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Preface

This guidebook is written for anyone — student, researcher, or practitioner — who
wants to carry out computational experiments on algorithms (and programs) that
yield correct, general, informative, and useful results. (We take the wide view and
use the term “algorithm” to mean “algorithm or program” from here on.)

Whether the goal is to predict algorithm performance or to build faster and
better algorithms, the experiment-driven methodology outlined in these chapters
provides insights into performance that cannot be obtained by purely abstract
means or by simple runtime measurements. The past few decades have seen con-
siderable developments in this approach to algorithm design and analysis, both in
terms of number of participants and in methodological sophistication.

In this book I have tried to present a snapshot of the state-of-the-art in this field
(which is known as experimental algorithmics and empirical algorithmics), at a
level suitable for the newcomer to computational experiments. The book is aimed at
areader with some undergraduate computer science experience: you should know
how to program, and ideally you have had at least one course in data structures and
algorithm analysis. Otherwise, no previous experience is assumed regarding the
other topics addressed here, which range widely from architectures and operating
systems, to probability theory, to techniques of statistics and data analysis

A note to academics: The book takes a nuts-and-bolts approach that would be
suitable as a main or supplementary text in a seminar-style course on advanced
algorithms, experimental algorithmics, algorithm engineering, or experimental
methods in computer science. Several case studies are presented throughout; a
companion website called AlgLab — Open Laboratory for Experiments on Algo-
rithms makes the files, programs, and tools described in the case studies available
for downloading. Suggestions for experimental problems and projects appear at
the end of each chapter.
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This book wouldn’t exist without the “number of participants” alluded to earlier,
members of the research community who have worked to develop this new method-
ology while contributing a huge body of experiment-based research on design and
analysis of algorithms, data structures, heuristics, and models of computation. [ am
grateful for all those collegial conversations during break-out sessions, carried out
over countless cups of coffee: thanks to David Bader, Giuseppe Italiano, David S.
Johnson, Richard Ladner, Peter Sanders, Matt Stallmann, and CIiff Stein. A huge
thank you, especially, to Jon Bentley, whose comments, story ideas, and criticisms
of draft versions of this book were immensely valuable. My editor Lauren Cowles
also did a magnificent job of helping me to untangle knots in the draft manuscript.

Possibly more important to the final product than colleagues and readers are the
family and friends who remind me that life is more than an endless bookwriting
process: to Alex and lan, Ruth and Stephen, Susan Landau, and Maia Ginsburg,
thank you for keeping me sane.

And finally, very special thanks to the guy who fits all of the above categories and
more: colleague, technical adviser, reader, supporter, husband, and friend. Thank
you Lyle.

Catherine C. McGeoch
Ambherst, Massachusetts
July 2011
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Introduction

The purpose of computing is insight, not numbers.

Richard Hamming, Numerical
Methods for Scientists and Engineers

Some questions:

You are a working programmer given a week to reimplement a data structure
that supports client transactions, so that it runs efficiently when scaled up to a
much larger client base. Where do you start?

You are an algorithm engineer, building a code repository to hold fast implemen-
tations of dynamic multigraphs. You read papers describing asymptotic bounds
for several approaches. Which ones do you implement?

You are an operations research consultant, hired to solve a highly constrained
facility location problem. You could build the solver from scratch or buy
optimization software and tune it for the application. How do you decide?
You are a Ph.D. student who just discovered a new approximation algorithm for
graph coloring that will make your career. But you’re stuck on the average-case
analysis. Is the theorem true? If so, how can you prove it?

You are the adviser to that Ph.D. student, and you are skeptical that the new
algorithm can compete with state-of-the-art graph coloring algorithms. How do
you find out?

One good way to answer all these questions is: run experiments to gain insight.

This book is about experimental algorithmics, which is the study of algorithms

and their performance by experimental means. We interpret the word algorithm
very broadly, to include algorithms and data structures, as well as their implemen-
tations in source code and machine code. The two main challenges in algorithm
studies addressed here are:
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® Analysis, which aims to predict performance under given assumptions about
inputs and machines. Performance may be a measure of time, solution quality,
space usage, or some other metric.

® Design, which is concerned with building faster and better algorithms (and
programs) to solve computational problems.

Very often these two activities alternate in an algorithmic research project — a new
design strategy requires analysis, which in turn suggests new design improvements,
and so forth.

A third important area of algorithm studies is models of computation, which
considers how changes in the underlying machine (or machine model) affect design
and analysis. Problems in this area are also considered in a few sections of the text.

The discussion is aimed at the newcomer to experiments who has some famil-
iarity with algorithm design and analysis, at about the level of an undergraduate
course. The presentation draws on knowledge from diverse areas, including the-
oretical algorithmics, code tuning, computer architectures, memory hierarchies,
and topics in statistics and data analysis. Since “everybody is ignorant, only on
different subjects” (Will Rogers), basic concepts and definitions in these areas are
introduced as needed.

1.1 Why Do Experiments?
The foundational work in algorithm design and analysis has been carried out using
a theoretical approach, which is based on abstraction, theorem, and proof. In this
framework, algorithm design means creating an algorithm in pseudocode, and
algorithm analysis means finding an asymptotic bound on the dominant operation
under a worst-case or average-case model.

The main benefit of this abstract approach is universality of results — no matter
how skilled the programmer, or how fast the platform, the asymptotic bound on
performance is guaranteed to hold. Furthermore, the asymptotic bound is the most
important property determining performance at large n, which is exactly when
performance matters most. Here are two stories to illustrate this point.

® Jon Bentley [7] ran a race between two algorithms to solve the maximum-
sum subarray problem. The @ (n?) algorithm was implemented in the fastest
environment he could find (tuned C code on a 533MHz Alpha 21164), and the
©(n) algorithm ran in the slowest environment available (interpreted Basic on a
2.03MHz Radio Shack TRS-80 Model IT). Despite these extreme platform differ-
ences, the crossover point where the fastasymptotic algorithm started beating the



1.1 Why Do Experiments? 5

Here are a few examples showing how experiments have played a central role in
both algorithm design and algorithm engineering.

® The 2006 9th DIMACS Implementation Challenge—Shortest Paths workshop
contained presentations of several projects to speed up single-pair shortest-path
(SPSP) algorithms. In one paper from the workshop, Sanders and Shultes [24]
describe experiments to engineer an algorithm to run on roadmap graphs used
in global positioning system (GPS) Routing applications: the Western Europe
and the United States maps contain (n = 18 million, m = 42.5 million) and
(n = 23.9 million, m = 58.3 million) nodes and edges, respectively. They esti-
mate that their tuned implementation of Dijkstra’s algorithm runs more than a
million times faster on an average query than the best known implementation
for general graphs.

® Bader et al. [2] describe efforts to speed up algorithms for computing optimal
phylogenies, a problem in computational biology. The breakpoint phylogeny
heuristic uses an exhaustive search approach to generate and evaluate candidate
solutions. Exact evaluation of each candidate requires a solution to the traveling
salesman problem, so that the worst-case cost is O (2n!!) [sic—double factorial]
to solve a problem with n genomes. Their engineering efforts, which exploited
parallel processing as well as algorithm and code tuning, led to speedups by
factors as large as | million on problems containing 10 to 12 genomes.

® Speedups by much smaller factors than a million can of course be critically
important on frequently used code. Yaroslavskiy et al. [27] describe a project
to implement the Arrays.sort() method for JDK 7, to achieve fast performance
when many duplicate array elements are present. (Duplicate array elements
represent a worst-case scenario for many implementations of quicksort.) Their
tests of variations on quicksort yielded performance differences ranging from
20) percent faster than a standard implementation (on arrays with no duplicates),
to more than 15 times faster (on arrays containing identical elements).

® Sometimes the engineering challenge is simply to demonstrate a working imple-
mentation of a complex algorithm. Navarro [21] describes an effort to implement
the LZ-Index, a data structure that supports indexing and fast lookup in com-
pressed data. Navarro shows how experiments were used to guide choices made
in the implementation process and to compare the finished product to compet-
ing strategies. This project is continued in [11], which describes several tuned
implementations assembled in a repository that is available for public use.

These examples illustrate the ways in which experiments have played key roles
indeveloping new insights about algorithm design and analysis. Many more exam-
ples can be found throughout this text and in references cited in the Chapter Notes.
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1.2 Key Concepts
This section introduces some basic concepts that provide a framework for the
larger discussion throughout the book.

A Scale of Instantiation
We make no qualitative distinction here between “algorithms” and “programs.”
Rather, we consider algorithms and programs to represent two points on a scale of
instantiation, according to how much specificity is in their descriptions. Here are
some more recognizable points on this scale.

® At the most abstract end are metaheuristics and algorithm paradigms, which
describe generic algorithmic structures that are not tied to particular problem
domains. Forexample, Dijkstra’s algorithm is amember of the greedy paradigm,
and tabu search is a metaheuristic that can be applied to many problems.

® The algorithm is an abstract description of a process for solving an abstract
problem. At this level we might see Dijkstra’s algorithm written in pseudocode.
The pseudocode description may be more or less instantiated according to how
much detail is given about data structure implementation.

® The source program is a version of the algorithm implemented in a particular
high-level language. Specificity is introduced by language and coding style, but
the source code remains platform-independent. Here we might see Dijkstra’s
algorithm implemented in C++ using an STL priority queue.

® The object code is the result of compiling a source program. This version of the
algorithm is written in machine code and specific to a family of architectures.

® The process is a program actively running on a particular machine at a particular
moment in time. Performance at this level may be affected by properties such as
system load, the size and shape of the memory hierarchy, and process scheduler
policy.

Interesting algorithmic experiments can take place at any point on the instanti-
ation scale. We make a conceptual distinction between the experimental subject,
which is instantiated somewhere on the scale, and the ftest program, which is
implemented to study the performance of the subject.

For example, what does it mean to measure an algorithm’s time performance?
Time performance could be defined as a count of the dominant cost, as identified by
theory: this is an abstract property that is universal across programming languages,
programmers, and platforms. It could be a count of instruction executions, which
is a property of object code. Or it could be a measurement of elapsed time, which
depends on the code as well as on the platform. There is one test program, but the
experimenter can choose to measure any of these properties, according to the level
of instantiation adopted in the experiment.
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In many cases the test program may be exactly the subject of interest — but it
need not be. By separating the two roles that a program may play, both as test
subject and as testing apparatus, we gain clarity about experimental goals and
procedures. Sometimes this conceptual separation leads to better experiments, in
the sense that a test program can generate better-quality data more efficiently than
a conventional implementation could produce (see Chapter 6 for details).

This observation prompts the first of many guidelines presented throughout the
book. Guidelines are meant to serve as short reminders about best practice in
experimental methodology. A list of guidelines appears in the Chapter Notes at the
end of each chapter.

Guideline 1.1 The “algorithm™ and the “program” are just two points on a
scale between abstract and instantiated representations of a given computational
process.

The Algorithm Design Hierarchy

Figure 1.1 shows the algorithm design hierarchy, which comprises six levels that
represent broad strategies for improving algorithm performance. This hierarchi-
cal approach to algorithm design was first articulated by Reddy and Newell [23]
and further developed by Bentley [6], [7]. The list in Figure 1.1 generally follows
Bentley’s development, except two layers—algorithm design and code tuning — are
now split into three — algorithm design, algorithm tuning, and code tuning. The
distinction is explained further in Chapter 4.

The levels in this hierarchy are organized roughly in the order in which decisions
mustbe made inan algorithm engineering project. You have to design the algorithm
before you implement it, and you cannot tune code before the implementation
exists. On the other hand, algorithm engineering is not really a linear process — a
new insight, or aroadblock, may be discovered at any level that makes it necessary
to start over at a higher level.

Chapter 4 surveys tuning strategies that lie at the middle two levels of this
hierarchy — algorithm tuning and code tuning. Although concerns at the other
levels are outside the scope of this book, do not make the mistake of assuming that
they are not important to performance. The stories in Section 1.1 about Bentley’s
race and Skiena’s pyramid numbers show how important it is to get the asymptotics
right in the first place.

In fact, the greatest feats of algorithm engineering result from combining design
strategies from different levels: a 10-fold speedup from rearranging file structures
at the system level, a 100-fold speedup from algorithm tuning, a 5-fold speedup
from code tuning, and a 2-fold improvement from using an optimizing compiler,
will combine multiplicatively to produce a 10,000-fold improvement in overall
running time. Here are two stories that illustrate this effect.
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e System structure. Decompose the software into modules that inter-
act efficiently. Check whether the target runtime environment pro-
vides sufficient support for the modules. Decide whether the final
product will run on a concurrent or sequential platform.

® Algorithm and data structure design. Specify the exact problem
that is to be solved in each module. Choose appropriate problem
representations. Select or design algorithms and data structures that
are asymptotically efficient.

® Implementation and algorithm tuning. Implement the algorithm,
or perhaps build a family of implementations. Tune the algorithm by
considering high-level structures relating to the algorithm paradigm,
input classes, and cost models.

¢ Code tuning. Consider low-level code-specific properties such as
loops and procedure calls. Apply a systematic process to transform
the program into a functionally equivalent program that runs faster.

® System software. Tune the runtime environment for best perfor-
mance, for example by turning on compiler optimizers and adjusting
memory allocations.

® Platform and hardware. Shift to a faster CPU and/or add coproces-
SOrs.

Figure 1.1. Thealgorithm design hierarchy. The levels in this hierarchy represent broad strategies
for speeding up algorithms and programs.

Cracking RSA-129. Perhaps the most impressive algorithm engineering achieve-
ment on record is Atkins et al.’s [1] implementation of a program to factor a
129-digit number and solve an early RSA Encryption Challenge. Reasonable
estimates at the time of the challenge were that the computation would take 4
quadrillion years. Instead, 17 years after the challenge was announced, the code
was cracked in an eight-month computation: this represents a 6 quadrillion—fold
speedup over the estimated computation time.

The authors’ description of their algorithm design process gives the following
insights about contributions at various levels of the algorithm design hierarchy.

® The task was carried out in three phases: an eight-month distributed computation
(1600 platforms); then a 45-hour parallel computation (16,000 CPUs); then a
few hours of computation on a sequential machine. Assuming optimal speedups
due to concurrency, the first two phases would have required a total of 1149.2
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years on a sequential machine. Thus concurrency contributed atmosta 1150-fold
speedup.

Significant system design problems had to be solved before the computation
could take place. For example, the distributed computation required task mod-
ules that could fit into main memory of all platforms offered by volunteers. Also,
data compression was needed to overcome a critical memory shortage late in
the computation.

According to Moore’s Law (which states that computer speeds typically double
every 18 months), faster hardware alone could have contributed a 2000-fold
speedup during the 17 years between challenge and solution. But in fact the
original estimate took this effect into account. Thus no speedup over the estimate
can be attributed to hardware.

The authors describe code tuning improvements that contributed a factor of 2
speedup (there may be more that they did not report).

Divide 6 quadrillion by 2300 = 1150 x 2: the remaining 2.6-trillion-fold
speedup is due to improvements at the algorithm design level.

Finding Phylogenies Faster. In a similar vein, Bader et al. [2], [19] describe their
engineering efforts to speed up the breakpoint phylogeny algorithm described
briefly in Section 1.1,

Since the generation of independent candidate solutions can easily be paral-
lelized, the authors implemented their code for a 512-processor Alliance Cluster
platform. This decision at the systems level to adopt a parallel solution produced
an optimal 512-fold speedup over a comparable single-processor version.
Algorithm design and algorithm tuning led to speedups by factors around 100;
redesign of the data structures yielded another factor of 10. The cumulative
speedup is 1000. The authors applied cache-aware tuning techniques to obtain a
smaller memory footprint (from 60MB down to 1.8MB) and to improve cache
locality. They remark that the new implementation runs almost entirely in cache
for their test data sets.

Using profiling to identify timing bottlenecks in a critical subroutine, they
applied code tuning to obtain 6- to 10-fold speedups. The cumulative speedup
from algorithm and code tuning was between 300 and 50,000, depending on
inputs.

This combination of design improvements resulted in cumulative speedups by
factors up to 1 million on some inputs.

Guideline 1.2 When the code needs to be faster, consider all levels of the algorithm
design hierarchy.
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and simulation speedups. These ideas are illustrated using two algorithms for
the self-organizing sequential search problem.

® Finally, Chapter 7 surveys data analysis and statistical techniques that are rele-
vant to common scenarios arising in algorithmic experiments. Most of the data
sets used as illustrations in this section come from the case study experiments
described in previous chapters.

The case studies mentioned here play a central role in the presentation of con-
cepts strategies, and techniques. All of the solver programs and input generators
described in these case studies are available for downloading from the Algorith-
miecs Laboratory (AlgLab), which is a companion Web site to this text. Visit
www.cs.amherst.edu/alglab to learn more.

The reader is invited to download these materials and try out the ideas in this
guidebook, or to extend these examples by developing new experiments. Sugges-
tions for additional experiments appear in the Problems and Projects section at the
end of each chapter.

1.4 Chapter Notes
The Chapter Notes section at the end of each chapter collects guidelines and gives
references to further reading on selected topics. Here are the guidelines from this
chapter.

1.1 The “algorithm”™ and the “program” are just two points on a scale between
abstract and instantiated representations of a given computational process.

1.2 When the code needs to be faster, consider all levels of the algorithm design
hierarchy.

1.3 The experimental path is not straight, but cyclical: planning alternates
with execution; experimental design alternates with tool building; analysis
alternates with data collection.

Readings in Methodology
Here is a reading list of papers and books that address topics in experimental
methodology for problems in algorithm design and analysis.

Articles

“Designing and reporting on computational experiments with heuristic methods,”
by R. S. Barr et al. Guidelines on experimental design and reporting standards,
emphasizing heuristics and optimization problems [3].

“Ten Commandments for Experiments on Algorithms,” by J. L. Bentley. The title
speaks for itself. [5]
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“Algorithm Engineering,” by C. Demetrescu, I. Finocchi, and G. F. Italiano. A
survey of issues and problems in algorithm engineering. [10]

How Not to Do It, by 1. P. Gent et al., Pitfalls of algorithmic experiments and how
to avoid them. [12].

“Testing heuristics: We have it all wrong,” by J. Hooker. A critique of experimental
methodology in operations research. [13]

“Atheoretician’s guide to the experimental analysis of algorithms,” by D. S. John-
son. Pet peeves and pitfalls of conducting and reporting experimental research
on algorithms, aimed at the theoretician. [14]

“Toward an experimental method in algorithm analysis,” by C. C. McGeoch. Early
discussion of some of the ideas developed in this book. [17]

“How to present a paper on experimental work with algorithms,” by C. McGeoch
and B. M. E. Moret. Guidelines for presenting a research talk, aimed at the
academic. [18]

“Algorithm Engineering — an attempt at a definition using sorting as an exam-
ple,” by Peter Sanders. A description of the field, including issues and open
questions. [25]

Books

1. Experimental Methods for the Analysis of Optimization Algorithms, T. Bartz-
Beielstein, et al., eds. Broad coverage of topics in experimental methodology,
especially statistics and data analysis, emphasizing problems in optimiza-
tion. [4]

2. Programming Pearls, by J. L. Bentley. Written for the practicing programmer,
the book addresses topics at the interface between theory and practice and
contains many tips on how to perform experiments. [7]

3. Empirical Methods for Artificial Intelligence, by P. Cohen. A textbook on statis-
tics and data analysis, with many illustrations from experiments on heuristic
algorithms. [9]

4. Algorithm Engineering: Bridging the Gap between Algorithm Theory and
Practice, M. Miiller-Hanneman and S. Schirra, eds. A collection of arti-
cles addressing topics in engineering and experimentation, aimed at graduate
students and research scientists. [20]

A timeline
The discipline of experimental algorithmics has come of age in recent years, due
to the efforts of a growing community of researchers. Members of this group
have worked to organize workshops and publication venues, launch repositories
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and libraries for engineered products, and develop methodologies for this new
approach to algorithm research.
Here is list of meetings and journals that provide publication venues for research

in experimental algorithmics, in chronological order by date of launch. Consult

these resources to find many examples of research contributions to algorithm
design and analysis, as well as discussions of methodological issues.

1989

1990

1990

1995

1997

1999

2000

2001

The ORSA Journal on Computing is launched to publish articles in the
intersection of operations research and computer science. In 1996 the
name of the sponsoring organization changed; the journal is now called
the INFORMS Journal on Computing.

The first ACM-SIAM Symposium on Data Structures and Algorithms
(SODA) is organized by David Johnson. The call for papers explicitly
invites “analytical or experimental” analyses, which may be “theoretical
or based on real datasets.”

The first DIMACS Implementation Challenge is coorganized by David
Johnson and Catherine McGeoch. The DIMACS Challenges are year-long,
multiteam, cooperative research projects in experimental algorithmics.
Inaugural issue of the ACM Journal of Experimental Algorithmics, Bernard
Moret, editor in chief.

The first Workshop on Algorithm Engineering (WAE) is organized by
Giuseppe Italiano. In 2002 this workshop joins the European Symposium
on Algorithms (ESA), as the “Engineering and Applications” track.

The annual workshop on Algorithm Engineering and Experiments
(ALENEX) is coorganized in 1999 by Mike Goodrich and Catherine
McGeoch. It was inspired by the Workshop on Algorithms and Experiments
(ALEX), organized in 1998 by Roberto Battiti.

The first of several Dagstuhl Seminars on Experimental Algorithmics and
Algorithm Engineering is organized by Rudolf Fleischer, Bernard Moret,
and Erik Schmidt.

The First International Workshop on Efficient Algorithms (WEA) is orga-
nized by Klaus Jansen and Evripidis Bampis. In 2003 it becomes the
International Workshop on Experimental and Efficient Algorithms (WEA)
coordinated by José Rolim. In 2009 it becomes the Symposium on
Experimental Algorithms (SEA).

1.5 Problems and Projects

1. Find three experimental analysis papers from the publication venues described
in the Chapter Notes. Where do the experiments fall on the scale of instantiation
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described in Section 1.2. Why do you think the authors choose to focus on those
instantiation points?

2. Read Hooker’s [13] critique of current practice in experimental algorithmics
and compare it to the three papers in the previous question. Is he right?
How would you improve the experimental designs and/or reporting of results?
Read Johnson’s [14] advice on pitfalls of algorithmic experimentation. Did the
authors manage to avoid most of them? What should they have done differently?

3. Find an algorithm engineering paper from one of the publication venues
described in the Chapter Notes. Make a list of the design strategies described in
the paper and assign them to levels of the algorithm design hierarchy described
in Figure 1.1. How much did each level contribute to the speedup?
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Random (G, I)
bestCount = Infinity
bestColoring = null
for (i=1; i<=I; i++){
G.unColox () //remove colors
G.randomVertexOrder ()
count = Greedy(G)
if (count < bestCount) ({
bestCount = count
bestColoring = G.saveColoring()

}
report (bestColor, bestCount)

Figure 2.3. The Random algorithm. Random applies Greedy repeatedly, using a random vertex
order each time, and reports the best coloring found.

The color count achieved by Greedy depends on the order in which vertices are
considered. For example, if vertices are colored in reverse order §...1, the color
count would be 3:

8 7 6 5 4 3 2 1
Red Yellow Yellow Green Red Red Yellow Green

There must exist a vertex order for which Greedy finds an optimal color-
ing, but since there are n! vertex orders, trying them all takes too much time.
The Random algorithm in Figure 2.3 applies Greedy [ times, using a ran-
dom vertex permutation each time, and remembers the best coloring it finds.
The G.randomVertexOrder () function creates a random permutation of the
vertices, and G . saveColoring () makes a copy of the current coloring.

Here are some questions we could ask about the performance of Greedy and
Random.

. How much time do they take on average, as a function of n and m (and 7)?

. Are they competitive with state-of-the-art GC algorithms?

. On what types of inputs are they most and least effective?

. How does I affect the trade-off between time and color count in Random?

. What is the best way to implement G.checkColor (c,v) and G.assign-
Color(c,v)?

L O R S

Each of these questions can be attacked via experiments — but each is best
answered with a different experiment. For example, question 1 should be studied
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by measuring time performance on random graphs, with a wide range of n,m values
to evaluate function growth best. Question 2 should be attacked by measuring both
time and solution quality, using a variety of graph classes and some state-of-the
art algorithms for comparison, and problem sizes that are typical in practice.

An experimental design is a plan for an experiment that targets a specific
question. The design specifies what properties to measure, what input classes to
incorporate, what input sizes to use, and so forth. Like battle plans, experimental
designs may be small and tactical, suitable for reconnaissance missions, or large
and strategic, for full-scale invasions.

Experimental designs can be developed according to formal procedures from a
subfield of statistics known as design of experiments (DOE). But the pure DOE
framework is not always suitable for algorithmic questions — sometimes designs
must be based upon problem-specific knowledge and common sense. The next
section describes some basic goals of algorithmic experiments. Section 2.2 intro-
duces concepts of DOE and shows how to apply them, formally and informally,
to meet these goals.

2.1 Experimental Goals
The immediate goal of the experiment is to answer the particular question being
posed. But no matter what the question, some goals are common to all experimental
work:

1. Experiments must be reproducible — that is, anyone who performs the same
experiment should get similar results. For an experiment to be reproducible,
the results must be correct, in the sense that the data generated accurately reflect
the property being studied, and valid, which means that the conclusions drawn
are based on correct interpretations of the data.

2. An efficient experiment produces correct results without wasting time and
resources. One aspect of efficiency is generality, which means that the conclu-
sions drawn from one experiment apply broadly rather than narrowly, saving
the cost of more experiments.

In academic research, a third goal is newsworthiness. A newsworthy experiment
produces outcomes that are interesting and useful to the research community,
and therefore publishable. Two prerequisites for newsworthy experiments are
wise choice of experimental subject (so that interesting results can reasonably
be expected) and familiarity with the current literature (so that new results can be
recognized). David Johnson [16] also points out that newsworthiness depends on
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the “generality, relevance, and credibility of the results obtained and the conclu-
sions drawn from them.” Tips for increasing generality, relevance, and credibility
of experimental results are presented throughout this section.

The rest of the section considers how to create experiments that meet these goals.

The Pilot and the Workhorse
Experiments have two flavors: the less formal pilot or exploratory study, and the
more carefully designed workhorse study. A pilot study is a scouting mission or
skirmish in the war against the unknown. It typically occurs in the information-
gathering stage of a research project, before much is known about the problem at
hand. It may consist of several experiments aimed at various objectives:

1. To check whether basic assumptions are valid and whether the main ideas under
consideration have merit.

2. To provide focus by identifying the most important relationships and properties
and eliminating unpromising avenues of research.

3. To learn what to expect from the test environment. How long does a single trial
take? How many samples are needed to obtain good views of the data? What
is the largest input size that can feasibly be measured?

The pilot study may be motivated by fuzzy questions, like Which data struc-
ture is better? Which input parameters appear to be relevant to performance? The
workhorse study comprises experiments built upon precisely stated problems: Esti-
mate, to within 10 percent, the mean comparison costs for data structures A and
B, on instances drawn randomly from input class C; bound the leading term of the
(unknown) cost function F(n).

Designs for workhorse experiments require some prior understanding of algo-
rithm mechanisms and of the test environment. This understanding may be gleaned
from pilot experiments; furthermore, a great deal of useful intelligence — which
ideas work and do not work, which input classes are hard and easy, and what to
expect from certain algorithms — may be found by consulting the experimental
literature. See the resources listed in Section 1.4,

Guideline 2.1 Leverage the pilot study — and the literature — to create better
workhorse experiments.

How much reconnaissance is needed before the battle can begin? As a good rule
of thumb, David Johnson [16] suggests planning to spend half your experimenta-
tion time in the pilot study and half running workhorse experiments. Of course it
is not always easy to predict how things will turn out. Sometimes the pilot study
is sufficient to answer the questions at hand; sometimes the formal experiments
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raise more questions than they answer. It is not unusual for these two modes of
experimentation to alternate as new areas of inquiry emerge.

The pilot and workhorse studies play complementary roles in achieving the
general goals of reproducibility and efficiency, as shown in the next two sections.

Correct and Valid Results
A spurious result occurs when the experimenter mistakenly attributes some out-
come to the wrong cause. Spurious results might seem unlikely in computational
experiments, since the connection between cause and effect — between input and
output — is about as clear as it gets. But the road to error is wide and well traveled.
Here are some examples.

Ceiling and floor effects occur when a performance measurement is so close to
its maximum (or minimum) value that the experiment cannot distinguish between
effects and noneffects. For example, the following table shows solutions reported
by three research groups (denoted GPR [15], CL [12], and LC [21] ), on 6 of the
32 benchmark graphs presented to participants in the DIMACS Graph Coloring
Challenge [17]. The left column names the file containing the input graph, the next
two columns show input sizes, and the three remaining columns show the color
counts reported by each group on each input.

File Name n m GPR CL LC
R125.1.col 125 209 5 5 5
R125.5.col 125 7501 46 46 46
mulsol.i.l.col 197 3925 49 49 49

1
DSJ125.5.col 125 7782 20 18 17
DSJ250.5.col 250 31336 35 32 29
DSJ500.5.col 500 125248 65 57 52

Looking at just the top three lines we might conclude that the algorithms perform
equally well. But in fact these color counts are optimal and can be produced by
just about any algorithm. It is spurious to conclude that the three algorithms are
equivalent: instead we should conclude that the experiment leaves no room for one
algorithm to be better than another. This is an example of a floor effect because
color counts are the lowest possible for these instances. The bottom three lines do
not exhibit floor or ceiling effects and are better suited for making comparisons —
for example, that performance is ordered LC < CL < G P R on these inputs.

In general, floor and ceiling effects should be suspected when all the measure-
ments from a set of trials are the same, especially if they are all at the top or
bottom of their range. This is a sign that the experiment is too easy (or too hard)
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to distinguish the algorithmic ideas being compared. A good time to identify and
discard uninteresting inputs and poor designs is during the pilot study.

A second type of spurious reasoning results from experimental artifacts, which
are properties of the test code or platform that affect measurements in some unex-
pected way — the danger is that the outcome will be mistakenly interpreted as a gen-
eral property of the algorithm. Artifacts are ubiquitous: any experienced researcher
can reel out cautionary tales of experiments gone awry. Here are some examples:

® Time measurements can depend on many factors unrelated to algorithm or pro-
gram performance. For example, Van Wyk et al. [24] describe a set of tests to
measure times of individual C instructions. They were surprised to find that the
statement j -= 1; ran 20 percent faster than j--;, especially when further
investigation showed that both instructions generated identical machine code! It
turned out that the 20 percent difference was an artifact of instruction caching:
the timing loop for the first instruction crossed a cache boundary while the
second fit entirely within the cache.

® Bugs in test programs produce wrong answers. This phenomenon is pervasive
but rarely mentioned in print, with the exception of Gent et al.’s [13] entertain-
ing account of experimental mishaps:

We noticed this bug when we observed very different performance running the same
code on two different continents (from this we learnt, DO USE DIFFERENT HARDW ARE).
All our experiments were flawed and had to be redone.

All three implementations gave different behaviours . ... Naturally our confidence
went out the window. Enter the “paranoid flag.” We now have two modes of running
our experiments, one with the paranoid flag on. In this mode, we put efficiency aside
and make sure that the algorithms and their heuristics do exactly the same thing, as
far as we can tell.

® Pseudorandom number generators can produce patterns of nonrandomness that
skew results. I once spent a week pursuing the theoretical explanation for an
interesting property of the move-to-front algorithm described in Chapter 6:
the interesting property disappeared when the random number generator was
swapped out in a validation test. Gent et al. [13] also describe experiments that
produced flawed results because “the combination of using a power of 2 and
short streams of random numbers from random () had led to a significant bias
in the way problems were generated.”

® Floating point precision errors can creep into any calculation. My early exper-
iments on bin packing algorithms (described in Section 3.2) were run on a
VAX/750 and checked against a backup implementation on a Radio Shack TRS-
80 Model III. At one point the two programs reported different answers when



26 2 A Plan of Attack

strong connotations for programmers. A translation to standard DOE terminology
appears in the Chapter Notes.

Performance metric: A dimension of algorithm performance that can be mea-
sured, such as time, solution quality (e.g. color count), or space usage.

Performance indicator: A quantity associated with a performance metric that can
be measured in an experiment. For example, the time performance of Random
might be measured as CPU time or as a count of the dominant operation.
Performance indicators are discussed in Chapter 3 and not considered further
here.

Parameter: Any property that affects the value of a performance indicator. Some
parameters are categorical, which means not expressed on a numerical scale.
We can recognize three kinds of parameters in algorithmic experiments:

® Algorithm parameters are associated with the algorithm or the test pro-
gram. For example, Random takes parameter /, which specifies a number
of iterations. Also, the G.checkColor(c,v) and G.assignColor (c,v)
functions could be implemented in different ways: the source code found in
each function is a categorical parameter.

® Instance parameters refer to properties of input instances. For example, input
size is nearly always of interest — in graph coloring, input size is described by
two parameters n and m. Other graph parameters, such as maximum vertex
degree, might also be identified. The (categorical) parameter inpuft class refers
to the source and general properties of a set of instances. For example, one
collection of instances might come from a random generator, and another from
a cell tower frequency assignment application.

® Environment parameters are associated with the compiler, operating system,
and platform on which experiments are run.

Factor: A parameter that is explicitly manipulated in the experiment.

Level: A value assigned to a factor in an experiment. For example, an exper-
iment to study Random might involve four factors set to the following levels:
class = (random,cell tower); n = (100,200,300), m = (sparse,complete), and
[=(10%,10%10°).

Design point: A particular combination of levels to be tested. If all combinations
of levels in the preceding example are tested, the experiment contains 36 =
2 % 3 x 2 x 3 design points: one of them is (class = random, n = 100, m = 4950,
I = 100).
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Trial or test: One run of the test program at a specific design point, which produces
a measurement of the performance indicator. The design may specify some
number of (possibly random) trials at each design point.

Fixed parameter: A parameter held constant through all trials.

Noise parameter: A parameter with levels that change from trial to trial in some
uncontrolled or semicontrolled way. For example, the input class may contain
random graphs G(n, p), where n is the number of vertices and p is the prob-
ability that any given edge is present; the number of edges m in a particular
instance is a semicontrolled noise parameter that depends on factors n and p.
In a different experiment using instances from a real-world application, both
n and m might be considered noise parameters (varying but not controlled) if,
say, the design specifies that input graphs are to be sampled from an application
within a given time frame.

Computational experiments are unusual from a DOE perspective because, unlike
textbook examples involving crop rotations and medical trials, the experimenter
has near-total control over the test environment. Also, very often the types of
questions asked about algorithm performance do not exactly match the DOE frame-
work. This creates new opportunities for developing high-yield designs, and for
making mistakes. The next two sections survey two aspects of experimental design
in this context. Section 2.2.1 surveys input classes and their properties, and Section

categories of questions.

2.2.1 Selecting Input Classes
Input instances may be collected from real-world application domains or con-
structed by generation programs. They can be incorporated in algorithmic
experiments to meet a variety of objectives, listed in the following.

® Stress-test inputs are meant to invoke bugs and reveal artifacts by invoking
boundary conditions and presenting easy-to check cases. An input generator for
Greedy, for example, might build an empty graph (no edges), a complete graph
(full edge sets), a variety of graphs with easy-to-check colorings (trees, rings,
grids, etc.), and graphs that exercise the vertex permutation dependencies. Some
generic stress-test resources are also available — for example, Paranoia [18] isa
multilanguage package for testing correctness of floating point arithmetic.

® Worst-case and bad-case instances are hard (or expensive) for particular algo-
rithms to solve. These instances are used to assess algorithm performance
boundaries. For example, Greedy exhibits especially poor performance on
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Figure 2.4. Input classes for graph coloring algorithms. Panel (a) shows a crown graph, which is
known to be hard for Greedy to solve. Panel (b) shows the adjacency matrix for a random graph
of n = 10 vertices, where each edge (labeled 1) is selected with probability p = 0.5. Panel (c)
shows a semi-random grid graph. Panel (d) shows a proximity graph, which mimics a cell-phone
tower application.

crown graphs like the one shown in Figure 2.4 (a). In this graph each even-
numbered vertex is connected to every odd-numbered vertex except the one
directly across from it. Crown graphs can be colored by using just two colors,
but Greedy may use up to n/2 colors.

Random inputs are typically controlled by a small number of parameters and
use random number generators to fill in the details. For example, Figure 2.4 (b)
shows the upper diagonal of an adjacency matrix for a random graph G(n, p):
here n = 10 and each edge (denoted 1) is present with probability p = 0.5.
Random inputs are useful for measuring average-case performance under some
theoretically tractable model. Also, if every instance is generated with nonzero
probability, experiments using random inputs can reveal the range of all possible
outcomes.
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o Structured random inputs come from generators built for two purposes:

— Algorithm-centered generators are built with parameters that exercise algo-
rithm mechanisms. For example, the performance of Greedy depends partly
on the regularity of the input graph. In a perfectly regular graph all vertices
have the same number of incident edges: an example of a regular graph of
degree 8 is a grid-graph where each vertex has four neighbors at the N, S,
E, W compass points and four neighbors on the NE, NW, SE, SW diagonals.
Figure 2.4 (¢) shows a semi-random grid graph — in this instance, each non
boundary vertex is connected to its E, W neighbors with probability 1, and
to each of its SW, S, SE neighbors with probability 1/3. A generator of these
graphs can be used to focus on how Greedy responds to changes in graph
regularity.

— Reality-centered generators capture properties of real-world inputs. For
example, the cell tower application described previously can be modeled
by placing random points in the unit square, with edges connecting points
that are within radius r of one another. This type of graph is called a proximity
graph. A proximity graph with n = 50 and r = 0.25 is shown in Figure 2.4 (d).
These types of generators can often be improved with a little (Web) research
into quantitative properties of reality: how many cell towers are typically
found in different types of regions (urban, rural, mountainous, etc.)? What it
the typical broadcast distance?

® Real instances are collected from real-world applications. A common obstacle
to using these types of instances in algorithmic experiments is that they can be
difficult to find in sufficient quantities for thorough testing.

® Hybrid instances combine real-world structures with generated components.

This approach can be used to expand a small collection of real instances to

create a larger testbed. Three strategies for generating hybrid graphs for graph

coloring are as follows: (1) start with a real-world instance and then perturb it
by randomly adding or subtracting edges and/or vertices; (2) create a suite of
small instances from random sections of a large instance; or (3) build a large
instance by combining (randomly perturbed) copies of small instances.

® Sometimes a public testbed is available for the algorithm being studied. In the

case of graph coloring, testbed inputs are available at the DIMACS Challenge
Web site [17], and Joseph Culberson’s Graph Coloring Resources Page [11],
among other sources. In academic circles, running experiments using testbed
instances maximizes relevance and newsworthiness by producing results that
are directly comparable to results of experiments carried out by others. But it is
not necessary to restrict experiments to testbed instances; any of the categories
in this list may be used to expand and improve on earlier work.

Each category has its merits and drawbacks. Input generators can produce large
numbers of instances; they are more compact to store and share; and they can be
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tuned to provide broad coverage of an input space or to focus on properties that
drive algorithm performance or mimic realistic situations. But they may fail to
answer what may be the main question: how well does the algorithm perform in
practice?

Inputs from real-world applications are ideal for answering that question, but,
on the other hand, they can be hard to find in sufficient quantities for testing.
Also they may contain highly problem-specific hidden structures that produce
hard-to-explain and therefore hard-to-generalize results.

The choice of instance classes to test should reflect general experimental goals
as well as the specific question at hand:

® To meet goals of correctness and validity, use stress-test inputs and check that
random generators really do generate instances with the intended properties. Use
pilot experiments to identify, and remove from consideration, instances that are
too easy or too hard to be useful for distinguishing competing algorithmic ideas.

e For general results, incorporate good variety in the set of input classes tested. But
avoid variety for variety’s sake: consider how each class contributes new insights
about performance. Worst-case instances provide general upper bounds; random
generators that span the input space can reveal the range of possible outcomes.
Real-world instances from application hot spots can highlight properties of
particular interest to certain communities; algorithm-centered inputs reveal how
the algorithm responds to specific input properties; and so forth.

® More ambitious analyses tend to require more general input classes and tight
control of parameters. When the goal is to build a model of algorithm perfor-
mance in terms of input parameters, success is more likely if the inputs obey
simple random models or are produced by algorithm-centered generators that
allow explicit control of relevant properties, so that experimental designs can
focus on the question that prompts the experiment.

Guideline 2.4 Choose input classes to support goals of correctness and generality,
and to target the question at hand.

In addition to the preceding considerations, Dorothea Wagner [23] has proposed
guidelines for developing and maintaining public instance testbeds to support
algorithm research. One common complaint is that testbeds are often assembled
without much of a screening process and may contain several uninteresting and/or
unjustified instances. There is a need for more testbed instances that meet at least
one of the following requirements.

® They have features that are relevant to algorithm performance.
® They have provable properties.
® They permit controlled experiments using parameterization.
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Guideline 2.6 When comparing algorithm (or program) design options, choose
performance indicators and factors to highlight the differences among the options
being compared.

Another early experimental goal is to get arough idea of the functional relation-
ship between key parameters (especially input size) and algorithm performance.

A good design strategy in this situation is to try a doubling experiment.
Sedgewick [22] points that the growth rates of many common functions in algo-
rithm analysis are easy to deduce if cost is measured as n doubles. For example,
suppose we measure cost C(n) at problem sizes n = 100,200,400,800.... The
results can be interpreted as follows:

1. If measurements do not change with n, C(n) is constant.

2. If costs increment by a constant as n doubles, for example, if C(n) =
33,37,41,45, then C(n) € GO (logn).

3. If costs double as n doubles, C(n) is linear.

4. To determine whether C(n) € ®(nlogn), divide each measurement by n and
check whether the result C(n)/n increments by a constant.

5. If cost quadruples each time n doubles, C(n) € en?).

Similar rules can be worked out for other common function classes; see Sedgewick
[22] for details.

Doubling experiments are valuable for checking whether basic assumptions
about performance are correct. For example, Bentley [5] describes a study of
the gsort function implemented in the S statistical package. Although the func-
tion implements Quicksort, which is well known to be O (nlogn) on average, his
doubling experiment revealed the following runtimes (in units of seconds):

S time a.out 2000
real 5.85s
S time a.out 4000
real 21.65s
S time a.out 8000
real 85.11s

This clearly quadratic behavior was caused by “organ-pipe” inputs of the form
123...nn...321 and was subsequently repaired.

An example of a doubling experiment that incorporates two parameters n and
m appears in Section 3.1.1.

Guideline 2.7 Try a doubling experiment for a quick assessment of function
growth.
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Another question that arises early in some experimental studies is to deter-
mine when the algorithm has converged. In the context of iterative-improvement
heuristics, convergence means, informally, that the probability of finding further
improvements is too small to be worth continuing. Another type of convergence
arises in stochastic algorithms, which step through sequences of states according
to certain probabilities that change over time: here convergence means that the
transition probabilities have reached steady state, so that algorithm performance is
no longer affected by initial conditions. In this context the problem of determining
when steady state has occurred is sometimes called the startup problem.

A stopping rule is a condition that halts the algorithm (i.e., stops the the exper-
iment) when some event has occurred. Experimental designs for incremental and
stochastic algorithms require stopping rules that can terminate trials soon after —
but no sooner than — convergence occurs.

A poorly chosen stopping rule either wastes time by letting the algorithm run
longer than necessary or else stops the algorithm prematurely without giving it a
chance to exhibit its best (or steady-state) performance. The latter type of error
can create censored data, whereby a measurement of the (converged) cost of the
algorithm is replaced by an estimate that depends on the stopping rule. See Section
7.1.1 for more about the problem of data censoring.

Good stopping rules are hard to find: here are some tips on identifying promising
candidates.

® Avoid stopping rules based on strategies that cannot be formally stated, like
“Stop when the cost doesn’t appear to change for a while.” A good stopping rule
is precisely articulated and built into the algorithm, rather than based on hand
tuning.

® To ensure replicability, do not use rules based on platform-specific properties,
such as “Stop after 60 minutes have elapsed.”

e [f the total number of states in a stochastic process is small, or if a small number
of states are known to appear frequently, consider implementing a rule based on
state frequencies: for example, stop after every state has appeared at least k times.

® Arelated idea is to assign a cost to every state and to compute running averages
for batches of b states in sequence — stop the algorithm once the difference in
average cost C(b,..b,;) and C(b,..by;) is below some threshold. A graphi-
cal display of batch measurements may show a “knee” in the data where the
transition from initial states to steady state occurs.

® Sometimes it is possible to implement a test of some property that is a precon-
dition for the steady state. For example, it may be known that a given stochastic
graph coloring algorithm does not reach steady state until after every vertex has
changed color at least once.

We next consider designs for fitting and modeling algorithmic cost functions.
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Analyzing Trends and Functions
The central problem of algorithm analysis is to describe the functional relationship
between input parameters and algorithm performance. A doubling experiment can
give a general idea of this relationship but often we expect more precision and
detail from the experiment.

Suppose we want to analyze time performance of two implementations of
Random. This algorithm depends on how functions G.checkColor (c,v) and
G.assignColor (¢, v) are implemented. Let £ be the maximum color used by
the algorithm in a given trial: checkColeor is invoked at most nk times, and
assignColor is invoked n times. Two implementation options are listed below.

Option a. Each vertex v has a color field: check for a valid coloring by iterating
through the neighbors of v. The total number of comparisons in checkColor is
at most mk, once for each edge and each color considered; the cost per call to
assignColor is constant. Therefore, total costis O (mk + n).

Option b. Each vertex hasa color field and a “forbidden color” array that is updated
when a neighbor is assigned a color. Each call to checkColor is constant time,
and each call to assignColor is proportional to the number of neighbors of ».
Total cost is O (nk + m).

The experimental design includes factors Option = (a,b), input sizes n, m, and
iteration count /. The goal is to develop a function to describe the comparison
cost of Random in terms of these four factors. Since Option is categorical, we
use two functions f, (n,m,I)and f,(n,m,I). Since the algorithm iterates [ times,
we know that f(n,m,[I) is proportional to [; let g,(n,m) and g,(n,m) equal the
average cost per iteration of each option.

The experimental design problem boils down to how to choose levels for » and
m to give the best views of function growth. One idea is to use a grid approach,
with n = 100,200, ...max_n,and m = 100,200,...max,,, omitting infeasible and
uninteresting combinations: for example, m must be at most n(n — 1) /2, and col-
oring is trivial when m is small. Another idea is to select a few levels of m that are
scaled by n, for example, m; = n(n — 1)/2 (complete graphs), m, = m /2 (half-
full), and ...m3 = m /4 (quarter-full). Scaled design points are more informative
than grid-based designs whenever the scaled functions are expected to have similar
shapes — in this case, similar shapes would arise from a property that is invariant
in the ratio m/n.

Guideline 2.8 The problem of analyzing a multidimensional function can be sim-
plified by focusing on a small number of one-dimensional functions, ideally with
similar shapes.
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This rough analysis, which ignores low-order terms and relies on some untested
assumptions, yields the following preliminary cost formula:

Win,m)=gnlog,n+bmlog,n+rmn. (3.1)

To check the validity of this model we use a simple doubling experiment as
described in Section 2.2.2. Since this is a randomized algorithm running on real-
world inputs, we expectareasonably close correspondence, but not a perfect match
between the model and the data.

Guideline 3.2 Use a doubling experiment to perform a quick validation check of
your cost model.

The validation experiment runs MC on a file called total that contains three
volumes of English text described in the table that follows. All text files mentioned
in this section were downloaded from Project Gutenberg [20].

File Text n

huckleberry Huckleberry Finn, by Mark Twain 112,493
voyage The Voyage of the Beagle, by Charles Darwin 207,423
comedies Nine comedies by William Shakespeare 337,452
total Combined comedies, huckleberry, voyage 697,368

The experiment reads the first n words of total and measures gcount,
beount, and reount in one trial each at design points with k = 1, n = (107,
2x 10%,4 x 10%), and m = (10°, 2 x 10%, 4 x 10%).

First we check whether gcount is proportional to nlog,n. Since doubling n
increases log,n by I, we expect gcount/n to increment by a constant at each
level. The following table shows the results.

n=10 2x10° 4x10°

gcount/n 12.039  13.043 14.041

The data behave as expected, so we accept gnlog,n to model the cost of
initialization. Next we consider bcount, which should grow as m log, n.

n=10° n=2x10° n=4x10°

m=10° 133,606 143,452 153,334
m=2x 10> 267,325 287,154 306,553
m=4x10° 534,664 574,104 613,193




