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Part One
Algebraic Equations



Chapter 1
Three Muslimic Authors

It is beyond my competence to write a history of algebra in the Muslimic
countries. Every year new publications on the subject appear. I guess the time
has not yet come for a comprehensive history of Muslimic mathematics.
Therefore I shall restrict myself to three most interesting authors, whose main
works are available in modern translations, namely

A. Al-Khwarizmi,

B. Tabit ben Qurra,

C. Omar Khayyam.

Part A
Al-Khwarizmi

If we want to form an opinion on the scientific value and the sources of the
work of al-Khwiarizmi, we have to consider not only his treatise on Algebra,
but also his other mathematical, astronomical, and calendaric work. The pre-
sent section will be divided into twelve subsections.

1. The Man and his Work

An excellent account of the life and work of Muhammad ben Musa al-
Khwarizmi has been given by G.J. Toomer in Volume VII of the Dictionary of
Scientific Biography, pages 358-365. From this account I quote:

Only a few details of al-Kwarizmi's life can be gleaned from the briel notices in Islamic
bibliographical works and occasional remarks by Islamic historians and geographers. The epithet
“al-Khwarizmi” would normally indicate that he came from Khwiarizm (Khorezm, corresponding
to the modern Khiva and the district surrounding it, south of the Aral Sea in central Asia). But
the historian al-Tabari gives him the additional epithet “al-Qutrubbulli”, indicating that he came
from Qutrubull, a district between the Tigris and Euphrates not far from Baghdad, so perhaps his
ancestors, rather than he himsell, came from Khwarizm; this interpretation is confirmed by some
sources which state that his “stock™ (asi) was from Khwanzm....

Under the Caliph al-Ma’mun (reigned 813-833) al-Khwarizmi became a member of the
“House of Wisdom™ (Dar al-Hikma), a kind of academy of scientists set up at Baghdad, probably
by Caliph Hartin al-Rashid, but owing its preeminence to the interest of al-Ma'mun, a great



4 Chapter 1. Three Muslimic Authors

patron of learning and scientific investigation. It was for al-Ma'min that al-Khwarizmi composed
his astronomical treatise, and his Algebra also is dedicated to that ruler.

From now on I shall omit all bars and dots. This simplifies the printing,
and it will not give rise to any misunderstanding.

2. Al-jabr and al-mugqabala

The biographer Haji Khalfa states in his biographical lexicon (ed. Fliigel,
Vol. 5, p. 67) that al-Khwarizmi was the first Islamic author to write “on the
solution of problems by al-jabr and al-muqabala”. What do these two ex-
pressions mean?

The usual meaning of jabr in mathematical treatises is: adding equal terms
to both sides of an equation in order to eliminate negative terms. Another, less
frequent meaning is: multiplying both sides of an equation by one and the
same number in order to eliminate fractions. See George A. Saliba: The
Meaning of al-jabr wa’l muqabalah, Centaurus 17, p. 189-204 (1973).

The usual meaning of mugabala is: reduction of positive terms by subtract-
ing equal amounts from both sides of an equation. But al-Karaji also uses the
word in the sense: to equate. The literal meaning of the word is: comparing,
posing opposite.

The combination of the two words: al-jabr wal-mugabala is sometimes used
in a more general sense: performing algebraic operations. It can also just
mean: The science of algebra.

Let me give some examples of the use of these words in the work of al-
Khwarizmi. On page 35 of Rosen’s translation of the “Algebra of Mohammed
ben Musa”, the following problem is posed:

I have divided ten into two portions. I have multiplied the one of the two portions by the
other. After this I have multiplied one of the two by itself, and the product of the multiplication by
itself is four times as much as that of one of the portions by the other.

Al-Khwarizmi now calls one of the portions “thing” (shay) and the other
“ten minus thing”. Multipliying the two, he obtains in the translation of Rosen
“ten things minus a square”.

For the square of the unknown “thing” the author uses the word mal,
which means something like “wealth” or “property”. He finally obtains the
equation

“A square, which is equal to forthy things minus four squares”.

In modern notation, we may write this equation as

x2=40x—4x2

Next the author uses the operation al-jabr, adding 4x* to both sides, thus
obtaining
5x2=40x
or
x?= 8x
from which he obtains x =38.
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Just so, on page 40, al-Khwarizmi has the equation
504 x*=29+ 10x
which is reduced by al-mugabala to
214+ x?=10x.

In the introduction to his treatise the author states that the Imam al-
Mamun

“has encouraged me to compose a short work on calculating by Completion and Reduction,
confining it to what is easiest and most useful in arithmetic, such as men constantly require in
cases of inheritance, legacies, partition, lawsuits, and trade, and in all their dealings with another,
or where the measuring of lands, the digging of channels, geometrical computation, and other
objects of various sorts and kinds are concerned...”.

The full title of the treatise is “The Compendious Book on Calculation by
al-jabr and al-mugabala”. The treatise consists of three parts.

In the first part, al-Khwarizmi explains the solution of six types, to which
all linear and quadratic equations can be reduced:

(1 ax?=bx

(2) ax*=b

(3) ax=b

(4) ax*+bx=c

(5) ax*+c=bx

(6) ax*=bx+c,

where a, b, and ¢ are given positive numbers.

Al-Khwarizmi gives rules for solving these equations, he presents demon-
strations of the rules, and he illustrates them by worked examples. We shall
discuss his demonstrations presently.

3. On Mensuration

The second chapter of the “Algebra” is concerned with mensuration. Since
Rosen’s translation was deemed unsatisfactory, Solomon Gandz published the
Arabic text together with a new English translation in his treatise “The
Mishnat ha-Middot and the Geometry of Muhammed ibn Musa Al-Khowa-
rizmi”, Quellen and Studien zur Geschichte der Mathematik A2 (Springer-
Verlag 1932).

The chapter consists mainly of rules for computing areas and volumes. For
instance, the area of a circle is found by multiplying half of the diameter by
half of the circumference. For finding the circumference, three rules are pre-
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sented. If the diameter is d and the periphery p, the three rules are

(7) p=34d,
8) p=1/10d>,
9) p=538354.

Note that the rule (7) is due to Archimedes, who proved that p is less than
3 1/7 times d and more than 3 10/71 times d. The same rule (7) is also given by
Heron of Alexandria in his “Metrica”, and in the Hebrew treatise “Mishnat
ha-Middot”, edited and translated by Solomon Gandz.

The rule (8) is also found in Chapter XII of the Brahmasphutasiddhanta of
Brahmagupta. See H.T. Colebrooke: Algebra with Arithmetic from the San-
skrit of Brahmegupta and Bhascara (London 1817, reprinted 1973 by Martin
Sdndig, Wiesbaden), p. 308-309.

Most remarkable is the rule (9), which is equivalent to the very accurate
estimate

(10) n~3.1416.

Al-Khwarizmi ascribes the rule (9) to “the astronomers”, and indeed the
same rule is found in the Aryabhatiya of the Hindu astronomer Aryabhata
(early sixth century AD). Verse II 28 of the Aryabhatiya reads:

Add 4 to 100, multiply by 8, and add 62000. The result is approximately the circumference of
a circle of which the diameter is 20000 (see W.E. Clark: The Aryabhatiya of Aryabhata, p. 28).

In the last chapter of my book “Geometry and Algebra in Ancient Civili-
zations” (Springer-Verlag 1983) I have shown that the estimate (10) was also
known to the Chinese geometer Liu Hui (third century AD). This estimate may
well be due to Apollonios of Perge (see p. 196-199 and p. 207-213 of my book).

Al-Khwarizmi states that in every rectangular triangle the two short sides,
each multiplied by itself and the products added together, equal the product of
the long side multiplied by itself. Thus, if a, b, ¢ are the sides, we have

a’+b?=c.

The proof given in the text is valid only in the equilateral case (a=b). From
this fact we may safely conclude that al-Khwarizmi’s main source is not a
classical Greek treatise like the “Elements” of Euclid. Aristide Marre, who
published a French translation of al-Khwarizmi’s chapter on mensuration in
Annali di matematica 7 (1866), noted the insufficiency of the proof and added
that the author would never have been admitted to the Platonic academy!

An ancient Hebrew treatise exists which is closely connected, in contents
and terminology, with Khwarizmi's chapter on Mensuration. The treatise is
entitled “Mishnat ha-Middot”. It was published, with an English translation
and excellent commentary, by Solomon Gandz in Quellen und Studien zur
Geschichte der Mathematik A2. By his arguments, Gandz has convinced me
that the author of the treatise was Rabbi Nehemiah, who lived about AD 150.
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The author knew how to compute the periphery of a circle as 34d. For the
area of a circle segment, he presents the same formula as Heron of Alexandria:

L1 ey
A=(c+h}-ih+§(g)

in which ¢ is the chord and h the height of the segment. This formula is not in
al-Khwarizmi’s chapter on mensuration, but for the rest there are so many
similarities between this chapter and the Mishnat ha-Middot, that one is forced
to assume either a direct dependence, as Gandz does, or at least a common
source. It is also possible, as Gandz supposes, that al-Khwarizmi used a
Persian or Syrian translation of the Mishnat ha-Middot.

4. On the Jewish Calendar

No matter whether one does or does not accept the conclusion of Gandz
that al-Khwarizmi’s geometry was “verbally taken from the Mishnat ha-Mid-
dot”, in any case al-Khwarizmi was acquainted with Jewish traditions, for he
has written a treatise on the Jewish calendar. This treatise describes the Jewish
19-year cycle and the rules for determining on what weekday the month Tishri
begins. It also calculates the interval between the Jewish “era of the creation of
Abraham” and the Seleucid era, and it gives rules for determining the mean
longitudes of sun and moon. See E.S. Kennedy: Al-Khwarizmi on the Jewish
Calendar, Scripta mathematica 27, p. 55-59 (1964).

5. On Legacies

The third and largest part of the Algebra of al-Khwarizmi (p. 86-174 in
Rosen’s translation) deals with legacies. It consists entirely of problems with
solutions. The solutions involve only simple arithmetic or linear equations, but
they require considerable understanding of the Islamic law of inheritance. See
Solomon Gandz: The Algebra of Inheritance, Osiris 5, p. 319-391 (1938).

6. The Solution of Quadratic Equations

[ shall now discuss in somewhat greater detail al-Khwarizmi’s solution of
the three types of mixed quadratic equations. In al-Khwarizmi’s own termi-
nology, the first type reads:

Roots and Squares equal to numbers.

For instance: one square and ten roots of the same amount to thirty-nine dirhems; that is to
say, what must be the square which, when increased by ten of its own roots, amounts to thirty-
nine?

The solution is: you halve the number of roots, which in the present instance yields five. This
you multiply by itself; the product is twenty-five. Add this to thirty-nine; the sum is sixty-four.
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Now take the root of this, which is eight, and subtract from it half the number of the roots, which
is four. The remainder is three. This is the root of the square you thought for; the square itself is
nine.

In modern notation, the equation is

x?2410x =139,

which can be transformed into

(x+5)2=39+25=64
x+5=]/-671 = 8§
x=8-5 = 3.

Next, al-Khwarizmi presents a demonstration. He draws a square AB, the
side of which is the desired root x. On the four sides he constructs rectangles,
each having 1/4 of 10, or 2 1/2, as their breadth (see Fig. 1). Now the square

D

Fig. 1

together with the four rectangles is equal to 39. In order to complete the
square DH, we must add four times the square of 2 1/2, that is, 25, says al-
Khwarizmi. So the area of the large square is 64, and its side 8. Hence the side
of the original square is

§-5=3.

Al-Khwarizmi next presents another, simpler proof, in which rectangles of
breadth 5 are constructed only on two of the sides of the square AB (see Fig.
2). The result is, of course, the same.

Once more, we see that al-Khwarizmi’s source is not Euclid, for his first
proof is definitely more complicated than Euclid’s proof of proposition II 4,

A

Fig. 2
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which says that the square on a line segment a+b is equal to the sum of the
squares on a and b and twice the rectangle ab. The second proof of al-
Khwarizmi is similar to that of Euclid.

I think this suffices to give the reader an idea of the style of al-
Khwarizmi’s treatise on al-jabr and al-mugabala. His treatment of the other
types of mixed quadratic equations is quite similar to that of the first type. The
other types are:

“Squares and numbers equal to roots”,

“Roots and numbers equal to squares”.

In each case, the solutions agree with those we learn at school, restricted to
positive solutions.

7. The Geography

Besides the Algebra and the treatise on the Jewish calendar, one more
treatise is extant in Arabic, namely the Geography (“Book of the Form of the
Earth”). It consists almost entirely of lists of longitudes and latitudes of cities
and localities. The work is a revision of Ptolemy’s “Geography”. Most proba-
bly it was based on a world map made by a commission of learned men
(possibly including al-Khwarizmi himself) on the order of Caliph al-Mamun.
For more details see Toomer’s article al-Khwarizmi in the Dictionary of
Scientific Biography VII, p. 361 and 365.

8. On Hindu Numerals

A treatise of al-Khwarizmi on Hindu numerals is extant only in a Latin
translation, which was published first by B. Boncompagni under the title
“Algoritmi de numero indorum” (Rome, 1857) and next by Kurt Vogel under
the title “Mohammed ibn Musa Alchwarizmi’s Algorithmus” (Aalen 1963),
with a facsimile of the unique manuscript.

9. The Astronomical Tables

Al-Khwarizmi’s set of astronomical tables is available only in a Latin
translation of a revised version due to Maslama al-Majriti, who lived in
Cordova about AD 1000. This version differed from the original text of
Khwarizmi in several respects. First, the epoch of the original tables was the
era Yazdigerd (16 June 632), whereas al-Majriti used the era Hijra (14 July
622). Also, al-Khwarizmi’s table of Sines was based on the radius R =150,
whereas the extant tables have R =60.

The tables have been published, with a German translation and com-
mentary, by Heinrich Suter in Kongelige Dansk Vidensk. Selsk. Hist.-fil. Skrif-
ter 111, 1 (Copenhagen 1914). In the same Skrifter IV, 2 (Copenhagen 1962)
Otto Neugebauer published an English translation of the introductory chapter
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and a new, valuable commentary. For additions and corrections to this com-
mentary see C.G. Toomer’s review in Centaurus 10, p. 203-212 (1964-65).

If one studies E.S. Kennedys “Survey of Islamic Astronomical tables”,
Transactions American Philos. Soc. 46, p. 122-177 (1956), one sees that there
are two types of zijes, i.e. astronomical table sets: Ptolemaic and Non-Ptole-
maic. The Ptolemaic tables are based on Ptolemy’s “Almagest” or on his
“Handy Tables”. The non-Ptolemaic zijes, of which al-Khwarizmi’s table set is
the only extant example, are based on Persian or on Hindu tables or on both.
The non-Ptolemaic tables are less accurate, but more convenient than the
Ptolemaic ones. This, I think, is the reason why Khwarizmi’s tables remained
popular long after the better (Ptolemaic) tables were available.

Ibn al-Qifti says in his biography of al-Fazari about al-Khwarizmi:

He used in his tables the mean motions of the Sindhind, but he deviated from it in the
equations (of the planets) and in the obliquity (of the ecliptic). He fixed the equations according to
the method of the Persians, and the declination of the sun according to the method of Ptolemy.

What does this mean?

Let me begin with the last statement. In the zij of al-Khwarizmi there is a
table for finding the declination of the sun (Suter’s edition, p. 132-136, last
column but one). This table is based on the value 23° 51" of the obliquity of the
ecliptic, and it agrees with a table in Ptolemy’s “Handy Tables”. So here al-
Qifti is certainly right: the author of the tables determined the declination of
the sun “according to the method of Ptolemy”.

Concerning the “equations” of the planets, i.e. the corrections to be added
to the mean longitudes, we may note that the maximum values of these
corrections in the tables of al-Khwarizmi agree with those adopted in the
Persian table set “Zij-i Shah”. For this table set see E.S. Kennedy: The
Sasanian Astronomical Handbook Zij-i Shah, Journal of the American Orien-
tal Society 78, p.246-262 (1958). Obviously, when al-Qifti speaks of “the
Persians”, he has the Zij-i Shah in mind, which was still extant in the time of
al-Biruni and Ibn al-Qiftu.

Thus we may conclude that one of the sources of al-Khwarizmi was the
Persian table set “Zij-i Shah™.

10. The “Sindhind”

I shall now discuss Ibn al-Qifti’s first statement: “He used in his tables the
mean motions of the Sindhind.” The word Sindhind is a corruption of the
Sanskrit Siddhanta, which is the usual designation of an astronomical textbook.
In fact, the mean motions in the tables of al-Khwarizmi are derived from those
in the “corrected Brahmasiddhanta” (Brahmasphutasiddhanta) of Brahma-
gupta. This was proved for the mean longitudes by J.J. Burckhardt, Vierteljah-
resschrift Naturf. Ges. Ziirich 106, p. 213-231 (1961), and for the apogees and
nodes by G.J. Toomer in his review of Neugebauer's commentary to al-
Khwarizmi’s tables (Centaurus 10, p. 207).

Soon after AD 770, a Sanskrit astronomical work called by the Arabs
Sindhind was brought to the court of Caliph al-Mansur at Baghdad by a man
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called Kankah (or Mankah?), a member of a political mission from India. This
work was translated into Arabic. Based on this translation, Yaqub ben Tariq,
who is reported to have been at the court of al-Mansur together with Kankah,
composed a table set, which was called Zij al-Sindhind. According to the
Fihrist of el-Nadim (ed. Fliigel, Vol. 1, p.274) the table set of al-Khwarizmi
was also called Zij al-Sindhind. It seems that al-Khwarizmi's Zij was a revision
of an earlier table set based on the Sindhind, a revision into which some
elements and methods from the Zij-i Shah and from Ptolemy’s “Handy Ta-
bles” were incorporated.

11. The “Method of the Persians™

As we have seen, Ibn al-Qifti says that al-Khwarizmi “fixed the equations
according to the Method of the Persians”. What was this method?

I shall use the terminology and some notations of E.S. Kennedy’s classical
“Survey of Islamic Astronomical Tables” (Trans. Amer. Philos. Soc. 46). On
pages 148-151 of this survey Kennedy presents an abstract of the tables of al-
Khwarizmi, in which al-Khwarizmi’s method of finding the true longitudes of
the planets is explained.

Let . be the mean longitude of any planet. Its true longitude is calculated
by the formula

A=A+e +e,,

where e, is the “equation of the centre” and e, the “equation of the anomaly™.
For the sun and the moon we have only one equation e; due to the eccen-
tricity of the orbit. In al-Khwarizmi’s tables for the sun and the moon, the
function e, (x) is tabulated according to the formula

(12) e;(x)=(max e;)-sin x

in which x is the distance of the mean sun or moon from the apogeum of the
eccentric orbit:

(13) x=I—1g,.

For the other planets, the calculation is more complicated. One first
calculates a preliminary value of the correction e,, calculated by plane tri-
gonometry from the triangle EPM in Fig. 3. In this drawing, the planct is
supposed to be carried by an epicycle, which is in turn carried by a concentric
circle. The angle e, can be tabulated as a function of the angle y (see H. Suter,
Tafeln des Muhammed ibn Musa Al-Khwarizmi, pages 136-167, Column 3).

But, says Kennedy, “the inventor of the theory apparently realized that the
two equations are not independent”. We are required to halve the equation
e,(y) and to add it to x, thus obtaining

(14) x'=x+1/2e5(y).
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P

Fig. 3

This x" is used to calculate the correction e, :
(15) e, (x)=(max e,)-sinx’
which is subtracted from y, thus obtaining
(16) y'=y—e(x).

Now the longitude 4 can be calculated as
(17) A=A+e,(x)+ex(y)

So one has to use the table for e, twice, first to find e,(x) and next e (x’),
and the table for e, once to find e,(y’). For the rest, one has to perform only
simple additions and subtractions. The procedure is simpler, but less accurate
than Ptolemy’s method.

As we have seen, al-Khwarizmi used in his tables the “Era Yazdigerd”. So
we may safely conclude that he learnt the “Method of the Persians” from the
latest version of the Zij-i Shah, which was composed under the last Sasanid
king Yazdigerd III (632-651). See for the history of this version pages 4-5 of a
joint paper of J.J. Burckhardt and myself: Das astronomische System der
persischen Tafeln, Centaurus 13, p. 1-28 (1968).

In earlier, predominantly Hindu texts we find a related, but slightly more
complicated method, which we have called “Method of the Indians”. It is
based on the formulae

(14) X'=x+1/2e,(y)
(15) e,(x')=(maxe,) sin x’

(18) X" =x'+1/2 e,(x)
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(19) e (x")=(maxe;)-sinx"
(20) V=y—e(x")
(21) A=A+ey(x")+ex(y).

This method was used by Aryabhata (Aryabhatiya, verses 22-24), by Brah-
magupta (Brahmasphutasiddhanta II, 34-38), and by other Hindu astronomers.
The difference as compared with the Persian method is that the table for e;(x)
is used twice: once with the argument x’ and once with the argument x”. The
difference is only small, for 1/2 e,(x’) is in most cases small, so that x" defined
by (18) does not differ much from x".

In my paper “Ausgleichspunkt, Methode der Perser und indische Planeten-
rechnung”, Archive for History of Exact Sciences 1, p. 107-121 (1961), I have
shown that the “Method of the Indians” can be explained as a reasonable
approximation, if we suppose that a Greek author before Ptolemy, possibly
Apollonios of Perge, started with the model of an epicycle carried by an
eccentric circle. I suppose that this author assumed an “equant point” as in
Ptolemy’s Almagest, such that the motion on the eccenter appeared uniform as
seen from the equant point. He invented an approximation which enabled
the user of the tables to use only one-entry tables and additions and sub-
tractions. Ptolemy adopted the equant model, but he did not use the approxi-
mation. On the other hand, the Hindu authors adopted the simple method of
calculation, probably without knowing that it was based on the assumption of
an eccenter with equant point.

This seems to be the only hypothesis which explains Ptolemy’s equant
model, for which Ptolemy himself gives no justification whatever, as well as the
very sophisticated “Method of the Indians”, for which the Hindu authors give
no justification either.

12. Al-Khwarizmi’s Sources

We are now in a position to discuss the sources of al-Khwarizmi’s work, in
particular of his Algebra. Three theories have been proposed. He may have
used classical Greek sources, or Hindu sources, or popular mathematical
writings belonging to the Hellenistic and post-Hellenistic tradition.

As Toomer notes in his article in the Dictionary of Scientific Biography,
both Greek and Hindu algebra had advanced well beyond the elementary stage
of al-Khwarizmi’s work, and none of the known works in either culture shows
much resemblance in presentation to al-Khwarizmi’s work. As we have seen,
his proofs of the methods of solution of quadratic equations are quite different
from the proofs we find in Euclid’s Elements. Also, as Toomer notes, al-
Khwarizmi’s exposition is completely rhetorical, like Sanskrit algebraic works,
and unlike the one surviving Greek algebraic treatise, that of Diophantos,
which has already developed quite far towards symbolic representation.

[ feel that Toomer is right: we may exclude the possibility that al-
Khwarizmi’s work was much influenced by classical Greek mathematics.
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In favour of the Hindu hypothesis it may be argued that al-Khwarizmi did
write a treatise on Hindu numerals, that two of his estimates for = are also
found in Hindu sources, and that in Chapter 18 of the Brahmasphutasid-
dhanta of Brahmagupta, verse 18, a general rule for the solution of a quadratic
equation of type (4) is given. See for this rule HT. Colebrooke: Algebra with
Arithmetic and Mensuration from the Sanskrit of Brahmagupta and Bhascara,
page 346.

In one case, in the section on Mensuration, al-Khwarizmi gives us a hint
concerning his sources. After having mentioned the estimate 3+1/7 for =,
which is “generally followed in practical life, though it is not quite exact”, he
says:

The mathematicians, however, have two other rules for that. The one of them is: multiply the
diameter with itself, then with ten, and then take the root of the product. The root gives the
circumference.

The other rule is used by the astronomers among them (my italics), and reads: multiply the
diameter with sixty-two thousand eight hundred and thirty-two and then divide it by twenty
thousand. The quotient gives the circumference.

Note that Aryabhata writes his estimate of 7 in just the same form as
62 832/20000.

We know already that al-Khwarizmi used Persian and Hindu sources in
composing his astronomical tables. We may suppose that he derived his
estimate of = from one of these sources.

After the Greek and the Hindu hypotheses, we may discuss a third hy-
pothesis proposed by Hermann Hankel in his “Geschichte der Mathematik”
(Leipzig 1874), p. 259-264, and supported by H. Wiedemann in his article “al-
Khwarizmi” in the Encyclopaedia of Islam 1I, p. 912-913. These authors deny
all Greek influence on al-Khwarizmi and assert the prevalence of a native,
Syriac-Persian tradition.

In view of the close connection between the Hebrew treatise Mishnat ha-
Middot and the geometry of al-Khwarizmi, I feel we should extend the notion
“Syriac-Persian” to include Hebrew and other popular traditions as well. We
have to admit the existence of a tradition of popular mathematics in Egypt and
in the Near East in Hellenistic and post-Hellenistic times. Examples are the
mathematical papyri from Egypt discussed on pages 164-170 and 173-177 of
my “Geometry and Algebra in Ancient Civilizations”, and the “Metrica” of
Heron of Alexandria discussed on pages 181-188 of the same book.

The hypothesis of Hankel and Wiedemann was strongly supported by
Solomon Gandz, the editor of the “Mishnat ha-Middot”. I think I can do no
better than quote the final section of his introduction to the Mensuration of al-
Khwarizmi:

Al-Khowarizmi, the antagonist of Greek influence
At the university of Baghdad founded by al-Ma'mun (813-33), the so-called Bayt al-Hikma,
“the House of Wisdom”, where al-Khowarizmi worked under the patronage of the Caliph, there
and then flourished also an older contemporara of al-Khowarizmi by the name of al-Hajjaj ibn
Yasuf ibn Matar. This man was the foremost protagonist of the Greek school working for the
reception of Greek science by the Arabs. All his life was devoted to the work on Arabic
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happened before AD 873, for in January 873 Mohammed ben Musa died (see
Suter: Die Mathematiker and Astronomen, p. 20).

According to al-Nadim and el-Qifti (see Chwolson I, p. 483 and II, p. 532)
Tabit succeeded in establishing at Baghdad a Sabian primate for the whole of
Irag. By this move, the situation of the Sabians was stabilized, and they were
respected in the whole country.

Tabit was highly esteemed for his writings in medicine, philosophy, mathe-
matics, astronomy, and astrology. He was also a most competent translator
from Greek and Syriac into Arabic. He translated works of Euclid, Ar-
chimedes, Apollonios, Autolykos, Ptolemaios, Nikomachos, Proklos, and
others (see Chwolson I, p. 553-560).

Barhebraeus reports in his Syrian chronicle that Tabit ben Qurra composed
circa 150 works in Syriac. For his works on astronomy and mathematics see
H. Suter: Die Mathematiker und Astronomen der Araber (1900), p. 34-38, and
Nachtrag, p. 162-163. Here I shall restrict myself to three treatises: one on
astronomy, one on algebra, and one on arithmetic.

On the Motion of the Eighth Sphere

Tabit has written a very interesting treatise, which is available only in a
Latin translation, entitled “De motu octave spere”. The Latin text was pub-
lished by C.F. Carmody: “The Astronomical Works of Tabit b. Qurra” (Ber-
keley 1960), p. 84-113. An English translation with commentary was presented
by O. Neugebauer in Proceedings of the Amer. Philos. Soc. 106, p. 291-299.

The “eighth sphere” of Tabit is the sphere of the fixed stars. Inside this
sphere one has to imagine the seven spheres of the moon, the sun, and the five
“star-planets”.

In modern astronomy the fixed stars are assumed to be nearly at rest and
the equinoxes to have a small retrograde motion with respect to the fixed stars:
the “precession of the equinoxes™. In Ptolemy’s theory the equinoxes are fixed,
and the stars are supposed to have a slow forward motion of 1 degree in 100
years.

Tabit noticed that this small amount is not confirmed by the observations.
The motion of the stars with respect to the equinoxes has to be much larger, at
least in the time after Ptolemy, if one accepts the very accurate observations
made under the reign of al-Mamun. To explain this, Tabit assumed an oscil-
latory (periodic) motion of the sphere of the fixed stars, the so-called “trepi-
dation”.

Another phenomenon which Tabit wanted to explain is an alleged decrease
of the obliquity of the ecliptic. The ancient Greeks had used a rough estimate
of 24°, Ptolemy had used a slightly smaller estimate due to Eratosthenes, and
the observers at Baghdad had found a still smaller obliquity, namely 23° 33".

Tabit now constructed a model which would explain both phenomena: the
alleged trepidation of the fixed stars with respect to the equinoxes, and the
alleged decrease of the obliquity. He made the two opposite points “Beginning
of Aries” and “Beginning of Libra” on the sphere of the fixed stars move
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slowly on small circles, whose centres are opposite points of a fixed sphere. For
a detailed description of this model I may refer to the paper of Neugebauer
just mentioned.

Tabit’s treatise ends up with two small tables, from which the motion of the
two variable points “Beginning of Aries” and “Beginning of Libra” can be
computed.

Geometrical Verification of the Solution of Quadratic Equations

Tabit’s short treatise on this subject, entitled “On the Verification of Prob-
lems of Algebra by Geometrical Proofs”, is preserved in a single manuscript
Aya Sophia 2457.3. It was published with a German translation and com-
mentary by P. Luckey in 1941: Berichte iiber die Verhandlungen der sichs.
Akad. Leipzig 93, p. 93-112. I shall now translate parts of Luckey’s translation
into English. Since the logic of the treatise is perfect, I see no danger in this
procedure. The diagrams are not taken from the manuscript, but from Luckey’s
publication.

There are three fundamental forms (usiil, roots or elements), to which most problems of
algebra can be reduced:

The first basic form is: Wealth (mal) and roots are equal to numbers. The way and method of
solution by the sixth proposition of Euclid's second book is as I shall describe: We make (Fig. 4)
the wealth equal to the square abgd, we make bh equal to the same multiple of the unit in which
lines are measured as is in the given number of roots, and we complete the area dh. Since the
wealth is abgd, the root is clearly a b, and in the domain of calculation and number it is equal to
the product of ab and the unit, in which the lines are measured.... Now a number of these units
equal to the given number of roots is in bh, hence the product of ab and bh is equal to the roots
in the domain of calculation and number. But the product of ab and bh is the area d h, because ab
is equal to bd. Hence the area dh is in this way equal to the roots of the problem. Hence the
whole are g h is equal to the wealth together with the roots.

g a
d b
+w
h
Fig. 4

Tabit’s explanation is cumbersome, because he cannot equate an area or
line segment with a number. He therefore introduces a unit of length, which I
shall denote by e. If the given equation is

x24mx=n,
in which x is an unknown number, while m and n are given numbers, he
translates it into a geometrical equation
x?+mex=ne*
in which x and e are line segments. He continues:
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Now the wealth and the roots together are equal to a known number. So the area gh 1s
known, and it is equal to the product of ah and ab, because ab is equal to ag. So the product of
ha and ab is known, and the line bh is known, because its number of units is known. Thus
everything is reduced to a well-known geometrical problem, namely: The line bh is known. To it a
line a b is added, and the product of ha and ab is known.

Now in proposition 6 of book 2 of the Elements it is proved that, if the line bh is halved at
the point w, the product of ha and ab together with the square of bw is equal to the square of aw.
But the product of ha and ab is known, and the square of bw is known. So the square of aw is
known, hence aw is known, and if the known bw is subtracted, ab results as known, and this is
the root. And if we multiply it by itself, the square abgh, that is, the wealth, is known, which is
what we wanted to prove.

Now comes the most interesting passage in the treatise:

This procedure agrees with the procedure of the people concerned with algebra in their
solution of the problem. When they halve the number of roots, this is just so as when we take half
of the line bh, and when they multiply it by itself, this is the same as when we take the square of
the halved line bh. When they add to the result the (given) number, this is just as when we add the
product of ha and ab, in order to obtain the square of the sum of ab and the halved line. Their
taking the root of the result is like our saying: The sum of ab and the halved line is known as
soon as its square is known.

The next sentence in the text is corrupt. The end of the sentence reads:

... to obtain the residue, just as we obtained ab. They multiplied (the residue) by itself, just as
we determined the square of a b, that is, the wealth.

In the same way Tabit treats the second type of equation
x*+b=ax

or “wealth and number is equal to roots”. He says:

The way and method of solution according to the second book of Euclid by means of
proposition 5 is, as I describe it: We make (Fig. 5) the wealth into a square abgd and we make ah
equal to such a multiple of the unit in which lines are measured as is in the given number of roots.
Obviously, ah is longer than ab, because the roots, which are in the domain of calculation the
product of ga and ah, are larger than the wealth. We complete the area gh, and we prove, as
before, that it is equal to the roots (that is, equal to the term ax) in the domain of calculation.
And if bg, which is the wealth (that is, the term x?) is subtracted from it, there remains d h equal
to the (given) number. So d h is known, and it is equal to the product of ab and bh, and the line
ah is known. So now the problem amounts to dividing a given line ah in b in such a way that the
product of ab and bh is known.

g a
d b
+w

h

Fig. 5
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g a
+w
d b
h
Fig. 6

Now in proposition 5 of the second book of Euclid it is proved that, if ah is halved at w, the
product of ab and bh together with the square of bw is equal to the square of aw. But aw is
known, and its square is known, and the product of ab and bh is known. So the square of bw is
known as a remainder, hence bw is known, and if it is subtracted from aw (Fig. 5) or added to it
(Fig. 6), a b results as known, and it is the root. And if we multiply it by itself, abgd is known, and
it is the wealth, and this is what we wanted to prove.

This procedure too agrees with the procedure of the algebra people (ahl al-jabr) in calculating
the problem. For it allows in both ways the application of addition and of subtraction of the line
wbh.

I think it is not necessary to translate the third part of the text, in which
the equation

“Number and Roots are equal to Wealth”
is solved by means of Euclid’s proposition 116, and the agreement with the
algebraic solution is proved in the same way as in the other two cases.

In al-Khwarizmi’s treatise, the science of algebra is denoted by the double
expression “al-jabr wal mugabala™. Tabit ben Qurra leaves out the second part
and refers just to the “solution by al-jabr” as opposed to his own solution by
geometry. The algebrists, to which al-Khwarizmi belongs, are called by Tabit
“those concerned with algebra” (ashab aljabr) or “the algebra people” (ahl al-
Jabr). In the text, they are opposed to the geometers, to which Tabit himself
belongs.

Tabit judges it necessary to explain in great detail that the algebraic
solutions are in full accordance with Euclid’s geometrical solution. From this,
Luckey concludes that at least for some of his readers this connection between
geometry and algebra was new, and he raises the question: Was it new for the
“algebra people”? It seems to me that the answer must be “yes”, for otherwise
the whole treatise of Tabit would be superfluous.

As we have seen in the section on al-Khwarizmi, there were two opposite
trends or parties among the mathematicians and astronomers at Baghdad. One
of these trends was represented by al-Khwarizmi, who used Indian and Persian
sources for his astronomical tables, and who wrote his Algebra, “confining it
to what is easiest and most useful in arithmetics, such as men constantly
require in cases of inheritance”, and so on. On the other hand, we have “the
Greek school working for the reception of Greek science by the Arabs”, as
Gandz puts it. To this Greek school belonged al-Hajjaj, who translated Euclid
and Ptolemy, and Tabit ben Qurra.
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On Amicable Numbers

Two natural numbers m and n are called amicable, if each is equal to the
sum of the proper divisors of the other. For instance, the sum of the proper
divisors of 284 is 220, and the sum of the proper divisors of 220 is 284. This
pair of amicable numbers was known already to the ancient Pythagoreans (see
e.g. my “Science Awakening” I, p. 98).

Tabit ben Qurra has written a “Book on the Determination of Amicable
Numbers™. He proved: If p=3-2""'—1 and ¢=3-2"—1 and r=9-22""'—1 are
prime, then

M=2"pg and N=2"r

are amicable numbers.

Tabit’s book has been commented upon and partly translated by F. Woep-
cke: Notice sur une théorie ajoutée par Thabit ben Korra a Iarithmétique
spéculative des Grecs, Journal asiatique (4) 20, p. 420-429 (1852).

Tabit’s rule for obtaining amicable pairs was rediscovered by Pierre de
Fermat and René Descartes. Besides the well known pair 220 and 284, Fermat

found one more pair, namely

17296=2* %23 x 47
18416=2%x1151

(Oeuvres 11, p. 20-21). No doubt, he derived it by Tabit’s rule for n=4.
Descartes formulated Tabit’s rule explicitely and presented a third example:

9363584=27 % 191 x 383
9437056=2" x 73727

(René Descartes, Oecuvres II, p. 93-94 and p. 148).

Now the question arises: How did Tabit find his rule?

The well known pair 220 and 284 has a factorization of the form

22pq and 2%r
in which p,q, and r are primes. So let us see whether we can find a pair
M=2"pgq and N=2"r

such that M is the sum of the proper divisors of N and conversely.

I suppose that Tabit knew that the sum of all divisors of N (including N
itself) is

(I+2+4...+2"(r+1)

and that the sum of all divisors of M is

(1+2+...+2(pg+p+qg+1)
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Part C
Omar Khayyam

The Persian poet, philosopher, mathematician, and astronomer Omar ben
Ibrahim al-Hayyam, usually called Omar Khayyam, lived in the second half of
the eleventh century. His fame in the western world is mainly based on the
very free translation of his nearly 600 short poems of four lines each
( Ruba’iyat ) by E. Fitzgerald (1859),

In 1074 Omar Khayyam was called to Isfahan, where a group of outstand-
ing astronomers came together for the foundation of an observatory. “An
enormous amount of money was spent for this purpose”, says Ibn al Athir. See
Aydin Sahili: The Observatory in Islam (Tirk Kurumu Basimevi, Ankara
1960).

Here we shall mainly be concerned with Omar Khayyam’s treatise “On the
Proofs of the Problems of Algebra and Muqabala”. My account will be based
on the French translation of Franz Woepcke: L’algébre d’Omar Alkhayyami
(Paris 1851). An English translation was published in 1950 by H.J.J. Winter
and W. Arafat in Journal R. Asiatic Soc. Bengal. 16, p. 27-77. For an edition
of the text with a new French translation and commentary see Roshdi Rashed
and Ahmed Djebbar: L’oeuvre algébrique d’Al-Khayyam, University of Alep-
po 1981.

In the introduction to his “Algebra” Omar Khayyam explains that “The
art of algebra” aims at the determination of numerical or geometrical unknown
quantities. This distinction between numbers and measurable magnitudes is
maintained throughout the treatise. The author mentions four kinds of measur-
able magnitudes: the line, the surface, the solid, and the time. He excludes
magnitudes of more than three dimensions such as the “square-square” and
the “quadrato-cube”, which are used by some algebrists.

The Algebra of Omar Khayyam

The algebra of Omar Khayyam is mainly geometric. He first solves linear
and quadratic equations by the geometrical methods explained in Euclid’s
Elements, and next he shows that cubic equations can be solved by means of
intersections of conics.

Omar knows very well that earlier authors sometimes equated geometrical
magnitudes with numbers. He avoids this logical inconsistency by a trick,
introducing a unit of length. He writes:

Every time we shall say in this book “a number is equal to a rectangle”, we shall understand
by the “number™ a rectangle of which one side is unity, and the other a line equal in measure to
the given number, in such a way that each of the parts by which it is measured is equal to the side
we have taken as unity.

In Fig. 7 I have denoted the unity of length by e, and the sides of the
rectangle by x and y. The figure illustrates the equation 3=xy.
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Fig 7

Omar Khayyam first solves quadratic equations by the usual methods.
Next he passes to cubic equations. Some of these, for instance,

(1) x*+ax’=bx

can be reduced to quadratic equations. The first type requiring conic sections
is

“A number is equal to a cube”
or, in modern notation
(2) x*=N.

Omar first solves an auxiliary problem, namely

“To find two lines between two given lines such that the four lines form a
continued proportion™.

If the two given lines are called AB=a and BC=b, the problem is, to find
x and y such that

(3) a:x=x:y=y:b.
Y
At
a )
H.— _________
1
I
1
|
bt x
B b c T

Fig. 8
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Omar draws two perpendicular line segments BA and BC, and he con-
structs two parabolas, both having their summit at B. The first parabola has
axis BC and “parameter” BC, the other has axis BA and “parameter” BA. In
modern notation, the equations of the two conics are

(4) y*=bx and xZ=ay.

Let D be their point of intersection. Then the perpendiculars x=DH and y
= DT satisfy (4) and hence (3).

Next, Omar considers the equation (2), in which N is a given number. He
constructs a rectangular block with base e and height Ne. Now he has to
construct a cube equal to this block. In the case N =2 this is just the well-
known Greek problem of “doubling the cube” Hippokrates of Chios had
proved that this problem can be reduced to the problem of finding two mean
proportionals x and y between two given line segments a and b. Omar
Khayyam proceeds just so. He solves the auxiliary problem (3) with a=e and b
=Ne, and he proves that the first intermediate x is the side of the required
cube.

All this is well-known from Greek texts. According to Eutokios, the so-
lution of (3) by means of the intersection of two parabolae is due to Menaich-
maos.

Next, Omar considers six types of cubic equations in which a binomial is
equated to a monomial, namely

(5) x3+ax=b

(6) x3+b=ax

(7 x}*=ax+b
(8) x3+ax?=b

9) x}+b=ax?

(10) x3=ax?+bx.

In Omar’s terminology, the equation (5) is written as

“A cube and (a number of) sides are equal to a number”.

Omar first constructs a square c? equal to the given number b, and next a
block with base ¢* and height h equal to the given number b. This means, as
he has explained earlier, that the block with sides ¢, ¢, and h is made equal to
a block with sides e, e, and be, where e is the unity of length and b be the
given number on the right hand side of equation (5). Thus, the equation (5) can
be written in the homogeneous form

(11) x}+ctx=c?h

in which c¢=AB and h=BC are given line segments.
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Fig. 9

To solve this equation geometrically, Omar constructs a parabola (see
Fig. 9) having its summit at B, its axis being BZ and its “parameter” AB=c.
Next he describes a semi-circle on the diameter BC=h. The semi-circle ne-
cessarily has a point of intersection D with the parabola. From D one draws
perpendiculars DZ and DE to BZ and BC. Omar now proves that DZ=x
solves the equation (11).

In modern terminology, let x=DZ and y=DE be the coordinates of D. The
equation of the parabola is

(12) x*=yc,

or, in Omar’s own words: “The square of DZ will be equal to the product of
BZ and AB”. The equation of the circle is

(13) y*=x(h—x)

which Omar writes as a proportion

“BE is to ED as ED is to EC™.

Just so, (12) is written as a proportion:

“ABis to BE as BE is to ED”.

From these two proportions Omar concludes that EB=x is a solution, and
the only solution of his problem.

Just so, Omar writes the equation (6) in the homogeneous form

(14) x3+cth=c*x
and he solves it by intersecting the parabola

(15) yc=x?



