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Preface to the Third Edition

During the two decades since the appearance of the second edition of
this work, there have been substantial changes in the course of mathe-
matics and the treatment of its history. Within mathematics, outstanding
results were achieved by a merging of techniques and concepts from
previously distinct areas of specialization. The history of mathematics
continued to grow quantitatively, as noted in the preface to the second
edition; but here, too, there were substantial studies that overcame the
polemics of “internal” versus “external” history and combined a fresh
approach to the mathematics of the original texts with the appropriate
linguistic, sociological, and economic tools of the historian.

In this third edition I have striven again to adhere to Boyer’s approach
to the history of mathematics. Although the revision this time includes
the entire work, changes have more to do with emphasis than original
content, the obvious exception being the inclusion of new findings since
the appearance of the first edition. For example, the reader will find
greater stress placed on the fact that we deal with such a small number of
sources from antiquity; this is one of the reasons for condensing three
previous chapters dealing with the Hellenic period into one. On the other
hand, the chapter dealing with China and India has been split, as content
demands. There is greater emphasis on the recurring interplay between
pure and applied mathematics as exemplified in chapter 14. Some
reorganization is due to an attempt to underline the impact of institu-
tional and personal transmission of ideas; this has affected most of the
pre-nineteenth-century chapters. The chapters dealing with the nineteenth
century have been altered the least, as I had made substantial changes
for some of this material in the second edition. The twentieth-century
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Xiv Preface to the Third Edition

material has been doubled, and a new final chapter deals with recent
trends, including solutions of some longstanding problems and the effect
of computers on the nature of proofs.

It is always pleasant to acknowledge those known to us for having had
an impact on our work. I am most grateful to Shirley Surrette Duffy for
responding judiciously to numerous requests for stylistic advice, even at
times when there were more immediate priorities. Peggy Aldrich Kid-
well replied with unfailing precision to my inquiry concerning certain
photographs in the National Museum of American History. Jeanne
LaDuke cheerfully and promptly answered my appeals for help, espe-
cially in confirming sources. Judy and Paul Green may not realize that a
casual conversation last year led me to rethink some recent material. I
have derived special pleasure and knowledge from several recent pub-
lications, among them Klopfer 2009 and, in a more leisurely fashion,
Szpiro 2007. Great thanks are due to the editors and production team of
John Wiley & Sons who worked with me to make this edition possible:
Stephen Power, the senior editor, was unfailingly generous and diplo-
matic in his counsel; the editorial assistant, Ellen Wright, facilitated
my progress through the major steps of manuscript creation; the senior
production manager, Marcia Samuels, provided me with clear and
concise instructions, warnings, and examples; senior production editors
Kimberly Monroe-Hill and John Simko and the copyeditor, Patricia
Waldygo, subjected the manuscript to painstakingly meticulous scrutiny.
The professionalism of all concerned provides a special kind of
encouragement in troubled times.

I should like to pay tribute to two scholars whose influence on others
should not be forgotten. The Renaissance historian Marjorie N. Boyer
(Mrs. Carl B. Boyer) graciously and knowledgeably complimented
a young researcher at the beginning of her career on a talk presented at a
Leibniz conference in 1966. The brief conversation with a total stranger
did much to influence me in pondering the choice between mathematics
and its history.

More recently, the late historian of mathematics Wilbur Knorr set a
significant example to a generation of young scholars by refusing to
accept the notion that ancient authors had been studied definitively by
others. Setting aside the “magister dixit,” he showed us the wealth of
knowledge that emerges from seeking out the texts.

—Uta C. Merzbach
March 2010



Preface to the Second Edition

This edition brings to a new generation and a broader spectrum of
readers a book that became a standard for its subject after its initial
appearance in 1968. The years since then have been years of renewed
interest and vigorous activity in the history of mathematics. This has
been demonstrated by the appearance of numerous new publications
dealing with topics in the field, by an increase in the number of courses
on the history of mathematics, and by a steady growth over the years in
the number of popular books devoted to the subject. Lately, growing
interest in the history of mathematics has been reflected in other bran-
ches of the popular press and in the electronic media. Boyer’s con-
tribution to the history of mathematics has left its mark on all of these
endeavors.

When one of the editors of John Wiley & Sons first approached me
concerning a revision of Boyer’s standard work, we quickly agreed that
textual modifications should be kept to a minimum and that the changes
and additions should be made to conform as much as possible to Boyer’s
original approach. Accordingly, the first twenty-two chapters have been
left virtually unchanged. The chapters dealing with the nineteenth century
have been revised; the last chapter has been expanded and split into two.
Throughout, an attempt has been made to retain a consistent approach
within the volume and to adhere to Boyer’s stated aim of giving stronger
emphasis on historical elements than is customary in similar works.

The references and general bibliography have been substantially
revised. Since this work is aimed at English-speaking readers, many of
whom are unable to utilize Boyer’s foreign-language chapter references,
these have been replaced by recent works in English. Readers are urged
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to consult the General Bibliography as well, however. Immediately fol-
lowing the chapter references at the end of the book, it contains additional
works and further bibliographic references, with less regard to language.
The introduction to that bibliography provides some overall guidance for
further pleasurable reading and for solving problems.

The initial revision, which appeared two years ago, was designed for
classroom use. The exercises found there, and in the original edition,
have been dropped in this edition, which is aimed at readers outside the
lecture room. Users of this book interested in supplementary exercises
are referred to the suggestions in the General Bibliography.

I express my gratitude to Judith V. Grabiner and Albert Lewis for
numerous helpful criticisms and suggestions. [ am pleased to acknowl-
edge the fine cooperation and assistance of several members of the
Wiley editorial staff. I owe immeasurable thanks to Virginia Beets for
lending her vision at a critical stage in the preparation of this manuscript.
Finally, thanks are due to numerous colleagues and students who have
shared their thoughts about the first edition with me. I hope they will find
beneficial results in this revision.

—Uta C. Merzbach
Georgetown, Texas
March 1991



Preface to the First Edition

Numerous histories of mathematics have appeared during this century,
many of them in the English language. Some are very recent, such as
J. F. Scott’s A History of Mathematics'; a new entry in the field,
therefore, should have characteristics not already present in the available
books. Actually, few of the histories at hand are textbooks, at least not in
the American sense of the word, and Scott’s History is not one of them.
It appeared, therefore, that there was room for a new book—one that
would meet more satisfactorily my own preferences and possibly those
of others.

The two-volume History of Mathematics by David Eugene Smith? was
indeed written “for the purpose of supplying teachers and students with a
usable textbook on the history of elementary mathematics,” but it covers
too wide an area on too low a mathematical level for most modern
college courses, and it is lacking in problems of varied types. Florian
Cajori’s History of Mathematics® still is a very helpful reference work;
but it is not adapted to classroom use, nor is E. T. Bell’s admirable
The Development of Mathematics.* The most successful and app-
ropriate textbook today appears to be Howard Eves, An Introduction to
the History of Mathematics,” which I have used with considerable
satisfaction in at least a dozen classes since it first appeared in 1953.

'London: Taylor and Francis, 1958.

*Boston: Ginn and Company, 1923—1925,

*New York: Macmillan, 1931, 2nd edition.

“New York: McGraw-Hill, 1945, 2nd edition.

SNew York: Holt, Rinehart and Winston, 1964, revised edition.
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illustrations needed in the text; in particular it has been a pleasure to have
worked with the staff of John Wiley & Sons. The typing of the final copy,
as well as of much of the difficult preliminary manuscript, was done
cheerfully and with painstaking care by Mrs. Hazel Stanley of Lawrence,
Kansas. Finally, I must express deep gratitude to a very understanding
wife. Dr. Marjorie N. Boyer, for her patience in tolerating disruptions
occasioned by the development of yet another book within the family.

—Carl B. Boyer
Brooklyn, New York
January 1968



Traces

Did you bring me a man who cannot number his fingers?
—From the Egyptian Book of the Dead

Concepts and Relationships

Contemporary mathematicians formulate statements about abstract con-
cepts that are subject to verification by proof. For centuries, mathematics
was considered to be the science of numbers, magnitudes, and forms. For
that reason, those who seek early examples of mathematical activity will
point to archaeological remnants that reflect human awareness of opera-
tions on numbers, counting, or “geometric” patterns and shapes. Even
when these vestiges reflect mathematical activity, they rarely evidence
much historical significance. They may be interesting when they show that
peoples in different parts of the world conducted certain actions dealing
with concepts that have been considered mathematical. For such an action
to assume historical significance, however, we look for relationships that
indicate this action was known to another individual or group that engaged
inarelated action. Once such a connection has been established, the door is
open to more specifically historical studies, such as those dealing with
transmission, tradition, and conceptual change.
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Mathematical vestiges are often found in the domain of nonliterate
cultures, making the evaluation of their significance even more complex.
Rules of operation may exist as part of an oral tradition, often in musical
or verse form, or they may be clad in the language of magic or ritual.
Sometimes they are found in observations of animal behavior, removing
them even further from the realm of the historian. While studies of
canine arithmetic or avian geometry belong to the zoologist, of the
impact of brain lesions on number sense to the neurologist, and of
numerical healing incantations to the anthropologist, all of these studies
may prove to be useful to the historian of mathematics without being an
overt part of that history.

At first, the notions of number, magnitude, and form may have been
related to contrasts rather than likenesses—the difference between
one wolf and many, the inequality in size of a minnow and a whale, the
unlikeness of the roundness of the moon and the straightness of a pine
tree. Gradually, there may have arisen, out of the welter of chaotic
experiences, the realization that there are samenesses, and from this
awareness of similarities in number and form both science and mathe-
matics were born. The differences themselves seem to point to likenesses,
for the contrast between one wolf and many, between one sheep and a
herd, between one tree and a forest suggests that one wolf, one sheep,
and one tree have something in common—their uniqueness. In the same
way it would be noticed that certain other groups, such as pairs, can be
put into one-to-one correspondence. The hands can be matched against
the feet, the eyes, the ears, or the nostrils. This recognition of an
abstract property that certain groups hold in common, and that we call
“number,” represents a long step toward modern mathematics. It is
unlikely to have been the discovery of any one individual or any single
tribe; it was more probably a gradual awareness that may have devel-
oped as early in man’s cultural development as the use of fire, possibly
some 300,000 years ago.

That the development of the number concept was a long and gradual
process is suggested by the fact that some languages, including Greek,
have preserved in their grammar a tripartite distinction between 1 and 2
and more than 2, whereas most languages today make only the dual
distinction in “number” between singular and plural. Evidently, our very
early ancestors at first counted only to 2, and any set beyond this level
was designated as “many.” Even today, many people still count objects
by arranging them into sets of two each.

The awareness of number ultimately became sufficiently extended
and vivid so that a need was felt to express the property in some way,
presumably at first in sign language only. The fingers on a hand can be
readily used to indicate a set of two or three or four or five objects, the
number 1 generally not being recognized at first as a true “number.” By
the use of the fingers on both hands, collections containing up to ten
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elements could be represented; by combining fingers and toes, one
could count as high as 20. When the human digits were inadequate,
heaps of stones or knotted strings could be used to represent a corre-
spondence with the elements of another set. Where nonliterate peoples
used such a scheme of representation, they often piled the stones in
groups of five, for they had become familiar with quintuples through
observation of the human hand and foot. As Aristotle noted long ago, the
widespread use today of the decimal system is but the result of
the anatomical accident that most of us are born with ten fingers and
ten toes.

Groups of stones are too ephemeral for the preservation of informa-
tion; hence, prehistoric man sometimes made a number record by cutting
notches in a stick or a piece of bone. Few of these records remain today,
but in Moravia a bone from a young wolf was found that is deeply
incised with fifty-five notches. These are arranged in two series, with
twenty-five in the first and thirty in the second: within each series, the
notches are arranged in groups of five. It has been dated as being
approximately 30,000 years old. Two other prehistoric numerical arti-
facts were found in Africa: a baboon fibula having twenty-nine notches,
dated as being circa 35,000 years old, and the Ishango bone, with its
apparent examples of multiplicative entries, initially dated as approxi-
mately 8,000 years old but now estimated to be as much as 30,000 years
old as well. Such archaeological discoveries provide evidence that the
idea of number is far older than previously acknowledged.

Early Number Bases

Historically, finger counting, or the practice of counting by fives and
tens, seems to have come later than counter-casting by twos and threes,
yet the quinary and decimal systems almost invariably displaced the
binary and ternary schemes. A study of several hundred tribes among
the American Indians, for example, showed that almost one-third used
a decimal base, and about another third had adopted a quinary or a
quinary-decimal system; fewer than a third had a binary scheme, and
those using a ternary system constituted less than 1 percent of the group.
The vigesimal system, with the number 20 as a base, occurred in about
10 percent of the tribes.

An interesting example of a vigesimal system is that used by the Maya
of Yucatan and Central America. This was deciphered some time
before the rest of the Maya languages could be translated. In their
representation of time intervals between dates in their calendar, the
Maya used a place value numeration, generally with 20 as the primary
base and with 5 as an auxiliary. (See the following illustration.) Units
were represented by dots and fives by horizontal bars, so that the number
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From the Dresden Codex of the Maya, displaying numbers. The second
column on the left, reading down from above, displays the numbers 9, 9,
16, 0, 0, which stand for 9 x 144,000+9 x 7,200+ 16 x 360+0+0
=1,366,560. In the third column are the numerals 9, 9, 9, 16, 0, representing

1,364,360. The original appears in black and red. (Taken from Morley 19135,
p. 266.)

17, for example, would appear as =2 (that is, as 3(5)+2). A vertical
positional arrangement was used, with the larger units of time above;
hence, the notation = denoted 352 (that is, 17(20) + 12). Because the
system was pnmanlﬁor counting days within a calendar that had 360
days in a year, the third position usually did not represent multiples of
(20)(20), as in a pure vigesimal system, but (18)(20). Beyond this point,
however, the base 20 again prevailed. Within this positional notation,
the Maya indicated missing positions through the use of a symbol,
which appeared in variant forms, somewhat resembling a half-open eye.
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propositions in geometry and arithmetic. The design makes it immedi-
ately obvious that the areas of triangles are to one another as squares on
a side, or, through counting, that the sums of consecutive odd numbers,
beginning from unity, are perfect squares. For the prehistoric period
there are no documents; hence, it is impossible to trace the evolution of
mathematics from a specific design to a familiar theorem. But ideas are
like hardy spores, and sometimes the presumed origin of a concept may
be only the reappearance of a much more ancient idea that had lain
dormant.

The concern of prehistoric humans for spatial designs and relationships
may have stemmed from their aesthetic feeling and the enjoyment of
beauty of form, motives that often actuate the mathematician of today. We
would like to think that at least some of the early geometers pursued their
work for the sheer joy of doing mathematics, rather than as a practical aid
in mensuration, but there are alternative theories. One of these is that
geometry, like counting, had an origin in primitive ritualistic practice. Yet
the theory of the origin of geometry in a secularization of ritualistic
practice is by no means established. The development of geometry may
justas well have been stimulated by the practical needs of construction and
surveying or by an aesthetic feeling for design and order.

We can make conjectures about what led people of the Stone Age to
count, to measure, and to draw. That the beginnings of mathematics are
older than the oldest civilizations is clear. To go further and categori-
cally identify a specific origin in space or time, however, is to mistake
conjecture for history. It is best to suspend judgment on this matter and
to move on to the safer ground of the history of mathematics as found in
the written documents that have come down to us.
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Ancient Egypt

Sesostris ... made a division of the soil of Egypt among the
inhabitants. . .. If the river carried away any portion of a man’s lot, . ..
the king sent persons to examine, and determine by measurement the
exact extent of the loss. ... From this practice, I think, geometry first
came to be known in Egypt, whence it passed into Greece.
—Herodotus

The Era and the Sources

About 450 Bce, Herodotus, the inveterate Greek traveler and narrative
historian, visited Egypt. He viewed ancient monuments, interviewed
priests, and observed the majesty of the Nile and the achievements of those
working along its banks. His resulting account would become a cornerstone
for the narrative of Egypt’s ancient history. When it came to mathematics,
he held that geometry had originated in Egypt, for he believed that
the subject had arisen there from the practical need for resurveying after the
annual flooding of the river valley. A century later, the philosopher Aris-
totle speculated on the same subject and attributed the Egyptians’ pursuit of
geometry to the existence of a priestly leisure class. The debate, extending
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well beyond the confines of Egypt, about whether to credit progress in
mathematics to the practical men (the surveyors, or “rope-stretchers™) or to
the contemplative elements of society (the priests and the philosophers)
has continued to our times. As we shall see, the history of mathematics
displays a constant interplay between these two types of contributors.

In attempting to piece together the history of mathematics in ancient
Egypt, scholars until the nineteenth century encountered two major
obstacles. The first was the inability to read the source materials that
existed. The second was the scarcity of such materials. For more than
thirty-five centuries, inscriptions used hieroglyphic writing, with varia-
tions from purely ideographic to the smoother hieratic and eventually the
still more flowing demotic forms. After the third century cg, when they
were replaced by Coptic and eventually supplanted by Arabic, knowl-
edge of hieroglyphs faded. The breakthrough that enabled modern
scholars to decipher the ancient texts came early in the nineteenth century
when the French scholar Jean-Frangois Champollion, working with
multilingual tablets, was able to slowly translate a number of hieroglyphs.
These studies were supplemented by those of other scholars, including the
British physicist Thomas Young, who were intrigued by the Rosetta Stone,
a trilingual basalt slab with inscriptions in hieroglyphic, demotic, and Greek
writings that had been found by members of Napoleon’s Egyptian expe-
dition in 1799. By 1822, Champollion was able to announce a substantive
portion of his translations in a famous letter sent to the Academy of Sciences
in Paris, and by the time of his death in 1832, he had published a grammar
textbook and the beginning of a dictionary.

Although these early studies of hieroglyphic texts shed some light on
Egyptian numeration, they still produced no purely mathematical materials.
This situation changed in the second half of the nineteenth century.
In 1858, the Scottish antiquary Henry Rhind purchased a papyrus roll in
Luxor that is about one foot high and some eighteen feet long. Except for a
few fragments in the Brooklyn Museum, this papyrus is now in the British
Museum. It is known as the Rhind or the Ahmes Papyrus, in honor of
the scribe by whose hand it had been copied in about 1650 BcE. The scribe
tells us that the material is derived from a prototype from the Middle
Kingdom of about 2000 to 1800 Bce. Written in the hieratic script,
it became the major source of our knowledge of ancient Egyptian
mathematics. Another important papyrus, known as the Golenishchev or
Moscow Papyrus, was purchased in 1893 and is now in the Pushkin
Museum of Fine Arts in Moscow. It, too, is about eighteen feet long but is
only one-fourth as wide as the Ahmes Papyrus. It was written less carefully
than the work of Ahmes was, by an unknown scribe of circa. 1890 BcE. It
contains twenty-five examples, mostly from practical life and not differing
greatly from those of Ahmes, except for two that will be discussed further
on. Yet another twelfth-dynasty papyrus, the Kahun, is now in London; a
Berlin papyrus is of the same period. Other, somewhat earlier, materials
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are two wooden tablets from Akhmim of about 2000 BcE and a leather roll
containing a list of fractions. Most of this material was deciphered within a
hundred years of Champollion’s death. There is a striking degree of
coincidence between certain aspects of the earliest known inscriptions and
the few mathematical texts of the Middle Kingdom that constitute our
known source material.

Numbers and Fractions

Once Champollion and his contemporaries could decipher inscriptions on
tombs and monuments, Egyptian hieroglyphic numeration was easily dis-
closed. The system, at least as old as the pyramids, dating some 5,000 years
ago, was based on the 10 scale. By the use of a simple iterative scheme and
of distinctive symbols for each of the first half-dozen powers of 10, numbers
greater than a million were carved on stone, wood, and other materials.
A single vertical stroke represented a unit, an inverted wicket was used for
10, a snare somewhat resembling a capital C stood for 100, a lotus flower for
1,000, a bent finger for 10,000, a tadpole for 100,000, and a kneeling figure,
apparently Heh, the god of the Unending, for 1,000,000. Through repetition
of these symbols, the number 12,345, for example, would appear as

2297 nonani)!

Sometimes the smaller digits were placed on the left, and other times the
digits were arranged vertically. The symbols themselves were occasionally
reversed in orientation, so that the snare might be convex toward either the
right or the left.

Egyptian inscriptions indicate familiarity with large numbers at an early
date. A museum at Oxford has a royal mace more than 5,000 years old, on
which a record of 120,000 prisoners and 1,422,000 captive goats appears.
These figures may have been exaggerated, but from other considerations it
is clear that the Egyptians were commendably accurate in counting and
measuring. The construction of the Egyptian solar calendar is an out-
standing early example of observation, measurement, and counting. The
pyramids are another famous instance; they exhibit such a high degree of
precision in construction and orientation that ill-founded legends have
grown up around them.

The more cursive hieratic script used by Ahmes was suitably adapted
to the use of pen and ink on prepared papyrus leaves. Numeration
remained decimal, but the tedious repetitive principle of hleroglyphlc
numeration was replaced by the introduction of ciphers or special signs
to represent digits and multiples of powers of 10. The number 4, for
example, usually was no longer represented by four vertical strokes but
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by a horizontal bar, and 7 is not written as seven strokes but as a single
cipher A resembling a sickle. The hieroglyphic form for the number
28 was nn}|}}; the hieratic form was simply =&. Note that the cipher = for
the smaller digit 8 (or two 4s) appears on the left, rather than on the
right. The principle of cipherization, introduced by the Egyptians some
4,000 years ago and used in the Ahmes Papyrus, represented an
important contribution to numeration, and it is one of the factors that
makes our own system in use today the effective instrument that it is.

Egyptian hieroglyphic inscriptions have a special notation for unit
fractions—that is, fractions with unit numerators. The reciprocal of any
integer was indicated simply by placing over the notation for the integer
an elongated oval sign. The fraction § thus appeared as fﬁi and % was
written as fa. In the hieratic notation, appearing in papyri, the elongated
oval is replaced by a dot, which is placed over the cipher for the cor-
responding integer (or over the right-hand cipher in the case of the
reciprocal of a multidigit number). In the Ahmes Papyrus, for example,
the fraction § appears as ==, and % is written as % Such unit fractions
were freely handled in Ahmes’s day, but the general fraction seems to
have been an enigma to the Egyptians. They felt comfortable with the
fraction 3, for which they had a special hieratic sign 2; occasionally, they
used special signs for fractions of the form n/(n + 1), the complements of
the unit fractions. To the fraction 3, the Egyptians assigned a special role in
arithmetic processes, so that in finding one-third of a number, they first
found two-thirds of it and subsequently took half of the result! They knew
and used the fact that two-thirds of the unit fraction 1/p is the sum of the
two unit fractions 1/2p and 1/6p; they were also aware that double the unit
fraction 1 /2pis the unit fraction 1 /p. Yetitlooks as though, apart from the
fraction 3, the Egyptians regarded the general proper rational fraction of
the form m/n not as an elementary “thing” but as part of an uncompleted
process. Where today we think of % as a single irreducible fraction,
Egyptian scribes thought of it as reducible to the sum of three unit frac-
tions, } and # and 1.

To facilitate the reduction of “mixed” proper fractions to the sum of
unit fractions, the Ahmes Papyrus opens with a table expressing 2/n as
a sum of unit fractions for all odd values of n from 5 to 101.
The equivalent of % is given as 1 and #, 1 is written as i and &%, and 1 is
expressed as % and m. The last item in the table decomposes 7 into i
and =z and w3 and s5. It is not clear why one form of decomposition was
preferred to another of the indefinitely many that are possible. This last
entry certainly exemplifies the Egyptian prepossession for halving and
taking a third; it is not at all clear to us why the decomposition
2/n=1/n+1/2n+1/3n+1/2-3-nis better than 1/n + 1/n. Perhaps one
of the objects of the 2/n decomposition was to arrive at unit fractions
smaller than 1/n. Certain passages indicate that the Egyptians had
some appreciation of general rules and methods above and beyond the
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the desired answer, which was 19. Inasmuch as 8(2+3 +3) =19, one
must multiply 7 by 2 +3 +3 to obtain the correct heap; Ahmes found the
answer to be 16 +1 +3. Ahmes then “checked” his result by showing that
if to 16+1 +% one adds 7 of this (which is 244 +3%), one does indeed
obtain 19. Here we see another significant step in the development of
mathematics, for the check is a simple instance of a proof. Although the
method of false position was generally used by Ahmes, there is one
problem (Problem 30) in which x+3x+3x+%x=37 is solved by fac-
toring the left-hand side of the equation and dividing 37 by 1+3 +3 ++%
the result being 16 +% + & + 7%

Many of the “aha” calculations in the Rhind (Ahmes) Papyrus appear
to be practice exercises for young students. Although a large proportion
of them are of a practical nature, in some places the scribe seemed to
have had puzzles or mathematical recreations in mind. Thus, Problem 79
cites only “seven houses, 49 cats, 343 mice, 2401 ears of spelt, 16807
hekats.” It is presumed that the scribe was dealing with a problem,
perhaps quite well known, where in each of seven houses there are seven
cats, each of which eats seven mice, each of which would have eaten
seven ears of grain, each of which would have produced seven measures
of grain. The problem evidently called not for the practical answer,
which would be the number of measures of grain that were saved, but for
the impractical sum of the numbers of houses, cats, mice, ears of spelt,
and measures of grain. This bit of fun in the Ahmes Papyrus seems to be
a forerunner of our familiar nursery rhyme:

As I was going to St. Ives,

I met a man with seven wives;
Every wife had seven sacks,
Every sack had seven cats,

Every cat had seven kits,

Kits, cats, sacks, and wives,

How many were going to St. Ives?

Geometric Problems

It is often said that the ancient Egyptians were familiar with the
Pythagorean theorem, but there is no hint of this in the papyri that have
come down to us. There are nevertheless some geometric problems in
the Ahmes Papyrus. Problem 51 of Ahmes shows that the area of an
isosceles triangle was found by taking half of what we would call the
base and multiplying this by the altitude. Ahmes justified his method of
finding the area by suggesting that the isosceles triangle can be thought
of as two right triangles, one of which can be shifted in position, so that
together the two triangles form a rectangle. The isosceles trapezoid is
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similarly handled in Problem 52, in which the larger base of a trapezoid
is 6, the smaller base is 4, and the distance between them is 20. Taking
1 of the sum of the bases, “so as to make a rectangle,” Ahmes multiplied
this by 20 to find the area. In transformations such as these, in which
isosceles triangles and trapezoids are converted into rectangles, we may
see the beginnings of a theory of congruence and the idea of proof in
geometry, but there is no evidence that the Egyptians carried such work
further. Instead, their geometry lacks a clear-cut distinction between
relationships that are exact and those that are only approximations.

A surviving deed from Edfu, dating from a period some 1,500 years
after Ahmes, gives examples of triangles, trapezoids, rectangles, and
more general quadrilaterals. The rule for finding the area of the general
quadrilateral is to take the product of the arithmetic means of the
opposite sides. Inaccurate though the rule is, the author of the deed
deduced from it a corollary—that the area of a triangle is half of the sum
of two sides multiplied by half of the third side. This is a striking
instance of the search for relationships among geometric figures, as well
as an early use of the zero concept as a replacement for a magnitude in
geometry.

The Egyptian rule for finding the area of a circle has long been
regarded as one of the outstanding achievements of the time. In Problem
50, the scribe Ahmes assumed that the area of a circular field with a
diameter of 9 units is the same as the area of a square with a side of 8
units. If we compare this assumption with the modern formula A =72,
we find the Egyptian rule to be equivalent to giving w a value of about
3§ a commendably close approximation, but here again we miss any
hint that Ahmes was aware that the areas of his circle and square were
not exactly equal. It is possible that Problem 48 gives a hint to the way
in which the Egyptians were led to their area of the circle. In this pro-
blem, the scribe formed an octagon from a square having sides of 9 units
by trisecting the sides and cutting off the four corner isosceles triangles,
each having an area of 43 units. The area of the octagon, which does not
differ greatly from that of a circle inscribed within the square, is 63
units, which is not far removed from the area of a square with 8 units on
a side. That the number 4(8/9)* did indeed play a role comparable to our
constant 7 seems to be confirmed by the Egyptian rule for the cir-
cumference of a circle, according to which the ratio of the area of a circle
to the circumference is the same as the ratio of the area of the circum-
scribed square to its perimeter. This observation represents a geometric
relationship of far greater precision and mathematical significance than
the relatively good approximation for .

Degree of accuracy in approximation is not a good measure of either
mathematical or architectural achievement, and we should not over-
emphasize this aspect of Egyptian work. Recognition by the Egyptians
of interrelationships among geometric figures, on the other hand, has too
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often been overlooked, and yet it is here that they came closest in atti-
tude to their successors, the Greeks. No theorem or formal proof is
known in Egyptian mathematics, but some of the geometric comparisons
made in the Nile Valley, such as those on the perimeters and the areas of
circles and squares, are among the first exact statements in history
concerning curvilinear figures.

The value of # is often used today for 7; but we must recall that
Ahmes’s value for 7 is about 3§, not 37. That Ahmes’s value was also
used by other Egyptians is confirmed in a papyrus roll from the twelfth
dynasty (the Kahun Papyrus), in which the volume of a cylinder is found
by multiplying the height by the area of the base, the base being
determined according to Ahmes’s rule.

Associated with Problem 14 in the Moscow Papyrus is a figure that
looks like an isosceles trapezoid (see Fig. 2.1), but the calculations
associated with it indicate that a frustum of a square pyramid is intended.
Above and below the figure are signs for 2 and 4, respectively, and
within the figure are the hieratic symbols for 6 and 56. The directions
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Reproduction (top) of a portion of the Moscow Papyrus, showing the problem of the
volume of a frustum of a square pyramid, together with hieroglyphic transcription
(below)
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2

FIG. 2.1

alongside make it clear that the problem calls for the volume of a
frustum of a square pyramid 6 units high if the edges of the upper and
lower bases are 2 and 4 units, respectively. The scribe directs one to
square the numbers 2 and 4 and to add to the sum of these squares the
product of 2 and 4, the result being 28. This result is then multiplied by a
third of 6, and the scribe concludes with the words “See, it is 56; you
have found it correctly.” That is, the volume of the frustum has been
calculated in accordance with the modern formula V= h(a>+ ab + b*) /3,
where h is the altitude and @ and b are the sides of the square bases.
Nowhere is this formula written out, but in substance it evidently was
known to the Egyptians. If, as in the deed from Edfu, one takes b=0,
the formula reduces to the familiar formula, one-third the base times the
altitude, for the volume of a pyramid.

How these results were arrived at by the Egyptians is not known. An
empirical origin for the rule on the volume of a pyramid seems to be a
possibility, but not for the volume of the frustum. For the latter, a theo-
retical basis seems more likely, and it has been suggested that the Egyp-
tians may have proceeded here as they did in the cases of the isosceles
triangle and the isosceles trapezoid—they may mentally have broken the
frustum into parallelepipeds, prisms, and pyramids. On replacing the
pyramids and the prisms by equal rectangular blocks, a plausible grouping
of the blocks leads to the Egyptian formula. One could, for example,
have begun with a pyramid having a square base and with the vertex
directly over one of the base vertices. An obvious decomposition of
the frustum would be to break it into four parts as in Fig. 2.2—a
rectangular parallelepiped having a volume b*h, two triangular prisms,
each with a volume of b(a — b)h/ 2, and a pyramid of volume (a — b)*h /3.
The prisms can be combined into a rectangular parallelepiped with
dimensions b and a —b and h; and the pyramid can be thought of as a
rectangular parallelepiped with dimensions a—b and a—»b and h/3. On
cutting up the tallest parallelepipeds so that all altitudes are h/3, one can
easily arrange the slabs so as to form three layers, each of altitude i /3, and
having cross-sectional areas of a’ and ab and b7, respectively.
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FIG. 2.2

Problem 10 in the Moscow Papyrus presents a more difficult question of
interpretation than does Problem 14. Here the scribe asks for the surface
area of what looks like a basket with a diameter of 43. He proceeds as
though he were using the equivalent of a formula S=(1—3)(2x)-x,
where x is 43, obtaining an answer of 32 units. Inasmuch as (1 — s)’ is the
Egyptian approximation of 7/4, the answer 32 would correspond to the
surface of a hemisphere of diameter 41, and this was the interpretation
given to the problem in 1930. Such a result, antedating the oldest known
calculation of a hemispherical surface by some 1,500 years, would have
been amazing, and it seems, in fact, to have been too good to be true. Later
analysis indicates that the “basket” may have been a roof—somewhat like
that of a Quonset hut in the shape of a half-cylinder of diameter 4} and
length 41. The calculation in this case calls for nothing beyond knowledge
of the length of a semicircle, and the obscurity of the text makes it
admissible to offer still more primitive interpretations, including the pos-
sibility that the calculation is only a rough estimate of the area of a
domelike barn roof. In any case, we seem to have here an early estimation
of a curvilinear surface area.

Slope Problems

In the construction of the pyramids, it had been essential to maintain a
uniform slope for the faces, and it may have been this concern that led
the Egyptians to introduce a concept equivalent to the cotangent of an
angle. In modern technologys, it is customary to measure the steepness of
a straight line through the ratio of the “rise” to the “run.” In Egypt, it was
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Mesopotamia

How much is one god beyond the other god?
—An OId Babylonian astronomical text

The Era and the Sources

The fourth millennium before our era was a period of remarkable cultural
development, bringing with it the use of writing, the wheel, and metals. As in
Egypt during the first dynasty, which began toward the end of this extra-
ordinary millennium, so also in the Mesopotamian Valley there was at the
time a high order of civilization. There the Sumerians had built homes and
temples decorated with artistic pottery and mosaics in geometric patterns.
Powerful rulers united the local principalities into an empire that completed
vast public works, such as a system of canals to irrigate the land and control
flooding between the Tigris and Euphrates rivers, where the overflow of
the rivers was not predictable, as was the inundation of the Nile Valley. The
cuneiform pattern of writing that the Sumerians had developed during
the fourth millennium probably antedates the Egyptian hieroglyphic system.

The Mesopotamian civilizations of antiquity are often referred to as
Babylonian, although such a designation is not strictly correct. The city of

21
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Babylon was not at first, nor was it always at later periods, the center
of the culture associated with the two rivers, but convention has sanctioned
the informal use of the name “Babylonian” for the region during the interval
from about 2000 to roughly 600 Bce. When in 538 Bce Babylon fell to Cyrus
of Persia, the city was spared, but the Babylonian Empire had come to an end.
“Babylonian™ mathematics, however, continued through the Seleucid period
in Syria almost to the dawn of Christianity.

Then, as today, the Land of the Two Rivers was open to invasions from
many directions, making the Fertile Crescent a battlefield with frequently
changing hegemony. One of the most significant of the invasions was that by
the Semitic Akkadians under Sargon I (ca. 2276—2221 BcE), or Sargon the
Great. He established an empire that extended from the Persian Gulf in
the south to the Black Sea in the north, and from the steppes of Persia
in the east to the Mediterranean Sea in the west. Under Sargon, the invaders
began a gradual absorption of the indigenous Sumerian culture, including the
cuneiform script. Later invasions and revolts brought various racial strains—
Ammorites, Kassites, Elamites, Hittites, Assyrians, Medes, Persians, and
others—to political power at one time or another in the valley, but there
remained in the area a sufficiently high degree of cultural unity to justify
referring to the civilization simply as Mesopotamian. In particular, the use of
cuneiform script formed a strong bond.

Laws, tax accounts, stories, school lessons, personal letters—these and
many other records were impressed on soft clay tablets with styluses, and the
tablets were then baked in the hot sun or in ovens. Such written documents
were far less vulnerable to the ravages of time than were Egyptian papyri;
hence, a much larger body of evidence about Mesopotamian mathematics is
available today than exists about the Nilotic system. From one locality alone,
the site of ancient Nippur, we have some 50,000 tablets. The university
libraries at Columbia, Pennsylvania, and Yale, among others, have large
collections of ancient tablets from Mesopotamia, some of them mathema-
tical. Despite the availability of documents, however, it was the Egyptian
hieroglyphic, rather than the Babylonian cuneiform, that was first deciphered
in modern times. The German philologist F. W. Grotefend had made some
progress in the reading of Babylonian script early in the nineteenth century,
but only during the second quarter of the twentieth century did substantial
accounts of Mesopotamian mathematics begin to appear in histories of
antiquity.

Cuneiform Writing

The early use of writing in Mesopotamia is attested to by hundreds of
clay tablets found in Uruk and dating from about 5,000 years ago. By
this time, picture writing had reached the point where conventionalized
stylized forms were used for many things: = for water, & for eye, and
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combinations of these to indicate weeping. Gradually, the number of
signs became smaller, so that of some 2,000 Sumerian signs originally
used, only a third remained by the time of the Akkadian conquest.
Primitive drawings gave way to combinations of wedges: water became
if and eye k-v~. At first, the scribe wrote from top to bottom in columns
from right to left; later, for convenience, the table was rotated coun-
terclockwise through 90°, and the scribe wrote from left to right in
horizontal rows from top to bottom. The stylus, which formerly had been
a triangular prism, was replaced by a right circular cylinder—or, rather,
two cylinders of unequal radius. During the earlier days of the Sumerian
civilization, the end of the stylus was pressed into the clay vertically to
represent 10 units and obliquely to represent a unit, using the smaller
stylus; similarly, an oblique impression with the larger stylus indicated
60 units and a vertical impression indicated 3,600 units. Combinations
of these were used to represent intermediate numbers.

Numbers and Fractions: Sexagesimals

As the Akkadians adopted the Sumerian form of writing, lexicons were
compiled giving equivalents in the two tongues, and forms of words and
numerals became less varied. Thousands of tablets from about the time of the
Hammurabi dynasty (ca. 1800—1600 Bcg) illustrate a number system that
had become well established. The decimal system, common to most civili-
zations, both ancient and modern, had been submerged in Mesopotamia
under a notation that made fundamental the base 60. Much has been written
about the motives behind this change; it has been suggested that astro-
nomical considerations may have been instrumental or that the sexagesimal
scheme might have been the natural combination of two earlier schemes,
one decimal and the other using the base 6. It appears more likely,
however, that the base 60 was consciously adopted and legalized in the
interests of metrology, for a magnitude of 60 units can be subdivided
easily into halves, thirds, fourths, fifths, sixths, tenths, twelfths, fifteenths,
twentieths, and thirtieths, thus affording ten possible subdivisions.
Whatever the origin, the sexagesimal system of numeration has enjoyed a
remarkably long life, for remnants survive, unfortunately for consistency,
even to this day in units of time and angle measure, despite the funda-
mentally decimal form of mathematics in our society.

Positional Numeration

Babylonian cuneiform numeration, for smaller whole numbers, pro-
ceeded along the same lines as did the Egyptian hieroglyphic, with
repetitions of the symbols for units and tens. Where the Egyptian
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architect, carving on stone, might write 59 as fnn lIf“ll, the Mesopotamian
scribe could similarly represent the same number on a clay tablet
through fourteen wedge-shaped marks—five broad sideways wedges or
“angle-brackets,” each representing 10 units, and nine thin vertical
wedges, each standing for a unit, all juxtaposed in a neat group as (ﬁﬁ
Beyond the number 59, however, the Egyptian and Babylonian systems
differed markedly. Perhaps it was the inflexibility of the Mesopotamian
writing materials, possibly it was a flash of imaginative insight that
made the Babylonians realize that their two symbols for units and tens
sufficed for the representation of any integer, however large, without
excessive repetitiveness. This was made possible through their invention,
some 4,000 years ago, of the positional notation—the same principle
that accounts for the effectiveness of our present numeral forms. That
is, the ancient Babylonians saw that their symbols could be assigned values
that depend on their relative positions in the representation of a number.
Our number 222 makes use of the same cipher three times, but with a
different meaning each time. Once it represents two units, the second time
it means two 10s, and finally it stands for two 100s (that is, twice the square
of the base 10). In a precisely analogous way, the Babylonians made
multiple use of such a symbol as 1. When they wrote 11, clearly
separating the three groups of two wedges each, they understood the right-
hand group to mean two units, the next group to mean twice their base, 60,
and the left-hand group to signify twice the square of their base. This
numeral, therefore, denoted 2(60)*>+ 2(60)+ 2 (or 7,322 in our notation).

A wealth of primary material exists concerning Mesopotamian
mathematics, but, oddly enough, most of it comes from two periods
widely separated in time. There is an abundance of tablets from the first
few hundred years of the second millennium Bce (the Old Babylonian
age), and many tablets have also been found dating from the last few
centuries of the first millennium BCE (the Seleucid period). Most of the
important contributions to mathematics will be found to go back to
the earlier period, but one contribution is not in evidence until almost
300 Bce. The Babylonians seem at first to have had no clear way in
which to indicate an “empty” position—that is, they did not have a zero
symbol, although they sometimes left a space where a zero was inten-
ded. This meant that their forms for the numbers 122 and 7,202 looked
very much alike, for vryr might mean either 2(60)+2 or 2(60)*+2.
Context in many cases could be relied on to relieve some of the ambi-
guity, but the lack of a zero symbol, such as enables us to distinguish at a
glance between 22 and 202, must have been quite inconvenient.

By about the time of the conquest by Alexander the Great, however, a
special sign, consisting of two small wedges placed obliquely, was
invented to serve as a placeholder where a numeral was missing. From
that time on, as long as cuneiform was used, the number 174 ¥y, or
2(60)* 4+ 0(60) + 2, was readily distinguishable from Y7y, or 2(60) + 2.
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The Babylonian zero symbol apparently did not end all ambiguity, for
the sign seems to have been used for intermediate empty positions only.
There are no extant tablets in which the zero sign appears in a terminal
position. This means that the Babylonians in antiquity never achieved an
absolute positional system. Position was only relative; hence, the symbol
1111 could represent 2(60) + 2 or 2(60)* + 2(60) or 2(60)* + 2(60)* or any
one of indefinitely many other numbers in which two successive posi-
tions are involved.

Sexagesimal Fractions

Had Mesopotamian mathematics, like that of the Nile Valley, been
based on the addition of integers and unit fractions, the invention of the
positional notation would not have been greatly significant at the time. It
is not much more difficult to write 98,765 in hieroglyphic notation than
in cuneiform, and the latter is definitely more difficult to write than the
same number in hieratic script. The secret of the superiority of Baby-
lonian mathematics over that of the Egyptians lies in the fact that those
who lived “between the two rivers” took the most felicitous step of
extending the principle of position to cover fractions as well as whole
numbers. That is, the notation 11 77 was used not only for 2(60) + 2, but
also for 2 +2(60) " or for 2(60)" + 2(60)? or for other fractional forms
involving two successive positions. This meant that the Babylonians had
at their command the computational power that the modern decimal
fractional notation affords us today. For the Babylonian scholar, as for
the modern engineer, the addition or the multiplication of 23.45 and
9.876 was essentially no more difficult than was the addition or the
multiplication of the whole numbers 2,345 and 9,876, and the Meso-
potamians were quick to exploit this important discovery.

Approximations

An Old Babylonian tablet from the Yale Collection (No. 7289) includes the
calculation of the square root of 2 to three sexagesimal places, the answer
being written WH{{(§1¢ In modern characters, this number can
be appropriately written as 1;24,51,10, where a semicolon is used to separate
the integral and fractional parts, and a comma is used as a separatrix for the
sexagesimal positions. This form will generally be used throughout this
chapter to designate numbers in sexagesimal notation. Translating this
notation into decimal form, we have 1+ 24(60)'+51(60)+ 10(60).
This Babylonian value for v/2 is equal to approximately 1.414222, differing
by about 0.000008 from the true value. Accuracy in approximations was
relatively easy for the Babylonians to achieve with their fractional notation,
which was rarely equaled until the time of the Renaissance.
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seen in a problem text that asks how long it will take money to double at
20 percent annually; the answer given is 3;47,13,20. It seems to be quite
clear that the scribe used linear interpolation between the values for
(1:12)* and (1;12)*, following the compound interest formula a=
P(1 +ry, where r is 20 percent, or , and reading values from an
exponential table with powers of 1;12.

Equations

One table for which the Babylonians found considerable use is a tabu-
lation of the values of n* +n’ for integral values of n, a table essential in
Babylonian algebra; this subject reached a considerably higher level
in Mesopotamia than in Egypt. Many problem texts from the Old Baby-
lonian period show that the solution of the complete three-term quadratic
equation afforded the Babylonians no serious difficulty, for flexible
algebraic operations had been developed. They could transpose terms
in an equation by adding equals to equals, and they could multiply both
sides by like quantities to remove fractions or to eliminate factors. By
adding 4ab to (a — b)* they could obtain (a + b)?, for they were familiar
with many simple forms of factoring. They did not use letters for
unknown quantities, for the alphabet had not yet been invented, but
words such as “length,” “breadth,” “area,” and “volume” served
effectively in this capacity. That these words may well have been used
in a very abstract sense is suggested by the fact that the Babylonians
had no qualms about adding a “length” to an “area” or an “area” to a
“volume.”

Egyptian algebra had been much concerned with linear equations, but the
Babylonians evidently found these too elementary for much attention. In
one problem, the weight x of a stone is called for if (x +x/7) +1(x+x/7)
is one mina; the answer is simply given as 48;7,30 gin, where 60 gin make a
mina. In another problem in an Old Babylonian text, we find two simulta-
neous linear equations in two unknown quantities, called respectively the
“first silver ring” and the “second silver ring.” If we call these x and y in our
notation, the equations are x/7 +y/11=1 and 6x/7=10y/ 11. The answer is
expressed laconically in terms of the rule

x 11 1 y 7 1
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In another pair of equations, part of the method of solution is included in
the text. Here § width + length="7 hands, and length + width = 10 hands.
The solution is first found by replacing each “hand” with 5 “fingers” and
then noticing that a width of 20 fingers and a length of 30 fingers will
satisfy both equations. Following this, however, the solution is found by an
alternative method equivalent to an elimination through combination.
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Expressing all dimensions in terms of hands, and letting the length and the
width be x and y, respectively, the equations become y+4x=28 and
x+y=10. Subtracting the second equation from the first, one has the result
3x=18; hence, x=6 hands, or 30 fingers, and y=20 fingers.

Quadratic Equations

The solution of a three-term quadratic equation seems to have exceeded
by far the algebraic capabilities of the Egyptians, but Otto Neugebauer
in 1930 disclosed that such equations had been handled effectively by
the Babylonians in some of the oldest problem texts. For instance, one
problem calls for the side of a square if the area less the side is 14,30.
The solution of this problem, equivalent to solving x*—x=2870, is
expressed as follows:

Take half of 1, which is 0;30, and multiply 0;30 by 0;30, which is 0;15;
add this to 14,30 to get 14,30;15. This is the square of 29;30. Now add 0;30
to 29;30, and the result is 30, the side of the square.

The Babylonian solution is, of course, exactly equivalent to the for-
mula x=/(p/2)" + ¢+ p/2 for a root of the equation x*> — px =g, which
is the quadratic formula that is familiar to high school students of today.
In another text, the equation 1x*+7x=6;15 was reduced by the Baby-
lonians to the standard type x>+ px =g by first multiplying through by
11 to obtain (11x)*+7(11x)=1,8;45. This is a quadratic in normal form
in the unknown quantity y = 1 1x, and the solution for y is easily obtained
by the familiar rule y=+/(p/2)* + g — p/2. from which the value of x is
then determined. This solution is remarkable as an instance of the use of
algebraic transformations.

Until modern times, there was no thought of solving a quadratic
equation of the form x*+ px+ ¢ =0, where p and ¢ are positive, for the
equation has no positive root. Consequently, quadratic equations in
ancient and medieval times—and even in the early modern period—
were classified under three types:

PX=q
px—+q
=p_x

+II+
& T

1. 1
2. x
3. X

All three types are found in Old Babylonian texts of some 4,000 years ago.
The first two types are illustrated by the problems given previously; the
third type appears frequently in problem texts, where it is treated as
equivalent to the simultaneous system x+ y=p, xy=g. S0 numerous are
problems in which one is asked to find two numbers when given their
product and either their sum or their difference that these seem to
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have constituted for the ancients, both Babylonian and Greek, a sort
of “normal form™ to which quadratics were reduced. Then, by transforming
the simultaneous equations xy=a and x + y=5 into the pair of linear
equations x+y=>~ and x Fy=+/b>F4a, the values of x and y are found
through an addition and a subtraction. A Yale cuneiform tablet, for
example, asks for the solution of the system x + y = 6;30 and xy =7;30. The
instructions of the scribe are essentially as follows. First find

xX+y
—==3;15
2

and then find
("f’;—’) =10:3345.

Then,
(x;”’ )2 —xy=3:345
and
(x-zl-_y)z —xy=1;45.
Hence,
(‘?} + (x%y) =315+ 1:45
and
+v _
(%) - (%) =3:15— 1:45.

From the last two equations, it is obvious that x=35 and y = 1. Because the
quantities x and y enter symmetrically in the given conditional equations, it is
possible to interpret the values of x and y as the two roots of the quadratic
equation x* + 7;30 = 6;30x. Another Babylonian text calls for a number that
when added to its reciprocal becomes 2;0,0,33,20. This leads to a quadratic
of type 3, and again we have two solutions, 1;0,45 and 0;59,15,33,20.

Cubic Equations

The Babylonian reduction of a quadratic equation of the form
ax*+bx=c to the normal form y*+by=ac through the substitution
y=ax shows the extraordinary degree of flexibility in Mesopotamian
algebra. There is no record in Egypt of the solution of a cubic equation,
but among the Babylonians there are many instances of this.
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Pure cubics, such as x*=0;7,30, were solved by direct reference to
tables of cubes and cube roots, where the solution x =0;30 was read off.
Linear interpolation within the tables was used to find approximations
for values not listed in the tables. Mixed cubics in the standard form
x*+x*=a were solved similarly by reference to the available tables,
which listed values of the combination n’+n* for integral values of
n from 1 to 30. With the help of these tables, they easily read off
that the solution, for example, of x*+x*=4,12 is equal to 6. For still
more general cases of equations of the third degree, such as
144x* +12x*=21, the Babylonians used their method of substitution.
Multiplying both sides by 12 and using y=12x, the equation becomes
¥ +3y*=4,12, from which y is found to be equal to 6, hence x is just 3or0;30.
Cubics of the form ax® + bx* = ¢ are reducible to the Babylonian normal form
by multiplying through by «*/b° to obtain (ax/b)’ + (ax/by=
ca*/ b*, a cubic of standard type in the unknown quantity ax/b. Reading off
from the tables the value of this unknown quantity, the value of x is deter-
mined. Whether the Babylonians were able to reduce the general four-term
cubic, ax®+ bx*+ ex=d, to their normal form is not known. It is not too
unlikely that they could reduce it, as is indicated by the fact that a solution
of a quadratic suffices to carry the four-term equation to the three-term
form px*+gx*=r, from which, as we have seen, the normal form is
readily obtained. There is, however, no evidence now available to suggest
that the Mesopotamian mathematicians actually carried out such a
reduction of the general cubic equation.

With modern symbolism, it is a simple matter to see that (ax)’ + (ax)’=b
is essentially the same type of equation as y*+y’=b, but to recognize this
without our notation is an achievement of far greater significance for the
development of mathematics than even the vaunted positional principle in
arithmetic that we owe to the same civilization. Babylonian algebra had
reached such an extraordinary level of abstraction that the equations
ax*+bx¥*=c and ax’*+bx*=c were recognized as nothing worse than
quadratic equations in disguise—that is, quadratics in x* and x*.

Measurements: Pythagorean Triads

The algebraic achievements of the Babylonians are admirable, but the
motives behind this work are not easy to understand. It has commonly been
supposed that virtually all pre-Hellenic science and mathematics were purely
utilitarian, but what sort of real-life situation in ancient Babylon
could possibly lead to problems involving the sum of a number and its
reciprocal or a difference between an area and a length? If utility was the
motive, then the cult of immediacy was less strong than it is now, for direct
connections between purpose and practice in Babylonian mathematics are
far from apparent. That there may well have been toleration for, if not
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encouragement of, mathematics for its own sake is suggested by a tablet (No.
322) in the Plimpton Collection at Columbia University. The tablet dates
from the Old Babylonian period (ca. 1900— 1600 BcE), and the tabulations it
contains could easily be interpreted as a record of business accounts. Analysis,
however, shows that it has deep mathematical significance in the theory of
numbers and that it was perhaps related to a kind of proto-trigonometry.
Plimpton 322 was part of a larger tablet, as is illustrated by the break along the
left-hand edge, and the remaining portion contains four columns of numbers
arranged in fifteen horizontal rows. The right-hand column contains the digits
from 1 to 15, and, evidently, its purpose was simply to identify in order the
items in the other three columns, arranged as follows:

1.59,0,15 1,59 2,49 1
1,56,56,58,14,50,6,15 56,7 1,20,25 2
1,55,7,41,15,33.45 1,16,41 1,50,49 3
1,53,10,29,32,52,16 3,31,49 59.1 4
1.48,54,1,40 1.5 1,37 5
1,47,6,41,40 5,19 8.1 6
1.43,11,56,28,26,40 38,11 59.1 7
1,41,33,59,3,45 13,19 20,49 8
1.38,33,36,36 8.1 12,49 9
1,35,10,2,28,27,24,26,40 1,22,41 2,16,1 10
1,33,45 45,0 1,15,0 11
1,29,21,54,2.15 27,59 48.49 12
1,27,0,3,45 2,41 4,49 13
1,25,48,51,35,6,40 29,31 53,49 14
1,23,13,46,40 56 1,46 15

The tablet is not in such excellent condition that all of the numbers can
still be read, but the clearly discernible pattern of construction in the table
made it possible to determine from the context the few items that were
missing because of small fractures. To understand what the entries in
the table probably meant to the Babylonians, consider the right triangle
ABC (Fig. 3.1). If the numbers in the second and third columns (from left
to right) are thought of as the sides a and c, respectively, of the right
triangle, then the first, or left-hand, column contains in each case the
square of the ratio of ¢ to b. The left-hand column, therefore, is a short
table of values of sec* A, but we must not assume that the Babylonians
were familiar with our secant concept. Neither the Egyptians nor the
Babylonians introduced a measure of angles in the modern sense.
Nevertheless, the rows of numbers in Plimpton 322 are not arranged in
haphazard fashion, as a superficial glance might imply. If the first comma
in column one (on the left) is replaced by a semicolon, it is obvious that the
numbers in this column decrease steadily from top to bottom. Moreover,
the first number is quite close to sec’® 45°, and the last number in the
column is approximately sec?31°, with the intervening numbers close to
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in the Plimpton Tablet 322; as in this case, many are still open to multiple
interpretations. For instance, in one tablet the geometric progression
14+2+2°+ -+ +2° is summed, and in another the sum of the series of
squares 1°+2*+3*+ --- + 107 is found. One wonders whether the Baby-
lonians knew the general formulas for the sum of a geometric progression
and the sum of the first n perfect squares. It is quite possible that they did,
and it has been conjectured that they were aware that the sum of the first n
perfect cubes is equal to the square of the sum of the first n integers.
Nevertheless, it must be borne in mind that tablets from Mesopotamia
resemble Egyptian papyri in that only specific cases are given, with no
general formulations.

Polygonal Areas

It used to be held that the Babylonians were better in algebra than were the
Egyptians, but that they had contributed less to geometry. The first half of
this statement is clearly substantiated by what we have learned in previous
paragraphs; attempts to bolster the second half of the comparison generally
are limited to the measure of the circle or to the volume of the frustum of
a pyramid. In the Mesopotamian Valley, the area of a circle was generally
found by taking three times the square of the radius, and in accuracy this
falls considerably below the Egyptian measure. Yet the counting of decimal
places in the approximations for 7 is scarcely an appropriate measure of the
geometric stature of a civilization, and a twentieth-century discovery has
effectively nullified even this weak argument.

In 1936, a group of mathematical tablets was unearthed at Susa, a
couple of hundred miles from Babylon, and these include significant
geometric results. True to the Mesopotamian penchant for making tables
and lists, one tablet in the Susa group compares the areas and the squares
of the sides of the regular polygons of three, four, five, six, and seven
sides. The ratio of the area of the pentagon, for example, to the square on
the side of the pentagon is given as 1;40, a value that is correct to two
significant figures. For the hexagon and the heptagon, the ratios
are expressed as 2;37,30 and 3:41, respectively. In the same tablet, the
scribe gives 0;57,36 as the ratio of the perimeter of the regular hexagon
to the circumference of the circumscribed circle, and from this, we can
readily conclude that the Babylonian scribe had adopted 37,30, or 33, as
an approximation for m. This is at least as good as the value adopted
in Egypt. Moreover, we see it in a more sophisticated context than in
Egypt, for the tablet from Susa is a good example of the systematic
comparison of geometric figures. One is almost tempted to see in it the
genuine origin of geometry, but it is important to note that it was not so
much the geometric context that interested the Babylonians as the
numerical approximations that they used in mensuration. Geometry for
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FIG. 3.2

them was not a mathematical discipline in our sense, but a sort of
applied algebra or arithmetic in which numbers are attached to figures.

There is some disagreement as to whether the Babylonians were familiar
with the concept of similar figures, although this appears to be likely. The
similarity of all circles seems to have been taken for granted in Mesopo-
tamia, as it had been in Egypt, and the many problems on triangle measure
in cuneiform tablets seem to imply a concept of similarity. A tablet in the
Baghdad Museum has a right triangle ABC (Fig. 3.2) with sides ¢ =60 and
b=45 and ¢=75, and it is subdivided into four smaller right triangles,
ACD, CDE, DEF, and EFB. The areas of these four triangles are then given
as 8,6 and 5,11;2,24 and 3,19;3,56,9,36 and 5,53;53,39,50,24, respectively.
From these values, the scribe computed the length of AD as 27, apparently
using a sort of “similarity formula” equivalent to our theorem that areas of
similar figures are to each other as squares on corresponding sides. The
lengths of CD and BD are found to be 36 and 48, respectively, and through
an application of the “similarity formula” to triangles BCD and DCE, the
length of CE is found to be 21;36. The text breaks off in the middle of the
calculation of DE.

Geometry as Applied Arithmetic

Measurement was the keynote of algebrdic geometry in the Mesopota-
mian Valley, but a major flaw, as in Egyptian geometry, was that the
distinction between exact and approximate measures was not made
clear. The area of a quadrilateral was found by taking the product of the
arithmetic means of the pairs of opposite sides, with no warning that
this is in most cases only a crude approximation. Again, the volume of
a frustum of a cone or a pyramid was sometimes found by taking the
arithmetic mean of the upper and lower bases and multiplying by
the height; sometimes, for a frustum of a square pyramid with areas a?
and b? for the lower and upper bases, the formula

a+b\
V= h
(7))
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was applied. For the latter, however, the Babylonians also used a rule

equivalent to
a+b\ 1fa-bY
w577

a formula that is correct and reduces to the one used by the Egyptians.

It is not known whether Egyptian and Babylonian results were always
independently discovered, but in any case, the latter were definitely
more extensive than the former, in both geometry and algebra. The
Pythagorean theorem, for example, does not appear in any form in
surviving documents from Egypt, but tablets even from the Old Baby-
lonian period show that in Mesopotamia the theorem was widely used. A
cuneiform text from the Yale Collection, for example, contains a dia-
gram of a square and its diagonals in which the number 30 is written
along one side and the numbers 42;25,35 and 1;24,51,10 appear along
a diagonal. The last number obviously is the ratio of the lengths of the
diagonal and a side, and this is so accurately expressed that it agrees with

2 to within about a millionth. The accuracy of the result was made
possible by knowledge of the Pythagorean theorem. Sometimes, in less
precise computations, the Babylonians used 1;25 as a rough-and-ready
approximation to this ratio. Of more significance than the precision of the
values, however, is the implication that the diagonal of any square could be
found by multiplying the side by /2. Thus, there seems to have been some
awareness of general principles, despite the fact that these are exclusively
expressed in special cases.

Babylonian recognition of the Pythagorean theorem was by no means
limited to the case of a right isosceles triangle. In one Old Babylonian
problem text, a ladder or a beam of length 0;30 stands against a wall; the
question is, how far will the lower end move out from the wall if
the upper end slips down a distance of 0;6 units? The answer is correctly
found by use of the Pythagorean theorem. Fifteen hundred years later,
similar problems, some with new twists, were still being solved in
the Mesopotamian Valley. A Seleucid tablet, for example, proposes the
following problem. A reed stands against a wall. If the top slides down 3
units when the lower end slides away 9 units, how long is the reed? The
answer is given correctly as 15 units.

Ancient cuneiform problem texts provide a wealth of exercises in what
we might call geometry, but which the Babylonians probably thought of
as applied arithmetic. A typical inheritance problem calls for the parti-
tion of a right-triangular property among six brothers. The area is given
as 11,22,30 and one of the sides is 6,30; the dividing lines are to be
equidistant and parallel to the other side of the triangle. One is asked to
find the difference in the allotments. Another text gives the bases of
an isosceles trapezoid as 50 and 40 units and the length of the sides
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as 30; the altitude and the area are required (van der Waerden 1963,
pp. 76—-77).

The ancient Babylonians were aware of other important geometric
relationships. Like the Egyptians, they knew that the altitude in an
isosceles triangle bisects the base. Hence, given the length of a chord in
a circle of known radius, they were able to find the apothem. Unlike the
Egyptians, they were familiar with the fact that an angle inscribed in
a semicircle is a right angle, a proposition generally known as the
Theorem of Thales, despite the fact that Thales lived more than a mil-
lennium after the Babylonians had begun to use it. This misnaming of a
well-known theorem in geometry is symptomatic of the difficulty in
assessing the influence of pre-Hellenic mathematics on later cultures.
Cuneiform tablets had a permanence that could not be matched by
documents from other civilizations, for papyrus and parchment do not so
easily survive the ravages of time. Moreover, cuneiform texts continued
to be recorded down to the dawn of the Christian era, but were they read
by neighboring civilizations, especially the Greeks? The center of
mathematical development was shifting from the Mesopotamian Valley
to the Greek world half a dozen centuries before the beginning of our
era, but reconstructions of early Greek mathematics are rendered
hazardous by the fact that there are virtually no extant mathematical
documents from the pre-Hellenistic period. It is important, therefore, to
keep in mind the general characteristics of Egyptian and Babylonian
mathematics so as to be able to make at least plausible conjectures
concerning analogies that may be apparent between pre-Hellenic con-
tributions and the activities and attitudes of later peoples.

There is a lack of explicit statements of rules and of clear-cut distinctions
between exact and approximate results. The omission in the tables of cases
involving irregular sexagesimals seems to imply some recognition of such
distinctions, but neither the Egyptians nor the Babylonians appear to have
raised the question of when the area of a quadrilateral (or of a circle) is
found exactly and when only approximately. Questions about the solva-
bility or unsolvability of a problem do not seem to have been raised, nor
was there any investigation into the nature of proof. The word “proof™
means various things at different levels and ages; hence, it is hazardous to
assert categorically that pre-Hellenic peoples had no concept of proof, nor
any feeling of the need for proof. There are hints that these people were
occasionally aware that certain area and volume methods could be justified
through a reduction to simpler area and volume problems. Moreover, pre-
Hellenic scribes not infrequently checked or “proved” their divisions by
multiplication; occasionally, they verified the procedure in a problem
through a substitution that verified the correctness of the answer. Never-
theless, there are no explicit statements from the pre-Hellenic period that
would indicate a felt need for proofs or a concern for questions of logical
principles. In Mesopotamian problems, the words “length” and “width”
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should perhaps be interpreted much as we interpret the letters x and y, for
the writers of cuneiform tablets may well have moved on from specific
instances to general abstractions. How else does one explain the addition of
a length to an area? In Egypt also, the use of the word for quantity is not
incompatible with an abstract interpretation such as we read into it today. In
addition, there were in Egypt and Babylonia problems that have the ear-
marks of recreational mathematics. If a problem calls for a sum of cats and
measures of grain, or of a length and an area, one cannot deny to the
perpetrator either a modicum of levity or a feeling for abstraction. Of
course, much of pre-Hellenic mathematics was practical, but surely not all
of it. In the practice of computation, which stretched over a couple of
millennia, the schools of scribes used plenty of exercise material, often,
perhaps, simply as good clean fun.
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refer to this period as the “Heroic Age of Mathematics,” for seldom,
either before or since, have men with so little to work with tackled
mathematical problems of such fundamental significance. No longer
was mathematical activity centered almost entirely in two regions nearly
at opposite ends of the Greek world; it flourished all around the
Mediterranean. In what is now southern Italy, there were Archytas of
Tarentum (born ca. 428 Bce) and Hippasus of Metapontum (fl. ca. 400
BCE); at Abdera in Thrace, we find Democritus (born ca. 460 BCE); nearer
the center of the Greek world, on the Attic peninsula, there was Hippias
of Elis (born ca. 460 BcE); and in nearby Athens, there lived at various
times during the pivotal last half of the fifth century BcE three scholars
from other regions: Hippocrates of Chios (fl. ca. 430 BcE), Anaxagoras
of Clazomenae (fl. 428 BcE), and Zeno of Elea (fl. ca. 450 Bcg). Through
the work of these seven men, we shall describe the fundamental changes
in mathematics that took place a little before the year 400 Bce. Again, we
must remember that although the histories of Herodotus and Thucydides
and the plays of Aeschylus, Euripides, and Aristophanes have in some
measure survived, scarcely a line is extant of what was written by
mathematicians of the time.

Firsthand mathematical sources from the fourth century BcE are almost as
scarce, but this inadequacy is made up for in large measure by accounts
written by philosophers who were au courant with the mathematics of their
day. We have most of what Plato wrote and about half of the work of
Aristotle; with the writings of these intellectual leaders of the fourth century
BCE as a guide, we can give a far more dependable account of what hap-
pened in their day than we could about the Heroic Age.

Thales and Pythagoras

Accounts of the origins of Greek mathematics center on the so-called
Ionian and Pythagorean schools and the chief representative of each—
Thales and Pythagoras—although, as just noted, reconstructions of their
thought rest on fragmentary reports and traditions built up during later
centuries. The Greek world had its center between the Aegean and
Tonian seas for many centuries, but Hellenic civilization was far from
localized there. By about 600 BcE, Greek settlements were scattered
along the borders of most of the Black Sea and the Mediterranean Sea,
and it was in these outskirts that a new surge in mathematics developed.
In this respect, the sea-bordering colonists, especially in Ionia, had two
advantages: they had the bold and imaginative spirit typical of pioneers,
and they were in closer proximity to the two chief river valleys where
knowledge thrived. Thales of Miletus (ca. 624—548 Bce) and Pythagoras
of Samos (ca. 580—500 Bce) had a further advantage: they were in a
position to travel to centers of ancient learning and there acquire
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firsthand information on astronomy and mathematics. In Egypt, they are
said to have learned geometry; in Babylon, under the enlightened
Chaldean ruler Nebuchadnezzar, Thales may have come in touch with
astronomical tables and instruments. Tradition has it that in 585 BcE,
Thales amazed his countrymen by predicting the solar eclipse of that
year. The historicity of this tradition is very much open to question,
however.

What is really known about the life and work of Thales is very little
indeed. Ancient opinion is unanimous in regarding Thales as an unusually
clever man and the first philosopher—by general agreement, the first
of the Seven Wise Men. He was regarded as “a pupil of the Egyptians and
the Chaldeans,” an assumption that appears plausible. The proposition
now known as the theorem of Thales—that an angle inscribed in a
semicircle is a right angle—may well have been learned by Thales during
his travels to Babylon. Tradition goes further, however, and attributes to
him some sort of demonstration of the theorem. For this reason, Thales has
frequently been hailed as the first true mathematician—as the originator of
the deductive organization of geometry. This report, or legend, was
embellished by adding to this theorem four others that Thales is said to
have proved:

1. A circle is bisected by a diameter.

2. The base angles of an isosceles triangle are equal.

3. The pairs of vertical angles formed by two intersecting lines are
equal.

4. If two triangles are such that two angles and a side of one are equal,
respectively, to two angles and a side of the other, then the triangles
are congruent.

There is no document from antiquity that can be pointed to as evi-
dence of this achievement, yet the tradition has been persistent. About
the nearest one can come to reliable evidence on this point is derived
from a source a thousand years after the time of Thales. A student of
Aristotle’s by the name of Eudemus of Rhodes (l. ca. 320 Bcg) wrote a
history of mathematics. This has been lost, but before it disappeared,
someone had summarized at least part of the history. The original of this
summary has also been lost, but during the fifth century of our era,
information from the summary was incorporated by the Neoplatonic
philosopher Proclus (410—485) into the early pages of his Commentary
on the First Book of Euclid’s Elements.

Designations of Thales as the first mathematician largely hinge on the
remarks of Proclus. Later in his Commentary, Proclus—again depend-
ing on Eudemus—attributes to Thales the four theorems mentioned
previously. There are other scattered references to Thales in ancient
sources, but most of these describe his more practical activities. They do
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not establish the bold conjecture that Thales created demonstrative
geometry, but in any case, Thales is the first man in history to whom
specific mathematical discoveries have been attributed.

That it was the Greeks who added the element of logical structure to
geometry is virtually universally admitted today, but the big question
remains whether this crucial step was taken by Thales or by others
later—perhaps as much as two centuries later. On this point, we must
suspend final judgment until there is additional evidence on the devel-
opment of Greek mathematics.

Pythagoras is scarcely less controversial a figure than Thales, for he
has been more thoroughly enmeshed in legend and apotheosis. Thales
had been a man of practical affairs, but Pythagoras was a prophet and a
mystic, born at Samos, one of the Dodecanese islands not far from
Miletus, the birthplace of Thales. Although some accounts picture
Pythagoras as having studied under Thales, this is rendered unlikely by
the half-century difference in their ages. Some similarity in their inter-
ests can readily be accounted for by the fact that Pythagoras also tra-
veled to Egypt and Babylon—possibly even to India. During his
peregrinations, he evidently absorbed not only mathematical and
astronomical information but also much religious lore. Pythagoras was,
incidentally, virtually a contemporary of Buddha, Confucius, and Laozi
(Lao-tzu); the century was a crucial time in the development of religion,
as well as of mathematics. When Pythagoras returned to the Greek
world, he settled at Croton on the southeastern coast of what is now
Italy, but at that time was known as Magna Graecia. There he estab-
lished a secret society that somewhat resembled an Orphic cult, except
for its mathematical and philosophical basis.

That Pythagoras remains a very obscure figure is due in part to the loss
of documents from that age. Several biographies of Pythagoras were
written in antiquity, including one by Aristotle, but these have not
survived. A further difficulty in clearly identifying the figure of Pytha-
goras lies in the fact that the order he established was communal as well
as secret. Knowledge and property were held in common, hence attri-
bution of discoveries was not to be made to a specific member of the
school. Tt is best, consequently, not to speak of the work of Pythagoras,
but rather of the contributions of the Pythagoreans, although in antiquity
it was customary to give all credit to the master.

Perhaps the most striking characteristic of the Pythagorean order was
the confidence it maintained in the pursuit of philosophical and math-
ematical studies as a moral basis for the conduct of life. The very words
“philosophy™ (or “love of wisdom™) and “mathematics™ (or “that which
is learned”) are supposed to have been coined by Pythagoras himself to
describe his intellectual activities.

It is evident that the Pythagoreans played an important role in the
history of mathematics. In Egypt and Mesopotamia, the elements of
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arithmetic and geometry were primarily exercises in the application
of numerical procedures to specific problems, whether concerned with
beer or pyramids or the inheritance of land; we find nothing resembling
a philosophical discussion of principles. Thales is generally regarded as
having made a beginning in this direction, although tradition supports
the view of Eudemus and Proclus that the new emphasis in mathematics
was due primarily to the Pythagoreans. With them, mathematics was
more closely related to a love of wisdom than to the exigencies of
practical life. That Pythagoras was one of the most influential figures in
history is difficult to deny, for his followers, whether deluded or inspired,
spread their beliefs throughout most of the Greek world. The harmonies
and mysteries of philosophy and mathematics were essential parts of the
Pythagorean rituals. Never before or since has mathematics played so
large a role in life and religion as it did among the Pythagoreans.

The motto of the Pythagorean school is said to have been “All is
number.” Recalling that the Babylonians had attached numerical mea-
sures to things around them, from the motions of the heavens to the
values of their slaves, we may perceive in the Pythagorean motto a
strong Mesopotamian affinity. The very theorem to which the name of
Pythagoras still clings quite likely was derived from the Babylonians. It
has been suggested, as justification for calling it the Theorem of
Pythagoras, that the Pythagoreans first provided a demonstration, but
this conjecture cannot be verified. It is reasonable to assume that the
earliest members of the Pythagorean school were familiar with geo-
metric properties known to the Babylonians, but when the Eudemus-
Proclus summary ascribes to them the construction of the “cosmic fig-
ures” (that is, the regular solids), there is room for doubt. The cube, the
octahedron, and the dodecahedron could perhaps have been observed
in crystals, such as those of pyrite (iron disulfide), but a scholium in
Euclid’s Elements XIII reports that the Pythagoreans knew only three of
the regular polyhedra: the tetrahedron, the cube, and the dodecahedron.
Familiarity with the last figure is rendered plausible by the discovery
near Padua of an Etruscan dodecahedron of stone dating from before 500
BCE. It is not improbable, therefore, that even if the Pythagoreans did not
know of the octahedron and the icosahedron, they knew of some of the
properties of the regular pentagon. The figure of a five-pointed star
(which is formed by drawing the five diagonals of a pentagonal face of a
regular dodecahedron) is said to have been the special symbol of the
Pythagorean school. The star pentagon had appeared earlier in Baby-
lonian art, and it is possible that here, too, we find a connecting link
between pre-Hellenic and Pythagorean mathematics.

One of the tantalizing questions in Pythagorean geometry concerns the
construction of a pentagram or a star pentagon. If we begin with a regular
polygon ABCDE (Fig. 4.1) and draw the five diagonals, these diagonals
intersect in points A’B'C'D’E’, which form another regular pentagon.
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FIG. 4.1

Noting that the triangle BCD’, for example, is similar to the isosceles tri-
angle BCE, and noting also the many pairs of congruent triangles in the
diagram, it is not difficult to see that the diagonal points A'B’C’D’E’ divide
the diagonals in a striking manner. In each case, a diagonal point divides a
diagonal into two unequal segments such that the ratio of the whole diag-
onal is to the larger segment as this segment is to the smaller segment. This
subdivision of a diagonal is the well-known “golden section” of a line
segment, but this name was not used until a couple of thousand years
later—just about the time when Johannes Kepler wrote lyrically:

Geometry has two great treasures: one is the Theorem of Pythagoras; the
other, the division of a line into extreme and mean ratio. The first we may
compare to a measure of gold; the second we may name a precious jewel.

To the ancient Greeks, this type of subdivision soon became so familiar
that no need was felt for a special descriptive name; hence, the longer
designation “the division of a segment in mean and extreme ratio”
generally was replaced by the simple words “the section.”

One important property of “the section” is that it is, so to speak, self-
propagating. If a point P, divides a segment RS (Fig. 4.2) in mean and
extreme ratio, with RP, the longer segment, and if on this larger segment we
mark off a point P, such that RP,=P,S, then segment RP, will in turn be
subdivided in mean and extreme ratio at point P,. Again, on marking off on
RP, point P; such that RP, = P.P,, segment RP, will be divided in mean and
extreme ratio at P,. This iterative procedure can be carried out as many times
as desired, the result being an ever smaller segment RP, divided in mean and
extreme ratio by point P,.,. Whether the earlier Pythagoreans noticed this

FIG. 4.2
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discipline as well as a technique, and a transition to such an outlook
seems to have been nurtured in the Pythagorean school.

If tradition is to be trusted, the Pythagoreans not only established
arithmetic as a branch of philosophy; they seem to have made it the basis of
a unification of all aspects of the world around them. Through patterns of
points, or unextended units, they associated number with geometric
extension; this in turn led them to an arithmetic of the heavens. Philolaus
(died ca. 390 BCE), a later Pythagorean who shared the veneration of the
tetractys or decad, wrote that it was “great, all-powerful and all-producing,
the beginning and the guide of the divine as of the terrestrial life.” This
view of the number 10 as the perfect number, the symbol of health and
harmony, seems to have provided the inspiration for the earliest nongeo-
centric astronomical system. Philolaus postulated that at the center of the
universe, there was a central fire about which the earth and the seven
planets (including the sun and the moon) revolved uniformly. Inasmuch as
this brought to only nine the number of heavenly bodies (other than the
sphere of fixed stars), the Philolaic system assumed the existence of a tenth
body—a “counterearth” collinear with the earth and the central fire—
having the same period as the earth in its daily revolution about the central
fire. The sun revolved about the fire once a year, and the fixed stars were
stationary. The earth in its motion maintained the same uninhabited face
toward the central fire, hence neither the fire nor the counterearth was ever
seen. The postulate of uniform circular motion that the Pythagoreans
adopted was to dominate astronomical thought for more than 2,000 years.
Copernicus, almost 2,000 years later, accepted this assumption without
question, and it was the Pythagoreans to whom Copernicus referred to
show that his doctrine of a moving earth was not so new or revolutionary.

The thoroughness with which the Pythagoreans wove number into their
thought is well illustrated by their concern for figurate numbers. Although no
triangle can be formed by fewer than three points, it is possible to have tri-
angles of a larger number of points, such as six, ten, or fifteen (see Fig. 4.4).
Numbers such as 3, 6, 10, and 15 or, in general, numbers given by the formula

n(n+1)

N=14243+ - +n=——

were called triangular, and the triangular pattern for the number 10, the
holy tetractys, vied with the pentagon for veneration in Pythagorean
number theory. There were, of course, indefinitely many other categories
of privileged numbers. Successive square numbers are formed from the
sequence 1 +3+5+7+ --- +(2n—1), where each odd number in turn
was looked on as a pattern of dots resembling a gnomon (the Babylonian
shadow clock) placed around two sides of the preceding square pattern of
dots (see Fig. 4.4). Hence, the word “gnomon” (related to the word for
“knowing™) came to be attached to the odd numbers themselves.
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The sequence of even numbers, 2+4+6+ .- +2n=n(n+1),
produces what the Greeks called “oblong numbers,” each of which is
double a triangular number. Pentagonal patterns of points illustrated the
pentagonal numbers given by the sequence

n(3n—1)

N=1+4+7+ - +(3n-2)= 3

and hexagonal numbers were derived from the sequence
14549+ - +(4n—-3)=2n"—n.

In a similar manner, polygonal numbers of all orders are designated; the
process, of course, is easily extended to three-dimensional space, where
one deals with polyhedral numbers. Emboldened by such views, Phi-
lolaus is reported to have maintained that

All things which can be known have number; for it is not possible that
without number anything can be either conceived or known.

The dictum of Philolaus seems to have been a tenet of the Pythagorean
school; hence, stories arose about the discovery by Pythagoras of some
simple laws of music. Pythagoras is reputed to have noticed that when
the lengths of vibrating strings are expressible as ratios of simple whole
numbers, such as 2 to 3 (for the fifth) or as 3 to 4 (for the fourth), the tones
will be harmonious. If, in other words, a string sounds the note C when
plucked, then a similar string twice as long will sound the note C an
octave below, and tones between these two notes are emitted by strings
whose lengths are given by intermediate ratios: 16:9 for D, 8:5 for E,
3:2forF, 4:3 for G, 6:5 for A, and 16:15 for B, in ascending order.
Here we have perhaps the earliest quantitative laws of acoustics—
possibly the oldest of all quantitative physical laws. So boldly imaginative
were the early Pythagoreans that they hastily extrapolated to conclude that
the heavenly bodies in their motions similarly emitted harmonious tones,
the “harmony of the spheres.” Pythagorean science, like Pythagorean
mathematics, seems to have been an odd congeries of sober thought and
fanciful speculation. The doctrine of a spherical earth is often ascribed to
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Pythagoras, but it is not known whether this conclusion was based on
observation (perhaps of new constellations as Pythagoras traveled
southward) or on imagination. The very idea that the universe is a
“cosmos,” or a harmoniously ordered whole, seems to be a related
Pythagorean contribution—one that at the time had little basis in direct
observation but that has been enormously fruitful in the development of
astronomy. As we smile at ancient number fancies, we should at the same
time be aware of the impulse these gave to the development of both
mathematics and science. The Pythagoreans were among the earliest
people to believe that the operations of nature could be understood
through mathematics.

Proportions

Proclus, quoting perhaps from Eudemus, ascribed to Pythagoras two
specific mathematical discoveries: (1) the construction of the regular
solids and (2) the theory of proportionals. Although there is question
about the extent to which this is to be taken literally, there is every
likelihood that the statement correctly reflects the direction of Pytha-
gorean thought. The theory of proportions clearly fits into the pattern of early
Greek mathematical interests, and it is not difficult to find a likely source of
inspiration. It is reported that Pythagoras learned in Mesopotamia of three
means—the arithmetic, the geometric, and the subcontrary (later called
the harmonic)—and of the “golden proportion” relating two of these: the
first of two numbers is to their arithmetic mean as their harmonic mean
is to the second of the numbers. This relationship is the essence of the
Babylonian square-root algorithm; hence, the report is at least plausible.
At some stage, however, the Pythagoreans generalized this work by
adding seven new means to make ten in all. If b is the mean of a and ¢,
where a < ¢, then the three quantities are related according to one of the
following ten equations:

b— b— -
(1) === ) 2= =2
R =

. o
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The first three equations are, of course, the equations for the arithmetic, the
geometric, and the harmonic means, respectively.

It is difficult to assign a date to the Pythagorean study of means, and
similar problems arise with respect to the classification of numbers. The
study of proportions or the equality of ratios presumably formed at first a
part of Pythagorean arithmetic or theory of numbers. Later, the quan-
tities a, b, and ¢ entering in such proportions were more likely to be
regarded as geometric magnitudes, but the period in which the change
took place is not clear. In addition to the polygonal numbers mentioned
previously and the distinction between odd and even, the Pythagoreans
at some stage spoke of odd-odd and even-odd numbers, based on whether
the number in question was the product of two odd numbers or of an odd
and an even number, so that sometimes the name “even number” was
reserved for integral powers of two. By the time of Philolaus, the dis-
tinction between prime and composite numbers seems to have become
important. Speusippus, a nephew of Plato and his successor as head of the
Academy, asserted that 10 was “perfect” for the Pythagoreans because,
among other things, it is the smallest integer n for which there are just as
many primes between 1 and » as nonprimes. (Occasionally, prime num-
bers were called linear, inasmuch as they are usually represented by dots in
one dimension only.) Neopythagoreans sometimes excluded 2 from the
list of primes on the ground that 1 and 2 are not true numbers, but the
generators of the odd and even numbers. The primacy of the odd numbers
was assumed to be established by the fact that odd + odd is even, whereas
even + even remains even.

To the Pythagoreans has been attributed the rule for Pythagorean triads
given by (m*—1)/2, m, (im*+ 1)/2, where m is an odd integer, but inas-
much as this rule is so closely related to the Babylonian examples, it is
perhaps not an independent discovery. Also ascribed to the Pythagoreans,
with doubt as to the period in question, are the definitions of perfect,
abundant, and deficient numbers, based on whether the sum of the proper
divisors of the number is equal to, greater than, or less than the number
itself. According to this definition, 6 is the smallest perfect number, with 28
next. That this view was probably a later development in Pythagorean
thought is suggested by the early veneration of 10 rather than 6. Hence, the
related doctrine of “amicable” numbers is also likely to have been a later
notion. Two integers a and b are said to be “amicable” if a is the sum of the
proper divisors of b and if b is the sum of the proper divisors of a. The
smallest such pair are the integers 220 and 284.

Numeration

The Hellenes were celebrated as shrewd traders and businessmen, and
there must have been a lower level of arithmetic or computation that
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satisfied the needs of the vast majority of Greek citizens. Number activities
of this type would have been beneath the notice of philosophers, and
recorded accounts of practical arithmetic were unlikely to find their way
into the libraries of scholars. If, then, there are not even fragments sur-
viving of the more sophisticated Pythagorean works, it is clear that
it would be unreasonable to expect manuals of trade mathematics to
survive the ravages of time. Hence, it is not possible to tell at this distance
how the ordinary processes of arithmetic were carried out in Greece 2,500
years ago. About the best one can do is to describe the systems of
numeration that appear to have been in use.

In general, there seem to have been two chief systems of numeration
in Greece: one, probably the earlier, is known as the Attic (or Her-
odianic) notation; the other is called the Ionian (or alphabetic) system.
Both systems are, for integers, based on the 10 scale, but the former is
the more primitive, being based on a simple iterative scheme found in
the earlier Egyptian hieroglyphic numeration and in the later Roman
numerals. In the Attic system, the numbers from 1 to 4 were represented
by repeated vertical strokes. For the number 5 a new symbol—the
first letter II (or I') of the word for five, “pente”—was adopted. (Only
capital letters were used at the time, both in literary works and in
mathematics, lowercase letters being an invention of the later ancient or
early medieval period.) For numbers from 6 through 9, the Attic system
combined the symbol I" with unit strokes, so that 8, for example, was
written as . For positive integral powers of the base (10), the initial
letters of the corresponding number words were adopted—a for deka
(10), H for hekaton (100), x for khilioi (1,000), and m for myrioi (10,000).
Except for the forms of the symbols, the Attic system is much like the
Roman, but it had one advantage. Where the Latin word adopted dis-
tinctive symbols for 50 and 500, the Greeks wrote these numbers
by combining letters for 5, 10, and 100, using [ (or 5 times 10) for 50,
and [A (or 5 times 100) for 500. In the same way, they wrote [ for 5,000
and [® for 50,000. In Attic script, the number 45,678, for example, would
appear as

MMMM [P H@aa M

The Attic system of notation (also known as Herodianic, inasmuch as it
was described in a fragment attributed to Herodian, a grammarian of the
second century) appears in inscriptions at various dates from 454 to 95
BCE, but by the early Alexandrian Age, at about the time of Ptolemy Phi-
ladelphius, it was being displaced by the Ionian or alphabetic numerals.
Similar alphabetic schemes were used at one time or another by various
Semitic peoples, including the Hebrews, the Syrians, the Aramaeans, and
the Arabs—as well as by other cultures, such as the Gothic—but these
would seem to have been borrowed from the Greek notation. The Tonian
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effectively that they could calculate in terms of integral multiples of the
subdivisions. This undoubtedly is the explanation for the popularity in
antiquity of duodecimal and sexagesimal subdivisions, for the decimal
system here is at a severe disadvantage. Decimal fractions were rarely
used, either by the Greeks or by other Western peoples, before the period
of the Renaissance. The abacus can be readily adapted to any system of
numeration or to any combination of systems; it is likely that the
widespread use of the abacus accounts at least in part for the amazingly
late development of a consistent positional system of notation for inte-
gers and fractions. In this respect, the Pythagorean Age contributed little
if anything.

The point of view of the Pythagoreans seems to have been so over-
whelmingly philosophical and abstract that technical details in compu-
tation were relegated to a separate discipline, called logistic. This dealt
with the numbering of things, rather than with the essence and properties
of number as such, matters of concern in arithmetic. That is, the ancient
Greeks made a clear distinction between mere calculation, on the one
hand, and what today is known as the theory of numbers, on the other.
Whether such a sharp distinction was a disadvantage to the historical
development of mathematics may be a moot point, but it is not easy to
deny to the early Ionian and Pythagorean mathematicians the primary
role in establishing mathematics as a rational and liberal discipline. It is
obvious that tradition can be quite inaccurate, but it is seldom entirely
misdirected.

Fifth-Century Athens

The fifth century BCE was a crucial period in the history of Western
civilization, for it opened with the defeat of the Persian invaders and
closed with the surrender of Athens to Sparta. Between these two events
lay the great Age of Pericles, with its accomplishments in literature and
art. The prosperity and intellectual atmosphere of Athens during the
century attracted scholars from all parts of the Greek world, and
a synthesis of diverse aspects was achieved. From lonia came men such
as Anaxagoras, with a practical turn of mind; from southern Italy came
others, such as Zeno, with stronger metaphysical inclinations. Demo-
critus of Abdera espoused a materialistic view of the world, while
Pythagoras in Italy held idealistic attitudes in science and philosophy. In
Athens, one found eager devotees of old and new branches of learning,
from cosmology to ethics. There was a bold spirit of free inquiry that
sometimes came into conflict with established mores.

In particular, Anaxagoras was imprisoned in Athens for impiety in
asserting that the sun was not a deity but a huge red-hot stone as big as
the whole Peloponnesus, and that the moon was an inhabited earth that
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borrowed its light from the sun. He well represents the spirit of rational
inquiry, for he regarded as the aim of his life the study of the nature of
the universe—a purposefulness that he derived from the Ionian tradition
of which Thales had been a founder. The intellectual enthusiasm of
Anaxagoras was shared with his countrymen through the first scientific
best-seller—a book On Nature—which could be bought in Athens for
only a drachma. Anaxagoras was a teacher of Pericles, who saw to it that
his mentor was ultimately released from prison. Socrates was at first
attracted to the scientific ideas of Anaxagoras but found the naturalistic
Ionian view less satisfying than the search for ethical verities. Greek
science had been rooted in a highly intellectual curiosity that is often
contrasted with the utilitarian immediacy of pre-Hellenic thought;
Anaxagoras clearly represented the typical Greek motive—the desire to
know. In mathematics also, the Greek attitude differed sharply from that
of the earlier potamic cultures. The contrast was clear in the contribu-
tions generally attributed to Thales and Pythagoras, and it continues to
show through in the more reliable reports about what went on in Athens
during the Heroic Age. Anaxagoras was primarily a natural philosopher,
rather than a mathematician, but his inquiring mind led him to share in
the pursuit of mathematical problems.

Three Classical Problems

We are told by Plutarch that while Anaxagoras was in prison, he
occupied himself with an attempt to square the circle. Here we have
the first mention of a problem that was to fascinate mathematicians for
more than 2,000 years. There are no further details concerning the origin
of the problem or the rules governing it. At a later date, it came to be
understood that the required square, exactly equal in area to the circle,
was to be constructed by the use of a compass and a straightedge alone.
Here we see a type of mathematics that is quite unlike that of the
Egyptians and the Babylonians. It is not the practical application of a
science of number to a facet of life experience, but a theoretical question
involving a nice distinction between accuracy in approximation and
exactitude in thought.

Anaxagoras died in 428 BCE, the year that Archytas was born, just one
year before Plato’s birth and one year after Pericles’ death. It is said that
Pericles died of the plague that carried off perhaps a quarter of the
Athenian population, and the deep impression that this catastrophe
created is perhaps the origin of a second famous mathematical problem.
It is reported that a delegation had been sent to the oracle of Apollo at
Delos to inquire how the plague could be averted, and the oracle had
replied that the cubical altar to Apollo must be doubled. The Athenians
are said to have dutifully doubled the dimensions of the altar, but this
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was of no avail in curbing the plague. The altar had, of course, been
increased eightfold in volume, rather than twofold. Here, according to
the legend, was the origin of the “duplication of the cube” problem,
one that henceforth was usually referred to as the “Delian problem”—
given the edge of a cube, construct with compasses and straightedge
alone the edge of a second cube having double the volume of the first.

At about the same time, there circulated in Athens still a third celebrated
problem: given an arbitrary angle, construct by means of compasses and
straightedge alone an angle one-third as large as the given angle. These
three problems—the squaring of the circle, the duplication of the cube, and
the trisection of the angle—have since been known as the “three famous
(or classical) problems” of antiquity. More than 2,200 years later, it was to
be proved that all three of the problems were unsolvable by means of
straightedge and compass alone. Nevertheless, the better part of Greek
mathematics and of much later mathematical thought was suggested by
efforts to achieve the impossible—or, failing this, to modify the rules. The
Heroic Age failed in its immediate objective, under the rules, but
the efforts were crowned with brilliant success in other respects.

Quadrature of Lunes

Somewhat younger than Anaxagoras and coming originally from about
the same part of the Greek world was Hippocrates of Chios. He should
not be confused with his still more celebrated contemporary, the phy-
sician Hippocrates of Cos. Both Cos and Chios are islands in the
Dodecanese group, but in about 430 Bce, Hippocrates of Chios left his
native land for Athens in his capacity as a merchant. Aristotle reported
that Hippocrates was less shrewd than Thales and that he lost his money
in Byzantium through fraud; others say that he was beset by pirates.
In any case, the incident was never regretted by the victim, for he
counted this his good fortune, in that as a consequence he turned to
the study of geometry, in which he achieved remarkable success—a
story typical of the Heroic Age. Proclus wrote that Hippocrates com-
posed an “Elements of Geometry,” anticipating by more than a century
the better-known Elements of Euclid. Yet the textbook of Hippocrates—
as well as another reported to have been written by Leon, a later
associate of the Platonic school—has been lost, although it was known
to Aristotle. In fact, no mathematical treatise from the fifth century
has survived, but we do have a fragment concerning Hippocrates that
Simplicius (fl. ca. 520 cE) claims to have copied literally from the
History of Mathematics (now lost) by Eudemus. This brief statement,
the nearest thing we have to an original source on the mathematics of
the time, describes a portion of the work of Hippocrates dealing with the
quadrature of lunes. A lune is a figure bounded by two circular arcs of
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unequal radii; the problem of the quadrature of lunes undoubtedly arose
from that of squaring the circle. The Eudemian fragment attributes to
Hippocrates the following theorem:

Similar segments of circles are in the same ratio as the squares on their
bases.

The Eudemian account reports that Hippocrates demonstrated this by
first showing that the areas of two circles are to each other as the squares
on their diameters. Here Hippocrates adopted the language and the
concept of proportion that played so large a role in Pythagorean thought.
In fact, it is thought by some that Hippocrates became a Pythagorean.
The Pythagorean school in Croton had been suppressed (possibly
because of its secrecy, perhaps because of its conservative political
tendencies), but the scattering of its adherents throughout the Greek
world served only to broaden the influence of the school. This influence
undoubtedly was felt, directly or indirectly, by Hippocrates.

The theorem of Hippocrates on the areas of circles seems to be the
earliest precise statement on curvilinear mensuration in the Greek world.
Eudemus believed that Hippocrates gave a proof of the theorem, but a
rigorous demonstration at that time (say, about 430 Bce) would appear to
be unlikely. The theory of proportions at that stage probably was
established only for commensurable magnitudes. The proof as given in
Euclid XII.2 comes from Eudoxus, a man who lived halfway in time
between Hippocrates and Euclid. Just as much of the material in the first
two books of Euclid seems to stem from the Pythagoreans, however, so
it would appear reasonable to assume that the formulations, at least,
of much of Books III and IV of the Elements came from the work of
Hippocrates. Moreover, if Hippocrates did give a demonstration of
this theorem on the areas of circles, he may have been responsible for
the introduction into mathematics of the indirect method of proof.
That is, the ratio of the areas of two circles is equal to the ratio of the
squares on the diameters or it is not. By a reductio ad absurdum from
the second of the two possibilities, the proof of the only alternative is
established.

From this theorem on the areas of circles, Hippocrates readily found
the first rigorous quadrature of a curvilinear area in the history of
mathematics. He began with a semicircle circumscribed about an isos-
celes right triangle, and on the base (hypotenuse) he constructed a
segment similar to the circular segments on the sides of the right triangle
(Fig. 4.5). Because the segments are to each other as squares on their
bases and from the Pythagorean theorem as applied to the right triangle,
the sum of the two small circular segments is equal to the larger circular
segment. Hence, the difference between the semicircle on AC and
the segment ADCE equals triangle ABC. Therefore, the lune ABCD is
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precisely equal to triangle ABC, and because triangle ABC is equal to the
square on half of AC, the quadrature of the lune has been found.

Eudemus also described a Hippocratean lune quadrature based on an
isosceles trapezoid, ABCD, inscribed in a circle so that the square on the
longest side (base), AD, is equal to the sum of the squares on the three
equal shorter sides, AB and BC and CD (Fig. 4.6). Then, if on side AD
one constructs a circular segment, AEDF, similar to those on the three
equal sides, lune ABCDE is equal to trapezoid ABCDF.

That we are on relatively firm ground historically in describing the
quadrature of lunes by Hippocrates is indicated by the fact that scholars
other than Simplicius also refer to this work. Simplicius lived in the
sixth century, but he depended not only on Eudemus (fl. ca. 320 BcE) but
also on Alexander of Aphrodisias (fl. ca. 200 cg), one of the chief
commentators on Aristotle. Alexander described two quadratures other
than those given previously. (1) If on the hypotenuse and the sides of an
isosceles right triangle one constructs semicircles (Fig. 4.7), then the
lunes created on the smaller sides together equal the triangle. (2) If on a
diameter of a semicircle one constructs an isosceles trapezoid with three
equal sides (Fig. 4.8), and if on the three equal sides semicircles are
constructed, then the trapezoid is equal in area to the sum of four cur-
vilinear areas: the three equal lunes and a semicircle on one of the equal
sides of the trapezoid. From the second of these quadratures, it would
follow that if the lunes can be squared, the semicircle—hence, the cir-
cle—can also be squared. This conclusion seems to have encouraged

FIG. 4.7
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The curve of Hippias is generally known as the quadratrix, because it can
be used to square the circle. Whether Hippias himself was aware of this
application cannot now be determined. It has been conjectured that Hippias
knew of this method of quadrature but that he was unable to justify it. Since
the quadrature through Hippias’s curve was specifically given later by
Dinostratus, we shall describe this work below.

Hippias lived at least as late as Socrates (d. 399 BCE), and from the pen
of Plato we have an unflattering account of him as a typical Sophist—
vain, boastful, and acquisitive. Socrates is reported to have described
Hippias as handsome and learned but boastful and shallow. Plato’s
dialogue on Hippias satirizes his show of knowledge, and Xenophon’s
Memorabilia includes an unflattering account of Hippias as one who
regarded himself an expert in everything from history and literature to
handicrafts and science. In judging such accounts, however, we must
remember that Plato and Xenophon were uncompromisingly opposed to
the Sophists in general. It is also well to bear in mind that both Prota-
goras, the “founding father of the Sophists,” and Socrates, the arch
opponent of the movement, were antagonistic to mathematics and the
sciences. With respect to character, Plato contrasts Hippias with
Socrates, but one can bring out much the same contrast by comparing
Hippias with another contemporary—the Pythagorean mathematician
Archytas of Tarentum.

Philolaus and Archytas of Tarentum

Pythagoras is said to have retired to Metapontum toward the end of his
life and to have died there about 500 Bce. Tradition holds that he left no
written works, but his ideas were carried on by a large number of eager
disciples. The center at Croton was abandoned when a rival political
group from Sybaris surprised and murdered many of the leaders, but
those who escaped the massacre carried the doctrines of the school to
other parts of the Greek world. Among those who received instruction
from the refugees was Philolaus of Tarentum, and he is said to have
written the first account of Pythagoreanism—permission having been
granted, so the story goes, to repair his damaged fortunes. Apparently, it
was this book from which Plato derived his knowledge of the Pytha-
gorean order. The number fanaticism that was so characteristic of the
brotherhood evidently was shared by Philolaus, and it was from his
account that much of the mystical lore concerning the tetractys was
derived, as well as knowledge of the Pythagorean cosmology. The
Philolaean cosmic scheme is said to have been modified by two later
Pythagoreans, Ecphantus and Hicetas, who abandoned the central fire
and the counterearth and explained day and night by placing a rotating
earth at the center of the universe. The extremes of Philolaean number



64 Hellenic Traditions

worship also seem to have undergone some modification, more espe-
cially at the hands of Archytas, a student of Philolaus’s at Tarentum.

The Pythagorean sect had exerted a strong intellectual influence
throughout Magna Graecia, with political overtones that may be described
as asort of “reactionary international,” or perhaps better as a cross between
Orphism and Freemasonry. At Croton, political aspects were especially
noticeable, but at outlying Pythagorean centers, such as Tarentum, the
impact was primarily intellectual. Archytas believed firmly in the efficacy
of number; his rule of the city, which allotted him autocratic powers, was
justand restrained, for he regarded reason as a force working toward social
amelioration. For many years in succession, he was elected general, and he
was never defeated, yet he was kind and a lover of children, for whom he is
reported to have invented “Archytas’s rattle.” Possibly also the mechan-
ical dove, which he is said to have fashioned of wood, was built to amuse
the young folk.

Archytas continued the Pythagorean tradition in placing arithmetic
above geometry, but his enthusiasm for number had less of the
religious and mystical admixture found earlier in Philolaus. He wrote on
the application of the arithmetic, geometric, and subcontrary means to
music, and it was probably either Philolaus or Archytas who was
responsible for changing the name of the last one to “harmonic mean.”
Among his statements in this connection was the observation that between
two whole numbers in the ratio n:(n + 1), there could be no integer that is a
geometric mean. Archytas gave more attention to music than had his
predecessors, and he felt that this subject should play a greater role than
literature in the education of children. Among his conjectures was one that
attributed differences in pitch to varying rates of motion resulting from the
flow that caused the sound. Archytas seems to have paid considerable
attention to the role of mathematics in the curriculum, and to him has been
ascribed the designation of the four branches in the mathematical quad-
rivium—arithmetic (or numbers at rest), geometry (or magnitudes at rest),
music (or numbers in motion), and astronomy (or magnitudes in motion).
These subjects, together with the trivium consisting of grammar, rhetoric,
and dialectics (which Aristotle traced back to Zeno), later constituted the
seven liberal arts; hence, the prominent role that mathematics has played
in education is in no small measure due to Archytas.

It is likely that Archytas had access to an earlier treatise on the ele-
ments of mathematics, and the iterative square-root process often known
as Archytas’s had been used long before in Mesopotamia. Nevertheless,
Archytas was a contributor of original mathematical results. The most
striking contribution was a three-dimensional solution of the Delian
problem, which may be most easily described, somewhat anachronisti-
cally, in the modern language of analytic geometry. Let a be the edge of
the cube to be doubled, and let the point (a, 0, 0) be the center of three
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mutually perpendicular circles of radius a and each lying in a plane
perpendicular to a coordinate axis. Through the circle perpendicular
to the x-axis, construct a right circular cone with vertex (0, 0, 0); through
the circle in the xy-plane, pass a right circular cylinder; and let the
circle in the xz-plane be revolved about the z-axis to generate a torus.
The equations of these three surfaces are, respectively, xX*=y*+7*
and 2ax=x>+y* and (x*+y*+7°)*=4a*(x*+y?). These three surfaces
intersect in a point whose x-coordinate is a\'VI_QX; hence, the length of this
line segment is the edge of the cube desired.

The achievement of Archytas is the more impressive when we recall
that his solution was worked out synthetically without the aid of
coordinates. Nevertheless, Archytas’s most important contribution to
mathematics may have been his intervention with the tyrant Dionysius
to save the life of his friend Plato. The latter remained to the end of
his life deeply committed to the Pythagorean veneration of number and
geometry, and the supremacy of Athens in the mathematical world of the
fourth century BCE resulted primarily from the enthusiasm of Plato,
the “maker of mathematicians.” Before taking up the role of Plato in
mathematics, however, it is necessary to discuss the work of an earlier
Pythagorean—an apostate by the name of Hippasus.

Hippasus of Metapontum (or Croton), roughly contemporaneous with
Philolaus, is reported to have originally been a Pythagorean but to have
been expelled from the brotherhood. One account has it that the
Pythagoreans erected a tombstone to him, as though he were dead;
another story reports that his apostasy was punished by death at sea in a
shipwreck. The exact cause of the break is unknown, in part because of
the rule of secrecy, but there are three suggested possibilities. According
to one, Hippasus was expelled for political insubordination, having
headed a democratic movement against the conservative Pythagorean
rule. A second tradition attributes the expulsion to disclosures con-
cerning the geometry of the pentagon or the dodecahedron—perhaps a
construction of one of the figures. A third explanation holds that
the expulsion was coupled with the disclosure of a mathematical dis-
covery of devastating significance for Pythagorean philosophy—the
existence of incommensurable magnitudes.

Incommensurability

It had been a fundamental tenet of Pythagoreanism that the essence of
all things, in geometry as well as in the practical and theoretical affairs
of man, is explainable in terms of arithmos, or intrinsic properties of
whole numbers or their ratios. The dialogues of Plato show, however,
that the Greek mathematical community had been stunned by a disclosure
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that virtually demolished the basis for the Pythagorean faith in whole
numbers. This was the discovery that within geometry itself, the whole
numbers and their ratios are inadequate to account for even simple fun-
damental properties. They do not suffice, for example, to compare the
diagonal of a square or a cube or a pentagon with its side. The line
segments are incommensurable, no matter how small a unit of measure is
chosen.

The circumstances surrounding the earliest recognition of incommen-
surable line segments are as uncertain as is the time of the discovery.
Ordinarily, it is assumed that the recognition came in connection with the
application of the Pythagorean theorem to the isosceles right triangle.
Aristotle referred to a proof of the incommensurability of the diagonal of a
square with respect to a side, indicating that it was based on the distinction
between odd and even. Such a proofis easy to construct. Let d and s be the
diagonal and the side of a square, and assume that they are commensur-
able—that is, that the ratio d/ s is rational and equal to p/ ¢, where p and ¢
are integers with no common factor. Now, from the Pythagorean theorem
it is known that d* = s* + s%; hence, (d/s)*=p*/g* =2, or p*=24". There-
fore, p* must be even; hence, p must be even. Consequently, g must be odd.
Letting p = 2r and substituting in the equation p* =2¢*, we have 4r* =247,
or g=2r% Then g* must be even; hence, g must be even. Yet g was pre-
viously shown to be odd, and an integer cannot be both odd and even. It
follows, therefore, by the indirect method, that the assumption that d and s
are commensurable must be false.

In this proof, the degree of abstraction is so high that the possibility
that it was the basis for the original discovery of incommensurability has
been questioned. There are, however, other ways in which the discovery
could have come about. Among these is the simple observation that
when the five diagonals of a regular pentagon are drawn, these diagonals
form a smaller regular pentagon (Fig. 4.10), and the diagonals of the
second pentagon in turn form a third regular pentagon, which is still
smaller. This process can be continued indefinitely, resulting in penta-
gons that are as small as desired and leading to the conclusion that the
ratio of a diagonal to a side in a regular pentagon is not rational. The
irrationality of this ratio is, in fact, a consequence of the argument
presented in connection with Fig. 4.2, in which the golden section
was shown to repeat itself over and over again. Was it perhaps this
property that led to the disclosure, possibly by Hippasus, of incom-
mensurability? There is no surviving document to resolve the question,
but the suggestion is at least a plausible one. In this case, it would not
have been v/2 but /5 that first disclosed the existence of incommen-
surable magnitudes, for the solution of the equation a:x=x:(a —x) leads
to (v/5—1)/2 as the ratio of the side of a regular pentagon to a diagonal.
The ratio of the diagonal of a cube to an edge is v/3, and here, too, the
specter of the incommensurable rears its ugly head.
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A geometric proof somewhat analogous to that for the ratio of the
diagonal of a pentagon to its side can also be provided for the ratio of
the diagonal of a square to its side. If in the square ABCD (Fig. 4.11)
one lays off on the diagonal AC the segment AP =AB and at P erects the
perpendicular PQ, the ratio of CQ to PC will be the same as the ratio of
AC to AB. Again, if on CQ one lays off QR= QP and constructs RS
perpendicular to CR, the ratio of hypotenuse to side again will be what it
was before. This process, too, can be continued indefinitely, thus
affording a proof that no unit of length, however small, can be found so
that the hypotenuse and a side will be commensurable.

Paradoxes of Zeno

The Pythagorean doctrine that “Numbers constitute the entire heaven”
was now faced with a very serious problem indeed, but it was not the
only one, for the school was also confronted with arguments pro-
pounded by the neighboring Eleatics, a rival philosophical movement.
Ionian philosophers of Asia Minor had sought to identify a first prin-
ciple for all things. Thales had thought to find this in water, but others
preferred to think of air or fire as the basic element. The Pythagoreans
had taken a more abstract direction, postulating that number in all of its
plurality was the basic stuff behind phenomena; this numerical atomism,
beautifully illustrated in the geometry of figurate numbers, had come
under attack by the followers of Parmenides of Elea (fl. ca. 450 BCE).
The fundamental tenet of the Eleatics was the unity and permanence of
being, a view that contrasted with the Pythagorean ideas of multiplicity
and change. Of Parmenides’ disciples, the best known was Zeno the
Eleatic (fl. ca. 450 BcE), who propounded arguments to prove the
inconsistency in the concepts of multiplicity and divisibility. The
method Zeno adopted was dialectical, anticipating Socrates in this
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Deductive Reasoning

There are several conjectures as to the causes leading to the conversion
of the mathematical prescriptions of pre-Hellenic peoples into the
deductive structure that appears in Greece. Some have suggested that
Thales in his travels had noted discrepancies in pre-Hellenic mathe-
matics—such as the Egyptian and Babylonian rules for the area of a
circle—and that he and his early successors therefore saw the need for a
strict rational method. Others, more conservative, would place the
deductive form much later—perhaps even as late as the early fourth
century, following the discovery of the incommensurable. Other sug-
gestions find the cause outside mathematics. One, for example is that
deduction may have come out of logic, in attempts to convince an
opponent of a conclusion by looking for premises from which the
conclusion necessarily follows.

Whether deduction came into mathematics in the sixth century BCE
or the fourth and whether incommensurability was discovered before or
after 400 BcE, there can be no doubt that Greek mathematics had
undergone drastic changes by the time of Plato. The dichotomy between
number and continuous magnitude required a new approach to the
Babylonian algebra that the Pythagoreans had inherited. The old prob-
lems in which, given the sum and the product of the sides of a rectangle,
the dimensions were required had to be dealt with differently from the
numerical algorithms of the Babylonians. A “geometric algebra™ had to
take the place of the older “arithmetic algebra,” and in this new algebra
there could be no adding of lines to areas or adding of areas to volumes.
From now on, there had to be a strict homogeneity of terms in equations,
and the Mesopotamian normal forms, xy=A, x+y=5h, were to be
interpreted geometrically. The obvious conclusion, which the reader can
arrive at by eliminating y, is that one must construct on a given line » a
rectangle whose unknown width x must be such that the area of the
rectangle exceeds the given area A by the square x*> or (in the case of
the minus sign) falls short of the area A by the square x* (Fig. 4.12). In
this way, the Greeks built up the solution of quadratic equations by their
process known as “the application of areas,” a portion of geometric
algebra that is fully covered by Euclid’s Elements. Moreover, the
uneasiness resulting from incommensurable magnitudes led to an
avoidance of ratios, insofar as possible, in elementary mathematics. The
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linear equation ax=bc, for example, was looked on as an equality of
the areas ax and bc, rather than as a proportion—an equality between the
two ratios a:b and c:x. Consequently, in constructing the fourth pro-
portion, x in this case, it was usual to construct a rectangle OCDB with
sides b=0B and ¢=0C (Fig. 4.13) and then along OC to lay off
OA =a. One completes rectangle OAEB and draws the diagonal OFE
cutting CD at P. It is now clear that CP is the desired line x, for rectangle
OARS is equal in area to rectangle OCDB. Not until Book V of the
Elements did Euclid take up the difficult matter of proportionality.
Greek geometric algebra strikes the modern reader as excessively
artificial and difficult; to those who used it and became adept at handling
its operations, however, it probably appeared to be a convenient tool.
The distributive law a(b+ ¢ +d)=ab + ac+ad undoubtedly was far
more obvious to a Greek scholar than to the beginning student of algebra
today, for the former could easily picture the areas of the rectangles in
this theorem, which simply says that the rectangle on a and the sum of
segments b, ¢, d is equal to the sum of the rectangles on a and each of
the lines b, ¢, d taken separately (Fig. 4.14). Again, the identity
(a+b)*=a’+ 2ab + b* becomes obvious from a diagram that shows the
three squares and the two equal rectangles in the identity (Fig. 4.15); and
a difference of two squares a* — b*=(a+ b)(a — b) can be pictured in a
similar fashion (Fig. 4.16). Sums, differences, products, and quotients of
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line segments can easily be constructed with a straightedge and a
compass. Square roots also afford no difficulty in geometric algebra. If one
wishes to find a line x such that x*=ab, one simply follows the procedure
found in elementary geometry textbooks today. One lays off on a straight
line the segment ABC, where AB=a and BC=b (Fig. 4.17). With AC as
the diameter, one constructs a semicircle (with center Q) and at B erects the
perpendicular BP, which is the segment x desired. It is interesting that here,
too, the proof as given by Euclid, probably following the earlier avoidance
of ratios, makes use of areas rather than proportions. If in our figure we let
PO=A0=CO=r and BO=s, Euclid would say essentially that
X=r—s=(r—s)r+s)=ab.

Democritus of Abdera

The Heroic Age in mathematics produced half a dozen great figures,
and among them must be included a man who is better known as a
chemical philosopher. Democritus of Abdera (ca. 460—370 BcE) is today
celebrated as a proponent of a materialistic atomic doctrine, but in his
time he had also acquired a reputation as a geometer. He is reported to
have traveled more widely than anyone of his day—to Athens, Egypt,
Mesopotamia, and possibly India—acquiring what learning he could,
but his own achievements in mathematics were such that he boasted that
not even the “rope-stretchers” in Egypt excelled him. He wrote a number
of mathematical works, not one of which is extant today.

The key to the mathematics of Democritus is to be found in his
physical doctrine of atomism. All phenomena were to be explained, he
argued, in terms of indefinitely small and infinitely varied (in size and
shape), impenetrably hard atoms moving about ceaselessly in empty
space. The physical atomism of Leucippus and Democritus may have
been suggested by the geometric atomism of the Pythagoreans, and it is
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not surprising that the mathematical problems with which Democritus
was chiefly concerned were those that demand some sort of infinitesimal
approach. The Egyptians, for example, were aware that the volume of a
pyramid is one-third the product of the base and the altitude, but a proof
of this fact almost certainly was beyond their capabilities, for it requires
a point of view equivalent to the calculus. Archimedes later wrote that
this result was due to Democritus but that the latter did not prove it
rigorously. This creates a puzzle, for if Democritus added anything to
the Egyptian knowledge here, it must have been some sort of demon-
stration, albeit inadequate. Perhaps Democritus showed that a triangular
prism can be divided into three triangular pyramids that are equal in
height and area of the base and then deduced, from the assumption that
pyramids of the same height and equal bases are equal, the familiar
Egyptian theorem.

This assumption can be justified only by the application of infinite-
simal techniques. If, for example, one thinks of two pyramids of equal
bases and the same height as composed of indefinitely many infinitely
thin equal cross-sections in one-to-one correspondence (a device usually
known as Cavalieri’s principle, in deference to the seventeenth-century
geometer), the assumption appears to be justified. Such a fuzzy geo-
metric atomism might have been at the base of Democritus’s thought,
although this has not been established. In any case, following the
paradoxes of Zeno and the awareness of incommensurables, such
arguments based on an infinity of infinitesimals were not acceptable.
Archimedes consequently could well hold that Democritus had not
given a rigorous proof, The same judgment would be true with respect
to the theorem, also attributed by Archimedes to Democritus, that the
volume of a cone is one-third the volume of the circumscribing cylinder.
This result was probably looked on by Democritus as a corollary to the
theorem on the pyramid, for the cone is essentially a pyramid whose
base is a regular polygon of infinitely many sides.

Democritean geometric atomism was immediately confronted with
certain problems. If the pyramid or the cone, for example, is made up of
indefinitely many infinitely thin triangular or circular sections parallel to
the base, a consideration of any two adjacent laminae creates a paradox. If
the adjacent sections are equal in area, then, because all sections are
equal, the totality will be a prism or a cylinder and not a pyramid or a
cone. If, on the other hand, adjacent sections are unequal, the totality will
be a step pyramid or a step cone and not the smooth-surfaced figure
one has in mind. This problem is not unlike the difficulties with the
incommensurable and with the paradoxes of motion. Perhaps, in his On
the Irrational, Democritus analyzed the difficulties here encountered, but
there is no way of knowing what direction his attempts may have taken.
His extreme unpopularity in the two dominant philosophical schools of
the next century, those of Plato and Aristotle, may have encouraged the
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disregard of Democritean ideas. Nevertheless, the chief mathematical
legacy of the Heroic Age can be summed up in six problems: the squaring
of the circle, the duplication of the cube, the trisection of the angle, the
ratio of incommensurable magnitudes, the paradoxes on motion, and the
validity of infinitesimal methods. To some extent, these can be asso-
ciated, although not exclusively, with men considered in this chapter:
Hippocrates, Archytas, Hippias, Hippasus, Zeno, and Democritus. Other
ages were to produce a comparable array of talent, but perhaps never
again was any age to make so bold an attack on so many fundamental
mathematical problems with such inadequate methodological resources.
It is for this reason that we have called the period from Anaxagoras to
Archytas the Heroic Age.

Mathematics and the Liberal Arts

We included Archytas among the mathematicians of the Heroic Age, but
in a sense he really is a transition figure in mathematics during Plato’s
time. Archytas was among the last of the Pythagoreans, both literally
and figuratively. He could still believe that number was all-important in
life and in mathematics, but the wave of the future was to elevate
geometry to the ascendancy, largely because of the problem of incom-
mensurability. On the other hand, Archytas is reported to have estab-
lished the quadrivium—arithmetic, geometry, music, and astronomy—
as the core of a liberal education, and here his views were to dominate
much of pedagogical thought to our day. The seven liberal arts, which
remained a shibboleth for almost two millennia, were made up of
Archytas’s quadrivium and the trivium of grammar, rhetoric, and Zeno's
dialectic. Consequently, one may with some justice hold that the
mathematicians of the Heroic Age were responsible for much of the
direction in Western educational traditions, especially as transmitted
through the philosophers of the fourth century BcE.

The Academy

The fourth century BCE had opened with the death of Socrates, a scholar
who adopted the dialectic method of Zeno and repudiated the Pytha-
goreanism of Archytas. Socrates admitted that in his youth, he had been
attracted by such questions as why the sum 2+ 2 was the same as the
product 2 x 2, as well as by the natural philosophy of Anaxagoras, but
on realizing that neither mathematics nor science could satisfy his desire
to know the essence of things, he gave himself up to his characteristic
search for the good.
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The dialogue that Plato composed in memory of his friend Theaetetus
contains information on another mathematician whom Plato admired and
who contributed to the early development of the theory of incommen-
surable magnitudes. Reporting on the then recent discovery of what we
call the irrationality of v/2, Plato in the Theaetetus says that his teacher,
Theodorus of Cyrene—of whom Theaetetus was also a pupil—was the
first to prove the irrationality of the square roots of the nonsquare
integers from 3 to 17 inclusive. It is not known how he did this or why
he stopped with v/17. The proof, in any case, would have been con-
structed along the lines of that for v/2 as given by Aristotle and inter-
polated in later versions of Book X of the Elements. References in
ancient historical works indicate that Theodorus made discoveries
in elementary geometry that later were incorporated into Euclid’s
Elements, but the works of Theodorus are lost.

Plato is important in the history of mathematics largely for his role as
inspirer and director of others, and perhaps to him is due the sharp
distinction in ancient Greece between arithmetic (in the sense of the
theory of numbers) and logistic (the technique of computation). Plato
regarded logistic as appropriate for the businessman and for the man of
war, who “must learn the art of numbers or he will not know how to
array his troops.” The philosopher, on the other hand, must be an
arithmetician “because he has to arise out of the sea of change
and lay hold of true being.” Moreover, Plato says in the Republic,
“Arithmetic has a very great and elevating effect, compelling the mind to
reason about abstract number.” So elevating are Plato’s thoughts con-
cerning numbers that they reach the realm of mysticism and apparent
fantasy. In the last book of the Republic, he refers to a number that he
calls “the lord of better and worse births.” There has been much spec-
ulation concerning this “Platonic number,” and one theory is that it is
the number 60*=12,960,000—important in Babylonian numerology
and possibly transmitted to Plato through the Pythagoreans. In the Laws,
the number of citizens in the ideal state is given as 5040 (that is,
7-6-5-4-3-2-.1). This is sometimes referred to as the Platonic
nuptial number, and various theories have been advanced to suggest
what Plato had in mind.

As in arithmetic, where Plato saw a gulf separating the theoretical and
the computational aspects, so also in geometry he espoused the cause of
pure mathematics as against the materialistic views of the artisan or the
technician. Plutarch, in his Life of Marcellus, speaks of Plato’s indig-
nation at the use of mechanical contrivances in geometry. Apparently,
Plato regarded such use as “the mere corruption and annihilation of the
one good of geometry, which was thus shamefully turning its back upon
the unembodied objects of pure intelligence.” Plato may consequently
have been largely responsible for the prevalent restriction in Greek
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geometric constructions to those that can be effected by straightedge and
compasses alone. The reason for the limitation is not likely to have been
the simplicity of the instruments used in constructing lines and circles,
but rather the symmetry of the configurations. Any one of the infinitely
many diameters of a circle is a line of symmetry of the figure; any point
on an infinitely extended straight line can be thought of as a center of
symmetry, just as any line perpendicular to the given line is a line with
respect to which the given line is symmetric. Platonic philosophy,
with its apotheosization of ideas, would quite naturally find a favored
role for the line and the circle among geometric figures. In a somewhat
similar manner, Plato glorified the triangle. The faces of the five regular
solids in Plato’s view were not simple triangles, squares, and pentagons.
Each of the four faces of the tetrahedron, for example, is made up of six
smaller right triangles, formed by altitudes of the equilateral triangular
faces. The regular tetrahedron he therefore thought of as made up of
twenty-four scalene right triangles in which the hypotenuse is double
one side; the regular octahedron contains 8 X 6 or 48 such triangles, and
the icosahedron is made up of 20X 6 or 120 triangles. In a similar way
the hexahedron (or cube) is constructed of twenty-four isosceles right
triangles, for each of the six square faces contains four right triangles
when the diagonals of the squares are drawn.

To the dodecahedron, Plato had assigned a special role as repre-
sentative of the universe, cryptically saying that “God used it for the
whole” (Timaeus 55C). Plato looked on the dodecahedron as composed
of 360 scalene right triangles, for when the five diagonals and the five
medians are drawn in each of the pentagonal faces, each of the twelve
faces will contain thirty right triangles. The association of the first four
regular solids with the traditional four universal elements provided Plato
in the Timaeus with a beautifully unified theory of matter, according to
which everything was constructed of ideal right triangles. The whole of
physiology, as well as the sciences of inert matter, is based in the
Timaeus on these triangles.

Pythagoras is reputed to have established mathematics as a liberal
subject, but Plato was influential in making the subject an essential part
of the curriculum for the education of statesmen. Influenced perhaps by
Archytas, Plato would add to the original subjects in the quadrivium a
new subject, stereometry, for he believed that solid geometry had not
been sufficiently emphasized. Plato also discussed the foundations of
mathematics, clarified some of the definitions, and reorganized the
assumptions. He emphasized that the reasoning used in geometry does
not refer to the visible figures that are drawn but to the absolute ideas
that they represent. The Pythagoreans had defined a point as “unity
having position,” but Plato would rather think of it as the beginning of a
line. The definition of a line as “breadthless length” seems to have
originated in the school of Plato, as well as the idea that a line “lies
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evenly with the points on it.” In arithmetic, Plato emphasized not only
the distinction between odd and even numbers, but also the categories
“even times even,” “odd times even,” and “odd times odd.” Although we
are told that Plato added to the axioms of mathematics, we do not have
an account of his premises.

Few specific mathematical contributions are attributed to Plato.
A formula for Pythagorean triples—(2n)* + (n* — 1)* = (n*+ 1)*, where n
is any natural number—bears Plato’s name, but this is merely a slightly
modified version of a result known to the Babylonians and the Pytha-
goreans. Perhaps more genuinely significant is the ascription to Plato of
the so-called analytic method. In demonstrative mathematics one begins
with what is given, either generally in the axioms and the postulates or
more specifically in the problems at hand. Proceeding step by step, one
then arrives at the statement that was to have been proved. Plato seems
to have pointed out that often it is pedagogically convenient, when a
chain of reasoning from premises to conclusion is not obvious, to
reverse the process. One might begin with the proposition that is to be
proved and from it deduce a conclusion that is known to hold. If, then,
one can reverse the steps in this chain of reasoning, the result is a
legitimate proof of the proposition. It is unlikely that Plato was the first
to note the efficacy in the analytic point of view, for any preliminary
investigation of a problem is tantamount to this. What Plato is likely to
have done is to formalize this procedure or perhaps to give it a name.

The role of Plato in the history of mathematics is still bitterly disputed.
Some regard him as an exceptionally profound and incisive thinker;
others picture him as a mathematical pied piper who lured men away
from problems that concerned the world’s work and who encouraged
idle speculation. In any case, few would deny that Plato had a tre-
mendous effect on the development of mathematics. The Platonic
Academy in Athens became the mathematical center of the world, and it
was from this school that the leading teachers and research workers
came during the middle of the fourth century. Of these, the greatest was
Eudoxus of Cnidus (408?—335? BCE), a man who was at one time a pupil
of Plato and who became the most renowned mathematician and
astronomer of his day.

Eudoxus

We sometimes read of the “Platonic reform™ in mathematics, and although
the phrase tends to exaggerate the changes taking place, the work of
Eudoxus was so significant that the word “reform” is not inappropriate. In
Plato’s youth, the discovery of the incommensurable had caused a veritable
logical scandal, for it had raised havoc with theorems involving
proportions. Two quantities, such as the diagonal and the side of a square,
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are incommensurable when they do not have a ratio such as a (whole)
number has to a (whole) number. How, then, is one to compare ratios of
incommensurable magnitudes? If Hippocrates really did prove that the
areas of circles are to each other as squares on their diameters, he must
have had some way of handling proportions or the equality of ratios. We do
not know how he proceeded or whether to some extent he anticipated
Eudoxus, who gave a new and generally accepted definition of equal ratios.
Apparently, the Greeks had made use of the idea that four quantities are in
proportion, a : b=c:d, if the two ratios a : b and ¢ : d have the same mutual
subtraction. That is, the smaller in each ratio can be laid off on the larger
the same integral number of times, and the remainder in each case can be
laid off on the smaller the same integral number of times, and the new
remainder can be laid off on the former remainder the same integral
number of times, and so on. Such a definition would be awkward to use,
and it was a brilliant achievement of Eudoxus to discover the theory of
proportion used in Book V of Euclid’s Elements.

The word “ratio” essentially denoted an undefined concept in Greek
mathematics, for Euclid’s “definition” of ratio as a kind of relation in
size between two magnitudes of the same type is quite inadequate. More
significant is Euclid’s statement that magnitudes are said to have a ratio
to one another if a multiple of either can be found to exceed the other.
This is essentially a statement of the so-called axiom of Archimedes—a
property that Archimedes himself attributed to Eudoxus. The Eudoxian
concept of ratio consequently excludes zero and clarifies what is meant
by magnitudes of the same kind. A line segment, for example, is not to
be compared, in terms of ratio, with an area; nor is an area to be com-
pared with a volume.

Following these preliminary remarks on ratios, Euclid gives in Defi-
nition 5 of Book V the celebrated formulation by Eudoxus:

Magnitudes are said to be in the same ratio, the first to the second and
the third to the fourth, when, if any equimultiples whatever be taken of the
first and the third, and any equimultiples whatever of the second and
fourth, the former equimultiples alike exceed, are alike equal to, or are
alike less than, the latter equimultiples taken in corresponding order (Heath
1981, vol. 2, p. 114).

That is, a/b=c/d if and only if given integers m and n, whenever
ma < nb, then mc < nd, or if ma =nb, then mc =nd, or if ma > nb, then
me > nd.

The Eudoxian definition of equality of ratios is not unlike the process
of cross-multiplication that is used today for fractions—a/b=c/d
according as ad =bc—a process equivalent to a reduction to a common
denominator. To show that § is equal to 5, for example, we multiply 3 and
6 by 4, to obtain 12 and 24, and we multiply 4 and 8 by 3, obtaining the



