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“Hits on the most important issues around statistical literacy and uses good examples to illustrate
its points. I could not put this book down. Reading it has been a pleasure, believe me. I am so
impressed with Levitin’s writing style, which is clear and simple, unlike much of the murky stuff
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INTRODUCTION

THINKING, CRITICALLY

This is a book about how to spot problems with the facts you encounter, problems that
may lead you to draw the wrong conclusions. Sometimes the people giving you the
facts are hoping you’ll draw the wrong conclusion; sometimes they don’t know the
difference themselves. Today, “information” is available nearly instantaneously, but it
is becoming increasingly hard to tell it apart from misinformation, to distinguish
what’s true and what’s not, and to sift through the various claims that are thrown at us.

I put “information” in quotes because, technically speaking, information is
something that is true. Most of us don’t use the word like that, and that helps to blur
the distinction between what we know and what we don’t know. Similarly, for just
about any topic we can think of, the Internet rapidly and mindlessly delivers numbers,
statistics, graphs, charts, and conclusions—unfortunately, not all of them are factual. A
fact is something that is known to be true. Everything else is a fact-in-waiting (to be
verified), or an outright lie. Often, only one side of a story we read is supported by
information and facts, and the other side is being propped up by lies, jibber-jabber,
and mumbo-jumbo masquerading as facts. Sometimes the lie-spreading weasels will
try to appeal to your sense of fairness and say, “but there are fwo sides to the story—
you must listen to the other side.” But that other side is just a distraction or
misdirection if it isn’t supported by evidence, and that can lead you to draw the wrong
conclusions. One of the aims of this book is to help you decide whether you're being
given actual evidence or being peddled hogwash.

I offer this book with no political agenda or bias. I believe that for us to have civil,
respectful, and rational discourse about any issue, we need to at least agree first on
what the facts are. Then, reasonable people may disagree about how to weigh that
evidence and what conclusions to form from it. Everyone, of course, is entitled to their
own opinions. But they are not entitled to their own facts.

There are many ways that we can be led astray by fast-talking, loose-writing
purveyors of pseudoinformation. Here, I've grouped them into two categories:
numerical and verbal. The first section of the book includes mishandled statistics and
graphs; the second includes faulty arguments and the steps we can take to better
evaluate news, advertisements, and social media posts. The third part of the book
explores what underlies our brain’s ability to determine if something is true or false:
the scientific method. It grapples with the limits of what we can and cannot know and
includes some stories from everyday life that apply logical thinking. It is easy for the



cheats of the world to lie with statistics and graphs because few people take the time to
question them, to look under the hood and see how they work. That is easy to fix.

Sometimes the evidence we're given consists of numbers. We should get in the habit
of asking, “Where did those numbers come from? How were they collected?”
Sometimes the numbers are ridiculous, but it takes some reflection to see it.
Sometimes claims seem reasonable, but come from a source that lacks credibility, like
a person who reports having witnessed a crime but wasn’t actually there. This is the
basis of infoliteracy.

You might object and say, “But it’s not my job to evaluate statistics critically.
Newspapers, the government, bloggers, Wikipedia, and Google should be doing that
for us.” Yes, they should, but they don’t always. We—each of us—need to think
critically and carefully about the claims we encounter if we want to be successful at
work, happy at play, and making the most of our lives. This means checking the
numbers, the reasoning, and the sources, for plausibility and rigor. It means
examining them as best as we can before we repeat them to others, or before we use
them to form an opinion. Thinking critically doesn’t mean we disparage everything, it
means that we try to distinguish between claims with evidence and those without. It
means we try to avoid the extremes of gullibly accepting every claim we encounter, or
cynically rejecting every one.

We've created more human-made information in the past five years than in all of
human history before then. Unfortunately, found alongside things that are true is an
enormous number of things that are not. This is not just a new problem.
Misinformation and sneaky misdirection have been a fixture of human life for
thousands of years, and they were documented in biblical times and classical Greece
(for example, the Trojan horse). The unique problem we face today is that
misinformation proliferates more quickly and more widely than ever; on the Internet it
is devilishly entwined with real information, making the two difficult to separate. And
misinformation is promiscuous—it shows up in high society and low, consorting with
people of all social and educational classes, and turns up in places you don’t expect it
to. It propagates when one person passes it on to another and another, when Twitter,
Facebook, Instagram, and other social media grab hold of it and spread it around the
world. Today, misinformation can take hold on a worldwide basis and become more
well-known than the truth, and suddenly, within hours, a whole lot of people are
believing things that aren’t true.

The best defense against sly prevaricators, the most reliable one, is for every one of
us to learn how to become critical thinkers. We are a social species, and we tend to
believe what others tell us. And our brains are great storytelling and confabulation
machines: Given an outlandish premise, we can usually generate fanciful explanations
for how it might be so. But that’s the difference between creative thinking and critical
thinking, between lies and the truth: The truth has factual, objective evidence to
support it. Some claims might be true, but truthful claims are true.

Truth matters. A post-truth era is an era of willful irrationality, reversing all the
great advances humankind has made in the past four hundred years. It allows people
who are trying to trick us to more easily get away with it. This book is based on critical



thinking and research methods courses that I taught for fifteen years at McGill
University. Here, I share some efficient strategies for evaluating whether what we are
being told is trustworthy, and to help you avoid learning a whole lot of things that
aren’t so. And maybe catch some lying weasels in their tracks.



PART ONE

EVALUATING NUMBERS

It ain’t what you don’t know that gets you into trouble.

It’s what you know for sure that just ain'’t so.
—MARK TWAIN



PLAUSIBILITY

Statistics, because they are numbers, appear to us to be cold, hard facts. It seems that
they represent facts given to us by nature and it’s just a matter of finding them. But it’s
important to remember that people gather statistics. People choose what to count, how
to go about counting, which of the resulting numbers they will share with us, and
which words they will use to describe and interpret those numbers. Statistics are not
facts. They are interpretations. And your interpretation may be just as good as, or
better than, that of the person reporting them to you.

Sometimes, the numbers are simply wrong, and it’s often easiest to start out by
conducting some quick plausibility checks. After that, even if the numbers pass
plausibility, three kinds of errors can lead you to believe things that aren’t so: how the
numbers were collected, how they were interpreted, and how they were presented
graphically.

In your head or on the back of an envelope you can quickly determine whether a
claim is plausible (most of the time). Don’t just accept a claim at face value; work
through it a bit.

When conducting plausibility checks, we don’t care about the exact numbers. That
might seem counterintuitive, but precision isn’t important here. We can use common
sense to reckon a lot of these: If Bert tells you that a crystal wineglass fell off a table
and hit a thick carpet without breaking, that seems plausible. If Ernie says it fell off the
top of a forty-story building and hit the pavement without breaking, that’s not
plausible. Your real-world knowledge, observations acquired over a lifetime, tells you
so. Similarly, if someone says they are two hundred years old, or that they can
consistently beat the roulette wheel in Vegas, or that they can run forty miles an hour,
these are not plausible claims.

What would you do with this claim?

In the thirty-five years since marijuana laws stopped being enforced in California,
the number of marijuana smokers has doubled every year.

Plausible? Where do we start? Let’s assume there was only one marijuana smoker in
California thirty-five years ago, a very conservative estimate (there were half a million
marijuana arrests nationwide in 1982). Doubling that number every year for thirty-five
years would yield more than 17 billion—larger than the population of the entire world.
(Try it yourself and you’ll see that doubling every year for twenty-one years gets you to
over a million: 1; 2; 4; 8; 16; 32; 64; 128; 256; 512; 1024; 2048; 4096; 8192; 16,384;
32,768; 65,536; 131,072; 262,144; 524,288; 1,048,576.) This claim isnt just



implausible, then, it’s impossible. Unfortunately, many people have trouble thinking
clearly about numbers because they’re intimidated by them. But as you see, nothing
here requires more than elementary school arithmetic and some reasonable
assumptions.

Here’s another. You've just taken on a position as a telemarketer, where agents
telephone unsuspecting (and no doubt irritated) prospects. Your boss, trying to
motivate you, claims:

Our best salesperson made 1,000 sales a day.

Is this plausible? Try dialing a phone number yourself—the fastest you can probably do
it is five seconds. Allow another five seconds for the phone to ring. Now let’s assume
that every call ends in a sale—clearly this isn’t realistic, but let’s give every advantage
to this claim to see if it works out. Figure a minimum of ten seconds to make a pitch
and have it accepted, then forty seconds to get the buyer’s credit card number and
address. That’s one call per minute (5 + 5 + 10 + 40 = 60 seconds), or 60 sales in an
hour, or 480 sales in a very hectic eight-hour workday with no breaks. The 1,000 just
isn’t plausible, allowing even the most optimistic estimates.

Some claims are more difficult to evaluate. Here’s a headline from Time magazine
in 2013:

More people have cell phones than toilets.

What to do with this? We can consider the number of people in the developing world
who lack plumbing and the observation that many people in prosperous countries have
more than one cell phone. The claim seems plausible—that doesn’t mean we should
accept it, just that we can’t reject it out of hand as being ridiculous; we’ll have to use
other techniques to evaluate the claim, but it passes the plausibility test.

Sometimes you can’t easily evaluate a claim without doing a bit of research on your
own. Yes, newspapers and websites really ought to be doing this for you, but they don’t
always, and that’s how runaway statistics take hold. A widely reported statistic some
years ago was this:

In the U.S., 150,000 girls and young women die of anorexia each year.

Okay—let’s check its plausibility. We have to do some digging. According to the U.S.
Centers for Disease Control, the annual number of deaths from all causes for girls and
women between the ages of fifteen and twenty-four is about 8,500. Add in women
from twenty-five to forty-four and you still only get 55,000. The anorexia deaths in one
year cannot be three times the number of all deaths.

In an article in Science, Louis Pollack and Hans Weiss reported that since the
formation of the Communication Satellite Corp.,

The cost of a telephone call has decreased by 12,000 percent.



If a cost decreases by 100 percent, it drops to zero (no matter what the initial cost
was). If a cost decreases by 200 percent, someone is paying you the same amount you
used to pay them for you to take the product. A decrease of 100 percent is very rare;
one of 12,000 percent seems wildly unlikely. An article in the peer-reviewed Journal of
Management Development claimed a 200 percent reduction in customer complaints
following a new customer care strategy. Author Dan Keppel even titled his book Get
What You Pay For: Save 200% on Stocks, Mutual Funds, Every Financial Need. He
has an MBA. He should know better.

Of course, you have to apply percentages to the same baseline in order for them to
be equivalent. A 50 percent reduction in salary cannot be restored by increasing your
new, lower salary by 50 percent, because the baselines have shifted. If you were getting
$1,000/week and took a 50 percent reduction in pay, to $500, a 50 percent increase in
that pay only brings you to $750.

Percentages seem so simple and incorruptible, but they are often confusing. If interest
rates rise from 3 percent to 4 percent, that is an increase of 1 percentage point, or 33
percent (because the 1 percent rise is taken against the baseline of 3, so 1/3 = .33). If
interest rates fall from 4 percent to 3 percent, that is a decrease of 1 percentage point,
but not a decrease of 33 percent—it’s a decrease of 25 percent (because the 1
percentage point drop is now taken against the baseline of 4). Researchers and
journalists are not always scrupulous about making this distinction between
percentage point and percentages clear, but you should be.

The New York Times reported on the closing of a Connecticut textile mill and its
move to Virginia due to high employment costs. The Times reported that employment
costs, “wages, worker’s compensation and unemployment insurance—are 20 times
higher in Connecticut than in Virginia.” Is this plausible? If it were true, you’d think
that there would be a mass migration of companies out of Connecticut and into
Virginia—not just this one mill—and that you would have heard of it by now. In fact,
this was not true and the Times had to issue a correction. How did this happen? The
reporter simply misread a company report. One cost, unemployment insurance, was in
fact twenty times higher in Connecticut than in Virginia, but when factored in with
other costs, total employment costs were really only 1.3 times the cost in Connecticut,



not 20 times higher. The reporter did not have training in business administration and
we shouldn’t expect her to. To catch these kinds of errors requires taking a step back
and thinking for ourselves—which anyone can do (and she and her editors should have
done).

New Jersey adopted legislation that denied additional benefits to mothers who have
children while already on welfare. Some legislators believed that women were having
babies in New Jersey simply to increase the amount of their monthly welfare checks.
Within two months, legislators were declaring the “family cap” law a great success
because births had already fallen by 16 percent. According to the New York Times:

After only two months, the state released numbers suggesting that births to welfare
mothers had already fallen by 16 percent, and officials began congratulating
themselves on their overnight success.

Note that they’re not counting pregnancies, but births. What’s wrong here? Because it
takes nine months for a pregnancy to come to term, any effect in the first two months
cannot be attributed to the law itself but is probably due to normal fluctuations in the
birth rate (birth rates are known to be seasonal).

Even so, there were other problems with this report that can’t be caught with
plausibility checks:

. over time, that 16 percent drop dwindled to about 10 percent as the state
belatedly became aware of births that had not been reported earlier. It appeared
that many mothers saw no reason to report the new births since their welfare
benefits were not being increased.

This is an example of a problem in the way statistics were collected—we’re not actually
surveying all the people that we think we are. Some errors in reasoning are sometimes
harder to see coming than others, but we get better with practice. To start, let’s look at
a basic, often misused tool.

The pie chart is an easy way to visualize percentages—how the different parts of a
whole are allocated. You might want to know what percentage of a school district’s
budget is spent on things like salaries, instructional materials, and maintenance. Or
you might want to know what percentage of the money spent on instructional
materials goes toward math, science, language arts, athletics, music, and so on. The
cardinal rule of a pie chart is that the percentages have to add up to 100. Think about
an actual pie—if there are nine people who each want an equal-sized piece, you can’t
cut it into eight. After you've reached the end of the pie, that’s all there is. Still, this
didn’t stop Fox News from publishing this pie chart:
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First rule of pie charts: The percentages have to add up to 100. (Fox News, 2010)

You can imagine how something like this could happen. Voters are given the option to
report that they support more than one candidate. But then, the results shouldn’t be
presented as a pie chart.



FuN wWITH AVERAGES

An average can be a helpful summary statistic, even easier to digest than a pie chart,
allowing us to characterize a very large amount of information with a single number.
We might want to know the average wealth of the people in a room to know whether
our fund-raisers or sales managers will benefit from meeting with them. Or we might
want to know the average price of gas to estimate how much it will cost to drive from
Vancouver to Banff. But averages can be deceptively complex.

There are three ways of calculating an average, and they often yield different
numbers, so people with statistical acuamen usually avoid the word average in favor of
the more precise terms mean, median, and mode. We don’t say “mean average” or
“median average” or simply just “average”—we say mean, median, or mode. In some
cases, these will be identical, but in many they are not. If you see the word average all
by itself, it’s usually indicating the mean, but you can’t be certain.

The mean is the most commonly used of the three and is calculated by adding up all
the observations or reports you have and dividing by the number of observations or
reports. For example, the average wealth of the people in a room is simply the total
wealth divided by the number of people. If the room has ten people whose net worth is
$100,000 each, the room has a total net worth of $1 million, and you can figure the
mean without having to pull out a calculator: It is $100,000. If a different room has
ten people whose net worth varies from $50,000 to $150,000 each, but totals $1
million, the mean is still $100,000 (because we simply take the total $1 million and
divide by the ten people, regardless of what any individual makes).

The median is the middle number in a set of numbers (statisticians call this set a
“distribution”): Half the observations are above it and half are below. Remember, the
point of an average is to be able to represent a whole lot of data with a single number.
The median does a better job of this when some of your observations are very, very
different from the majority of them, what statisticians call outliers.

If we visit a room with nine people, suppose eight of them have a net worth of near
$100,000 and one person is on the verge of bankruptcy with a net worth of negative
$500,000, owing to his debts. Here’s the makeup of the room:

Person 1: =$500,000
Person 2: $96,000
Person 3: $97,000
Person 4: $99,000
Person 5: $100,000
Person 6: $101,000



Person 7: $101,000
Person 8: $101,000
Person 9: $104,000

Now we take the sum and obtain a total of $299,000. Divide by the total number of
observations, nine, and the mean is $33,222 per person. But the mean doesn’t seem to
do a very good job of characterizing the room. It suggests that your fund-raiser might
not want to visit these people, when it’s really only one odd person, one outlier,
bringing down the average. This is the problem with the mean: It is sensitive to
outliers.

The median here would be $100,000: Four people make less than that amount, and
four people make more. The mode is $101,000, the number that appears more often
than the others. Both the median and the mode are more helpful in this particular
example.

There are many ways that averages can be used to manipulate what you want others
to see in your data.

Let’s suppose that you and two friends founded a small start-up company with five
employees. It’s the end of the year and you want to report your finances to your
employees, so that they can feel good about all the long hours and cold pizzas they've
eaten, and so that you can attract investors. Let’s say that four employees—
programmers—each earned $70,000 per year, and one employee—a
receptionist/office manager—earned $50,000 per year. That’s an average (mean)
employee salary of $66,000 per year (4 x $70,000) + (1 x $50,000), divided by 5. You
and your two friends each took home $100,000 per year in salary. Your payroll costs
were therefore (4 x $70,000) + (1 x $50,000) + (3 x $100,000) = $630,000. Now,
let’s say your company brought in $210,000 in profits and you divided it equally
among you and your co-founders as bonuses, giving you $100,000 + $70,000 each.
How are you going to report this?

You could say:

Average salary of employees: $66,000
Average salary + profits of owners: $170,000

This is true but probably doesn’t look good to anyone except you and your mom. If
your employees get wind of this, they may feel undercompensated. Potential investors
may feel that the founders are overcompensated. So instead, you could report this:

Average salary of employees: $66,000
Average salary of owners: $100,000
Profits: $210,000

That looks better to potential investors. And you can just leave out the fact that you
divided the profits among the owners, and leave out that last line—that part about the
profits—when reporting things to your employees. The four programmers are each



going to think they’re very highly valued, because they're making more than the
average. Your poor receptionist won’t be so happy, but she no doubt knew already that
the programmers make more than she does.

Now suppose you are feeling overworked and want to persuade your two partners,
who don’t know much about critical thinking, that you need to hire more employees.
You could do what many companies do, and report the “profits per employee” by
dividing the $210,000 profit among the five employees:

Average salary of employees: $66,000
Average salary of owners: $100,000
Annual profits per employee: $42,000

Now you can claim that 64 percent of the salaries you pay to employees
(42,000/66,000) comes back to you in profits, meaning you end up only having to pay
36 percent of their salaries after all those profits roll in. Of course, there is nothing in
these figures to suggest that adding an employee will increase the profits—your profits
may not be at all a function of how many employees there are—but for someone who is
not thinking critically, this sounds like a compelling reason to hire more employees.

Finally, what if you want to claim that you are an unusually just and fair employer
and that the difference between what you take in profits and what your employees earn
is actually quite reasonable? Take the $210,000 in profits and distribute $150,000 of it
as salary bonuses to you and your partners, saving the other $60,000 to report as
“profits.” This time, compute the average salary but include you and your partners in it
with the salary bonuses.

Average salary: $97,500
Average profit of owners: $20,000

Now for some real fun:

Total salary costs plus bonuses: $840,000
Salaries: $780,000
Profits: $60,000

That looks quite reasonable now, doesn’t it? Of the $840,000 available for salaries and
profits, only $60,000 or 7 percent went into owners’ profits. Your employees will think
you above reproach—who would begrudge a company owner from taking 7 percent?
And it’s actually not even that high—the 7 percent is divided among the three company
owners to 2.3 percent each. Hardly worth complaining about!

You can do even better than this. Suppose in your first year of operation, you had
only part-time employees, earning $40,000 per year. By year two, you had only full-
time employees, earning the $66,000 mentioned above. You can honestly claim that
average employee earnings went up 65 percent. What a great employer you are! But



here you are glossing over the fact that you are comparing part-time with full-time.
You would not be the first: U.S. Steel did it back in the 1940s.

In criminal trials, the way the information is presented—the framing—profoundly
affects jurors’ conclusions about guilt. Although they are mathematically equivalent,
testifying that “the probability the suspect would match the blood drops if he were not
their source is only 0.1 percent” (one in a thousand) turns out to be far more
persuasive than saying “one in a thousand people in Houston would also match the
blood drops.”

Averages are often used to express outcomes, such as “one in X marriages ends in
divorce.” But that doesn’t mean that statistic will apply on your street, in your bridge
club, or to anyone you know. It might or might not—it’s a nationwide average, and
there might be certain vulnerability factors that help to predict who will and who will
not divorce.

Similarly, you may read that one out of every five children born is Chinese. You note
that the Swedish family down the street already has four children and the mother is
expecting another child. This does not mean she’s about to give birth to a Chinese baby
—the one out of five children is on average, across all births in the world, not the births
restricted to a particular house or particular neighborhood or even particular country.

Be careful of averages and how they’re applied. One way that they can fool you is if
the average combines samples from disparate populations. This can lead to absurd
observations such as:

On average, humans have one testicle.

This example illustrates the difference between mean, median, and mode. Because
there are slightly more women than men in the world, the median and mode are both
zero, while the mean is close to one (perhaps 0.98 or so).

Also be careful to remember that the average doesn’t tell you anything about the
range. The average annual temperature in Death Valley, California, is a comfortable 77
degrees F (25 degrees C). But the range can kill you, with temperatures ranging from
15 degrees to 134 degrees on record.

Or ... I could tell you that the average wealth of a hundred people in a room is a
whopping $350 million. You might think this is the place to unleash a hundred of your
best salespeople. But the room could have Mark Zuckerberg (net worth $35 billion)
and ninety-nine people who are indigent. The average can smear across differences
that are important.

Another thing to watch out for in averages is the bimodal distribution. Remember,
the mode is the value that occurs most often. In many biological, physical, and social
datasets, the distribution has two or more peaks—that is, two or more values that
appear more than the others.



Bimodal Distribution

For example, a graph like this might show the amount of money spent on lunches in
a week (x-axis) and how many people spent that amount (y-axis). Imagine that you've
got two different groups of people in your survey, children (left hump—they're buying
school lunches) and business executives (right hump—theyre going to fancy
restaurants). The mean and median here could be a number somewhere right between
the two, and would not tell us very much about what’s really going on—in fact, the
mean and median in many cases are amounts that nobody spends. A graph like this is
often a clue that there is heterogeneity in your sample, or that you are comparing
apples and oranges. Better here is to report that it’s a bimodal distribution and report
the two modes. Better yet, subdivide the group into two groups and provide statistics
for each.

But be careful drawing conclusions about individuals and groups based on averages.
The pitfalls here are so common that they have names: the ecological fallacy and the
exception fallacy. The ecological fallacy occurs when we make inferences about an
individual based on aggregate data (such as a group mean), and the exception fallacy
occurs when we make inferences about a group based on knowledge of a few
exceptional individuals.

For example, imagine two small towns, each with only one hundred people. Town A
has ninety-nine people earning $80,000 a year, and one super-wealthy person who
struck oil on her property, earning $5,000,000 a year. Town B has fifty people earning
$100,000 a year and fifty people earning $140,000. The mean income of Town A is
$129,200 and the mean income of Town B is $120,000. Although Town A has a higher
mean income, in ninety-nine out of one hundred cases, any individual you select
randomly from Town B will have a higher income than an individual selected
randomly from Town A. The ecological fallacy is thinking that if you select someone at
random from the group with the higher mean, that individual is likely to have a higher
income. The neat thing is, in the examples above, that although the mean is higher in
Town A, the median is higher in Town B. (It doesn’t always work out that way.)

As another example, it has been suggested that wealthy individuals are more likely
to vote Republican, but evidence shows that the wealthier states tend to vote
Democratic. The wealth of those wealthier states may be skewed by a small percentage



of super-wealthy individuals. During the 2004 U.S. presidential election, the
Republican candidate, George W. Bush, won the fifteen poorest states, and the
Democratic candidate, John Kerry, won nine of the eleven wealthiest states. However,
62 percent of those with annual incomes over $200,000 voted for Bush, whereas only
36 percent of voters with annual incomes of $15,000 or less voted for Bush.

As an example of the exception fallacy, you may have read that Volvos are among
the most reliable automobiles and so you decide to buy one. On your way to the
dealership, you pass a Volvo mechanic and find a parking lot full of Volvos in need of
repair. If you change your mind about buying a Volvo based on seeing this, you're
using a relatively small number of exceptional cases to form an inference about the
entire group. No one was claiming that Volvos never need repair, only that they're less
likely to in the aggregate. (Hence the ubiquitous cautionary note in advertising that
“individual performance may vary.”) Note also that you're being unduly influenced by
this in another way: The one place that Volvos needing repair will be is at a Volvo
mechanic. Your “base rate” has shifted, and you cannot consider this a random
sample.

Now that youre an expert on averages, you shouldn’t fall for the famous
misunderstanding that people tended not to live as long a hundred years ago as they
do today. You've probably read that life expectancy has steadily increased in modern
times. For those born in 1850, the average life expectancy for males and females was
thirty-eight and forty years respectively, and for those born in 1990 it is seventy-two
and seventy-nine. There’s a tendency to think, then, that in the 1800s there just
weren’t that many fifty- and sixty-year-olds walking around because people didn’t live
that long. But in fact, people did live that long—it’s just that infant and childhood
mortality was so high that it skewed the average. If you could make it past twenty, you
could live a long life back then. Indeed, in 1850 a fifty-year-old white female could
expect to live to be 73.5, and a sixty-year-old could expect to live to be seventy-seven.
Life expectancy has certainly increased for fifty- and sixty-year-olds today, by about
ten years compared to 1850, largely due to better health care. But as with the examples
above of a room full of people with wildly different incomes, the changing averages for
life expectancy at birth over the last 175 years reflect significant differences in the two
samples: There were many more infant deaths back then pulling down the average.

Here is a brain-twister: The average child usually doesn’t come from the average
family. Why? Because of shifting baselines. (I'm using “average” in this discussion
instead of “mean” out of respect for a wondertful paper on this topic by James Jenkins
and Terrell Tuten, who used it in their title.)

Now, suppose you read that the average number of children per family in a
suburban community is three. You might conclude then that the average child must
have two siblings. But this would be wrong. This same logical problem applies if we ask
whether the average college student attends the average-sized college, if the average
employee earns the average salary, or if the average tree comes from the average
forest. What?

All these cases involve a shift of the baseline, or sample group we’re studying. When
we calculate the average number of children per family, we're sampling families. A



very large family and a small family each count as one family, of course. When we
calculate the average (mean) number of siblings, we’re sampling children. Each child
in the large family gets counted once, so that the number of siblings each of them has
weighs heavily on the average for sibling number. In other words, a family with ten
children counts only one time in the average family statistic, but counts ten times in
the average number of siblings statistic.

Suppose in one neighborhood of this hypothetical community there are thirty
families. Four families have no children, six families have one child, nine families have
two children, and eleven families have six children. The average number of children
per family is three, because ninety (the total number of children) gets divided by thirty
(the total number of families).

But let’s look at the average number of siblings. The mistake people make is
thinking that if the average family has three children, then each child must have two
siblings on average. But in the one-child families, each of the six children has zero
siblings. In the two-child families, each of the eighteen children has one sibling. In the
six-child families each of the sixty-six children has five siblings. Among the 9o
children then, there are 348 siblings; 348 siblings divided among 9o children is an
average of nearly four siblings per child. And although the average family has three
children, you can’t say that the average child comes from a family with three children,
because no families have three children!

Families # Children/Family Total # Children Siblings
4 0 0 0
6 1 6 0
9 2 18 18
11 6 66 330
Totals 30 90 348

Average children per family: 3.0
Average siblings per child: 3.9



AXIS SHENANIGANS

The human brain did not evolve to process large amounts of numerical data presented
as text; instead, our eyes look for patterns in data that are visually displayed. The most
accurate but least interpretable form of data presentation is to make a table, showing
every single value. But it is difficult or impossible for most people to detect patterns
and trends in such data, and so we rely on graphs and charts. Graphs come in two
broad types: Either they represent every data point visually (as in a scatter plot) or
they implement a form of data reduction in which we summarize the data, looking, for
example, only at means or medians.

There are many ways that graphs can be used to manipulate, distort, and
misrepresent data. The careful consumer of information will avoid being drawn in by
them.

Unlabeled Axes

The most fundamental way to lie with a statistical graph is to not label the axes. If your
axes aren’t labeled, you can draw or plot anything you want! Here is an example from a
poster presented at a conference by a student researcher, which looked like this (I've
redrawn it here):
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What does all that mean? From the text on the poster itself (though not on this graph),
we know that the researchers are studying brain activations in patients with
schizophrenia (SZ). What are HCs? We aren’t told, but from the context—they’re being
compared with SZ—we might assume that it means “healthy controls.” Now, there do
appear to be differences between the HCs and the SZs, but, hmmm . . . the y-axis has
numbers, but . . . the units could be anything! What are we looking at? Scores on a test,
levels of brain activations, number of brain regions activated? Number of Jell-O brand
pudding cups they’ve eaten, or number of Johnny Depp movies they've seen in the last
six weeks? (To be fair, the researchers subsequently published their findings in a peer-
reviewed journal, and corrected this error after a website pointed out the oversight.)

In the next example, gross sales of a publishing company are plotted, excluding data
from Kickstarter campaigns.
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As in the previous example, but this time with the x-axis, we have numbers but we’re
not told what they are. In this case, it’s probably self-evident: We assume that the
2010, 2011, etc., refer to calendar or fiscal years of operation, and the fact that the lines
are jagged between the years suggests that the data are being tracked monthly (but
without proper labeling we can only assume). The y-axis is completely missing, so we
don’t know what is being measured (is it units sold or dollars?), and we don’t know
what each horizontal line represents. The graph could be depicting an increase of sales
from 50 cents a year to $5 a year, or from 50 million to 500 million units. Not to worry
—a helpful narrative accompanied this graph: “It’s been another great year.” I guess
we'll have to take their word for it.

Truncated Vertical Axis

A well-designed graph clearly shows you the relevant end points of a continuum. This
is especially important if youre documenting some actual or projected change in a
quantity, and you want your readers to draw the right conclusions. If you're
representing crime rate, deaths, births, income, or any quantity that could take on a
value of zero, then zero should be the minimum point on your graph. But if your aim is
to create panic or outrage, start your y-axis somewhere near the lowest value you're
plotting—this will emphasize the difference you're trying to highlight, because the eye
is drawn to the size of the difference as shown on the graph, and the actual size of the
difference is obscured.

In 2012, Fox News broadcast the following graph to show what would happen if the
Bush tax cuts were allowed to expire:
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The graph gives the visual impression that taxes would increase by a large amount:
The right-hand bar is six times the height of the left-hand bar. Who wants their taxes
to go up by a factor of six? Viewers who are number-phobic may not take the time to
examine the axis to see that the actual difference is between a tax rate of 35 percent
and one of 39.6 percent. That is, if the cuts expire, taxes will only increase 13 percent,
not the sixfold increase that is pictured (the 4.6 percentage point increase is 13 percent
of 35 percent).
If the y-axis started at zero, the 13 percent would be apparent visually:
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Discontinuity in Vertical or Horizontal Axis



Imagine a city where crime has been growing at a rate of 5 percent per year for the last
ten years. You might graph it this way:
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Nothing wrong with that. But suppose that you're selling home security systems and so
you want to scare people into buying your product. Using all the same data, just create
a discontinuity in your x-axis. This will distort the truth and deceive the eye

marvelously:
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Here, the visual gives the impression that crime has increased dramatically. But you
know better. The discontinuity in the x-axis crams five years’ worth of numbers into
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If you want to really alarm people, why not change the x-axis to include dates that you
don’t have data for? Adding extra dates to the x-axis artificially like this will increase
the slope of the curve by compressing the viewable portion like this:

Average Home Price
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Notice how this graph tricks your eye (well, your brain) into drawing two false
conclusions—first, that sometime around 1990 home prices must have been very low,



