: one needs to devote much more attention to the
analysis phase. This is where methods should do their utmost to help the software
engineer in achieving the required detail.

There are two major problems here that cause managers to do away with a
deep analysis stage: the first one is that the analysis is a social exercise: one must
understand a human organization for which the automated system has to be made
and since this is an activity that takes place in a climate of conflicts of interests, it is
avoided; the second one is the cost factor: before being able to set up an estimated
cost of a software development, the analysis (and part of the design) must be con-
ducted without any guarantee of return on investment. It is all very well to state the
necessity of using analytical modelling; the question is: can one afford it? Both in
time and money. The process is lengthy, calls for organization specialists (expensive
people!) and produces unverifiable quantifications. Indeed, how could one verify
the completeness and thoroughness of a pre-study? Who is to tell?

As can be expected, the analysis phase is more often than not largely sacri-
ficed... But consider what the alternative cost is: according to NASA, 75% of the
sizeable software projects fail in delivering what was promised...

Can quality be achieved?

An important aspect of software engineering is quality control. Does the pro-
gram correctly represent the problem to be solved? Does the algorithm correctly
map the reality? Does it meet the requirements? Have all possible exceptions been
covered (at least with error exits)? Many formal authors have developed a body of
program calculus allowing program correctness proofs to be conducted. However,
they all rely on one premise: the problem specification is itself formally complete.
In reality, this is, unfortunately, never the case. The world of discourse holds its own
contradictions, vaguenesses and incompletenesses. Moreover, correctness proofs of
a formal nature are extremely difficult. What we need therefore, is to establish near
correctness, i.e. acceptability defined in economical terms: keep the risk of not being
correct within accepted margins.

16

CHAPTER 1 - The State of the House

I believe that the most practical way to pronounce near correctness is by having
walkthroughs done at the earliest stage, that of (functional) design. Let the author
explain his work in detail before his fellows in the team and observers from the
user’s world. Questions will arise, errors will be detected, alternatives will be sug-
gested. The ideas bouncing in such a session will contribute to correctness. Conver-
sely, the much acclaimed technique of code reviewing does not seem to be very
effective (I consider it an expensive exercise in disguised futility!). It is boring, to
say the least, and the readers will not spot problems, apart from rather obvious
ones. Moreover, since it is done a posteriori, developers will tend to become even
more sloppy: they know the code reviewer will be held responsible if errors remain.
Instead of code reading it is more effective to set up an extensive test environment,
that maps the reality as closely as possible. It then suffices to separate cases of
interest into specific test cases. Again, such techniques cannot be exhaustive, but
they do serve their purpose and are worth the trouble, even though they are not
without problems.

Of course, the whole quality control work is eased by an order of magnitude if a
prototype was approved initially and when a solid design language and programm-
ing language was chosen and algorithms were well documented (i.e. state their
input, state the output, state the long term memory, state the business rules, state
the inter-connections with external objects, state default assumptions). A very good
way is to use refinement: give a global functional description of which the phrases
are refined into program sentences, thereby guaranteeing readability. It might be
advisable to use data-driven practices (e.g. decision tables) rather than code-em-
bedded ones, since such programs are definitely more stable, and the external data
structures, being very descriptive, also act as the documentation of the process.

There are no miracles! Whatever the means, the realization of a project calls for
time, effort and a lot of skill. Most projects degenerate or fail altogether. Once
finished, most programs are already (partially) obsolete in their functionality. As a
result, more effort has to be put into the lifelong maintenance of an application.

The cause of it all seems to be the incredible amount of misunderstanding
throughout the project’s life. This is due to communication problems between par-
ties concerned: the user talks to an analyst who talks to a designer and to manage-
ment; the designer informs the programmer who converses with the quality control
specialist. All of these people supply implicit personal views and assumptions. It
results in garbling. The only way out is (according to many) early prototyping. Show
the requesting parties what they’ll get. Remember the old saying that a picture is
worth a thousand words. An early prototype is worth a thousand pictures! There are
of course two ways to do the prototyping: either one sets up a fast and easy throw-
away prototype, or -and this is infinitely more productive- one creates an evolutive
prototype which gets gradually refined into the final product, by using fourth gener-

17

CHAPTER 1 - The State of the House

ation tools and practices, thereby ensuring that there is always a showable object.
When the move towards Sth generation® programming is taken, the necessity of
prototyping will become even more crucial. Indeed, there is not yet an accepted
universal knowledge theory®. Thus, development of a knowledge base is done by
means of stepwise prototype-based refinement. In this area, conviviality of the
workbench is of the essence.

figure 7

8. By that, I am refering to the various techniques that allow designers to go into Knowledge
Engineering.

9. Although the apparatus of formal logic is, obviously, as complete as it can be, there remains the
fundamental aspect of heuristics to be suitably formalized.

18

CHAPTER 1 - The State of the House

There is a caveat, though. Prototyping techniques are not the long-expected mir-
acle. Indeed, practice has shown that programs developed using prototyping are
generally of a better functional quality but are less robust under maintenance be-
cause they are not so well structured; programs developed using the conventional
techniques have a lower functional quality but have a better resilience under main-
tenance, because they contain solid program structures. A compromise might be
the development of a model: a prototype that one throws away at a certain stage,
after having translated it into a solid program which gets further refined in the
normal way. Whatever the approach may be, prototyping calls for more thinking at
earlier stages about the implementation aspects. This may be good or bad; the fact
is that the prototyping activities are in fact miniature lifecycles for a prototype
nested in the lifecycle of the software system under development (see figure 7). The
activities in the prototype lifecycle are the definition, the creation (building), the
exercising of and the acceptance of the prototype. The latter is inherent as a termi-
nation event of the exercising of the prototype, and need not be represented in the
prototype lifecycle.

More about prototyping is said in chapter 6.

Quality: a matter of responsibility

All things being said, quality remains largely un-quantifiable. Attempts at quanti-
fication have been made, usually by decomposing quality objectives and require-
ments into finer statements, so fine in
fact that a metrics become possible.
Still, there is no satisfying way to ensure
that quality is obtained.

It may be that the definition of
quality cannot be fully stated. In fact,
there is a complicating factor: the
quality of a system component is as-
sessed in informal ways by many people,
so many that all statements become
contradictory, partial and purposely
vague. In fact, everyone is concerned

figure 8 but no one is responsible. The blame

will always be placed on the next per-

son. A good deal of quality problems will be solved almost spontaneously when
each component has a visible responsible owner. This will avoid the classic charade:
the software engineer blames the end user who didn’t express his needs correctly,
the end user blames the software engineer who didn’t understand the needs; both

10. This statement expresscs a positive prejudice. In reality, some of the conventional programs have
such an appalling structure that any prototype would be better.

19

CHAPTER 1 - The State of the House

blame the management for not having taken the right decisions. What should not
be forgotten is that the company’s organization is the requesting party. They are
the ones who need actions, processes and functions to be automated. Unsolicited
development by the software department is impossible. The organization owns the
software department. The software department builds the requested systems under
the responsibility of the organization. The resulting system is owned by the organiz-
ation. This ownership philosophy is illustrated in figure 8.

By placing the responsibilities in that way, even at this macroscopic level, a feel-
ing of concern should prevail and this will be instrumental in improving the quality
of the system. The notion of responsibility through ownership is refined in virtually
every chapter of this book.

Design revisited or divide and conquer

Involved as the analysis of a problem to be solved may be, the design of a solu-
tion is even more complicated an activity. During the design phase, one essentially
decomposes a problem into sub-problems, each one of them being decomposed
again until manageable units are obtained which we can start implementing. Con-
sider a trivial example: suppose our problem statement is “build a TV set”. This
problem decomposes into sub-problems which are: {get a wiring diagram}, {ac-
quire the components}, {assemble the components according to the wiring diag-
ram}. What should be noticed here is that the sub-problems are not independent.
First of all, all three of them must be solved. Furthermore, they must be solved in
order, since acquiring the components can only be done after we have set up the
wiring diagram, and assembly can only be undertaken after both the diagram and
the components exist. This is an ordered conjunctive decomposition. In many cases
however, the order of the decomposition is not relevant. For instance, the problem
“create a hi-fi installation” decomposes into {acquire a turn-table}, {acquire an
amplifier}, {acquire speakers} and each of the sub-problems can be solved in any
order. This is a conjunctive decomposition. Sometimes a decomposition is even
more flexible. For instance, the (sub-)problem {get a wiring diagram} can be solved
either by {buy a diagram} or by {create a diagram}. This is a disjunctive decompo-
sition. Such decompositions are often bewildering in the sense that one wants to
select only one solution, but which one? Of course, it may happen that our original
problem requires the alternative to be kept and have the problem of choice solved
each time the application actually runs (according to temporary conditions).

The creation of a decomposition is, in fact, also a problem of abstraction in the
sense that each level in the decomposition is itself an abstraction of the levels
underneath. The lowest level is a (set of) program statement(s), of course, but this
is again an abstraction of the machine code underneath the program statements.
Decomposition is a top-down approach going from the most abstract level down to
the most concrete level (stopping at a body of program statements in a chosen
language). The important thing is that a decomposition creates a hierarchical tree,
a structure which is conceptually easy to master.

20

CHAPTER 1 - The State of the House

While we perform the decomposition, we will also have to investigate the data
structures that our problem requires. Such data structures will also be seen starting
with a very abstract view down to a very concrete view. In other words, there is also
an important notion of data abstraction. For instance, the sub-problem {get a wir-
ing diagram} uses the data structure wiring diagram; of this data structure it is not
important, at this level, to know how it is implemented nor sow it is manipulated.
What we need is the knowledge of what it represents and what logical operations it
should be able to undergo (possibly limited to read, store, delete a diagram). Data
abstraction is essentially a matter of expressing the data in terms of classes and
objects with methods. The actual creation of the physical implementation of the
data structure and its methods should be seen as a sub-problem in itself, discon-
nected from the more procedural sub-problems which should never be burdened by
the physical data aspects. In other words, we impose an independence between the
program realm and the data realm. In this respect it is quite incredible to notice
that, especially in the business DP world, people are rarely interested in this ap-
proach, although it is considered by most authors as the most valuable contribution
made to software engineering in the last fifteen years.

All this being said, the fundamental problem we are now stuck with is : how do
we decompose our problem into sub-problems, so that it makes sense and can lead
to an implementation plan? This is not a trivial feat. Consider indeed an ordered
conjunctive decomposition: the sub-problems depend on one another. Can they be
designed and implemented in their own right or should they be done one after the
other? This depends on the way in which the sub-problems actually connect
together. For instance, if the sub-problem {acquire the components} is solved in a
very different way depending on the solution of {get a wiring diagram}, we must
solve these problems in order. On the other hand, if we can create a solution to
{acquire the components} which is general enough (i.e. abstract enough) so that it
works whatever wiring diagram was set up, we do not need to work in order. How-
ever, for a large system, the first level of decomposition should be of an ordered
conjunctive type, so that the sub-problems of this level can be assigned to different
team members without creating major human communication problems. For in-
stance, in a human resource system one could create a first level comprising per-
sonnel registration, absence registration, payroll, skill management, etc. These
problems can very obviously be considered stand-alone. Of course, there is one
essential communication area anyway: that of the data structures, which all compo-
nents will somehow use. It is a good idea to devote the design of them (including
their methods and semantics) to yet another team member (or even to a data ana-
lyst outside of the team).

Further levels of decomposition should be “workable”. What is meant by this is
a subjective concept. One quality aspect is in obtaining a tree of sub-problems in
levels rather than a network with crisscross lines. Consider as follows: at the lowest
level of the decomposition we obtain implementable modules (something a lan-
guage like ADA is very good at). Of course, each higher level represents a connec-
tion together of modules so that super-modules come into existence. The decompo-

21

CHAPTER 1 - The State of the House

sition is good if any module of a given level, say n, connects to only modules of the
level immediately underneath, n+1 (and to modules of its own level as well). In
fact, such an approach allows us to consider each level as an abstract machine of
increasing functional power (as we look at a higher level of the diagram), repla-
ceable at any moment by another implementation, provided the same functionality
is offered. One of the first advocates of this philosophy was Dijkstra in his famous
THE machine views. He also indicated that a module obeying the constraints indi-
cated, had every chance of being proven correct, using formal proof methods. Such
a module he called a pearl, since like in a necklace, every pearl “connects” to only
its predecessor and successor. And a pearl is an object of high quality as well, con-
taining no bugs. A beautiful image! Using this approach, not only is design more
easy to conduct, but maintenance will also be much more controllable.

The links between modules should be kept as simple as possible. Simplicity is
expressed in terms of data structures and values that are transferred over the links.
In fact, a module should never need anything other than these structures, which
should be frozen not only throughout the execution of a module, but for the whole
life of a module (maintenance permitting). In other words, the quantity of informa-
tion a module works with (enfropy) is not a function of time. The advantages of
having the rule (of thumb) that entropy should be constant, are obvious: pro-
grammers have less human communication problems regarding their modules while
they construct them; linearity is improved: a change in one module has less chance
of propagating its effects all over the place; understandability of the system by the
people responsible for the maintenance is largely improved, since any module can
be seen in the context of only one predecessor and one successor level. Also, the
modules can be made more general (abstract) and serve more universal functions
(universal within their own level), since they need less assumptions regarding their
environment.

In fact, the connections between modules should be weak, by which is meant
that the connection does not depend upon the internal complexity of a module.
Another way to formalize this notion is by saying the connection should be stand-
ardized. Compare this to the problem of configurating a PC. The PC is composed
of a keyboard, a CPU, a monitor and a printer. These are modules and they are
rather complex. However, they inter-connect with only a couple of standard cables.
The inter-connection is weak. On the other hand we may say that the internal co-
herence of each module is very tight. There appears to be a pragmatic law that says
the tighter the internal coherence of a module, the weaker the connections required
and conversely. This is intuitively true, since lack of tightness of a module refers to
the amount of knowledge a module must still gain from its environment over con-
nections whose entropy may vary in time and be largely unplanned.

It is a very positive fact that 4G techniques enforce the creation of modules with
only weak inter-connections (a very limited set of standard connectors is available)
so that tightness of the modules ensues almost automatically because the designer is
forced into creating tight modules. On the other hand, many applications use an

22

CHAPTER 1 - The State of the House

underlying data-base as a background, but this data-base should be seen as a long-
term memory, nothing else. In that respect, it is unforgivable that many developers
consider the data-base as a connector as well, using various tricks to pass informa-
tion from one module to another in a totally unstandardized way (flags, exceptions,
etc.), thus inducing a serious loss in tightness of the modules.

The houses of Ret Up Moc

Software engineering, notwithstanding all the methods that tend to increase the
quality of the job, is most often done in a very “magical” way. Misgivings abound.
Lack of perception and insight is commonplace. As a result, a totally biased philos-
ophy has appeared and has led to a DP culture of a rather paradoxical nature.
Shortcomings have been turned into accepted inherent properties ("it cannot be
different").

Baber gives an amusing parable. He compares the situation of software engin-
eering to the situation of house building in the mythical land of Ret Up Moc, a
legendary empire coeval with the Egyptian empire. In this land great advances were
obtained in house building. Architects and builders were extremely qualified and
did an excellent job. As a result, there was a boom in the building industry and
builders were in great demand. The experts had no time anymore to train new
experts, so that the schools developed emergency programs to train new people (or
re-train older architects). The training was concentrated upon memorizing check-
lists and recipes of building. No time could be devoted anymore to explain the why
of the various rules (let alone that the instructors had this knowledge). A new class
of builders emerged, who knew all the rules, but they could not interpret them. So,
they set about their building task, and built many houses. As a result, a sizeable
proportion of the houses collapsed within their first year or even during construc-
tion. Worried about these problems, the rulers of Ret Up Moc created rules for
testing a house. Some tests had to be conducted during the construction, other ones
at the end. One of the tests, during construction, was pouring tons of sand on top of
the house. If it didn’t collapse, the sand was removed and work could proceed. At
the end some similar tests were conducted and if everything was stable, the owner
of the house had to sign a contract discharging the builder of any liability.

Any one who takes a critical look at present day software engineering will have
to admit that the situation is very much the same as that of the building engineering
in Ret Up Moc. A ridiculous and unacceptable situation of course! What can be
done to correct it? One obvious approach is to fundamentally revise the education
system. Another one is to create tools that help the software engineer in controlling
his activities at the conceptual level (CASE: computer aided software engineering).
Such tools might contain the checklists, thus relieving the engineer from manipulat-
ing them and allowing him to concentrate again upon the why. The tools should
also deliver various perceptions of the design phases by producing “perspectives” or
alternate representations. They should enforce the notion of decomposition and
weak connection. For instance, drawing a line between two module boxes means

23

CHAPTER 1 - The State of the House

the modules are (and will be) connected in a standard way, which can not be modi-
fied into garbled exceptions anymore.

However, I have noticed that many users of CASE tools tend to consider them
as even more “blind” checklists and accept without discussion whatever the tool
produces after having pushed the button. Clearly, this is not at all what such a tool
is meant for.

Many roads lead to Rome

There are many ways to look at an information processing system and its envi-
ronment. According to Bemelmans, there are four levels of observation in the sys-
tem. For each of these levels there are development activities that should be real-
ized during the lifecycle of the system. The first level is the description of the why.
What is the use of data and processes, what is their impact on the organization,
which business functions do they execute. What we are concerned with here are the
pragmatics of the system. Bemelmans calls this level the systelogical level. The sec-
ond level is where we should devote attention to the what. What is the meaning of
the information, which are the objects and events of the real world that the infor-
mation is about? What are the transformations that processes bring to the informa-
tion? What are the information streams? This is the semantic aspect, and Bemel-
mans calls it the infological level. The third level deals with the how. It comprises
the description of data and processes in a suitable implementation language: it is
the implementation itself, the program writing so to speak. We are concerned here
with the syntactic representation of data and its processing. Bemelmans calls this
level the datalogical level. Finally, the fourth level is the wherewith. It describes the
implementation means, like the hardware, the receiving operating system software,
the network, the processors and other such paraphernalia. This level is the fechno-
logical level.

Bemelmans formulates the strict requirement that the four views which lead to
four models of a system should be kept strictly separate from one another, so that
the semantic description of data cannot be influenced by its physical representation,
for instance. In other words, if for some reason a physical representation changes
this does not mean the semantic description must be revised. Of course, this disci-
pline becomes harder to respect when we look at the relationship between the da-
talogical model and the technological model: only if the syntaxes used are in fact
pseudo-code descriptions will the two levels be independent. Our programming lan-
guages of today (most notably Cobol, but even the 4th generation languages) are
very heavily impacted by the underlying physical atrocities. This unfortunate aspect
tends to evolve as notions like data independence and object-orientedness suggest.

ISO took a slightly different avenue in describing an information system. They
look at the system from the standpoint of its users, since that is what a system is for
in the first place. Therefore, they state that there is indeed a level where the why
and what of a system is described at a suitable level of abstraction, just like in the

24

 CONGEPTUAL
MODEL

figure 9

figure 10

CHAPTER 1 - The State of the House

systelogical and infological models
of Bemelmans. ISO calls this why-
what model the conceptual model.
The real implementation with the
programs and the host system as-
pects is invisible to and inaccessible
by the end users of the system, they
are reserved for the programmers.
For this reason, these aspects con-
stitute the internal model (identical
to the datalogical and technological
levels of Bemelmans). Finally, the
implemented system has a presen-
tation interface through which it is
seen and operated by the end users.
This is the external model (not re-
ally expressed in Bemelmans).

The correspondence between
the four levels of Bemelmans and
the three models of ISO is repre-
sented in figure 9

In recent years, IBM has set up
a set of system development gui-
delines, assembled in the AD-cycle
strategy. Here, three levels of sys-
tem development activity are recog-
nized. First there is the description
of what the organization in which
the software system will have to be
integrated is all about. This is the
enterprise level, which speaks about
users and their grouping, systems
and their decomposition. The level
beneath it is the design level where
the software solutions for the sys-
tem to be implemented are de-
scribed. Finally, at the bottom end
there is a technology level which re-
groups all the implementation as-
pects such as programming, physi-
cal data-base design and other
niceties. The levels in IBM’s AD-
cycle are more pragmatic than the
levels in Bemelmans. In a way, the

25

CHAPTER 1 - The State of the House

enterprise level contains the systelogical level. The datalogical level is found in the
design level whereas the technological levels of both approaches overlap rather
smoothly. The problem is in the infological level (which encompasses ISO’s concep-
tual model). In reality, this level is the result of the analysis. There is apparently no
room for it in AD-cycle. The best equivalence is to see it at the bottom of the
enterprise level and at the top of the design level (see figure 10).

The data-driven world

In all methods used today for the development of a software system, two classes
of objects are distinguished: objects that carry information and objects that process
information. The methods are all working with some form of information model
(which becomes a data model by refinement) and of functional model (which
becomes a task or process model later on).

When designing an information system, the two aspects of information and pro-
cessing must be taken into account. However, experience tells us that the descrip-
tion of information is much more permanent than the description of processes.
Moreover, processes are justified by the information that they process and not the
converse. For this reason, many modern methods are devoting a lot of attention to
(and indeed start with) modeling the information. The business world is informa-
tion driven and therefore the software systems are data driven. This fact is proved
very clearly by the commercial success of data-base management systermns.

If we want to represent the information as a suitable (implementable) model,
there must be a consensus regarding the reality that the information pertains to.
This reality is what is called the universe of discourse. This universe is a collection of
abstract and concrete objects that one manipulates or speaks about. Furthermore
there are sentences (propositions in formal logic) that describe the behaviour of
objects and their relationships to one another. The very description of the universe
of discourse as a set of objects and propositions is the most difficult task that one
can undertake. One may indeed think that such objects merely exist and are to be
observed in an objective way, so that a given description (set up by one person) is
comprehensible to another person without any difference in meaning. An invoice is a
clear cut object and it has the same meaning for everyone. Experience shows that
this objectivist view is a fallacy. The reality (if it exists objectively at all!) is per-
ceived through personal filters. The comprehension of the reality is subjective.
Every user has his own view. This is where a vicious circle appears: it is not possible
to make a model of the reality based upon the various subjective views other than
by creating a consensual objective view, and impose it upon the protagonists. They
will, however, still look at it subjectively. Moreover, the objective abstraction that

26

CHAPTER 1 - The State of the House

we make can only be valid for the consensus group. It is not valid for other groups.
These facts explain the utter misery of information modeling. Fortunately, there is
enough discipline in a company for a consensus to exist about specific subsets of the
world of discourse!!, That groups have their own (subjective) view of reality is a
fact that the data analyst must accept. As a result, the world of discourse cannot be
represented in just one model, but rather by means of sub-models, one for each
consensus. These sub-models can be constructed independently, but must event-
ually be merged and this calls for conflict resolution rules. Nevertheless, it is im-
portant that each consensus group keeps seeing its own sub-model'.

When we speak about information, we should not forget that there are two as-
pects to it: knowledge and communication®, Information that resides somewhere (in
the head of an end user or in a data-base) is knowledge. This knowledge is not
interesting (indeed one may doubt its very existence) if it does not get used. At the
basis of using knowledge lies the need to transfer it, to communicate with other
persons (or processes). The communication aspect calls for a well formed descrip-
tion of what is valid information and what is not. That is what an information model
is for: the various processes in a software system that exchange information can
draw their information screening discipline from the structures (the semantics!) that
reside in the information model. It is indeed vital that the ultimate receiver of data
interprets it as the original sender intended. Throughout the system and with the
users, there must be solid rules of interpretation regarding all valid information that
the system can process (this is usually called the Helsinki principle).

The abstraction rounds

All the lifecycle models try to represent the same mental process and its steps:
abstraction. According to Brachman, the creation of a system proceeds in two
movements: one is a path that starts from the reality (the world of discourse) and
creates a very high-level abstraction, the second one takes this abstraction and de-
scends to a concrete implementation. The path up is a path of understanding and
conceptualization, the path down is one of design and implementation (see figure
11). Brachman distinguishes five levels of abstraction. At the linguistic level, the
process that takes place is one of gathering information from the sources that may
exist (the end user for instance) and cleaning it up, ridding it of redundancies, con-
tradictions and ambiguities. The next level, the conceptual level, represents a work

11.Due 1o the aforementioned vicious circle, the implemented software system will help in
maintaining the consensus. Conversely, breaches in the consensus will contribute to the fast
obsolescence of the system.

12. This principle is strongly enforced in an information modeling technique devised by Philips (the
Netherlands): INFOMOD.

13. Human speech is very sloppy about knowledge, information and data. These words are used as
synonyms. Let us say here that knowledge is stored somewhere; information is a higher concept: it is
the explicitation of meaning (thus: knowledge is an amount of information); data is a form of
storage for knowledge (and therefore of information).

27

CHAPTER 1 - The State of the House

of abstrac-
tion: con-
EPISTEMOLOGICAL level cepts are un-

covered in
PN the collected
information
and the infor-
mation gets
O classified ac-

abstraction

CONCEPTUAL LOGICAL
lovel mﬂ’m& "LE-?“IGAL level

N X i

¥ § cording to

LINGUISTIC QOQ. Y} TECHNICAL these con-
level QQ? level cepts. In
AT ot PROGRAM more detail,

DATA model at the con-

time ceptual level,

) one describes

figure 11 domain infor-

mation (for
instance in a semantic information model), flow information (how information leads
to other information, an information flow model), control information (how the
flow is controlled by tasks, processes and functions) and strategy information (such
as plans, scenarii, major cases, ...).

From the conceptual level, we produce one higher abstraction, at the epistemo-
logical level. At this level we uncover the essential structuring principles of our
model, which we can understand as rules that govern the specific modelling process
itself and remain valid throughout all subsequent activities.

When a model of this high abstraction level has been obtained (a conceptual
model), we are in a very special situation: the model is correct (or assumedly so0),
whatever the implementation of it may be. The model does not depend on any
technical or system-imposed decision. It is free from programming constraints. The
next activity, therefore, is to constrain the model in accordance with the retained
implementation formalism. This results in a logical model and takes us to the logi-
cal level. Finally, the work becomes as concrete as it can be by proceeding to the
technical level, where the actual program model is designed.

So, what is a method?

By now, it should be fairly clear that a method must meet several criteria. Cer-
tainly, a method must span the lifecycle of a software system. In other words, its
features and benefits must extend from the very (pre-)study of a system down to
the ultimate death of the working system, thus including both the development life
and the maintenance life. Looking at most existing methods with this fairly trivial
criterion reveals that most of them do not even meet the criterion of the full life-

cycle.

28

CHAPTER 1 - The State of the House

Next, a method must offer a consistent framework within which the various life-
cycle phases can be articulated and expressed. The least one may expect here is a
consistent terminology. If the method comes with graphical representation means,
these must use consistent icons and a unique user interface. This requirement eases
the learning effort for the method, but also it avoids representation errors. Methods
can be open-ended in the sense that they may accept input from other methods or
Case tools, but then there should be some kind of automated conversion feature
that controls the up- and downloading between the two representations.

Since a software development project must be monitored according to a chosen
metrics, a method must implement a discipline sufficient for allowing this metrics.
This does not mean that the metrics must be in the method, but there must be
sufficient milestone activities allowing easy assessment. Specifically, the method
should enforce a disciplined flow through the lifecycle, disallowing a next step when
the previous one has not been terminated. In other words, a disciplined method
calls for a project controller and should have software tools that automatize the
enforcement of the discipline. In particular, a state of the art method should rely
upon a computer based repository in which the various objects that the develop-
ment activity has to use are represented and controlled. This being said, the disci-
pline may not be a harsh one: for instance, a method that states that prototyping is
disallowed is not acceptable',

Of extreme importance are the targets and objectives of the method. Whatever
the method comes up with should be justified by the objectives. Some methods
increase the productivity of the developer and provide the means to achieve this;
other methods concentrate on the quality of the end result. Which of the two ap-
proaches is best is an open question'’, but it is important that the method states its
purpose, so that the user can accept the discipline (or not). There are methods that
engulf the developer in a mass of documentation, but, one wonders, to what pur-
pose? No one ever reads the documentation (and I am sure that no one ever con-
trols the documentation for completeness, correctness, consistency,...). So why
should we lose much time on a gratuitous exercise?

In the same vein, a method should offer sufficient representation techniques so
that the various aspects of the reality that need modeling can indeed be modeled.
Some methods offer much in the way of the functions, but leave the information
modeling uncovered. Others concentrate on information modeling, but say nothing
about the processes. These are incomplete methods which leave the developer out
in the cold. Of course, the method should be clear in these matters: too much is too
much! There is no need to represent the same portion of reality in more than one
model. Alternative representations must be available when needed, that is the im-
portant aspect.

14. Many methods are indeed incompatible with prototyping.
15. Enough quantity with sufficient quality is the best of all worlds.

29

CHAPTER 1 - The State of the House

Last but not least, the method must be clear about its fundamental paradigm.
How does the method expect its users to visualize the reality? This is essential,
because it determines a number of representation particularities that one must ac-
cept without discussion. For instance, there is quite some difference between the
paradigm of processes that store and retrieve data and that of processes that ex-
change messages. These paradigms are more diverse in the realm of action repre-
sentation than in that of data (information) modeling. In many ways the paradigms
are equivalent (they represent the same reality, don’t they?), but their finer disci-
pline differs so much that it is very difficult to combine them.

As a result and in summary, a method should not be particularly difficult: it
must be comparatively easy to learn (in fact, it should suffice that one understands
the basic underlying paradigm). The method should be usable by end users as well
as software engineers (not at the same level of detail, but certainly at the concep-
tual level). The representation means must be rather natural or at least have a
reduced number of icons and reserved words. In fact, by using the method’s termi-
nology and representation syntax, it should be possible to explain a software system
to an external person (training effect) and conversely, the method’s syntax must
allow interested parties to evaluate a foreign piece of software (bought applications
for instance).

The best way to conclude is by stating that a method must be acceptable to all
persons concerned. That this is not without cultural incidence is clear, but one must
avoid the appearance of the method fanatic as well as the unconditional rejection
attitude. Many methods are worth one’s while, but they must be pruned somewhat
for certain aspects and extended with company discipline for others. There is no
such thing as a best method.

Software Engineering is a social exercise

The top-level activities contained in the software engineering exercise take place
in the real world, are done with the end users at the enterprise'® level. Therefore,
these activities have a rather important social impact, either because they depend
on human input or because they dictate human behaviour as a result.

There are behavioural assumptions underlying the work of the software engin-
eer. These assumptions are based on the type of social environment (or vision of
the environment) where the work must take place. One such type is that of an
ordered society characterized by stability, integration, consensus and functional co-
ordination. The converse type is that of conflict where change, coercion and disinte-
gration reign. Of course, these society models can be combined with an objectivist
or a subjectivist view of reality. The behaviour of the analyst is largely determined
by the chosen coordinates: objective+order or objective+conflict or subjective+order
or subjective+conflict. The resulting models are of greater or lesser quality accord-

16. This is AD-cycle terminology, of course.

30

CHAPTER 1 - The State of the House

ing to the coordinate choice (or the imposed coordinates) and the implemented
system will display this same degree of quality (or lack of it).

The reality is not to be grasped in an objective way, as experience has amply
shown. Subjectivism, hopefully constrained by sub-system consensus, is the rule. As
a result, the analyst must display a great degree of relativism: he must perpetually
measure the information given by one user against the information given by an-
other user. The role of the analyst is to interact with management in determining
which system makes sense, preserving the individual understanding of the users (or
groups of users). In solving conflicts of interpretation, the software engineer must
permanently work with the users and ease the transition from one (rather false!”)
viewpoint to another (rather correct) one.

When re-positioning the subjective dimension in the society-in-conflict context, it
becomes clear that the software engineer tries to resolve conflicts, by taking the
side of those the system is destined for: the end users. In all ways the system will
allow the emancipation of the users by removing the barriers to rational discourse.
In order to do so, the software engineer must acquire knowledge in the technical
domain concerned by the system,; this is an obvious requirement which is always the
basis of the engineer’s work of course. But the software engineer must also increase
his knowledge in mutual understanding, since the system has this kind of emancipa-
tory implication. Therefore he must devote full attention to the cultural aspects and
backgrounds of the users involved in the system. He must understand particular
system requirements by comparing them to broadly similar systems'®. Finally, the
analyst must also gain knowledge in the emancipatory aspects themselves. The ana-
lyst will elicit a shared understanding of the many obstacles to human communica-
tion. He needs to acquire an appreciation of the different viewpoints of the differ-
ent stake-holders. This cannot be done by external observation: genuine participa-
tion is crucial.

While eliciting the various knowledge aspects, the analyst must be aware of fac-
tors which can hinder human communication, such as: authority and illegitimate
power, peer opinion pressure, time and other resource limitations, social differen-
tiation, biases, loss of power and language barriers. These factors make it difficult
to understand the relevance of system requirements. Correct system requirements
and objectives can only emerge from a free and open discussion which must lead to
a shared agreement without suffering from the indicated barriers.

The realized system must also provide for increasing the knowledge of its users
in the three indicated domains: technology, mutual understanding and emancipa-
tion. As a result, information systems can facilitate the move towards improved

17. The rather false and rather correct qualifiers are themselves subjective; they are probably imposed
by some form of strategic management.

18. Making sense out of a new situation by comparing it to some similar situation is what
hermeneutics are about. This is normally the domain of the jurist, but it seems that DP professionals
are also great practitioners of this human science.

31

CHAPTER 1 - The State of the House

technical control, better mutual understanding and continued emancipation of the
stake-holders. In fact, information systems are developed also to facilitate a wide
debate on organizational issues, free of social pressure. This type of ideal discourse
is made more easy by a number of realizations during system development that
tend to remove speech barriers:

— information modeling contains the representation of semantics, thereby allow-
ing validations that avoid interpretation distortions;

— well balanced project management and logistics can motivate the participants

into sharing and eliciting missing information;

— object-oriented designs can help in overcoming educational differences;

The way in which the software engineer profiles and defines his activity is based
largely upon his personal culture and the company culture. Nevertheless, it is also a
fact that the newer methods for developing software have more and more taken
into account the subjective nature of the reality. Most of them still tend to favour
the ordered-society view, where every issue is determined by consensus and nothing
changes. But even that is not true: changes abound, coercion exists, conflicts of
interest are commonplace...

Should a software engineer be a computer scientist? No...
Should he be an organization analyst? No...

Should he be a social worker? Yes, and some of the above as well.

32

ENTITY 1

INFORMATION

iR
ACTIONS ORGANIZATION NI i
ol i i

WARNING

The subjects covered in this part of the text are about
information modeling and its obligatory sequel: data
modeling.

The reader is assumed to have a fair knowledge of the
relational data representation, even though this is not
used here as the fundamental model. A brief introduction
to this model is included in the text, but space constraints
prevent me from giving a full criticism.

A fair portion of the text is devoted to semantic modeling,
where understanding the information is of the essence,
whereas the remainder of the text deals with the actual
modeling of the data structures, achieving the (almost)
zero-redundancy objective.

The modeling techniques presented are those that -based
on personal experience over years- have given me the best
basis for achieving quality in the resulting models.

The associate subject of information architecture
modeling is covered in another part of the text (it is
inculded in enterprise modeling)

CHAPTER 2
The Semantics of Data

Preamble: Codd’s relational model

That Data has a structure is an accepted fact. Clearly, all forms of list structures
are conceivable for representing data. However, such structures offer too much
freedom. Thus, the pragmatic world took another avenue. An avenue first explored
by Ted Codd, leading to the famous relational model. What Codd stated, as an
axiom, was the existence of a group of data fields, i.e. the list of related fields.
Fields are called attributes (and sometimes columns). Such a list was given the name
relation (sometimes also table). Thus, a relation is composed of discrete attributes.
The relation has a name which allows programmers to perform operations against
it. For the attributes nesting is not allowed, in other words fields cannot be group-
fields: a column should not have a finer structure. One says that an attribute is
atomic. It may, however, have a binary structure: the value in the column may be
absent or present; an absent value is a null value, and this can be allowed or dis-
allowed in any given column. An example: a relation holding employees has a col-
umn for the name of the spouse. Bachelors will have a null value in this column.

Codd also defined the fuple (sometimes also called row): one significant value of
all fields of the relation, such that the aggregation of these values constitutes a
significant occurrence in the usage of the relation. In more pragmatic terms, a tuple
is an occurrence of the relation.

In the pure scientific definition, the relation is the set of its tuples (just like a file
is not the layout of a record, but the set of all occurrences of a given record layout).
Therefore, if we draw it up on a sheet of paper, a relation looks a lot like a table,
with named columns and filled with rows (these are the tuples). Obviously, this is a
rather attractive way of viewing data, isn’t it? It corresponds to what data usually is
in a non-automated environment. So much so that I will use the term table with
columns as a synonym of relation with attributes (this has become daily habit in
programming circles; strict relationalists do not accept it, however). In fact, a rela-
tion is none other than a new name for an old object: the file! The associate disci-
pline is not that of files, however, as we will see presently.

In a way, Codd followed the Pascal philosophy: each column (or field or attrib-
ute) is defined over a domain, another way of saying that it was of a given (strong)
type (strong typing refers to the fact that a program using a field cannot assign a
value to it that is not allowed by the domain of the field, nor can the field be

35

CHAPTER 2 - The Semantics of Data

assigned to a field with another domain; manufacturers tend to be rather lenient
and vague in supporting this kind of discipline; many of them allow some kind of
conversion or coercion between domains). This aspect of typing is called domain

integrity.

Codd did more: he stipulated that identical rows in a tuple were to be banished,
as they would be totally indistinguishable and would therefore be unusable. But, if
duplicate rows are to be avoided, that means that rows are somehow distinguish-
able. How? By the fact that any pair of rows differ in the value of at least one field.
And, noticed Codd, quite often this is the same field for all rows of the table. So, a
table may contain a column that has something special about it: it can be used (or,
better, its values can) to identify the rows of the table. This means that the column
actually identifies all the other attribute (values) of the row. Such a column is a pri-
mary key. Of course, a primary key can be made up of two or more columns taken
together. The important rule is that a table must have a primary key, even if it is
made up of the concatenation of all columns of the table. This is what Codd called
entity integrity. That the primary key can be made up of agglomerated fields does
not ruin the atomicity of attributes. A program can only access atomic fields: it
cannot compute nor compare primary keys. The primary key is reserved for usage
in specialized instructions with well defined semantics and no possible deviated
usage.

A significant example of concatenated primary key usage can be found when
one tries to use the relational representation for higher level tables. Indeed, the
relational table as seen corresponds to the single entry table. What if we have a
2-entry table? In a single entry table, the breadth of the table is limited at any
moment (it is the list of fields), whereas its height is unlimited (the set of tuples). In
a two entry table both breadth and height are unlimited. Consider for instance a
situation in which we want to represent the price of parts delivered by various sup-
pliers (at a different price). We will make a 2-entry table, with one row for each
supplier# and one column for each part#. Each cell (crossing of column and row)
will hold the price of that particular part for that particular supplier. A very familiar
representation. It can be easily extended if we want to know more, e.g. the avail-
able stock of a part with a supplier. This is added in the same cell as the price, so
that the cell becomes a structure of two fields. In general, the cell in a 2-entry table
is composed of a fixed (but not limited) number of fields. Clearly, such a table is
not relational. But we can turn it into a relational table by defining price and stock
as usual columns, by adding a column for (say) supplier# as a primary key, and
have as many rows for this particular supplier as there are parts deliverable by him.
The table has an integrity violation: its primary key is not unique. This is as ex-
pected: we must distinguish the parts supplied, so we add yet another column,
part#. What we have now is a single entry table with the columns supplier#, part#,
price, stock and the concatenated primary key supplier# +part#. What was done
for 2-entry tables generalizes by induction for n-entry tables: they correspond to
relational tables having a concatenated primary key of n elements.

36

CHAPTER 2 - The Semantics of Data

This being said, strict relationalists do not allow the primary key to be composed
of more than one field; if no such key can be found, they add an artificial column to
the relation holding some unique value (e.g. a sequence number). Under this
strongly restricted model, there is an equivalent simpler model: the binary relational
model. A table (A,B,C) where A is the primary key can always be replaced by as
many two-column tables (binary tables) as there are non-key attributes, as follows:
(A,B) and (A,C). In this simple structuring scheme, null-values are more naturally
accepted: if indeed C can have null values in the original table, this merely means
that not all A values occurring in (A,B) also occur in (A,C).

Some very important properties pertain to primary keys. First of all, they have
unique values. This is an essential aspect of the key since it is only by that unique-
ness that the key can identify attributes. Consequently, a field that has unique
values today by chance, but may have duplicate values tomorrow can never be a
primary key. The primary key of a table must have a significant value in all rows of
the table, it is never an irrelevant value (null value not allowed). If a primary key is
composed of many columns, none of them may ever have a null value.

In fact, each column or column combination that has essentially unique values in
a table is a potential primary key. And if there are many of these in a table, they
constitute candidate keys. A problem of choice: only one of them is really to be
used as true primary key, the others may be demoted as alternate keys.

According to Codd, a relation’s tuples should be unordered. It is irrelevant to
know that the row with key value ANC is the 768th one, and it is just as irrelevant
that therefore row 769 has some specific related meaning. Rows should be inter-
changeable, without effect upon the applications using them.

Pragmatists allow any field (or group of fields) in a table to be decreed a key
allowing access. Such a key is called a secondary key. It has no criterion of unique-
ness (in the course of subsequent data modeling case studies we will see that this
freedom is really a trap because it contains a chicken and egg paradox). A second-
ary key will very often serve to sort the table and therefore it does imply an orde-
ring. For that reason, pure relationalists avoid speaking of such keys.

So much for the table as a stand-alone being. In fact, a table is a highly simpli-
fied list structure, simple enough to allow its implementation in any kind of file
system and any kind of programming language. The point now is: can tables repre-
sent all the data structures one needs? They look simple enough to make their
usage attractive. But are they coherent? We will see in due course.

Codd’s definition of a relation gave a specific meaning to the word relational. It
stands for "pertaining to Codd’s definition of a relation". Therefore, when data is
represented by using only relational tables, we will say it is represented as a rela-
tional model. A data-base that implements only such relational tables and nothing
else may be called a relational data-base.

In fact, it would be better to call Codd’s definition the relational paradigm.

37

CHAPTER 2 - The Semantics of Data

Relational pragmatists have a more "human" definition of the relational data-
base; it is a data-repository with a suitable management software such that:

- the data is stored as relations only (no physical structures are visible at all),
- the entity integrity and domain integrity rules are enforced,

- the access features are free of any physical impact (e.g. they are made up from
the relational algebra (PROJECT, SELECT, JOIN,...) or from the relational cal-
culus (e.g. SQL)); moreover they are set-oriented in the sense that they operate on
a set of rows and not just one row in isolation.

The above definition is not sufficient though.

In the relational model as promulgated by Codd, tables are not to be linked.
But, in true life, tables are not independent! A table of employees certainly has
some relationship with a table of departments, otherwise how can we express the
fact that an employee works in a department? Relationalists said that such a fact
must be expressed by means of fields only. So, a table A can refer to a table B, it
table A contains a field that is a duplicate of a field of table B. This new field in
table A is a foreign key. Thus a table of employees can refer to a table of depart-
ments by containing a department number. The actual meaning is that an employee
is working in one and only one department. Of course, if each employee is in two
departments, there might be a second column with a department number, and a
third, a fourth... The number of such references, i.e. foreign keys, in a table is a
static (not a dynamic!) property of the table. This is where tables differ fundamen-
tally from lists.

Obviously, foreign keys play an immense role in the join operations. If we want
to print employee tuples with their department information, we will join the em-
ployee and the department table, using the department number in one table as a
link with the other table.

Early relationalists refused to see a foreign key as something special; to them it
was a column like any other one. But there they were fundamentally mistaken and
this caused the great debate which opposed Codd and Bachman.

A foreign key expresses something more than just a value. Obviously, it has a
flavour of redundancy, since it duplicates data from another table. If a foreign key
is to be at all usable, from the table in which it appears it should refer to one single
row in the table referred to. Thus, the foreign key must be the match-duplicate of
one of the candidate keys of the other table. The existence of a foreign key-candi-
date key link between two tables effectively relates the two tables. It does so in a
very specific way: any one tuple of the table that has the candidate key is related to
zero, one or many tuples of the table that has the foreign key; however, a tuple of
the table that has the foreign key refers to only one (or no) tuple of the table that
has the candidate key. The stated rule is valid for any given candidate/foreign key
pair of course. In other words, the foreign key expresses a 1:n relationship, abso-
lutely identical to the set of Codasyl (semantically speaking of course).

38

CHAPTER 2 - The Semantics of Data

The existence of the link leads to an important integrity aspect. Indeed, what
happens when the tuple containing the candidate key referred to (e.g. a depart-
ment) is erased? Are the tuples containing this value of the foreign key (the em-
ployees of the department) affected? Three situations can be envisaged:

1) the foreign key tuples (employees) are also deleted;

2) the foreign key tuples (employees) are modified so that their foreign key
value becomes null (the employees have no department any more, but they still
exist);

3) the deletion of a candidate key tuple (department) is not allowed if there
exist foreign key tuples (employees) referring to it.

Obviously, rule 1 can cause propagation of deletion. All three rules leave the
tables consistent. This is a very fundamental problem. Reluctantly, relationalists
called it referential integrity. Of course, it had already been solved satisfactorily in
Codasyl data-bases.

Referential integrity also impacts on INSERT and UPDATE operations. Indeed,
can a row (an employee) be stored which contains a foreign key value that has no
corresponding candidate key (no department)? Can a foreign key value be
changed, possibly so that there is no longer a corresponding candidate key? Or can
a candidate key value (department number) be changed, even if it has correspond-
ing foreign keys? Should the change not propagate down the line in that case?
Important questions, all of these. The relational model remains silent.

Interestingly, tables can be classified based upon the foreign keys they contain.
First of all, there are tables without foreign keys: these are called kernel tables. A
customer table could be of that nature. Some tables may have a foreign key refer-
ring to another table: these are dependent tables. An order table with a customer
number reference is such a table. Next, there are tables that may have a primary
key of composite nature made of a foreign key (possibly of more than one column)
and some sequence number. Such tables are detail tables or characteristic tables. For
instance, an order line table which has a primary key compaosed of an order number
and a line number, but where the order number is a reference to the order table
(the order lines are of a particular order). Then there are tables whose primary key
is composed of only foreign keys (each of them possibly comprising many columns),
a compound key, which are called associations. The example is that of two tables: a
table of teachers and a table of subjects; a teacher teaches subjects and this is
expressed via a third table which has the primary key teacher number composed
with subject number; teacher number is a foreign key referring to the teacher table
and subject number is a foreign key referring to the subject table.

It is important to notice that kernel tables may all of a sudden become associ-
ations or characteristics (or just dependent tables) when a new kernel table is cre-
ated with a primary key composed of (part of) the same primary key as an existing
table. For instance, customer is a kernel table; now we create a new table called
"activity-sector" with an activity code as a primary key (e.g. banking, insurances,

39

CHAPTER 2 - The Semantics of Data

manufacturer, ...). The customer table is extended with a column referring to the
activity sector, so that it has become a dependent table. It is the claim of the rela-
tionalists that such a change is trivial in the relational model: a mere addition of a
column and no structural change whatsoever! This may look true, but the impact on
programs is still important: additional join operations will certainly be needed; ad-
ditional update constraints will have to be validated. Admittedly, the program
changes may be easier to work out with relational access languages than with Coda-
syl's DML. Another aspect is that a table may very well have to be split into two
tables, because of changing business rules. In that case, the resulting program
changes are just as difficult with a relational approach as with a network approach.
Since relationalists deny the physical truth behind tables, the splitting of a table for
physical (tuning) reasons is not even mentioned. The new generation of relationa-
lists, confronting this problem, state that such a split is never required, because all
accesses are optimized by the use of a system-based access optimizer (little do they
know how difficult a task this optimization is; it is not independent of the way in
which a program formulates a relational operation; the optimization does not pre-
clude the need to tune tables by splitting; many situations cannot be optimized
(there is scientific proof for some such cases)).

The result of a relational retrieval operation is a new table of a temporary na-
ture, residing (at least in principle) in the program’s working storage. But of course,
this need not be so. It is just as possible to see a relational operation as a way not
to actually access the data, but as a definition of the data that is accessible. For
instance, we could write something like

select * from customers where city="Nankin"

in order to retrieve all customers living in Nankin (a city located in mythical Lemu-
ria); in fact we could just as well write something like:

declare selectable customers where city="nankin"

and this time we mean to define (but not immediately access) the sub-table of the
Nankin customers. This sub-table does not exist physically, not as such at least! To
all purposes, a declaration like the above defines a new (fictitious) table that can
therefore be accessed by means of relational operations; such a defined table is
called a view. In order to allow access to a view, it is required to give it a name (and
we will polish the syntax somewhat using the word derive):

declare nankincust view as derive customers where city="nankin";
and we could select all Nankin customers who have the status "banking":

select nankincust where status="banking"

The declaration (the actual terminology is: derivation) of a view is in fact the rela-
tional operation that is capable of extracting the sub-table. In other words, any
relational operation can define a view. On the other hand, a view is a table, even if
it is not residing somewhere explicitly. Therefore, it has all the properties of a table:
it has columns and rows, it has a primary key (or at least it should have one), it has

40

CHAPTER 2 - The Semantics of Data

no apparent order and it can be accessed by means of relational access operations
like any other table.

Since a view is a table, it is allowed to use it to derive yet another view from it,
and this can go to any depth. Most manufacturers are reticent about views, though,
and therefore do not offer such luxury. Even the relationalists are rather reserved
about the whole concept.

True, there are a number of problems. A first one is: what happens when a table
is copied to a table? Reply: the first table is copied tuple-wise into the second table.
However, if the receiving table is a view, it does not physically exist. So what hap-
pens during assignment? One may envisage refusing the assi'gnment. On the other
hand, one could envisage to invers the view mechanism and move the tuples to the
tables that are the constituents of the views. But this is awkward: can these tables
be updated correctly? What if the view is defined as a projection? Then there are
missing columns, and can these be inverfed? Obviously not. The update is not safe.
Inversion of the view derivation can be envisaged in most cases where no projection
is involved. Indeed: for an intersection view, the tuple offered would need to go to
both source tables. For a join view, the tuple must be decomposed (after verifica-
tion of the join condition) and moved piece-wise to both source tables. For union
the situation is ambiguous: to which of the two constituent tables should the new
tuple be moved?

For the rewriting of a modified tuple (UPDATE operation), one may also envis-
age a carrying through into the constituent tables as explained above. But what if it
is a DELETE operation, and more specifically, for a JOIN view? Should tuples be
deleted from both constituents? Or only one of them? There does not yet exist any
formal theory about the safe updating of views... However, for each view it is of
course possible to determine the ad hoc update policy (or policies) according to the
functional usage of the view. It suffices, therefore, that manufacturers provide an
exit level programming language allowing a programmer to write the necessary up-
date routines. Extended in this way, views become formidable means allowing the
exact application of what is called program fo data independence. This type of inde-
pendence means that changes in the data structures do not impact on programs at
all; the only thing that may need to be changed is the view code (and even so, this
can be avoided in many cases because of the underlying optimizer technology). Ob-
viously, such chnages to view can be complex and may induce ripple effects. There-
fore, each view must be placed under the very strict responsibility of one suitably
chosen person. The responsibility aspects pertaining to views are dealt with in chap-
ter 5. A certain number of view usage recommendations can be found in box 2.

41

CHAPTER 2 - The Semantics of Data

r

BOX 1: SUMMARY OF THE RELATIONAL MODEL AND ITS CLONES

THE LIST MODEL

(as implemented by COBOL structures and PASCAL records)
e Set of members (i.e. fields)
¢ A member is an atom (elementary field) or a list (group field)

THE RELATIONAL MODEL

o Data is represented only as relations (i.e. tables)
o Tables hold only atomic fields (there are no sub-tables nor arrays)
o Vectors are tolerated as fields ina table
® A table has a primary key (which can be a concatenation of columns)
@ A table can have alternate keys and master indexes
e The primary key and all the alternate keys are candidate keys of the table
@ Relationships between tables are expressed as foreign keys
o The relationships are of 1:n cardinality
© Reflexive relationships are supported (a table to itself)

eIn an A to B (1:n) relationship, the foreign key in table B is the replication of a candidate
key of table A

e The model needs rules for referential integrity
& The model has rules for domain integrity
e The model needs rules for user-defined integrity

o Preferable input/output operations are expressed as relational algebra or relational cal-
culus (e.g. SQL)

e As an extension, the model provides for the definition of views

¢ There could be a specialized programming language allowing the definition of user vali-
dation rules in a view

THE TOPOLOGICAL MODEL
(as implemented by CODASYL (for instance))
e Data is represented as lists (records and structures)
® Relationships are represented as links between records (Codasyl sets)
@ Relationships are of 1:n (master - detail) cardinality

e The m:n relationship (association) between A and B is expressed as A+X«B (X is a
junction record)

o Multiple masters are allowed (they are not allowed in a pure hierarchical model)

L. Preferable input/output operations are expressed as DML-programming statements

42

CHAPTER 2 - The Semantics of Data

N
[BOX 2: RULES OF GOOD BEHAVIOUR WITH VIEWS

® Each functional path of a program uses only those data views (user views) which are
logically required for the function and nothing more.

® A view is the definition of an abstract table-like object made up of columns and rows.
@ A view is almost certainly un-normalized (this is an essential property)

e The usage of a data view by the program comprises only the operations of Open and
Close of the view and select, update, insert, delete of one or many rows of the view.

® Since most views are theoretically not updatable, there should be a specialized pro-
gramming language allowing the creation of ad hoc view update policies (as a part of
the view definition)

* Only unary relational operations (such as Selection and Projection) can be used in the
program-based access operations; the n-ary operations of relational algebra (join,
union,...) should not be used since they are not table-independent.

e A view can (but must not) incorporate the integrity rules for domains, entities, references
and user-defined constraints.

e Views can be derived from one another by all operations of relational algebra or rela-
tional calculus; at the highest level views are very close to the application world; at the
lowest level, a view has a one-to-one correspondence with a physical table (or record).

o View definitions may not reside in the programs that use them; they must be seen as
objects with methods (information hiding and object-oriented approach).

® The physical tables should be suitably normalized (this is not strictly required, but highly
desirable for reasons of update consistency).

o Fields of the tables may be pure attributes, or primary keys, or foreign keys, or alternate
keys, or secondary keys; keys may be constituted of concatenations of fields; each
table must have a primary key; dimensioned attributes should be allowed (fixed dimen-
sions).

® The lowest level records shouid be composed of only fields; however, there can be no
objection to group fields or fixed bound arrays (vectors), even nested, provided these
fields are kept semantically clean; in particular, although any field of a group or vector is
visible, no such field may itself be a primary key (or part of it); on the other hand, a
group or vector as a whole may be a primary key (or part of it).

e The lowest level should enforce the integrity of ali keys (especially entity integrity and
referential integrity).

* A view should have a well defined responsible owner (non technical person), who mas-
ters the functional life of the view

\ J

43

Data has a life of its own

One of the most important facts about data is that it has a life of its own. This
realization somehow came as a shock to Data Processing people: what, data is not
something one can conceive according to program needs only? The Data Process-
ing people had grown used to making programs in some self-justified way, they had
freedom to structure programs from within, they didn’t have to explain the internals
of their programs. The same attitude prevailed as far as data was concerned: it was
a commodity for the program. But data just exists before any program comes into
life. Data is owned by the company for which the programs are developed. Data is
a representation of the company. Data is composed of fields and these are the
finest objects a company works with, whether there are programs or not! Thus, data
has a structure that is company-owned, and Data Processing was going to be forced
into accepting that structure.

In a very pragmatic way, it all amounts to this: data should be investigated and
structured according to its significance in the company, and not because some pro-
gram wishes to use it in some very local way! The next statement came as a real
blow: the significance of data is known by those people who actually work with the
data daily: the end users themselves.

The need to understand the meaning of data caused a new job to appear: data
analysis. And a data analyst’ need not be a programmer. He must be an organiza-
tion expert, rather. Someone who knows how the company operates and what it
operates with. Someone who can interrogate the end user, and come to know all
the tricks. Thus, setting up correct data structures creates two requirements: ability
to see structures (on the part of the data analyst) and end user involvement. The
end users concerned must participate. Indeed, they are the only people who really
know all that there is to know. They know which fields they work with and what
these fields mean. They know the validity constraints of the fields. But do they
know about structure as well? Not really. Structure is perceived implicitly by the
end users. In fact, when they work with data (and that is all the time), they are not
curious about it. End users do not work with data, in fact. They operate with a
more abstract being: information. Information is extremely hard to define. It is part
of reality, indeed it represents reality. In this context, reality is often also called the
universe of discourse. However, information in business is reliable, procedural, syste-
matic, repeatable. End users are trained to work with it in a frozen corset: that of
forms and documents. An order is a form. The registration-card of a customer is a
form. A bill is a form... End users are very good at manipulating such forms. Forms
are the basis of all that happens in the company. Forms are vital. So vital that they
should be taken as the basis of analysis. Let me therefore call such forms (or docu-
ments) user views. Collecting user views is the first part of the data analyst’s work.
The next step certainly is investigating what forms are used for (i.e. what operations

1. Often also called data administrator or data designer.

CHAPTER 2 - The Semantics of Data

are done upon/with them). Indeed, a form is significant only if it gets used. One
may say that information acquires a meaning only because it is related to other
information, and that the relationship is actually used. Quite a change for Data
Processing: programs are the actual acceptors or generators of forms! The pro-
grams are information-driven... A radical inversion of the work.

When Bachman produced his views about the relationships between records, as
they were adopted by Codasyl, he was more concerned about the topology of the
relationships and he formulated disciplinary rules about networks, trees, self-refer-
encing, multiple members and multiple owners.

Eventually, Codasyl used these rules for the implementation of the so-called
network data-base, emphasizing by means of the set the relationships that records
have to one another. Little did they know that a major step had been taken.

Indeed, it soon became apparent that the meaning of data in the environment it
was being used in lay not in the records, but in the relationships. Of course, the
record is important enough: if we know that there is a customer #123, then the
record informs us about this customer’s name, address, and other such vital items.
But knowing that a customer #123 exists is not sufficient. Indeed, what can we do
with that knowledge? Surely, this can only be an initial situation... Customer #123
becomes meaningful as soon as he gets related to orders, when he can be sent
invoices, ... In other words, the essential information is in the relationships® This
realization caused the emergence of representation techniques that stressed the
weight of relationships. All of them are based upon Bachman’s entity diagram.

Bachman diagramming

What we need to do in order to understand data is to make the information it
contains explicit. Therefore, we will have to investigate the usage of data in the
organization so that the various aspects of the data are clarified. In doing so, we
will endeavour to recognize entifies.

An entity is an information packet in an organization, which one can sensibly
talk about, which all people involved have at least the same rough perception of,
which one is convinced must be managed, and, above all, for which there exist reg-
istration forms of wide use in the company. In other words, an entity is “something”
we want to store (and keep) data about.

Examples of obvious entities are: customers, employees, bills, pay-slips, ma-
chines,... Such entities have a clear physical existence® and are called rangible. Other

2.Funny as it may seem, the information given by a record is said to be existential, whereas the
information held in the relationships is relational. This usage of the word relational has nothing to
do with the relational model though. A very confusing situation. Even more so when one considers
that relation and relationship are in fact synonyms.

3.Some entities, like bill or pay-slip, or are so much linked with their paper form that one calls them
tangible also.

45

CHAPTER 2 - The Semantics of Data

CARDINALITY
11
—’ 1:N
EXTENSION
M:N

entities are non-tangible and live only by
agreement; by and large, they are part of
a company’s culture and may very well
have no meaning in other companies: a
profit-centre, a job, a function, a debit,...
One thing is clear: there is something
vague about entities: we know about cus-
tomers, but the actual detail matters little.
A slightly amazing fact is that all (busi-
ness) companies use a largely identical set
of entities, and not that many of them:
200 to 300...

Our next step is to discover the rela-
tionships between entities and represent
them. We will consider entities to be re-

figure 1

lated if they are used together in some

process of the company. Moreover the rela-
tionship must make sense. An example: a
bill is related to a customer, and is related
to a product or a service or a cost. In a
Bachman diagram, such relationships are
depicted as links between rectangles that
represent the entities. In Bachman modell-
ing, the links have a limited cardinality: they
express only a 1:n relationship* (including
the degenerate 1:1 situation®). Although it is
an illegal extension on pure Bachman diag-
ramming, some authors represent the m:n
relationship as well, see figure 1. As is indi-
cated in figure 2, many authors have devised
extended icons, especially in the repre-
sentation of relationships and their cardi-
nality. Bachman called the two ends of the
1:n relationship owner and member. The

CARDINALITY
Different icons for different authors

figure 2

4. The reason for this restriction is historical: there are no physical data bases that can implement a
m:n relationship straightforwardly. Today, semantic modelling takes place without any consideration
of implementability, it serves only to understand the semantics of the information. If a semantic
model must lead to implementation, then the well known technique of normalization (and

equivalent techniques) will lead to 1:n relationships.
5. Itis a 1:n link with an arbitrary direction.

486

FAMILY MASTER (OWNER)
HEAD

l

CHILD

DETAIL (MEMBER)

AN OCCURRENCE OF THE RELATIONSHIP

CHAPTER 2 - The Semantics of Data

Bachman relationship is an im-
plementation of the master and de-
tail paradigm. At the basis, this
paradigm states that the detail be-
longs unambiguously to the master,
of which it constitutes low level re-
peating data. In other words, it is
unlikely that detail belongs to more
than one master occurrence and
therefore a master detail relation-
ship cannot evolve to a m:n rela-
tionship.

FAI_III-YHEAD As a result of this definition
SMITH Bachman modelling is done accord-
James | caup ing to the following rules:
1. An entity should not contain
et CHILD repeating groups; such groups should
John be expelled from the entity and
. 5 - must appear as a new, linked, entity
Paul b shuss) as in figure 3; entity A1 is now a
master and X is detail or charac-
=L teristic.
Jefmy 2. Many to many. links between
entities are not acceptable and
figure 3 must be‘ replaced by a supplemen-
tary entity called a bridge, or an as-
sociation, or a relationship, or a
Jjunction (all synonyms), linked to the owners
by means of master/detail relationships (see
[— figure 4). In fact, in Bachman modelling, the
« »i m:n relationship is seen as a two entry table
| - linking the entities, see the example of a pro-
G duct-supplier situation in table 3. This table is
, — itself interpreted as an entity linked to the sup-
plier and the product entities.
i A B Part
/ .| PART 34 | PART 45 | PART 566 | PART 92
/ Supplier
A ABC 70 45 99 21
’ ASSOCIATION KLM 128 99 67 77
[XYZ 131 101 77 .82
figure 4 table 3

47

CHAPTER 2 - The Semantics of Data

KERNEL ENTITY
U D BASIC ENTITY

CHARACTERISTIC ENTITY
DETAIL ENTITY
figure 5 ¥ ASSOCIATION ENTITY
3. Nests (i.e. links of entities BRIDGE ENTITY
with themselves) are not allowed JUNCTION ENTITY
because an entity cannot be its
own detail; they should be re- figure 6

placed by junctions, see figure 5.

In using the 1:n relationship for all possible cases, Bachman modelling is unduly
restrictive and loses many of the semantics of the m:n relationships. Nevertheless,
Bachman deserves credit for having been the first author to understand that rela-
tionships have semantics.

The fact that entities can only be master or detail introduces a concept of depth
for entities. This is a relative concept, which allows us to set up a possible classifica-
tion of entities (figure 6). Entities that are detail of no other entity are kernel (or
basic) entities. Entities that are detail of only one master are characteristic entities
(they express a characteristic aspect of that master). Entities that are detail of many
masters are associations (or bridges, or junctions): they can express that the masters
are associated via the common detail.

One of the important aspects is that relationships are manageable objects as
well. In particular, just like entities, relationships have occurrences (see figure 3). In
Bachman modelling, an occurrence of a relationship is defined as one occurrence of
the owner with all its member occurrences. Thus, a relationship has as many occur-
rences as there are owner occurrences and even owner occurrences that connect to
no member occurrences are the owner of a relationship occurrence, a so-called
empty one. The fact that there are two sets of occurrences involved has led some
authors to call base set the set of occurrences of an entity and fan set the set of
member occurrences in one occurrence of the relationship.

48

CHAPTER 2 - The Semantics of Data

BACHMAN VARIANT1 VARIANT2

Not representad l

NON-EMPTY MASTER + MANDATORY DETAIL

OPTIONALLY EMPTY MASTER + MANDATORY DETAIL

OPTIONALLY EMPTY MASTER + OPTIONAL DETAIL

|

figure 7

All authors
now agree that
the relationships
express the se-
mantics of data,
this statement
means that we
must indicate im-
portant con-
straints (rules) on
the relationship.
In order to do so,
we must observe
that entities are
abstractions
which stand for a
set of similar oc-
currences. In 1:n
Bachman diag-
rams, the seman-
tics of the rela-
tionships are the
constraints that
apply to the de-
tail entities. As
far as these con-
straints go, the
model (and diag-
ram) expresses
how "strongly"
detail links to its
master. We will
say that a rela-
tionship is man-

datory if an occurrence of detail is always linked to its owner on this relationship; in
a true master/detail situation, this is the only possibility. However, it became soon
necessary to allow weaker relationships: for instance in a 1:n binding of family head
and child, what about orphans and found children? These are children without mas-
ter. If we allow such situations, then the relationship is optional. The notation for
these cases is given in figure 7. The situations where we have associations (junc-
tions) cause other deviations to the strict master/detail paradigm®. Junction entities

6. Not unexpectedly: as examples will demonstrate, there is an important semantic difference

between m:n relationships and master/detail situations.

49

CHAPTER 2 - The Semantics of Data

MANDATORY DETAIL
INCLUSIVE MASTER

TEACHER

\/

LECTURE
SUBJECT
OPTIONAL DETAIL
INCLUSIVE MASTER
LECTURE
SUBJECT /
MANDATORY DETAIL
EXCLUSIVE MASTER

EMPLOYEE

:
:

CUSTOMER

figure 8

a teacher and concerns a subject;

are in fact detail of more than one master. In
this case however, because the association
expresses a m:n link between the masters,
there is something particular about the com-
mon detail: it is mandatory in all the rela-
tionships. Indeed, an occurrence of a junc-
tion plays the role of a bridge between the
masters and therefore it needs to be linked
to a master occurrence at one end and an-
other one at the other end. A dangling
bridge is not acceptable.

Apart from such associations, an entity
may be detail of two masters (or more) with-
out being a junction’. In that general case we
may have some combinatorial questions:
does an occurrence of the detail always link
to both masters, sometimes both masters, at
least one master, just one master (either
one), at most one master? Clearly, these
situations are semantically quite different.
Let us consider some examples (figure 8):

- teachers and subjects are the masters of
the lecture entity; a lecture is conducted by

INCLUSIVE DETAIL
REMARK

what we have here is a complex situation OADER

linking three entities; the two relationships
taken together link a mandatory detail entity
to its two masters in an inclusive way;

in the same situation, suppose classes can be
planned for subjects without the teachers
having been assigned yet: the teacher-class
relationship is optional, the subject-class re-
lationship is mandatory; again, we have a
three entity structure and the two relation-
ships taken together link a (partially) op-
tional detail entity to its two masters in an
inclusive way;

7. Bachman modeliing does not distinguish these cases; on the other hand, there can be a hidden

m:n situation anyhow in many cases of common detail.

S0

EXCLUSIVE DETAIL

EMPLOYEE

ITEM

SALARY

figure 9

CHAPTER 2 - The Semantics of Data

- the employee entity and the customer entity have a common detail: telephone;
however, a telephone number is either of an employee or of a customer and is
never of no one; once more a three entity situation in which the two relationships
taken together link a mandatory detail entity to its two owners in an exclusive way.

As can be seen, these are rather important semantic aspects of relationships
which even tend to regroup more than one relationship in a kind of super-relation-
ship. What we have seen for a common detail can also be said about a common
master. Suppose indeed that we have a master with two detail entities: we may
wonder whether a master occurrence has occurrences of both detail entities or only
of one detail entity linked to it. For instance, an employee in a company receives
either a salary (if he is under contract) or a fee (if he is acting in a free-lance
capacity) but not both. This is a three entity structure (one owner and two detail
entities) where the two relationships link two exclusive detail entities to a single
master. Similarly we can have an inclusive detail situation, where the master has
always occurrences of both detail entities (see figure 9).

In pure Bachman diagramming, one ends up with a diagram where no link has a
higher cardinality than 1:n. And this allows us to structure the diagram hierarchi-
cally. Indeed, we will consider that a detail entity is of a deeper (i.e. less important)
level than the entity that sends out the link. Of course, there are conflict situations,
due to our diagram being a network and not a tree: an entity can be detail of more
than one master entity. These ties must be solved according to significance: one
should choose the depth of an entity according to the more relevant or the more
natural link. One rule of thumb here: when an entity is detail in more than one
relationship, then those relationships that have the entity as mandatory detail are
more significant than those that have it as optional detail, because the notion of
detail belonging to an owner is much more strong in the mandatory link. Obviously,
the notion of depth is a relative one, but it allows us to order entities by relative
depth and this yields a nice readable structure, as the example in figure 10 sug-
gests.

Bachman diagrams are easy to draw structures that contain much information.
They are an instance of the saying a picture is worth a thousand words. Indeed, an
entity diagram as in figure 10 is very comprehensible and can be used by various
people for various discussions. In brief, it is a valuable representation. It has short-
comings, however. In particular, it ignores the m:n relationship and the nests. Many
authors have suggested extensions to the diagram icons so as to incorporate more
semantics. Not surprisingly, the most common extension is the m:n relationship.
This is usually represented by means of a line with an arrow at both ends. Similarly,
the 1:1 relationship is represented by a line without arrows. Another extension re-
gards the optionality of the master in a relationship. Indeed, in our examples above,
we have only allowed for optional detail: a detail occurrence can live without being
linked to a master. Conversely, we may want to express the fact that a master must
have at least one detail occurrence (such as: an order has at least one item); this is
a non-empty master. If this constraint does not exist, we will speak of an optionally

51

CHAPTER 2 - The Semantics of Data

PLAN

PROJECT PLAN

iy

MILESTONE

» TOPIC

52

MILESTONE
BUDGET
‘_> PROJECT
! BUDGET
—» HRCOST
> SALARY
GROUP
EMPLOYEE
SALARY SLIP
-
—b.‘
AWARD
PROJECT
’ TOPIC
FUNCTION
HEAD
MANAGES
ALLOCATES
1---—»
J
figure 10

CHAPTER 2 - The Semantics of Data

empty master. The icons used to represent such relationships are different for differ-

ent authors (figure 7)

Bachman example: Order Entry

The time has come for an example. It will be a simple one, as it is intended only
for illustrating the concepts. Let
us try and represent the infor-

CUSTOMER PRODUCT
ORDER
ITEM \
INVOICE ALLOCATION
SHIPMENT
figure 11

Subject data-bases go corporate

mation model underlying a
rather straightforward Order
Entry system. In a very informal
way, the business rules are the
following:

*

The company is in relation
with a number of customers.

Customers can enter orders
for any quantities of any of
the products that the com-
pany sells.

Orders are stored for sub-
sequent processing. The pro-
cessing implies that alloca-
tions are made. An alloca-
tion actually allocates a cer-
tain quantity of an ordered
product to a given order.

Bundles of allocated pro-
ducts will be shipped to the
ordering customer.

Invoices are made to a cus-
tomer by regrouping de-
livered shipments.

A rather obvious Bachman

diagram results from these
rules. It is left to the reader to understand the semantics of the diagram (figure 11).

Entity diagrams a la Bachman can be used to find the list of subject data-bases
that are needed to represent the corporate information model.

What indeed is the definition of a Subject Data-Base? The following is a fair try:
an SDB is the agglomeration of all data that is strongly related to an organizational
subject. Notice the adjective strongly. One thing is left open: what is a subject? An

53

CHAPTER 2 - The Semantics of Data

[BOX 4: OVERVIEW OF THE SUBJECT DATA-BASE ARCHITECTURE

When data-bases came about, they were acclaimed as the long expected solutions to
all the problems presented by conventional files. Wasn't the cause of the problems the
plethoric growth of the collection of files and the consequent uncontrollable decentraliza-
tion? Therefore, the data-base idea was a simple one: put data together in some kind of
super file and make sure that a program uses only that super file. Develop a super access
method so to speak. The trick was done. Suddenly, it became fashionable to have a
data-base. Every one wanted one. Brave new world!

_ Some years later, more specifically when DP went on-line and the volume of applica-
tions increased by an order of magnitude, the truth hit home: data-base technology did
not, indeed could not, keep its promises. A sad fact.

So what went wrong? Symptoms existed a-plenty; huge maintenance effort (corrective
maintenance) was needed. Data-bases were complicated beings which needed a court of
specialists to keep them purring: the data-base administrators. And data-base administra-
tors became the most heavily stressed professional category. Most users complained
about performance (in terms of response time) if not quality. A general idea pervaded the
field; data-base is a necessary evil. One needs it, otherwise complex data relationships
are not representable, but the data-base will not be very reliable. A fact one appears to Be
ﬁrepared to live with. This failure is very similar to that of programming techniques. And it

as the same cause: a total lack of (or at least severe shortcomings during) conceptualiz-
ation of the data (analogous to program analysis). Data analysis and design is done (if at
all!) in a very intuitive way, without any investigation of meaning. We still create our data-
bases as we create second generation files, with the left-hand so to sgeak. Data is placed
in a data-base according to the needs of the programs. Such a data-base has no chance
of remaining consistent, in the long run.

At the other end of the spectrum, one finds the normalization fanatics. They will create
data-bases with incredible refinement: a great number of records of very small size with
numerous foreign keys or sets linking them. This approach is similar to that of the Cobol
PERFORM fanatic: he sets up programs that use only PERFORM, with the result that
many paragraphs consist of only one statement.

Even if the analysis and design of the data-base has been performed with love and
care, the result wilt still be doubtful. And why is that? Because of something nasty that
also affects programs: aging. A data-base lives and therefore interacts with an evolving
reality. But can it cope with this evolution? Obviously, only if the evolution has been fore-
seen. Doing so is an awkward task to say the least. It calls for immense skills on the part
of the data analyst to fee/ the stability of data-base items.

Apparently small changes at the logical level may have unexpected effects: the
changes in the data-base will be dramatic, and they will cause deep changes in the
programs as well (this is so unless the programs have been made independent from the
data base structure, something that is possible only partially by using a view-based tech-
nology). The major question is: how can one dproter:t a data-base against such mishaps?
It is sad but there is no way to cope... And it doesn’'t matter whether you have a relational
data-base or a network data-base.

There is another cause of the misery as well: in a number of cases, program mainten-
ance will adversely impact the data-base. Some programmers will add techinical fields to
the data-base, flags as it were. | tend to call this utter brutality. But there is a domain
where it is less easy to dismiss such improvements: performance and tuning. The same
old story. One will sacrifice data-base structures to the performance goddess. This will
result in data redundancy and structural redundancy. Causing update problems, of
course, which can only be solved by program discipline . In the long run, however, such
discipline will not be upheld. The usual compromise that turns sour sooner or later.

As if this were all! Data is not free to live its own life; data is constrained in many ways
by the environmental business rules. Although there is no real way to include such con-
straints into the data-bases of today, one usually tries to represent as many constraints as
possible in the relational (static) structure of the data-base. The remaining ones are left to

rogram discii;line (the alternative solution is by using some rule-like clauses in an under-
ying technical view; unfortunately, however, this possibility is NOT offered by SQL). Some
manufacturers offer a technology of more evolved relational views, but relational fanatics
deny them the label *relational’. Isn't it an amazing world? Now there are new causes for
worry: one problem is the programs breaching the discipline, as may be expected. But
there is a more subtle danger: constraints that were frozen into the data-base structure

CHAPTER 2 - The Semantics of Data

~
[OVERVIEW OF THE SUBJECT DATA-BASE ARCHITECTURE (continued)

may have to evolve, with the immediate effect of invalidating the structures. The data
analyst must investigate the acceptability of any constraint: why does the constraint exist,
what does it express, is it arbitrary?

In brief: data-bases are not the solution to our problems. Or, maybe, our way to use
data-bases is not the right one?

Let us thus stop and ponder: what is a data-base? A first answer we could try is: it is
the structured set of all data needed by an application (which leaves us with the need to
define the concept of appiication, but | will leave that to intuition: it does not greatly matter
in this context). Now, if we have, say, three applications: a payroll, a purchase system and
an invoicing system, we would have three similarly denominated data-bases (one for each
application?. at sounds fine. But is it? Let us see:

— the invoicing system will work with customers, products, orders, services, expenses
and accounts receivable;

—the purchase system will work with products (which are bought in to be resold),
back-orders, accounts-payable, suppliers;

- the payroll works with employees, salaries, expenses (made by technicians to serve
customers), accounts, ...

As can be seen there are connections between the three data-bases; they are ex-
pressed by overlae;?in items: products are used for invoicing and for purchasing. Expen-
ses are considered in payroll and in invoicing. Such connections can be very involved
because of their implicit nature. In fact, we have a situation where the apparently clean
1:1 link between programs and data-bases is corrupted by the I?Pagheni bowl of uncon-
trolled links the data-bases have between each other. These (unforeseen but so predict-
able) implicit connections are realized usually by additional programs that perform up-
load-download operations, possibly usin% intermediate files. These programs are tricky,
il-conceived, unstable, to say the least. They operate with a fragment of reality, according
to unverified assumptions. More dramatically, many such programs are developed at mo-
ments of catastrophe, as Murphy's law commands. As a result, chaos will slowly but una-
voidably result. And what if the data structures of one data-base evolve? Shouldn’t such
an evolution be considered against all other data-bases? Pathetic question, expressing all
the drama of this particular approach to data-base philosophy, an approach that we will
call the application data-base.

When the need is high, solace is near. People anongmous came up with the solution:
since the problem was due to the redundancy caused by separate data-bases it sufficed
to banish the mere idea of separation. Put all data (and its structures) together in one
single data-base. Furthermore, design this data-base as if there were only one gigantic
data processing application using it, the union of all applications. Behold the Corporate
Dat.gl-Base! Clearly, such a data-base would be perfect. It would be complete. It would be
stable.

Or would it? This corporate data-base approach was doomed from the start; its mere
volume and complexity made it infeasible. One would be busy forever constructing the
data-base. And supposing one could achieve the goal at all, it would take so much time
to reach it that the resuit would be obsolete anyhow. Utopian thinking! A corporate data-
base can’t be made.

Still, the idea is nice enough. Question: isn't there a way to realize a corporate data-
base stepwise? And each step should of course be productive, i.e. allow a sizeable appli-
cation to be exploited... A modular data-base design, as it were. And wonder above won-
der, it is feasible. The idea was brought by James Martin's Subject Data-Bases (SDB). A
corporate data-base can be defined as a network of loosely connected subject data-
bases, the net being realized incrementally. Easy to say, but not so easy to do.

The major question is: what is a subject data-base? Part of the answer is given by the
fact that it is a portion of a corporate data-base. If we remember that the corporate data-
base holds the data and structures that represent the information the whole organization
works with, then we can infer that a subject data-base will hold a part of this information.
The partitioning should however be done from the top, that is with the organization in
mind (and not any particular application). In other words, a subject data-base is the repo-
sitory of all information regarding one high-level organizational subject. As an example,
the subject customers will do: this is clearly a high level concept, of which detail informa-

55

CHAPTER 2 - The Semantics of Data

-

\.,

OVERVIEW OF THE SUBJECT DATA-BASE ARCHITECTURE (continued)

tion is used throughout the

company, in many applica-
- tions. These applications do
PRODUCTS not even all belong to the

same department.
- The essential idea is that
each subject data-base can
CUSTOMERS be developed on its own, in
total ignorance of the weak
INVOICING ~— links between the data-bases.
Y It \Evill of course need to be de-
veloped by analyzing the use
_ PARTS withIE‘lethe organization of each
\) of the contained items, and

this should be investigated
throughout the company, not
VENDORS only the application on hand.
Next, when one sets up pro-
PURCHASING| grams, it is clear that a given
program will have to access
more than one subject data-
ORDERS base. Consider the same ap-
plications as before, but with
subject data-bases for each of
the following subjects: pro-
ACCOUNTS ducts, customers, parts, ven-
dors, orders, accounts, per-
PAYROLL sonnel and documents. We
then obtain the architecture of
figure 12. The most visible ef-
PERSONNEL fect is that the access links are
now between the programs
and the data-bases and there-
fore they are part of progi_ram
desi%g and development. They
can be carefully conceived, in-
stead of having them appear
unexpectedly during program
maintenance cycles.

Of course, nothing pre-
vents a particular data-base
administrator from putting
some (or all) of our subject data-bases into only one physically implemented data-base.

figure 12

It all sounds marvellous, doesn'’t it? But what is the drawback? What is the price?
Since one receives nothing for nothing... Well: there is more work involved. One must first
represent the company as a network of Subject Data-Bases. Next one must plan which
subject data-bases to develop. And this means investigating all departments of the com-
pany that use data in that particular subject data-base. This kind of analysis may very well
get stuck in conflicts of interest and other organizational unpleasantness... And there can
be no compromise: doing a sloppy Subject Data-Base analysis leads to results that are
much worse than those cobtained by a sloppy application data-base design... The fortu-
nate effect, however, is that after very few implemented systems, all Subject Data-bases
have been created, so that there is no supplementary effort to be invested any more,
Therefore, there is a high initial cost but in the medium term, there can be a sizeable
return on investment.

At a more technical level, subject data-bases, because of the modular approach,
cause the same difficulties as those that were encountered, years before, in bare modular
programming: the difficulty of defining relevant portions to be implemented. There are no
miracles...

CHAPTER 2 - The Semantics of Data

organizational subject is the principal entity in a set of strongly related entities. A
somewhat circular definition maybe, but it will serve our purpose.

We can start from a Bachman entity diagram. We also want to know how strong
a link is. In other words, how important it is for us that two entities are linked or
not. Now this strength can be expressed as a ratio between the number of times
that the entities are used together and the total number of times that they are used
at all (over some significant interval), or any other such measure of some signific-
ance. This is sometimes called entity affinity. Suppose we order this affinity on a
scale from 1 to 5 points. Let us do it on our example diagram of figure 10, and we
redraw the diagram once more, regrouping those entities that have a high strength
relationship (defining high strength, as, for instance, higher than 2). The diagram
becomes as in figure 13. So now we see groups appearing, containing only strongly
related data. And if the groups are connected at all it is by weak links only. Such
groups are in fact Subject Data-Bases. What is the rationale behind it? Each sub-
ject data-base can be developed in its own, in total ignorance of the weak links. It
will of course need to be developed by analyzing the use of each of the entities it
contains, and this should be investigated throughout the company, not only the ap-
plication on hand. Next, when one sets up programs, it is clear that a program will
have to access more than one subject data-base (indeed, consider figure 12, which
indicates that the access links between the applications and the (subject) data-bases
are now part of program design and development). These links, because they are
visible, can be carefully conceived: they will not appear unexpectedly during pro-
gram maintenance cycles. And of course, nothing prevents us from putting some (or
all) of our SDB’s into only one physically implemented data-base. It all sounds mar-
vellous, doesn’t it? But what is the drawback? What is the price? Since one receives
nothing for nothing... For one thing, there is more work involved. One must first
represent the company as a network of Subject Data-Bases. Next one must plan
which SDB’s to develop. And this calls for investigating all departments of the com-
pany that somehow use entities (data) in that particular SDB. This kind of analysis
may very well get stuck in conflicts of interest and other organizational unpleasant-
ness... And there can be no compromise: doing a sloppy Subject Data-Base analysis
leads to results that are much worse than those obtained by a sloppy application
data-base design... In fact, subject data-bases, because of their modularity, have the
same difficulties as those that were encountered in modular programming. There
are no miracles...

More semantics: Chen modelling

Bachman entity diagrams had stressed the relationship as an important compo-
nent of an information model. They were restrictive in that they only accepted the
master/detail paradigm. As a result, m:n relationships were largely ignored (and
replaced by the ill-famed junction entity). Peter Chen extended and formalized the
concept of relationship even more. He created the entity-relationship modelling
(E/R) with the intention of capturing more semantics, especially in the relation-

57

CHAPTER 2 - The Semantics of Data

MANAGES

ALLOCATES

PLAN
PROJECT PLAN PROJECT PLANNING
@ @) P MILESTONE
I‘©_' TOPIC
@ »| MILESTONE
PROJECT
%) &) TOPIC
BUDGET
&@—VW BUDGET
BUDGET
dD—wb HR COST
—2
L e
»| SALARY
GROUP
D L@—' EMPLOYEE
L@_: SALARY SLIP
Lo » ‘

EMPLOYEES

figure 13

58

CHAPTER 2 - The Semantics of Data

ships. Basically, in E/R the building stones are those of Bachman: entities and rela-
tionships plus the constituents of entities: artributes. Attributes are not especially
important in semantic modelling, so we will devote attention to them at a later
stage. Nothing more is to be said about the entities. However, the relationships
deserve some more attention. The relationship is now considered an association in
all cases. The master/detail paradigm is abandoned and all relationships are (or at
least can be, can evolve to) m:n relationships. The two entities that are linked have
an existence of their own which is not a priori conditioned by the relationship.
There is no notion of depth for entities. Although in this the Chen model is a little
bit too general for my taste®, the model introduces powerful new possibilities. First
of all the icon for the relationship has become more “visible”: the simple line was
replaced by a lozenge connected to the two entities that the relationship links.
Moreover, the orientation implied in a Bachman relationship (1:n from master to
detail) was dropped: because it is an association, a relationship links two entities,
period. As a result, the meaning of the relationship can now be brought into the
model: the relationship appears as an object in its own right, because of the
lozenge, and it must have a name (figure 14).

The first consequence of the enhanced view
Q J— was that the cardinality of relationships was
defined differently. The cardinality of a Chen

relationship is a two-valued item: if the relation-
ship links two entities A and B, then we con-
sider occurrences of the relationship as occur-
ENTITY rences of the combination A+B and the cardi-
nality states how many times an occurrence of A
appears in occurrences of the relationship,
along with how many times an occurrence of B
appears in occurrences of the relationship. This
RELATIONSHIP cardinality is represented by means of a simple
(one occurrence) or a double (many occurren-
ces) arrow going from the entity to the lozenge
figure 14 (figure 15). The representation is definitely

richer than that of Bachman: not only is 1:1 ex-

plicitly representable, but also m:n is now a

valid case. The question is: don’t we take a risk in allowing the m:n relationship?
After all, if Bachman said that it had to be replaced by a junction entity, there was
probably a good reason for this. The reason is physical: the junction entity, im-
plemented as a record or table, allows us to store the data that a m:n relationship
will very often require (e.g. the price of a product which is different for the various
suppliers). In fact, at the semantical level, this data is data associated with the

8.1 like to represent true master/detail as well as associations, because they are different in their
behaviour.

59

CHAPTER 2 - The Semantics of Data

relationship; the junction entity is
an artificial physical solution. In | CARDINALITY
E/R modeling we allow a relation-
ship to have attributes just as an
entity has attributes, in other words, HUSBAND | WIFE
the lozenge is not empty.

How does E/R modeling repre- i
sent semantics (of the relation-
ships)? First of all, by giving an ex-
plicit "active" name to a relation-
ship (in the lozenge), it certainly
adds meaning to the relationships.
We should observe that relation- n:t
ships are of different types accord-
ing to this meaning. The classic
master-detail is a relationship that
expresses the concept of has-many BOY GIRL
(e.g. a journey has steps) with an
implication of unambiguous owner-
ship. The m:n relationship, how- e
ever, usually expresses a much OCCURENCE OF THE ENTTTY OGCURS 1o

R . IN THE RELATIONSHIP

more operational notion: a teacher

teaches subjects (and conversely),
implying that there is most certainly
a program actions involved in the
dynamics of the relationship. The term association used to designate m:n relation-
ships is very well chosen. There are many 1:n relationships that also have this dy-
namic aspect; the symptom is that such relationships can very easily become m:n
relationships (this is not the case when we are in a true master-detail situation).

EMPLOYEE | DEPARTMENT|

figure 15

Bachman’s relationship indicates both a cardinality and a dependency (an orien-
tation, so to speak). E/R has no implication of dependency (orientation) for a rela-
tionship. It may however be desirable to represent some kind of existential depend-
ency by which we indicate that the occurrences of one entity can only exist if they
are related to occurrences of another entity (this is in fact a generalization of the
master-detail situation). This is done by inserting an arrow a la Bachman, but with-
out any implication of cardinality. In figure 16 an example is given in which we
represent by means of the arrow from product to price that a price can only exist
for a product (via an offer), and that a team can only exist when it has employees.
In a way this says that a product must exist before one can specify a price and
employees must be hired before one can organize teams. An extension to this exist-
ential dependency constraint, making it much stronger, is saying two entities are so
related that each of them is existentially dependent on the other one: an order can
only exist if it has items, an item can only exist if it is on an order. This calls for an
arrow at both ends of the relationship. Such a strong existential dependency con-

60

CHAPTER 2 - The Semantics of Data

straint contains a chicken and
EXISTENCE DEPENDENCY egg problem which manifests it-
self at the moment new occur-
rences are stored. Indeed, when

. /\ . a new order is to be stored, how

\/ should we do this? Storing first
the order occurrence will fail be-

cause there are as yet no items
B P e O A USTS ONLY BECAUSE IT 18 LINKED stored for this order; storing first
item occurrences will fail be-
cause there is not as yet an order

for these items! The answer lies
FRODuCT @ PhIcE in a temporary (automatic?) re-
laxation of the constraint, but
APRICE CAN EXGEY ONLY FOR A PRODUCT how temporary is temporary? Or

it lies in the definition of a new
macroscopic operation that

stores orders with items, without
EMPLOYEE WORKS TEAM .. 9
splitting them”.

A concept that comes very
close to that of existential de-
pendency is the participation

| | class of an entity in a relation-

TEAM /m..\ PROGRAM ship, also called rorality of an en-
\/ tity. What we want to express

here is the quantification of
whether all or some occurrences
of an entity occur in the relation-
ship. When all occurrences of an
entity occur in a relationship, the
relationship is said to be tofal with respect to that entity (or, in short: the entity is
total); otherwise it is partial (or, in short: the entity is partial). The notation used
for the expression of the participation class is a black dot on the side of the total
entity (some authors use a bar on the side of the partial entity). Clearly, if an entity
has existence dependency, then it is total: all prices are for a product; all teams
have employees. The participation class of an entity in E/R models is equivalent to
the optionality of a detail (mandatory detail is total) or the emptiness of a master
(non empty master is total) in Bachman diagrams. Looking for totality is not always
easy: it may be disguised in human speech. For instance: a price can only exist for a
product (price is total), there are no prices which are not for a product (price is
total), there are no teams without employees (team is total), all teams have em-

THERE ARE NO TEAMS WITHOUT EMPLOYEES

A PROGRAM CAN BPE MADE ONLY BY A TEAM

figure 16

9.. None of these options is present in SQL.

61

CHAPTER 2 - The Semantics of Data

ployees (team is total), any team produces at least one program (team is total),...

EACH OCCURRENCE OF A OCCURS IN THE RELATIONSHIP

EACH OCCURRENCE OF B OCCURS IN THE RELATIONSHIP

EACH OCCURRENCE OF A AND EACH OCCURRENCE OF B
OCCUR IN THE RELATIONSHIP

THERE IS NO SUCH RULE (OR: RULE NOT YET KNOWN)

See figure 17 for the graphical repre-
sentation.

Some authors also particularize
those cases where the participation of
an entity occurrence in a relationship
is submitted to conditions. For in-
stance, teams are made of employees,
but it is not just any employee who can
be member of any team; figure 18 in-

RESTRICTIVE CLASS

THERE ARE CONDITIONS FOR AN EMPLOYEE TO WORK IN A TEAM

EACH TEAM PRODUCES AT LEAST ONE PROGRAM

CONVERSE: NOT EACH = SOME

Eafrl-l!TEAH PRODUCES AT LEAST ONE PROGRAM
SOME PROGRAMS ARE NOT PRODUCED BY A TEAM

figure 17

figure 18

dicates one of the possible notations.
The nice thing is that such a case is
recognized, but the unfortunate aspect
is that it does not go far enough:
where indeed is the actual condition
(or business rule) represented?

E/R example 1: Order Entry

Our order entry diagram (of which
the Bachman representation is in
figure 11), is now re-drawn using the
E/R model. The resulting diagram is
given in figure 19. At the current high
level of abstraction we work at we
have an ORDER-for-PRODUCT rela-
tionship which has a m:n cardinality
(in Bachman odeliing we were forced
to create ITEM as a replacement for
the m:n relationship). An allocation is
about orders (which are split into allo-
cations) and contains products. A ship-

ment groups allocations and an invoice groups shipments.

62

CHAPTER 2 - The Semantics of Data

The diagram also in-
dicates the dependency
CUSTOMER PRODUCT (equivalent to totality)
constraints,

a Higher order ex-

tensions

ORDER Strangely enough,
the E/R model of our
order entry misses

something that the
Bachman model had. In

the E/R solution, an al-

- location can be about
é ALLOCATION anything, even a pro-

ducts not appearing on

! any order. In the Bach-

man solution this could
not happen because of
INVOICE the link with ITEM.
However, we must ob-
serve that we are speak-
ing here of links that
are not just between en-
tities. In order to model

@ SHIPMENT the required semantics,
the E/R model has been

extended: relationships
may link an entity and
another relationship. In
figure 20 we see the
case where one relationship expresses the fact that a teacher teaches a subject and
this relationship itself is linked to the students who attend the subject being taught.
A relationship may also link two relationships. In figure 21 we find the example of a
doctor prescribing only medicine he knows and of a patient having a disease, with

the additional information that a doctor prescribes drugs from the medicines he
knows, for a patient who has a certain disease.

figure 19

When we compare Bachman modeling and E/R modeling, the question arises as
to which one to prefer. E/R modeling is more recent and more fashionable, and
expresses more semantics. The (visual) expression power of E/R models is in-
creased by the lozenge icon, even though a Bachman junction entity also represents
a m:n relationship. Bachman modelling is much in favour when the chosen data-
base implementation is a network or a relational one: indeed, neither of these data-

63

CHAPTER 2 - The Semantics of Data

base organizations can represent rela-
tionships of m:n cardinality otherwise
than with an auxiliary record or table. Of
course, a network data-base is very
strong in representing 1:n relationships
and is therefore much more akin to
Bachman diagrams than E/R diagrams.
The translation from one representation
into the other one is however very
straightforward.

E/R example 2: The Transport-
ation Company

Problem statement

The intention of the company is to
transport consignments by truck. It
works according to the following rules:

— The company will manage itin-
eraries and loads of all trucks and
will combine truck loads optimally.
It does not own the trucks, which
are the property of independent
owners.

SUBJECT

DOCTOR

PATIENT

figure 21

- Trucks can only transport containers, which contain consignments.

64

— Trucks perform international journeys (identified by means of a chronological

number) and typically will stop at various city warehouses (only one per city)
to load or unload containers. In order to perform their job correctly, the
chauffeurs receive a journey plan containing the route and the list of contai-
ners to load/unload in each city, with a copy of the waybills required. Once a
container gets off a truck, the truck continues its journey.

A journey’s itinerary does not pass through the same city more than once.

Consignments are never delivered C.O.D., so that the truck company will
never have to bother with cash flow, nor will it perform any consignee billing
as this is left in the hands of independent freight agents.

Consignment delivery from the warehouse (where the container was un-
loaded) to the consignee is in the hands of independent (local) delivery com-
panies, with which the transportation company has set up a number of agree-
ments. The delivery date is the date at which the consignment is received by
the consignee.

— Delivery companies are not unequivocally linked to the warehouse city.

CHAPTER 2 - The Semantics of Data

— In case of journey, truck or consignment problems, the company will be in
touch with the freight agents. It will never contact either the consignee nor the
sender of the goods.

— In order to have goods transported, a sender has to submit his consignments
at de-centralized freight offices (manned by freight agents), from where they
are brought to the nearest warehouse.

— A consignment is any grouping of items as defined by the sender. The maxi-
mum allowed size of a consignment is that of the container.

— A consignment is described by one waybill.

— The warehouse keeper will stack consignments into containers. Containers
may contain more than one consignment. Each container therefore is associ-
ated with as many waybills as there are consignments within, describing the
composition of the consignment (i.e. the items which compose the consign-
ment).

- A copy of the waybill is given to the sender, one is glued on the container,
another will be given to the consignee, yet another will be given to the chauf-
feur, one is kept by the freight agent, and finally one is transmitted to the
local delivery company that will do the final delivery to the consignee.

— The planners will schedule consignments. To that effect, they first determine
(or create) a truck journey. Next they determine how to fill the containers (as
they can obtain them) with consignments. These containers are then sche-
duled to the journey of the truck and their load/unload activity in the right city
warehouse is determined. Typically, a container going to a certain city will
contain goods (consignments) destined to places in the neighbourhood of the
warehouse (destination) city. The planners also determine the delivery com-
pany that will be used.

— The date at which a container is loaded onto a truck will be considered identi-
cal to the date at which the truck leaves the warehouse. Similarly, the unload
date of a container is the date at which a truck enters the warehouse.

The Chen model representing our problem statement is in figure 22. It is rather
self-explanatory, even though it contains a higher order relationship which links the
relationship between containers and steps (of journeys) to the waybills. Note that
only one of the two relationships (LOAD and UNLOAD) links to the waybills,
since the consignments that are in the container at load time are the same as those
that are in it at unload time.

65

CHAPTER 2 - The Semantics of Data

DRIVER TRUCK

OWNER

FREIGHT
SENDER ICONSIGNEH AGENT
TRUCK | ’
= .
CONSIGNMENT

WAREHOUSE JOURNEY

‘r > <

has
STEP
. fravels
delvers
WAREHOUSE
KEEPER
unioad
DELIVERY
COMPANY
ICONTAINER]

figure 22

66

CHAPTER 2 - The Semantics of Data

Brno” there is a specific non-lexical object customer described by the lexical objects
123 and Brno. By semantic classification a set of similar lexical objects (e.g. all
occurrences of an employee name) is called a lexical object type (LOT) and a set of
similar non-lexical objects (e.g. all occurrences of employees) is called a non-lexical
object type (NOLOT).

NIAM also recognizes relationships, but calls them faczs'. A distinction is made
between facts linking entities (NOLOTS) which are called ideas and facts linking an
entity (NOLOT) and an attribute (LOT) which are called bridges. The repre-
sentation is by means of a double rectangle that is connected to the two objects
linked by the fact (figure 26). Interestingly, NJAM makes explicit the fact that a
relationship is symmetric: it can be used in one direction as well as in the other one.
Therefore, a fact has two roles indicated in the rectangles. The left-side role ex-
presses the role of the left-side object in the fact, whereas the right-side role ex-
presses the role of the right-side entity in the fact. The fact that links employees
and departments has the two
roles: an employee works-in a
department and a department
occupies an employee. The rep-
resentation of facts with roles
O_::_O carries a great degree of se-

IDEATYPE .

mantics, of course. A fact has
occurrences which are con-
stituted of the combination of a
S suitable identifier from each of
Q—l::f'\‘ K BRIDGE TYPE the linked objects. The set of
occurrences is called the popu-
lation of the fact (figure 27). In
a population diagram, we find
40 POPULATIONDIAGRAM | inder the role of an object all
occurrences of (a key of) the
object that can play this role.
figure 26 For our current example, under
the works-in role we find em-
ployee references, under the
occupies role we find depart-

ment references.

FACT TYPE (= RELATIONSHIP)

2ROLES

e I
N

E# D# In NIAM, just as in all other
models, the first concern about
facts is the cardinality. NIAM
expresses this as rules of

figure 27

11. More correctly, a relationship is called a fact type, whereas an occurrence of the fact type is a facr.
However, in relaxed speech the word fact represents the two interpretations.

69

CHAPTER 2 - The Semantics of Data

uniqueness associated with the roles of a fact. Saying that a role is unique means
that in the population of a role a same reference can only occur once. If a role is
not unique, a same reference can occur many times in the population of the role.
Uniqueness of a role is indicated by a superscripted flat arrow (figure 28). A unique
role states that the entity on that side occurs once in the relationship; a non-unique
role states that the entity on that side occurs n times in the relationship. The vari-
ous combinations of unique roles allow the representation of 1:1, 1:n, n:1 and m:n
relationships. Furthermore, a distinction can be made in the m:n cases: cases where
each occurrence of the fact is unique (concatenation of roles is unique) and cases
where this is not so.

In a way similar to E/R modeling, NIAM also expresses totality. If an object
participates totally in a fact, then this is indicated by a capital A on the side of that
object (examples are given in figure 29).

The power of NIAM
modeling resides in the rep-

— — resentation of constraints,
We have already seen some
WORKS FOR| ocoumesj—— DEPARTMENT . .
constraints (also in other
modeling techniques) such
as cardinality uniqueness
— and totality. But the more
interesting cases are the
EMPLOYEE PERFORMS |PERFOREDEBY ACTNITY constraints that somehow
span facts (relationships).
Examples will provide the
necessary insight in con-

* > » straint types:
EMPLOYEE owns | owneosy | /c.\’n\
\ \j « Example 1 (role

equality): employees are
in salary groups and em-
M:N ployees have a function;
obviously, all employees

— ;
who are in a salary group

SUPPLIER DELIVERS | DELVERED BY PART have a function and vice-
— versa. The employee

populations of the two
facts are equal: the same
occurrences of em-

ployees are in both
TEACHER)——I TEACHES | TAUGHT BY SUBJECT (figure 30).

/

N:1

EMPLOYE|

m

1:N

1:1

« Example 2 (role implica-
tion): only employees
who have a function can

figure 28

70

CHAPTER 2 - The Semantics of Data

PARTICIPATION (TOTALITY)
A\—] works Fonl OCCUPIES !— .
EMPLOYEE Has nb | Isnbof M iEm)

- \\E number

/, \

\)
s
figure 29

mutually exclusive.

be assigned tasks, but
not all employees with
a function are working
on a task. Here the
has-task role is a sub-
set of the has-function
role of the employees
(figure 31). In more
boolean terms: the
has-task role implies
the has-function role.

Example 3 (role exclu-
sion): a company’s em-
ployees are either ma-
nual warkers or intel-
lectual workers, but
not both. As a result,
they fill different time
sheets (figure 32). The
two employee popula-
tions of the facts are

. Example 4 (fact implication): authors write papers. Sometimes they also give a

ROLE EQUALITY

AN EMFPLOYEE HAS A SALARY FOR A FUNCTION
ALL EMPLOYEES WHO HAVE A FUNCTION HAVE A SALARY
ALL EMPLOYEES WHO ARE IN A SALARY GROUP HAVE A FUNCTION

figure 30

needed for this case, as indicated in figure 33.

public presentation of
some of their papers.
There are two relation-
ships between author
and paper, one that
expresses authorship
(we assume there are
no joint authorships)
and one that expresses
the presentation of a
paper by its author.
The two relationships
are dependent by im-
plication (or sub-set-
ting)... What we have
here is a constraint be-
tween occurrences of
facts and not only oc-
currences of roles. An-
other notation is

71

CHAPTER 2 - The Semantics of Data

ROLE SUBSET (IMPLICATION)

mm@
me

AN EMPLOYEE WHO IS ASSIGNED A TASK
HAS A FUNCTION

{but some employees having a function may not yet have baen assignad a task)

figure 31

ROLE EXCLUSION

AN EMPLOYEE FILLS EITHER MANUAL WORKER TIME SHEETS
OR INTELLECTUAL WORKER TIMESHEETS

figure 32

FACT SUBSET (IMPLICATION)

figure 33

« Example 5 (fact impli-

cation): a department
has employees and it
has also a secretary.
The secretary is a
member of the depart-
ment. This is once
more fact implication
(see figure 34).

Example 6 (fact impli-
cation and exclusion):
a school has a number
of departments and
teachers attached to a
department. Some of
the teachers actually
teach, others are de-
partment heads. Thus,
there are two relation-
ships between depart-
ment and teacher.
However, per con-
straint, the following
situations can be ruled
in or ruled out: either
the head teachers of a
department are always
active teachers of the
department (implica-
tion or subset), or the
head teachers are
never active (exclusion,
see figure 35), or the
head teachers of a de-
partment may be ac-
tive teachers of other
departments. Again,
these are constraints
between the two facts.

Example 7 (fact impli-
cation and exclusion):
There is a number of
facts about warehouses

and goods. One fact expresses the catalog of goods that should be in the ware-
house. Another fact expresses those goods that are actually in stock. Obviously,

72

CHAPTER 2 - The Semantics of Data

HO4 SYHOM | BIOHINCD

figure 40

Now, employees can work in
more than one office (obvious-
ly on a scheduled basis), how-
ever, in each office they work
in they are assigned only one
desk. This is a fact about three
objects: employee, office and
desk. In this fact, the combina-
tion of the roles office-for and
desk-of is unique (since it is
given to only one employee).
The representation is given in
figure 42 . In pure NIAM such
ternary facts are forbidden, so
we need an equivalent repre-
sentation with only binary
facts. Our example will need
two facts, one linking em-
ployees and offices and the
other one linking employees
and desks. Apparently we lose

the constraint that the combination office-for/desk-of is unique. This is restored by
indicating a uniqueness constraint upon combined roles, as indicated in figure 43'%.
The resulting diagram is much less readable, once more proving that higher order

facts are more than welcome.

Another, rather natural,

SUBJECT

example of role combina-
tion uniqueness is to be
found in figure 44.

A last interesting aspect
is that NIAM also allows
unary facts. If we want to
express the fact that a
given employee is a sales-
man, this is indeed a fact
about an employee, but it

wachinga 1 paing taught | of teaching a

subject by ateacher | subjectbya

dul

ﬁ:rng a in a year teacher
figure 41

links to nothing since there
is no object salesman. Sa-

12.In the strict formulation of NIAM, only binary facts are allowed; higher-order facts must be
decomposed into binary equivalents. This strict discipline may be acceptable when the modeling is
refined into an actual data-base, but for representing semantics of information all types of facts are

10 be accepted.

76

CHAPTER 2 - The Semantics of Daita

— Oor we create a

UNIQUENESS OF ROLE COMBINATION new object, the
office-desk which

relates to office
/ \ on cone hand and

hasname | nameot |——— = NAME desk on the other,
\ / but which specifi-

~ cally has a fact
with employee

@) (this resembles
the junction entity
in Bachman diag-

\ ramming), see
/ figure 48.

Let me conclude:
business rules ex-
NAME+BIRTHDATE IS UNIQUE FOR AN EMPLOYEE pressed as constraints
abound in companies.
figure 44 They may be reason-
ably complicated, but
UNARY FACT TYPE they are definitely part
of the data structure, and must be defined as
early as possible, and as precisely as possible.
Now, since no data-base system is yet able to
'S MANAGER incorporate such constraints (or allows it to a
very limited extent only), most analysts do not
represent them. This is a serious mistake,
SUBTYPE EQUIVALENCE which increases the risk of data corruption.
The graphical syntax of NIAM is certainly a
good way to represent constraints, but usage
of it very quickly leads to overwhelmingly com-
plicated diagrams. Unfortunate but unavoid-
able.

PN

TN

has b.dnhTh.damof 1— < BiATH

S

The question of how to install constraints

figure 45 in a physical data-base is intriguing. Ideally, a

data-base definition language should allow

such installation and possibly generate some black-box code that would be executed

automatically as soon as a program touches the constrained field or relation. There

are some data-base manufacturers who implement features that come close (rules
and triggers linked with the data definitions)™.

14. Incidentally, the problems of updating relational views could also be expressed by constraints
governing the (conditional) back-propagation of an updated view tuple to the source tuples of the
view’s constituent tables.

78

CHAPTER 2 - The Semantics of Data

SUBTYPING

Q
\d

OFk;

figure 46

figure 47

More constraints

NIAM expresses much semantic information as
constraints, and it does so in a graphical way. This
produces a picture which is immensely better than
a free style text, however involved the picture may
be. The constraints are all in the area of the ref-
erential integrity. However, there are many more
constraints that one must describe along with the
data. These have no graphical representation. To
name one: the domain integrity of LOTs'S. Others
concern null values allowed or not allowed for
fields'®. There are also the combinatorial con-
straints (involving many fields) and the “row level
security” constraints such as: in a Bill of material
structure expressing company hierarchy a person
cannot be his own manager and there exists at

least one person who does not report to another person. Finally there are the chro-
nological constraints, for instance, all items (of an order) will eventually be allo-

cated, but not immediately.

Such constraints must still be written down in script form.

15. It is possible to have a graphical representation though: that of semantic networks (see a further

section).

16. Again it is possible to represent those occurrences of the entity having a null value for the field
as a subtype with that field, the super-type entity not having the field.

79

CHAPTER 2 - The Semantics of Data

figure 48

NIAM example 1: Order Entry

We will now take up our order entry system
once more. It can be translated straightforwardly
from the E/R representation to a NIAM repre-
sentation, which yields figure 49. The uniqueness
and totality constraints added are fairly obvious, so
that no explanation is required.

The subset constraint between the two cus-
tomer roles expresses the rule that a customer can
only be invoiced if he has received goods (i.e. he
has entered orders, since all invoices are for ship-
ments and all shipments are for allocations and all
allocations are for orders; what is missing -and is
not easy to represent- is the constraint that a cus-
tomer cannot be invoiced for goods on an order of
someone else). The subset constraint on the pro-
duct roles represents the rule that a product that
gets allocated is a product that is ordered in the
first place. These two rules may seem fairly trivial,
but they are not. What we mean is this:

* (R1) a product allocated in an allocation for an
order is necessarily a product of that order

* (R2) an invoice to a customer is about ship-
ments pertaining to orders of that customer.

These rules are far from easy to represent in a
structural chart, not because the graphical repre-
sentation has shortcomings, but because the rules
are fairly complex. Let us have a look at R1; we do
not say merely that an allocation is about a product
and also about an order, but rather that it is for a
product ordered on that order. Therefore, the fact
type that we need is between the allocation and the
fact that links a product and an order (see figure

50 which shows a higher-order fact structure and the equivalent binary structure
where a new NOLOT was introduced; this NOLOT is actually an order item).

Rule R2 is much more involved. It says that shipments (on an invoice) are about
allocations for (items of) orders of a given customer. Thus, the fact type that we are
looking for links the invoice, the customer, the order (and item), the allocation and
the shipment. It is a 6-ary fact, which we can represent as in figure 51. This figure
also indicates the required constraints: the customer invoiced for the shipments is
the customer the invoice goes to; the customer’s orders for which the shipments are
invoiced are a subset of the orders of that customer; the order lines on the orders

80

CHAPTER 2 - The Semantics of Data

ORDER-ENTRY SYSTEM

-
-

figure 49

figure 50

81

CHAPTER 2 - The Semantics of Data

— Course: the fact that a subject is taught once by a given teacher. If a teacher
teaches the same subject more than once in a given year, these are different
courses. A teacher teaching a course can have several teachers to replace him
sporadically.

— Lecture: one moment of a course, held at a given location for a class of stu-
dents.

— Class: the group of students that is registered for a course.

The NIAM model for this problem statement is to be found in figure 53. It is
rather straightforward, even though it contains a number of (obvious) assumptions,
which must certainly be verified against the reality. Note that the model is
presented without any history (registration of data in the past): it is left to the
reader to fill this part in'®. There are a number of remarks, though. We have a
constraint that says that a student gets assigned to a course in each subject he regis-
tered for; this constraint cannot be easily represented. A weaker form is saying that
all students registered to subjects are assigned to courses, but this does not guaran-
tee that the course to subject matching is correct. Our constraint is really a fact
about the three objects student, course and subject. We can therefore represent a
ternary fact (see figure 54) and state by constraints that the student-subject role
combination is equal to the student-subject population expressing registration and
also that the subject-course combination in the ternary fact is a subset of the sub-
ject-course fact expressing the courses scheduled for subjects. Of course, the ter-
nary fact occurrence can only be created when a course is scheduled and a student
assigned to it for a subject he registered for. A similar problem is in expressing that
a student must register for all subjects that are mandatory for the degree he enrolls
for. It appears that we had better not represent a fact that links students and sub-
jects, and rely on the fact between students and courses instead. But this creates
another problem: how can we then keep track of a student registering for a subject,
if the relevant course has not yet been created? Finally, the facts (absence and
presence) relating a student and lectures are only for the lectures in courses the
student is assigned to.

Meaning, awareness and visibility

When drawing up entity/relationship models (using a combination of all the
methods described), one may never be blinded by the method. The deliverable of
the type of modelling that we undertake in this chapter is a diagram, certainly, but
it is before anything else the statement that the demander (the user) and the data
analyst have come to a mutual understanding of what the information is all about.

18. Hint: many binary facts become ternary because they will contain a role for the year.

85

CHAPTER 2 - The Semantics of Data

Ap—l
DEPARTMENT offers § of DEGREE
2 8
2 _§ ;‘: s
g g K 5
£ 2 g e
Be -] 85
~
s QP N
teach |taug
by
has Was
TEACHER taught wnht SUBJECT
rusgglh with
for sible E]
= /¥ sil |o3d
&
& 2
8
\/ s s
4 &

COURSE ¥s

groups

en

—
counseliad
by

0

STUDENT present -

absent
at

figure 53

86

CHAPTER 2 - The Semantics of Data

AMOUNT

DATE-IN PAYMENT DATE-OUT

figure 64

class brings is that we can speak about the class without having to speak (or even
think) about its properties.

But there is more: the icon for class and property is the same. Would that mean

CUSTOMER

figure 65

that class and property are actually the same thing? The answer
is yes. And this is where the kind of diagram that we are crea-
ting now goes much further than E/R and NIAM. Indeed, a
class can be a property of another (aggregating) class. Suppose
that we have a class called LOAN (figure 64). This class has a
number of fairly obvious properties: AMOUNT, DATE-IN, RE-
IMBURSED, DATE-OUT. But it has a LOANER as well. Thus
LOANER is a property of LOAN. And LOANER is itself a
class. The structure can be extended in this way so that it
becomes a network of classes. This (complemented with the
components described below) is precisely what we mean by has-
part network.

Now, let us take a look at cardinalities. A loan has only one
amount; the same amount may be that of many loans. A loan
has one date-in; the same date-in may be of many loans. More
importantly perhaps: a loan has one loaner, but this same loaner
may have many loans. From these examples we infer the basic
rule: the has-part link is in fact a 1:n relationship from the
property to the class. Using ter Bekke’s convention, has-part di-

agrams are drawn in a hierarchical fashion, so that no arrows are needed: the 1:N
relationship is from bottom to top. The existence of such a relationship allows us to
try and convert from E/R modeling to has-part networks. Let us first look at the

92

CHAPTER 2 - The Semantics of Data

COURSE

TEACHER SUBJECT

figure 67

ing is true, but the situation is fairly obvious. We might be more
surprised when we try to represent the sentence: an order has
order lines (items). In a has-part network we should express this
as: an item has an order, so that we represent it as in figure 65.
This is bewildering only at first sight. Indeed, looking at the

LOAN class, we infer from the structure that a loan can only

master/detail situ-
ation, for instance
ORDER customers entering
orders. In a has-part
network, we express
that the class
ORDER has a
ITEM property CUS-
GROUP TOMER (itself a
class), as in figure 65.
That this calls for a
\ reversal of our think-
ITEM
figure 66
CHRISTIAN NAME
OF PERSON
PERSON CHRISTIAN NAME
FAMILY NAME

figure 68

exist if the property loaner exists, i.e. a
loan can only exist for a loaner. More
generally: each loan has a loaner. The
same is true for an item: an item exists
only if it is on an order. Moreover,
when we process the information in a
program, we process the items as the
essential information; the order is used
later as a regrouping feature, and is
therefore more subordinate. Still, many
will prefer to use a covering: an order
has an item-group which covers items
(figure 66, where an arrowed line ex-
presses the covering).

The situation for a m:n relationship
is just as easy to handle: in Bachman
diagramming we replaced it by a junc-
tion entity and two 1:n relationships.
This equivalence is carried over into
the has-part network, so that a teacher-
to-subject relationship is represented as

in figure 67. Again, this is bewildering at first sight. But just think: what is important
is not the fact that a teacher can (or will or may or should) teach a subject; the
important thing is that there exists a course which is about a subject and is taught by
a teacher. Course is the aggregating class which has the two properties reacher and
subject! Has-part networks bring a very coherent way of looking at the mysteries of

93

CHAPTER 2 - The Semantics of Data

easy to state that these are specializations of the
more general class date. There is nothing wrong with
that, as such. But, at physical implementation time,
one must realize that date is a type and not an ob-
ject; in other words, there is no field called date, but
there are fields called date-of-birth, etc.

Another application of generalization/specializa-
tion comes about when a class has a property that is
a super-class (see figure 70, where property C has
two "formats™ C1 and C2). This means effectively
that the class has a property that can have more
than one look, a situation that is identical to Pascal’s
record variants and C’s unions. We shall call it a

B c
c1 Cc2
figure 70

STUDENT

o

categorization: the class comprizes a num-
ber of categories. It should be noted that
the Bachman entity model provides for
categorization in combination with covering
by means of the multi-member relationship.

LAB
REPORT

l An example is the student entity which is
the master of reports, but these exist in two

EXERCISE categories: lab reports and exercise reports.
REPORT

The representation is in figure 71: the dot

indicates the categorization; notice that

figure 71

there is only one relationship, even though
there are two arrows. Some authors have

devised an entity notation that expresses

C categorization in a more explicit way, see

figure 72: X is the fixed (common) part of

Q
X

the entity whereas B and C are the two
(there may be more) mutually exclusive
variant parts. Each of these parts may take
part in a relationship with another entity,
but one must be careful to keep the model

figure 72

meaningful.

The fourth abstraction is that of cover-

ing. In fact, covering allows for a class to have properties that are not limited to
scalar occurrences, but include sets of occurrences. This is done via a covering class,
though, and not directly. An example is: a department of a school has (many, poss-
ibly no) teachers. A possible graphical representation is given in figure 59, showing
the teacher-group class. Note that the property that gets covered is a class itself, so

that it can be an aggregate.

If we concentrate on the two important semantic operations that relate classes
(aggregation and generalization), we cannot but notice that the relationship is one

95

CHAPTER 2 - The Semantics of Data

in all cases. This is certainly not to be seen as an axiom, but the principle is very
realistic in the type of information modeling we are interested in.

Another essential question regards the finer structure of an object. Since we
need data stored with an object, it is clear that an object has fields (called proper-
ties). But can it have more involved structures? Can the fields be themselves groups
of fields? More generally, can an object be composed of yet other aggregates or
coverings? The answer here is no: an object should not contain deeper structures
than a list of fields. As a result, an object is submitted to the same rules of co-
herence as an entity”. Of course, nothing prevents us from modeling at a high level
of abstraction, but eventually, when drawing the final model, we must come down
to only acceptable objects. As a matter of terminology, we will call those objects
normalized objects.

The statement (and requirement) that an object contain no sub-structures has to
do with coherence of manipulation. Indeed, manipulations upon a highly structured
object may in fact concern only some of the nested sub-structures and therefore
create the risk that non-relevant fields are nevertheless manipulated also. A num-
ber of examples will certainly clarify the need for normalized objects.

Let us consider a purchase order. This is an object, obviously. However, it con-
tains a list of items (a repeating group). The items are existentially dependent on
the order and it goes even further: there are no orders without items. In other
words, for most data modellers, the items are an integral part of the order object,
and one is tempted to represent the aggregate as only one object. But take a closer
look at a purchase order, more specifically at which manipulations it undergoes.
There is the producer side: a customer who issues a purchase order does not just
write out an order. Instead, the various users enter item purchase requests. It is
only later, possibly in another department, that items to be purchased are bundled
into one order, the bundling criterion being (for instance) the supplier we want to
order from. It is clear therefore that the objects that are manipulated on the cus-
tomer (producer of the order) side are the items, and that the order is created
merely as a grouping feature serving only for easy subsequent reference. Anticipat-
ing definitions given in chapter 3, the order is an indexing feature, called a master
index. On the other hand, such a grouping feature may be used to factorize those
fields of items that have the same value: for instance, an item can have an order
date and this has the same value for all items bundled in an order; the same is true
for the reference to the supplier. The order date will be added to the order and
removed from the item?. As a result the order carries data, and therefore it has

25. We can therefore speak of object normalization, analogous to entity normalization, which
removes from an object any covering (repeating group) and any nested aggregate (transitive
dependency); an object that would contain such sub-structures will be exploded into several objects.
26. Anyone now observing that one should indeed promote the order data to the order because
otherwise the item information would not be in second normal form is right, of course; however, he
could very well be accused of normalization fanaticism.

100

CHAPTER 2 - The Semantics of Data

many companies, this payment is not really associated to the invoice; rather it ser-
ves to cover any debts for unpaid items previously invoiced. So, the payment is
fragmented and attached to the items. If this is not the case, it can be attached to
the invoice, and we may have a valid reason to turn the invoice into an object after
all. Similarly, credit notes that correct billed amounts, are usually not attached to an
invoice as such, but to items. The conclusion is that in many cases, entities that
result from calculation and formatting are not really objects.

Another typical example of an entity that is (probably) not an object is a payslip.

Our final example is the waybill in the transportation company (problem state-
ment on page 64). We have the consignment as the real world object. In the system
it is most probably represented by a consignment registration form (not described
in the problem statement though), which is the system object consignment. But
there is also a waybill which is attached to one consignment. The object waybill is
an artefact that also represents the consignment. Therefore, consignment registra-
tion and waybill are two faces
of the same object, and it
would be a good idea to re- | FRAME restaurant

is-a: business-establishment
place both by only one docu- types: range:(fast-food,cafetaria,

ment (see also the discussion seat-yourself ,wait-to-be-seated)
of view 4 in the data modeling difaulg :d W‘c’lfit -;co-be-seated
: if-needed:if plastic-orange-counter
of the transportation company, then fast-food
chapter 3). if stack-of-trays
. c - then cafetaria

An object moFlel 18 dlffe‘r- if wait-for-waiter-sign
ent from an entity model in or reservation made
one more aspect: for each ob- then wait-to-be-seated

. .. isul otherwise seat-yourself
ject type the licit manipula- | j,catjon: range:type address
tions must be described as if-needed:[look at menu]

well. These manipulations are | name: if-needed:[look at menu]

I . food-style: range:(burgers,chinese
a characteristic of the object, iontinen%:al,seagfood',fr‘ench)’

they are defined by the object. default: continental

In the world of objects they if-added: [update range of food-style]
are called methods. The ideas

behind methods are fully de- figure 76

scribed in chapter 7. Methods

are the static aspect of what is

allowed, but there is also a dynamic aspect: what is the sequence of events an ob-
ject can undergo? These aspects and their modeling are described in chapter 5.

The semantics in frames

Complex objects that depict situations meaningful as a whole are called frames.
Consider the (classic) example of describing a restaurant; a frame is defined for this
stereotype in figure 76.

102

CHAPTER 2 - The Semantics of Data

TOWER

HEIGHT

IS-A

Eiffel tower Empire State
has-height has-height
/
H1 foserthan H2
value-is value-is
300m 400m
figure 79

than H2. The objects 300m
and 400m have a meaning
by themselves, as pure num-
bers; they are instantiations
of the value property of the
object instances H1 and H2.
These objects could have
other value properties as
well, for instance the height
in feet rather than meters.

It has been stipulated
that semantic networks,
built of is-a links, has links
and constraint-expressing
links, can represent any-
thing, even quantified asser-
tions such as Everyone has
read at least one book. How-
ever, such assertions intro-
duce a level of complexity in
the representation that
seems to make semantic
networks less interesting? in
that area.

A repository of struc-
tures: the meta-model

The techniques that are

described in this chapter regarding the semantic modeling of information can be
used for the representation of the information about the semantic model itself, of
course. Indeed, what do semantics comprise? Various objects, which differ some-
what according to the representation used, but which can be summarized as fol-

lows:

entities (or NOLOTSs, or objects),

relationships between entities (is-a, has, Bachman, E/R, facts or other),

constraints between relationships (or roles or facts),

relationships between relationships,

relationships between objects and relationships.

29. At least for information modelling purposes.

106

