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Preface

Hello, data scientists and Al enthusiasts. For many years I've created online courses
on Artificial Intelligence (Al), which have been very successful and contributed well
to the Al community. However, something essential was missing. At one point,

so many Al courses were made that most of my students asked me for guidance

on how to take the courses. So instead of providing an order in which to take the
courses, I decided to create an all-in-one full guide to Al as a book, which would
include in a perfect structure all the best explanations and real-world practical
activities from my courses.

You see, my goal is to democratize Al and raise awareness among everyone of the
fact that Al is an accessible technology that can make a difference for the better in
this world. I am trying my best to spread knowledge around the world to get people
prepared for the future jobs and opportunities of this 21st century. And I thought
some people would learn Al much more efficiently from an all-in-one book they

can take anywhere, rather than completing tens of online courses that can be hard

to navigate. That being said, this book is also a great additional resource for those
people who do prefer, and take, online courses.

My simple hope for this book is that more people learn Al the right way, as a result
of me offering them this efficient alternative to online courses. I've succeeded at the
challenge of including the best of my training in a single book, and today I'm truly
happy to release it. I sincerely hope it will help more people land their dream job,
grow an amazing career in data science or Al, and bring beautiful solutions to the
tough challenges of this 21st century.

[vii]



Preface

Who this book is for

Anyone interested in machine learning, deep learning, or Al

People who aren't that comfortable with coding, but who are interested in Al
and want to apply it easily to real-world problems.

College or university students who want to start a career in data science or Al
Data analysts who want to level up in AL

Anyone who isn't satisfied with their job and wants to take the first steps toward a
career in data science.

Business owners who want to add value to their business by using powerful Al tools.

Entrepreneurs who are eager to learn how to leverage Al to optimize their business,
maximize profitability, and increase efficiency.

Al practitioners who want to know what projects they can offer to their employees.
Aspiring data scientists, looking for business cases to add to their portfolio.

Technology enthusiasts interested in leveraging machine learning and Al to solve
business problems.

Consultants who want to transition companies into being Al-driven businesses.

Students with at least high school knowledge in math, who want to start learning Al.

What this book covers

Chapter 1, Welcome to the Robot World, introduces you to the world of Artificial
Intelligence.

Chapter 2, Discover Your Al Toolkit, uncovers an easy-to-use toolkit of all the Al
models as Python files, ready to run thanks to the amazing Google Colaboratory
platform.

Chapter 3, Python Fundamentals - Learn How to Code in Python, provides the right
Python fundamentals and teaches you how to code in Python.

Chapter 4, Al Foundation Techniques, introduces you to reinforcement learning and its
five fundamental principles.

[ viii ]



Preface

Chapter 5, Your First Al Model - Beware the Bandits!, teaches the theory of the multi-
armed bandit problem and how to solve it in the best way with the Thompson
Sampling Al model.

Chapter 6, Al for Sales and Advertising — Sell like the Wolf of Al Street, applies the
Thompson Sampling Al model of Chapter 5 to solve a real-world business problem
related to sales and advertising.

Chapter 7, Welcome to Q-Learning, introduces the theory of the Q-learning AI model.

Chapter 8, Al for Logistics — Robots in a Warehouse, applies the Q-learning Al model of
Chapter 7 to solve a real-world business problem related to logistics optimization.

Chapter 9, Going Pro with Artificial Brains - Deep Q-Learning, introduces the
fundamentals of deep learning and the theory of the deep Q-learning Al model.

Chapter 10, Al for Autonomous Vehicles - Build a Self-Driving Car, applies the deep
Q-learning Al model of Chapter 9 to build a virtual self-driving car.

Chapter 11, Al for Business — Minimize Cost with Deep Q-Learning, applies the deep
Q-learning AI model of Chapter 9 to solve a real-world business problem related
to cost optimization.

Chapter 12, Deep Convolutional Q-Learning, introduces the fundamentals of
convolutional neural networks and the theory of the deep convolutional Q-learning
Al model.

Chapter 13, Al for Games — Become the Master at Snake, applies the deep convolutional
Q-learning AI model of Chapter 12 to beat the famous Snake video game

Chapter 14, Recap and Conclusion, concludes the book with a recap of how to create
an Al framework and some final words from the author about your future in the
world of AL

To get the most out of this book

You don't need to know much before we begin; the book contains refreshers
on all the prerequisites needed to understand the Al models. There's also

a full chapter on Python fundamentals to help you learn, if you need to,
how to code in Python.

* There are no required prior installations, since all the practical instructions
are provided from scratch in the book. You only need to have your computer
ready and switched on.

[ix]



Preface

* Irecommend you have Google open while reading the book, so that you can
visit the links provided in the book as resources, and to check out the math
concepts behind the Al models of this book in more detail.

Download the example code files

You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files emailed directly
to you.

You can download the code files by following these steps:

1. Login or register at http://www.packtpub.com

2. Select the SUPPORT tab.

3. Click on Code Downloads & Errata.

4. Enter the name of the book in the Search box and follow the on-screen

instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

*  WinRAR / 7-Zip for Windows

* Zipeg / iZip / UnRarX for Mac

* 7-Zip / PeaZip for Linux
The code bundle for the book is also hosted on GitHub at https://github.
com/PacktPublishing/AI-Crash-Course. We also have other code bundles

from our rich catalog of books and videos available at https: //github.com/
PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781838645359 ColorImages.pdf.
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Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. For example; "To get these numbers you can add together the lists
nPosReward and nNegReward."

A block of code is set as follows:

# Creating the dataset
X = np.zeros( (N, d))
for i in range(N):
for j in range(d):
if np.random.rand() < conversionRates[j]:
X[i1031 =1

When we wish to draw your attention to a particular line in a code block, we have

included the line numbers so that we can refer to them with precision:

80 self.last_state = new_state
81 self.last_action = new_action
82 self.last_reward = new reward
83 return new_action

Any command-line input or output is written as follows:

conda install -c conda-forge keras

Bold: Indicates a new term, an important word, or words that you see on the screen,
for example, in menus or dialog boxes, also appear in the text like this. For example:

"Select System info from the Administration panel."

\/V, Warnings or important notes appear like this.

~ 7,
'@' Tips and tricks appear like this.
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Preface

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book's title
in the subject of your message. If you have questions about any aspect of this book,
please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book we would be grateful
if you would report this to us. Please visit, http: //www.packtpub. com/submit-
errata, selecting your book, clicking on the Errata Submission Form link, and
entering the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packtpub.com with a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit http://authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packtpub.com.
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Welcome to the Robot World

"We are truly living in the most exciting time to be alive!" These words, by the great
tech entrepreneur Peter Diamandis, are even more true for people working in the
artificial intelligence (AI) ecosystem. There is a reason why Al jobs are considered
the sexiest jobs of the 21st century: besides being very well paid, Al is a fantastic
topic to work on.

Al is taking a more and more important place in the world, and today we can

find applications of it in almost all industries. This is not a temporary trend;

Al is here to stay. As the top Al leader and influencer Andrew Ng said, Al is the
new electricity. Just like the industrial revolution transformed lives and jobs in the
19th century, Al is about to do the same in this 21st century. Hence, the more you
understand and know how to use it, the more opportunities will open up to you.

To give you some important figures, according to a study done by
PricewaterhouseCoopers (PwC), Al could contribute up to $15.7 trillion to the
global economy by 2030, which is more than the current output of China and India
combined. So, you've definitely made a great choice to study this field. Welcome
to the incredible world of Artificial Intelligence!

In this chapter, you will begin your Al journey with a top-level view of everything
you'll learn from this book as you read and work through the chapters ahead with
me. Then, I'll help you understand where learning Al can take you, by going through
a variety of top industry applications for Artificial Intelligence.

Beginning the Al journey
Being a young Al scientist, I remember my first days in Al very well. This is

important because this book is a crash course in Al You don't need any prior
knowledge of the field to work through the chapters.

[11]



Welcome to the Robot World

In this book, I will explain the solid foundations of AI, while making sure to answer
all the questions that I had back when I started in this field in detail. This means that
everything will be explained step by step, and your learning process will follow a
smooth path, supported by the relevant logic.

Having the right information at your fingertips is not enough to successfully break into
the Al world. What you also need is energy, enthusiasm, and excitement. Even better,
you need passion, and ideally obsession, about the subject. As an experienced tutor of
online courses, I hope to pass on my knowledge and, most importantly, my passion.

In this book, you will go on a journey together with me, taking a path through

a world of exciting Al applications, including many real-world case studies in

the chapters. The applications will follow an increasing level of difficulty, from
the simplest model in Al to a much more advanced level.

For each of the Al applications, I will focus mostly on the intuition needed to
understand them, and then, for those interested in the mathematics and pure theory
behind the application, I will provide those as an option. The reason why I choose to
focus on intuition rather than math is not only because I want to make this book easy
to understand for everyone, but also because, in order to perform well in Al today, it
is extremely important to have the right intuition. When you're solving a problem with
Al, you have to figure out which model best fits your problem environment, and you
can only do that when you have the proper intuition of how each Al model works.

Four different Al models

These Al models were chosen to be part of this book because they are used in a great
variety of industry applications and can solve many different real-world problems.
I'll just reveal their names here before we study them in depth across the book. The
four Al models you will learn everything about in this book are the following;:

1. Thompson Sampling

2. Q-learning

3. Deep Q-learning

4. Deep convolutional Q-learning
For each of these four models, we will follow the same three-step approach:

1. Get an intuitive understanding of how it works.
2. Get all the math behind the theory.

3. Implement the model from scratch in Python.

[2]



Chapter 1

I have followed this structure many times with my students, and I can tell you
that it works the best. The idea is simple: because you start with your intuition,
you won't get overwhelmed by the math, but will instead understand it more
easily. You'll also feel comfortable coding some models of which you both have
an intuitive understanding and in-depth theoretical knowledge.

The models in practice

All the way through this book you'll find practical examples to learn from or
implement yourself. Here's a list of the Al implementations you'll find in the
chapters of this course, which start in Chapter 3 after you get the tools you need
for your Al journey in Chapter 2.

Fundamentals

Chapter 3, Python Fundamentals - Learn How to Code in Python, contains the Python
coding fundamentals you'll need for this book. You can remind yourself, or learn
from scratch, how to code in Python.

Chapter 4, Al Foundation Techniques, contains a pseudocode example to illustrate
the five core principles of Artificial Intelligence.

Thompson Sampling

Chapter 5, Your First AI Model - Beware the Bandits!, contains introductory
code to illustrate the theory behind the Thompson Sampling AI model.

Chapter 6, Al for Sales and Advertising — Sell like the Wolf of Al Street, contains
a real-world implementation of the Thompson Sampling model, applied to
online advertising.

Q-learning
Chapter 7, Welcome to Q-Learning, contains pseudocode to illustrate the theory of the
Q-learning Al model.

Chapter 8, Al for Logistics - Robots in a Warehouse, contains a real-world
implementation of the Q-learning model, applied to process automation and
optimization.

Deep Q-learning

Chapter 9, Going Pro with Artificial Brains - Deep Q-Learning, contains introductory
code to illustrate the theory behind Artificial Neural Networks.

[3]



Welcome to the Robot World

Chapter 10, Al for Autonomous Vehicles - Build a Self-Driving Car, contains a real-world
implementation of the deep Q-learning model, applied to self-driving cars.

Chapter 11, Al for Business - Minimize Costs with Deep Q-Learning, contains another
real-world implementation of the deep Q-learning model, applied to energy and
business.

Deep convolutional Q-learning

Chapter 12, Deep Convolution Q-Learning, contains introductory code to illustrate the
implementation of a Convolutional Neural Network (CNN).

Chapter 13, Al for Video Games — Become the Master at Snake, contains a real-world
implementation of the deep convolutional Q-learning model applied to a game.

As you can see, every time you're introduced to a new model, you learn the intuition
first, then the math, and then you move to an implementation of the model. So, why
is learning how to implement these models worth your while?

Where can learning Al take you?

I'd like to motivate you by showing you that you made the right choice to learn

Al To do this, I'll take you on a tour of all the incredible applications Al can and will
have in the 21st century. I have a vision of how Al can transtorm the world, and this
vision is structured around 10 areas.

Energy

In 2016, Google used Al to reduce energy consumption in its data centers by more
than 30%. If Google has done it for data centers, it could be done for an entire

city. By building a smart Al platform using Internet of Things (IoT) technology,
the consumption and distribution of energy can be optimized on a large scale.

Healthcare

Al has enormous promise for healthcare. It can already diagnose diseases, make
prescriptions, and design new drug formulas. Combining all these skills into a smart
healthcare platform will allow people to benefit from truly personalized medical
care. This would be amazing for society. The challenges in achieving this are not
only present in the technology, but also in getting access to anonymous patient

data, which so far is protected by regulations.

[4]



Chapter 1

Transport and logistics

Self-driving vehicles are becoming a reality. There is still a lot to achieve, but the
technology is constantly improving. By building smart digital infrastructures, Al

will help reduce the number of accidents and considerably reduce traffic. Also, self-
driving delivery trucks and drones will speed up logistic processes, therefore boosting
the economy; mostly through one of its bigger engines, the e-commerce industry.

Education

Today, we live in the era of Massive Open Online Courses. Anyone can learn
anything online. This is great because the whole world can get access to an
education; but it's definitely not enough. A significant improvement would be the
personalization of education; everyone learns differently, and at different paces.
Some, namely extroverts, will prefer the classroom, while others, introverts, will
learn better at home. Some are more visual, while others are more auditory. Taking
these and other factors into account, Al is a powerful technology that could deliver
personalized training, optimizing everyone's learning curve.

Security

Computer vision has made tremendous technological progress. Al can now detect
faces with a high level of accuracy. Not only that, the number of security cameras is
increasing significantly. All this could be integrated into a global security platform
to reduce crime, increase public safety, and disincentivize people from breaking the
law. Besides this, Al and Machine Learning are powerful technologies already used
in fraud detection and prevention.

Employment

Al can build powerful recommender systems. We already see platforms of digital
recruitment, where Al matches the best candidates to jobs. This not only has a
positive impact on the economy, but also on people's happiness, since work makes
up more than half of a person's life.

Smart homes and robots

Smart homes, IoT, and connected objects are developing massively. Robots will assist
people in their homes, allowing humans to focus on more important activities like
their work or spending quality time with their family. They will also help elderly
people to live in their home independently, or even allow them to stay active at
work, for much longer.

[5]



Welcome to the Robot World

Entertainment and happiness

One downside of technology today is that despite the fact people are so virtually
connected, they feel more and more lonely. Loneliness is something we must fight
against in this century, as it is very unhealthy for people. Al has a great role to play
in this fight, since it is again a powerful recommender system, which can not only
recommend relevant movies and songs to users, but also connect people through
recommended activities based on their past experiences and common interests.

Through a global smart platform of entertainment, Al technology could help like-
minded people to socialize and meet physically instead of virtually.

Another idea to fight loneliness is companion robots, which will be entering
homes more and more over the next decade. One branch of Al in the Research
and Development phase is emotion creation. This is the branch of Al that will
allow robots to show emotions and empathy, and therefore interact more
successfully with humans.

Environment

Using computer vision, machines could optimize waste sorting and redistribute the
cycles of trash more efficiently. Combining pure Al models with IoT can optimize
power and water consumption by individuals. Programs already exist on some
platforms that allow people to track their consumption in real time, therefore
collecting data. Integrating Al could minimize this consumption, or optimize the
distribution cycles for beneficial reuse. Combined with traffic reduction and the
development of autonomous vehicles, this will considerably reduce pollution,
which will create a healthier environment.

Economy, business, and finance

Al is taking the business world by storm. Earlier, I mentioned the study done

by PwC showing how Al could contribute up to $15 trillion to the global

economy in 2030 (https://www.pwc.com/gx/en/issues/data-and-analytics/
publications/artificial-intelligence-study.html). But how can Al
generate so much income? Al can bring significant added value to businesses

in three different ways: process automation, profit optimization, and innovation.

In my vision of an Al-driven economy, I see the majority of companies adopting

at least one Al technology, or having an Al department. In finance, we can already
see some jobs being replaced by robots. For example, the number of financial traders
was significantly reduced after the development of trading robots that perform well
on high-frequency trades.

[6]



Chapter 1

As you can see, the robot world has a lot of great directions for you to take. Al

is already in a dynamic place and it's picking up strong momentum as it moves
forward. My professional purpose is to democratize Al and incentivize people

to make a positive impact in this world thanks to AI—who knows, perhaps your
purpose will be to work with Al for the good of humanity. I'm sure that at least

one of these 10 applications resonates in you; if that's the case, work hard to become
an Al master and you will have the chance to make a difference.

If you are ready to break into Al, or simply want to increase your knowledge,
let's begin!

Summary

In this chapter, you began your Al journey and saw the vast land of opportunities
that will open to you. Perhaps you can already think of which industry application
might resonate the most in you, so you can become even more passionate about what
you do with Al and understand why you're doing it. In the next chapter, you will
uncover the Al toolkit you will use in this book.

[71
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Discover Your Al Toolkit

In the previous chapter, you began your Al journey. Before you continue it, you need
your Al toolkit. This book is not just theory; it also contains an easy-to-use toolkit

of all the Al models as Python files, ready to run thanks to the amazing Google
Colaboratory platform that you will also be introduced to in this chapter.

To fill your Al toolkit, I've prepared a GitHub page containing all the Al
implementations for you to download, and Google Colab links of the Python
notebooks containing the implementations, all ready to execute via an easy plug
and play process.

The GitHub page

You will find all the code for this book ready for you to download from the following
GitHub page:

https://github.com/PacktPublishing/AI-Crash-Course

[9]



Discover Your Al Toolkit

To download the code, you simply need to click the Clone or download button,
and then Download Zip:

Il PacktPublishing / Al-Crash-Course @ Watch~ 6 % Star 10 Vrork 14
<> Code Issues 0 Pull requests 0 Wiki Security Insights * Settings
Al-Crash-Course, published by Packt Edit

Manage lopics

(D 376 commits ¥ 1 branch © 0 releases A2 3 contributors & Mt

Branch: master ~ New pull request Create new file  Upload files  Find file Clone or download -
¥ hadeiin2p Update README md Latest commit 9fadeas 13 minutes ago
m Chapter 03 Add files via upload 13 days ago
I Chapter 04 Add files via upload 13 days ago
B Chapter 05 Add files via upload 13 days ago
= Chapter 06 Update thompson_sampling.py 13 days ago
= Chapter 07 Add files via upload 13 days ago
m Chapter 08 Add files via upload 13 days ago
I Chapter 09 Update predictor.py 11 days ago
= Chapter 10 Add files via upload 13 days ago
= Chapter 11 Add files via upload 13 days ago
i Chapter 12 Delete .DS_Store yesterday
i Chapter 13 Update train.py 13 days ago

LICENSE Initial commit 7 months ago

README.md Initial commit 7 months ago
EH README.md s

Al-Crash-Course

Al-Crash-Course, published by Packt

Figure 1: The GitHub repository

Then, once you've downloaded these codes, feel free to open them with your favorite
Python Integrated Development Environment (IDE), whether it's Jupyter Notebook,
Spyder, a simple text editor, or even your terminal.
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If you've never coded with Python before and have no idea of how to open the files
with a Python editor, then no problem; I've prepared the best and simplest solution
for you: Colaboratory (or Google Colab).

Colaboratory

Colaboratory is a free and open source environment for Python development that
requires no setup and runs entirely on the cloud. It contains all the pre-installed
packages required for your Al implementations so that they are ready to run with
a simple plug and play process. By plug, I just mean to copy and paste the code
inside a new Colab file (I'll explain how to open one next), and by play, I just mean
to click on the play button (an example of that follows).

Here is the link to the main page of Colaboratory:
https://colab.research.google.com/notebooks/welcome.ipynb

You should get a page like this:

co Welcome To Colaboratery B e a
Filg B View et Bustime  Took  Melp ol
@ coof @ TEX - T W & COPY 10 RNV comact - F . ~
Table of contents. Code snippets Files X
Introducing Colaboratory Welcome to Colaboratory!
Getting Started Colaboratory 13 a free Juppter notebook ennronment that requires no setup and rums enteely i the coud
WIEN COMBOFMONY YOU ER wATlE B0d EXeCUte SOO8, BAVE BAE SNA'E YOUT Nalyses, and SCSesS Bowertul SOMOUING rescurces, al 1o¢ fres from your Browser
Maore Aesources

Macane Lparreg Erampies Seedbank © Introducing Colaboratory

Thes 3 minute video grves an overview of the key features of Colaboratory.

B scToN

Figure 2: Colaboratory - main page
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Click File in the upper left, and then click New Python 3 notebook:

Welcome To Colaboratory B

File Edit View Insert Runtime Tools Help

New Python 3 notebook Y TO DRIVE
New Python 2 notebook
Table of ¢
Open notebook... #/Ctrl+0
Introducit ,10ad notebook... W
Getting St aboratory
1 Colabor
More Res
Save a copy in Drive... [

Figure 3: Colaboratory - opening a notebook

Then you will get this view. Paste your Python code inside the cell (red arrow).
That's the "plug" part:

& Untitled0.ipynb

File Edit View Insert Runtime Tools Help

CODE TEXT 4 CELL ¥ CELL

Figure 4: Colaboratory - the "plug" part
I recommend using separate Colaboratory notebooks for each model in this book.

Now let's see the "play" part. Open the Thompson Sampling model in the Chapter
06 folder, implemented inside the thompson_sampling.py file:
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=] thompson_sampling.py

a.' hadelin2p Update thompson_sampling.py

Il PacktPublishing / Al-Crash-Course

<> Code Issues 0 Pull requests 0

Wiki

Branch: master +  Al-Crash-Course [ Chapter 06 /

Figure 5: GitHub - opening Thompson Sampling

Copy the whole code from inside the Python file; don't worry about understanding
the code (or the results) for now. It will all be explained, step by step, in Chapter 6,
Al for Sales and Advertising - Sell like the Wolf of Al Street:

L] PacktPublishing / Al-Crash-Course

¢¥ Code Issues 0 Pull requests 0 Wiki 1 | Security nsights

Beanch. master - Al-Crash-Course | Chapter 06 / thompson_sampling.py

a"h-ullnzp Update thompson_sampling py
2 contrivwtors [ I
§9 limes (52 slec) 1.83 kB

® Jusp to definition is still being calculatec for this commit. Check back in a bit. [HeES

# AL for Sales & Advertizing - Sell like the Wolf of Al Street

® Importing the libraries
inport mumpy as np

laport matglatlib.pyplot as plt
inport randos

€ Setting tha paraneters
LR
d=9

P Bullding the environasnt Laside & sisulatise
conversion_rates - [9.95,8.13,9.99,0.16,0.11,0.91,0.29,0.98,0.01)
K = np.array(np.zeros([¥,]))
for 4 in range(N):
for § in range(d):
if np.rancom.rand() <= corversion_rates[j]:
X[1,3) = 2

& Implementing Randow Selection and Thompson Sampling
strategles_selected rs - []
strategles_selected_ts - []
total_reward_rs - @
total_resard_ts = &
nunbers_of_rewards 1 - [8]) " d
nunbers_of _rewards 0 - [8) " ¢
for n in range(d, M):
¥ Rancom Selection
strategy_ri - random. randrange(d)
selected rs rategy_rs)
reward_rs - X[n, strategy_rs]
total_resard_rs = total_rewarc_rs ¢ reward_rs
& Thospson Sampling

@ wotch =

O Settings

6 st 8  YFok 13

Find file  Copy path

#932744 12 minules ago

Bame History O o 0

Learn more of ghve us lescback

Figure 6: GitHub - copying Thompson Sampling
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Next, paste it into Colaboratory (in the cell highlighted by the arrow in Figure 4).

Then we get this:

& Untitled0.ipynb
File Edt View insert Runtime Tools Help

B cod O TEXT 4 cilL @& CRL

° # AT for Sales & Advertizing = Sell like tha Welf of AT Street

# Importing the libraries
import nuspy as np
import matplotlib.pyplot as plt

import ran
# Setting the parameters

N = 10€00

d=8

# Building the enviroament inside a simulation

conversion_rates = [0.05,0.13,0.09,0.14,0.11,0.04,0.20,0.08,0.01)

X = np.array(np.zeros((N,d]))

id)
if pp.random.rand() <= conversion_rates|j|:
i1 = L

# Implementing Random Selection and Thompson Sampling
strategies selected rs = []
strategies_selected ts = []
total reward rs = 0
total_reward ts = 0
numbers_of_rewards_l = [0] = &
numbers_of_rewards 0 = (0] * &
for n in range(d, N):
# Randes on
strategy_rs = random.raadrangeid)
strategies_selected rs.append(strategy rs)
reward rs = X[n, strategy rs]
total revard rs = total reward re ¢+ reward rs
# Thoapson Sampling
strateyy_ts = §
L]

for i in range{t, d):
random_bets = random.betavaslate(nusbers_of_sewards_L[i] + 1, nuabers_of rewards 0[] + 1)
if random beta > max_r.

nax_randos = random_beta
strategy ts = i
reward_ts = X[n, strategy_ts]
if revard ts == 1:
numbers _of_rewards_l[strategy_ts| = numbers_of rewards_l[strategy ts) = 1
else:

B strategy_ts| = nusbers_of_rewards_0[strategy_ts] + 1
selected ts.append(strateqy_ts)
d_ts = total_revard_ts + revard_ts

v ng the Relative Return
relative_return = (total_reward_ts - total_reward_rs) / toral_reward_rs + 100
print(“Relative Return: (:.0f) 1", format(relative_returs))

# Plotting the Mistogram of Selections
ple.hise (strategies_sslected ts)

plt.title| Hist of Selectioas’)

ple.xlabal| "Seratagy’ )

plt.ylabel( 'Number of tises the strateqy was selected')
plt.shew(]

B comuent

COMMECT =

&h SHARE o';

Figure 7: Pasting Thompson Sampling,

And now we are ready for the "play" part! Just click the "play" button below:

£ Untitled0.ipynb
File Edit View Insert Runt

CODE TEXT 4 CELL

E4

AI for Sales & Adve:

# Importing the libra
import numpy as np
import matplotlib.pyp:
import random

Figure 8: The "play" part
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And the code will execute. Don't pay attention to the result now, as this will all
be explained in Chapter 6, Al for Sales and Advertising - Sell like the Wolf of Al Street.

You are all set! You now have an Al toolkit that will enable you to follow along
with every example in the book.

Before you begin your Al journey in earnest, you must make sure that you have
the right basic coding knowledge. This is truly important before becoming a master
at Al If you have little or no experience with Python, make sure that you learn
Python in Chapter 3, Python Fundamentals — Learn How to Code in Python, as a last
preparation phase before you begin exploring the robot world.

Summary

In this chapter, you packed your luggage with our Al toolkit, which included

not only the many Al models of this book, but also the very user-friendly Google
Colaboratory environment. You saw how easy it was to plug and play our models
from GitHub to Colaboratory. Now you just need coding skills to make you ready
to begin the real journey. In the next chapter, you will have a chance to learn—

or brush up on—your Python fundamentals.
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Python Fundamentals —
Learn How to Code in Python

This chapter is for people who have little or no experience with the Python
programming language. If you already know how to use for/while loops,
methods, and classes in Python, you can skip this chapter and you shouldn't have
any problems later on.

If, however, you have not used Python before, or have only barely used it, I strongly
recommend that you follow this guide. You'll learn how to code the elements of
Python I mentioned in the previous paragraph, you'll fully understand the codes
included in this book and you'll be able to code in Python on your own. I'll also give
you some additional exercises, called "homework" throughout the chapter, which

I strongly recommend that you do.

Before you begin, open your Python editor. I recommend using the Google Colab
notebook, introduced to you as part of your Al Toolkit in the previous chapter. All
the code, along with homework solutions, are provided on the GitHub page of this
book in Chapter 3 in their corresponding section folders. Inside them, you will
find two Python files: one (named the same as the section) is the code used in this
book, while the homework. py file is the solution to the exercise. Instructions for each
homework exercise will be provided at the end of each section.

In this chapter, we'll cover the following topics:
* Displaying text
* Variables and operations
* Lists and arrays
* if statements and conditions

* forandwhile loops
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* Functions

* Classes and objects

Especially if you're starting from scratch, cover each section in the order they're
presented here, and remember to try your hand at the homework. Let's get started!

Displaying text

We'll begin with the most popular way of introducing any programming language;
you'll learn how to display some text in the Python console. The console is a tool
that's part of every Python editor, which shows the information we want or displays
any errors that occurred (let's hope not to get any!).

The easiest way to show something in our console is to use the print () method, just
like this:

# Displaying text
print ('Hello world!"')

The text above print, starting with #, is called a comment. Comments are excluded
when executing code and are only visible to you.

After running this short code in Google Colab, you'll see this displayed:

Hello world!

In conclusion, just put what you want to display into the brackets of the print
method - text surrounded by quotes, as in this example, or variables.

If you're curious about what variables are, that's great - you'll learn about them after
this exercise.

Exercise

Using only one print () method, try to display two or more lines.
Hint: Try using the \n symbol.

The solution is provided in the Chapter 03/Displaying Text/homework.py file on
the Gitlub page.

[18]
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Variables and operations

Variables are simply values that are allocated somewhere in the memory of our
computer. They are similar to variables in mathematics. They can be anything: text,
integers, or floats (a number with precision after the decimal point, such as 2.33).

To create a new variable, you only need to write this:
X = 2
In this case, we have named a variable x and set its value to 2.

As in mathematics, you can perform some operations on these variables. The most
common operations are addition, subtraction, multiplication, and division. The way
to write them in Python is like this:

X =X + 5 #x += 5
X =x - 3 #x -= 3
X =x * 2.5 #x *= 2.5

x=x/ 3 #x /= 3

If you look at it for the first time, it doesn't make much sense —how can we write that
x = x + 57

n_t

In Python, and in most code, the notation doesn't mean the two terms are equal.
It means that we associate the new x value with the value of the old x, plus 5. It is
crucial to understand that this is not an equation, but rather the creation of a new
variable with the same name as the previous one.

You can also write these operations as shown on the right side, in the comments.
You'll usually see them written in this way, since it's more space efficient.

You can also perform these operations on other variables, for example:
y =3
X += Y

print (x)

Here, we created a new variable y and set it to 2. Then, we added it to our existing x.
Also, x will be displayed when you run this code.
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So, what does x turn out to be after all these operations? If you run the code, you'll
get this:

6.333333333333334

If you calculate these operations by hand, you will see that x does indeed equal 6. 33.

Exercise

Try to find a way to raise one number to the power of another.
Hint: Try using the pow () built-in function for Python.

The solution is provided in the Chapter 03/Variables/homework.py file on the
GitHub page.

Lists and arrays

Lists and arrays can be represented with a table. Imagine a one-dimensional (1D)
vector or a matrix, and you have just imagined a list/array.

Lists and arrays can contain data in them. Data can be anything - variables, other
lists or arrays (these are called multi-dimensional lists/arrays), or objects of some
classes (we will learn about them later).

For example, this is a 1D list/array containing integers:

U N O P B W
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And this is an example of a two-dimensional (2D) list/array, also containing
integers:

2 9 -5
-1 0 4
3 1 2

In order to create a 2D list, you have to create a list of lists. Creating a list is very
simple, just like this:

Ll = list()
L2 = []
L3 = [3,4,1,6,7,5]

L4

[[21- 91 '5]; [‘1r Or 4]; [31 1r 2]]

Here we create four lists: L1, L2, L.3 and L4. The first two lists are empty - they have
zero elements. The two subsequent lists have some predefined values in them. L3

is a one-dimensional list, same as the one in the first image. L4 is a two-dimensional
list, the same as in the second image. As you can see, L4 actually consists of three
smaller 1D lists.

Whenever I mention an array, | usually mean a "NumPy" array. NumPy is a Python
library (a library is a collection of pre-coded programs that allows you to perform
many actions without writing your code from scratch), widely used for list/array
operations. You can think of a NumPy array as a special kind of list, with lots of
additional functions.

To create a NumPy array, you have to specify a size and use an initialization method.
Here's an example:

import numpy as np
nparray = np.zeros((5,5))

In the first line, we import the NumPy library (as you can see, to import a library,
you need to write import) and by using as, we give NumPy the abbreviation np
to make it easier to use. Then, we create a new array that we call nparray, which
is a 2D array of size 5 x 5, full of zeros. The initialization method is the part after the

."; in this case, we initialize this array as full of zeros, by using the function zeros.
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In order to get access to the values in a list or array, you need to give the index of
this value. For example, if you wanted to change the first element in the 1.3 list, you
would have to get its index. In Python, indexes start at 0, so you would need to write
L3 [0]. In fact, you can write print (L3 [0] ) and execute it, and you will see that,

as you might hope, the number 3 will be displayed.

Accessing a single value in a multi-dimensional list/ array requires you to input
as many indexes as there are dimensions. For example, to get 0 from our L4 list,
we would have to write 1.4 [1] [1]. L4 [1] would return the entire second row,
which is a list.

Exercise

Try to find the mean of all the numbers in the 1.4 list. There are multiple solutions.

Hint: The simplest solution makes use of the NumPy library. Check out some
of its functions here: https://docs.scipy.org/doc/numpy/reference/

The solution is provided in the Chapter 03/Lists and Arrays/homework.py
file on the GitHub page.

if statements and conditions

Now I would like to introduce you to a very useful tool in programming -
if conditions!

They are widely used to check whether a statement is true or not. If the given
statement is true, then some instructions for our code are followed.

I'll present this subject to you with some simple code that will tell us whether
a number is positive, negative, or equal to 0. The code's very short, so I'll show
you all of it at once:

a =5
if a = 0:

print ('a is greater than 0')
elif a == 0:

print('a is equal to 0')
else:

print('a is lower than 0')

In the first line, we introduce a new variable called a and we give it a value of 5.
This is the variable whose value we are going to check.
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In the next line we check if this variable is greater than 0. We do this by using an
if condition. If a is greater than 0, then we follow the instructions written in the
indented block; in this case, it is only displaying the message a is greater than 0.

Then, if the first condition fails, that is, if a is lower than or equal to 0, we go to the
next condition, which is introduced with elif (which is short for else if). This
statement will check whether a is equal to zero or not. If it is, we follow the indented
instruction, which will display a message displaying: a is equal to o.

The final condition is introduced via else. Instructions included in an else
condition will always be followed when all other conditions fail. In this case, failing
both conditions would mean that a < 0, and therefore we would display a is lower
than 0.

It's easy to predict what our code will return. It will be the first instruction,
print ('a is greater than 0').And, in fact, once you run this code, this is what
you will get:

a is greater than 0

In brief, if is used to introduce statement checking and the first condition, elif is
used to check as many further conditions as we want, and else is a true statement
when all other statements fail.

It's also important to know that once one condition is true, no other conditions are
checked. So, in this case, once we enter the first condition and we see that it is true,
we no longer check other statements. If you would like to check other conditions,
you would need to replace the elif and else statements with new if statements.
A new if always checks a new condition; therefore, a condition included in an if is
always checked.

Exercise

Build a condition that will check if a number is divisible by 3 or not.

Hint: You can use a mathematical expression called modulo, which when used,
returns the remainder from the division between two numbers. In Python, modulo
is represented by %. For example:

5%3=2
71%5=1

The solution is provided in the Chapter 03/If Statements/homework.py file on
the GitHub page.
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for and while loops

You can think of a loop as continuously repeating the same instructions over and
over until some condition is satisfied that breaks this loop. For example, the previous
code was not a loop; since it was only executed once, we only checked a once.

There are two types of loops in Python:

* for loops

* while loops

for loops have a specific number of iterations. You can think of an iteration as

a single execution of the specific instructions included in the for loop. The number
of iterations tells the program how many times the instruction inside the loop should
be performed.

So, how do you create a for loop? Simply, just like this:

for i in range(1l, 20):
print (i)

We initialize this loop by writing for to specify the type of loop. Then we create

a variable i, that will be associated with integer values from range (1,20). This
means that when we enter this loop for the first time, i will be equal to 1, the second
time it will be equal to 2, and so on, all the way to 19. Why 19? That's because in
Python, upper bounds are excluded, so at the final iteration i will be equal to 19.

As for our instruction, in this case it's just showing the current i in our console

by using the print () method. It's also important to understand that the main

code does not progress until the for loop is finished.

This is what we get once we execute our code:

Lo T+ « e o ¥ L o B

=
[=]

11
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12
13
14
15
16
17
18
19

You can see that our code displayed every integer higher than 0 and lower than 20.

You can also use a for loop to iterate through elements of a list, in the following
way:

L3 = [3,4,1,6,7,5]
for element in L3:
print (element)

Here we come back to our L.3 1D list. This code iterates through every element in the
L3 list and displays it. If you run it, you will see all the elements of this array from 3
to 5.

while loops, on the other hand, need a condition to stop. They go on as long as
the given condition is satisfied. Take this while loop, for example:

stop = False

i=20

while stop == False: # alternatively it can be "while not stop:"
i +=1
print (i)
if i >= 19:

stop = True

Here, we create a new variable called stop. This type of variable is called a bool,
since it can be assigned only two values - True or False. Then, we create a variable
called i that we'll use to count how many times our while loop is executed. Next, we
create a while loop that will go on as long as the variable stop is False; only once
stop is changed to True will the loop stop.

In the loop, we increase i by 1, display it, and check if it is greater or equal to 19. If it
is greater or equal to 19, we change stop to True; and as soon as we change stop to
True, the loop will break!
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After executing this code, you will see the exact same output as in the for loop

example, that is:

Lo I v« B o O " %

e e i e e e
o ;R W N B O

19

It's also very important to know that you can stack for and while loops inside

each other. For example, to display all the elements from the 2D list .4 we created
previously, one after another, you would have to make one for loop that iterates
through every row, and then another for loop (inside the previous one) that iterates
through every value in this row. Something like this:

4 = [[2, 9, -51, [-1, o, 4], [3, 1,
for row in L4:
for element in row:

print (element)

And running this yields the following output:

2
9
-5
-1

2]]
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[ Y N =]

This matches the L4 list.

In conclusion, for and while loops let us perform repetitive tasks with ease. for
loops always work on a predefined range; you know exactly when they will stop.
while loops work on an undefined range; just by looking at their stop condition,
you may not be able to judge how many iterations will happen. while loops work
as long as their particular condition is satisfied.

Exercise

Build both for and while loops that can calculate the factorial of a positive integer
variable.

Hint: Factorial is a mathematical function that returns the product of all positive
integers lower or equal to the argument of this function. This is the equation:

fm)y=n*m-1)*n-2)*.*1
Where:

* f(n) - the factorial function

* n - the integer in question, the factorial of which we are searching for
This function is represented by ! in mathematics, for example:
5!=5*4*3*2%1=120
4!=4*3*2%1=24

The solution is provided in the Chapter 03/For and While Loops/homework.py
file on the GitHub page.

Functions

Functions are incredibly useful when you want to increase code readability. You can
think of them as blocks of code outside the main flow of code. Functions are executed
once they are called in the main code.
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You write a function like this:

def division(a, b):
result = a / b
return result

d = division(3, 5)
print (d)

The first three lines are a newly created function called division, and the last two
lines are part of the main code.

You can create a function by writing def and then writing the function's name. After
the name, you put brackets and within them write the arguments of the function;
these are some variables that you will be able to use inside of your function and

are a part of the connection between the main code and the function. In this case,
our function takes two arguments: a and b.

Then, once we enter our function, what we do is calculate a divided by b and call this
division result. Then, in the last line of our function, we say return so that when
we call this function in code, it will return a value. In this case, the returned value

is result.

Next, we go back to our main code and call our function. We do that by writing
division and then in the brackets we input two numbers that we would like to
divide. Remember, the division function returns a result of this division;
therefore, we create a variable, 4, that will hold this returned value. In the last
line, we simply display d to see whether this code really works. If you run it,
you'll get the output:

0.6

As you can confirm by hand, 3 divided by 5 is indeed 0.6; you can test it on other
numbers as well.

In real-world code, functions can be much longer, and sometimes even call other
functions. You will see them used a lot, even in the other chapters of this book. They
also increase code readability, as you will see later; the code I've provided would be
impossible to understand without functions.

Exercise

Build a function to calculate the distance between two points on an x,y plane:
one with coordinates x1 and y1, and the other with coordinates x2 and y2.
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Hint: You can use the following formula:

distance = \/(xl —)4:2)2 + (yl - y2)2

The solution is provided in the Chapter 03/Functions/homework.py file on the
GitHub page.

Classes and objects

Classes, like functions, are another part of code that sits outside of the main code,
executed only when called in the main flow of code. Objects are instances of a
corresponding class, existing within the main flow of our code. To better understand
it, think of a class as a plan of something, for example, a plan of a car. It contains
information on how certain components look and work with each other. A class in
Python is a general plan of something.

You can think of objects as real-life constructions based on the plan. For example,
a real, working, and self-driving car would be an example of an object. You create
a plan of a car (which is a class) and then you build a car based on this plan (which
is an object). And of course, when you have a plan of something, you can create

as many copies as you want; for example, you can run a production line to
produce cars.

To give you more insight into classes, we will create a simple bot. We begin with
writing a class, like this:

class Bot():

def init (self, posx, posy):
self.posx = posx
self.posy = posy

def move(self, speedx, speedy):
self .posx += speedx
self .posy += speedy

We write class to specify that we are creating a new class, which we name Bot.
Then, a very important step is to write an __init__ () method, which is a necessity
when creating a class. This function is called automatically whenever an object of this
class is created in the main flow of the code.
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All functions in a class need to take self as one argument. So, what is se1£? This
parameter specifies that this function and its variables, whose names are preceded by
self, are a part of this class. We will be able to call the self variables once we have
an object of this class. Our bot's _init () method also takes two arguments, posx
and posy, which will be the initial position of our bot.

We have also created a method that will move our bot, by increasing or decreasing
its posx and posy. A method is a function tucked inside a class. You can think of it
as an instruction on how something has to work when we have a plan. For example,
going back to the example of a car, a method could define the way our engine or
gearbox works.

Now, you can create an object of this class. Remember, this will be a real-life object,
constructed on the basis of a plan (class). Before, the class was predefined and
didn't work along with your code. After you create an object, the class becomes an
integral part of your main code. We can achieve this by doing;:

bot = Bot (3, 4)

This will create a new object of class Bot; we called this object bot. We also need

to specify the two arguments that the __init__ () method of class Bot takes, which
are posx and posy. This isn't optional; when creating an object, you always have to
specify all the arguments giveninthe _init () method.

Now, in the main code, you can move the bot and display its new position, like this:

bot .move (2, -1)
print (bot.posx, bot.posy)

In the first line, we use the move method from our Bot class. As you can see in its
definition, move takes two arguments. These two arguments specify, respectively, by
how much we will increase posx and posy. Then we just display the new posx and
posy. This is where self comes into action; if the variables posx and posy were not
preceded by self in our Bot class, we wouldn't have access to them via the method.
Running this code gives us this result:

5 3

As you can see from the result, our bot moved two units forward on the x axis and
one unit backward on the i axis. Remember, posx was set to 3 initially and has now
been increased by 2 using the move method from the Bot class; posy was set to 4
initially and has now been decreased by 1, with the use of the same move method.

One great advantage of taking the time to code a Bot class is that now we are able
to create as many bots as we want without making our code any longer. Simply
put, objects are copies of a class and we can create as many of them as we want.
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In conclusion, you can think of a class as a collection of predefined instructions and
closed in methods, and you can think of an object as an instance of this class that
is accessible in our code and that runs along with it.

Exercise

Your final challenge will be to build a very simple car class. As arguments, a car
object should take the maximum velocity at which the car can move (unit in m/s), as
well as the acceleration at which the car is accelerating (unit in m/s?). I also challenge
you to build a method that will calculate the time it will take for the car to accelerate
from the current speed to the maximum speed, knowing the acceleration (use the
current speed as the argument of this method).

Hint: To calculate the time required, you can use the following equation:

( Vmcrx B Va'urrmrr )
a

=

Where:

* -time required to achieve the top speed

* V _-maximum speed

max

-V

current

- current speed

* g - acceleration

The solution is provided in the Chapter 03/Classes/homework.py file on the
GitHub page.

Summary

In this chapter, we covered the Python fundamentals that you'll need to keep up
with the code presented in this book, from sending a simple text display to the
console to writing your very first class in Python. You've now got all the skills you
need to continue on your Al journey; in Chapter 4, Al Foundation Techniques, we will
begin to study the foundational techniques of Al
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Al Foundation Techniques

In this chapter, you'll begin your study of Al theory in earnest. You'll start with an
introduction to a major branch of Al, called Reinforcement Learning, and the five
principles that underpin every Reinforcement Learning model. Those principles will
give you the theoretical understanding to make sense of every forthcoming Al model
in this book.

What is Reinforcement Learning?

When people refer to Al today, some of them think of Machine Learning,

while others think of Reinforcement Learning. I fall into the second category.

I always saw Machine Learning as statistical models that have the ability to learn
some correlations, from which they make predictions without being explicitly
programmed.

While this is, in some way, a form of Al, Machine Learning does not include the
process of taking actions and interacting with an environment like we humans do.
Indeed, as intelligent human beings, what we constantly keep doing is the following:

1. We observe some input, whether it's what we see with our eyes, what
we hear with our ears, or what we remember in our memory.

These inputs are then processed in our brain.

Eventually, we make decisions and take actions.

This process of interacting with an environment is what we are trying to reproduce
in terms of Artificial Intelligence. And to that extent, the branch of Al that works on
this is Reinforcement Learning. This is the closest match to the way we think; the
most advanced form of Artificial Intelligence, if we see Al as the science that tries to
mimic (or surpass) human intelligence.
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Reinforcement Learning also has the most impressive results in business applications
of Al. For example, Alibaba leveraged Reinforcement Learning to increase its ROI

in online advertising by 240% without increasing their advertising budget (see
https://arxiv.org/pdf/1802.09756.pdf, page 9, Table 1 last row (DCMAB)).
We'll tackle the same industry application in this book!

The five principles of Reinforcement
Learning

Let's begin building the first pillars of your intuition into how Reinforcement
Learning works. These are the fundamental principles of Reinforcement Learning,
which will get you started with the right, solid basics in AL

Here are the five principles:

1. Principle #1: The input and output system

2. Principle #2: The reward
3. Principle #3: The Al environment
4. Principle #4: The Markov decision process

5. Principle #5: Training and inference

In the following sections, you can read about each one in turn.

Principle #1 — The input and output system

The first step is to understand that today, all AI models are based on the common
principle of inputs and outputs. Every single form of Artificial Intelligence, including
Machine Learning models, ChatBots, recommender systems, robots, and of course
Reinforcement Learning models, will take something as input, and will return
another thing as output.

™
\==
Inputs d> °.'| I:> Outputs

Al

Figure 1: The input and output system
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In Reinforcement Learning, these inputs and outputs have a specific name: the input
is called the state, or input state. The output is the action performed by the Al. And
in the middle, we have nothing other than a function that takes a state as input and
returns an action as output. That function is called a policy. Remember the name,
"policy," because you will often see it in Al literature.

As an example, consider a self-driving car. Try to imagine what the input and output
would be in that case.

The input would be what the embedded computer vision system sees, and the
output would be the next move of the car: accelerate, slow down, turn left, turn
right, or brake. Note that the output at any time (f) could very well be several actions
performed at the same time. For instance, the self-driving car can accelerate while

at the same time turning left. In the same way, the input at each time (f) can be
composed of several elements: mainly the image observed by the computer vision
system, but also some parameters of the car such as the current speed, the amount
of gas remaining in the tank, and so on.

That's the very first important principle in Artificial Intelligence: it is an intelligent
system (a policy) that takes some elements as input, does its magic in the middle,
and returns some actions to perform as output. Remember that the inputs are also
called the states.

The next important principle is the reward.

Principle #2 — The reward

Every Al has its performance measured by a reward system. There's nothing
confusing about this; the reward is simply a metric that will tell the Al how well it
does over time.

The simplest example is a binary reward: 0 or 1. Imagine an Al that has to guess
an outcome. If the guess is right, the reward will be 1, and if the guess is wrong,
the reward will be 0. This could very well be the reward system defined for an
Al it really can be as simple as that!
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A reward doesn't have to be binary, however. It can be continuous. Consider
the famous game of Breakout:

Figure 2: The Breakout game

Imagine an Al playing this game. Try to work out what the reward would be
in that case. It could simply be the score; more precisely, the score would be the
accumulated reward over time in one game, and the rewards could be defined
as the derivative of that score.

This is one of the many ways we could define a reward system for that game.
Different Als will have different reward structures; we will build five rewards
systems for five different real-world applications in this book.

With that in mind, remember this as well: the ultimate goal of the Al will always
be to maximize the accumulated reward over time.

Those are the first two basic, but fundamental, principles of Artificial Intelligence
as it exists today; the input and output system, and the reward. The next thing
to consider is the Al environment.
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Principle #3 — The Al environment

The third principle is what we call an "Al environment." It is a very simple
framework where you define three things at each time (t):

* The input (the state)
* The output (the action)

* Thereward (the performance metric)

For each and every single Al based on Reinforcement Learning that is built today,
we always define an environment composed of the preceding elements. It is,
however, important to understand that there are more than these three elements
in a given Al environment.

For example, if you are building an Al to beat a car racing game, the environment
will also contain the map and the gameplay of that game. Or, in the example of

a self-driving car, the environment will also contain all the roads along which the
Al is driving and the objects that surround those roads. But what you will always
find in common when building any Al, are the three elements of state, action, and
reward. The next principle, the Markov decision process, covers how they work
in practice.

Principle #4 — The Markov decision process

The Markov decision process, or MDP, is simply a process that models how the

Al interacts with the environment over time. The process starts at t = 0, and then,

at each next iteration, meaning at f =1, = 2, ... f = n units of time (where the unit
can be anything, for example, 1 second), the AI follows the same format of transition:

1. The Al observes the current state, s,.
2. The Al performs the action, a,.
3. The Al receives the reward, 7, = R (S{ ., )
4. The Al enters the following state, S¢4 1.
The goal of the Al is always the same in Reinforcement Learning: it is to maximize

the accumulated rewards over time, that is, the sum of all the r= R (S, ,a, ) received
at each transition.
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The following graphic will help you visualize and remember an MDP better,
the basis of Reinforcement Learning models:

Environment

State, Reward Action

Figure 3: The Markov decision process

Now four essential pillars are already shaping your intuition of Al. Adding
a last important one completes the foundation of your understanding of AL
The last principle is training and inference; in training, the Al learns, and in
inference, it predicts.

Principle #5 — Training and inference

The final principle you have to understand is the difference between training and
inference. When building an Al, there is a time for the training mode, and a separate
time for inference mode. I'll explain what that means starting with the training mode.

Training mode

Now you understand, from the three first principles, that the very first step of
building an Al is to build an environment in which the input states, the output
actions, and a system of rewards are clearly defined. From the fourth principle,
you also understand that inside this environment we will build an Al to interact
with it, trying to maximize the total reward accumulated over time.
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To put it simply, there will be a preliminary (and long) period of time during which
the Al will be trained to do that. That period of time is called the training; we can
also say that the Al is in training mode. During that time, the Al tries to accomplish
a certain goal over and over again until it succeeds. After each attempt, the
parameters of the Al model are modified in order to do better at the next attempt.

For example, let's say you're building a self-driving car and you want it to go from
point A to point B. Let's also imagine that there are some obstacles that you want
your self-driving car to avoid. Here is how the training process happens:

1. You choose an Al model, which can be Thompson Sampling (Chapters 5 and
6), Q-learning (Chapters 7 and 8), deep Q-learning (Chapters 9, 10, and 11)
or even deep convolutional Q-learning (Chapters 12 and 13).

You initialize the parameters of the model.

Your Al tries to go from A to B (by observing the states and performing its
actions). During this first attempt, the closer it gets to B, the higher reward
you give to the Al If it fails reaching B or hits an obstacle, you give the Al

a very bad reward. If it manages to reach B without hitting any obstacle,
you give the Al an extremely good reward. It's just like you would train

a dog to sit: you give the dog a treat or say "good boy" (positive reward) if
the dog sits. And you give the dog whatever small punishment you need to
if the dog disobeys (negative reward). That process is training, and it works
the same way in Reinforcement Learning.

4. At the end of the attempt (also called an episode), you modify the parameters
of the model in order to do better next time. The parameters are modified
intelligently, either iteratively through equations (Q-Learning), or by using
Machine Learning and Deep Learning techniques such as stochastic gradient
descent or backpropagation. All these techniques will be covered in this
book.

5. You repeat steps 3 and 4 again, and again, until you reach the desired
performance; that is, until you have your fully non-dangerous autonomous
car!

So, that's training. Now, how about inference?

Inference mode

Inference mode simply comes after your Al is fully trained and ready to perform
well. It will simply consist of interacting with the environment by performing the
actions to accomplish the goal the Al was trained to achieve before in training mode.
In inference mode, no parameters are modified at the end of each episode.
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For example, imagine you have an Al company that builds customized Al solutions
for businesses, and one of your clients asked you to build an Al to optimize the flows
in a smart grid. First, you'd enter an R&D phase during which you would train your
Al to optimize these flows (training mode), and as soon as you reached a good level
of performance, you'd deliver your Al to your client and go into production. Your Al
would regulate the flows in the smart grid only by observing the current states of the
grid and performing the actions it has been trained to do. That's inference mode.

Sometimes, the environment is subject to change, in which case you have to alternate
fast between training and inference modes so that your Al can adapt to the new
changes in the environment. An even better solution is to train your Al model

every day, and go into inference mode with the most recently trained model.

That was the last fundamental principle common to every Al Congratulations -
now you already have a solid basic understanding of Artificial Intelligence! Since
you have that, yvou are ready to tackle your very first Al model in the next chapter:
a simple yet very powerful one, still widely used today in business and marketing,
to solve a problem that has the delightful name of the multi-armed bandit problem.

Summary

In this chapter, you learned the five fundamental principles of Artificial Intelligence
from a Reinforcement Learning perspective. Firstly, an Al is a system that takes an
observation (values, images, or any data) as input, and returns an action to perform
as output (principle #1). Then, there is a reward system that helps it measure its
performance. The Al will learn through trial and error based on the reward it gets
over time (principle #2). The input (state), the output (action), and the reward system
define the Al environment (principle #3). The Al interacts with this environment
through the Markov decision process (principle #4). Finally, in training mode, the
Al learns how to maximize its total reward by updating its parameters through

the iterations, and in inference mode, the Al simply performs its actions over full
episodes without updating any of its parameters - that is to say, without learning
(principle #5).

In the next chapter, you will learn about Thompson Sampling, a simple
Reinforcement Learning model, and use it to solve the multi-armed bandit problem.
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In this chapter, you'll get to grips with your very first Al model! You're going to
make a model that will solve the very well-known multi-armed bandit problem.
This is a classic problem in Al, and it's also widely encountered in many real-world
business problems.

The multi-armed bandit problem

Imagine you are in Las Vegas, in your favorite casino. You are in a room containing
five slot machines. For each of them the game is the same: you bet a certain amount
of money, say 1 dollar, you pull the arm, and then the machine will either take your
money, or give you twice your money back. Remember the rewards we talked about
in the previous chapter? Let's say that if the machine takes your money, your reward
is -1, and if the machine returns you twice your money, your reward is +1.

As you can see, you're already starting to define an Al environment, which I'll
remind you is absolutely fundamental when solving a problem with Al So far, the
Al isn't there, but it will come soon. You always start by defining the environment.

You've defined the rewards; you'll define the states (inputs) and actions (outputs)
later. Now, still in the process of defining the environment, let's say that you know,
somehow, that one of these machines has a higher probability of giving you a +1
reward than the others when you pull its arm. It doesn't matter how you know this
info, but it must be part of the problem assumptions. Rest assured, this assumption
is always naturally verified in the real-world business problems mentioned above
where the multi-armed bandit problem can be applied.
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Your goal, as in any Al environment, is to obtain the highest accumulated reward
during your time of play. Let's say you are going to bet 1,000 dollars in total,
meaning that you are going to bet 1 dollar, 1,000 times, each time by pulling the arm
of any of these five slot machines. The question is:

What should be your strategy, so that after having played 1,000 times, you get the
maximum amount of money to take home with you?

The first step of your strategy must be to figure out, in the minimum number of
plays, which of these five slot machines has the highest chance of giving youa 1
reward. In other words, you have to quickly figure out the slot machine with the
highest success rate. Then, as soon as you figure it out, you simply need to keep
playing on that most successful slot machine.

Finding the most successful slot machine is not hard; one simple strategy could be to
play 100 times on each of these five slot machines and then, at the end, look at which
of them gave you more money. Statistically, this gives you a good chance of finding
that most generous slot machine.

All the challenge is in "quickly". The hardest part is to find the best slot machine
in a minimum number of trials. This is where your first Al model comes into play.

The Thompson Sampling model

You're going to build this model straight away. Right now, you'll build a simple
implementation of this method, and later you will be shown the theory behind it.
Let's get right into it!

As we defined previously, our problem is trying to find the best slot machine with
the highest winning chance out of many. A not-so-optimal solution would be to play
100 rounds on each of our slot machines and see which one has the highest winning
rate. A better solution is a method called Thompson Sampling,.

I'won't go too deeply into the theory behind it; we'll cover that later. For now, it is
enough to say that Thompson Sampling uses a distribution function (distributions
will be explained further in this chapter), called Beta, that takes two arguments. For
simplicity's sake, let's say that the higher the first argument is, the better our slot
machine is, and the higher the second argument is, the worse our slot machine is.

Therefore, we can define this function as:

x = f(a,b)
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where:

* x-arandom choice from our Beta distribution
* g - our Beta function
* a - the first argument

* b - the second argument

Don't worry if you don't understand this entirely quite yet; you'll read all about
it later.

Coding the model

Let's start coding our solution. All this code is also available on the GitHub page
of this book in the chapter 05 folder. Here we go with the first code section:

# Importing the libraries
import numpy as np

You'll only need one library, called NumPy. This is a very useful library, helping
when we are dealing with multi-dimensional arrays and lists in general. Give it the
abbreviation np, which is the industry standard, so that it will be easier to use.

Now we have to understand something very important. You are creating a simulation
whose aim is to simulate real-life situations. In reality, every slot machine gives us
some chance of winning, and some machines have it higher than others. Therefore,
when simulating this environment, you have to do the same thing. It is important

to remember, however, that our Al will not know these predefined winning rates.

It cannot just read them and judge, based on these rates, which machine is the best.

For this example, let's call this list of winning chances conversionRates.

# Setting conversion rates and the number of samples
conversionRates = [0.15, 0.04, 0.13, 0.11, 0.05]

N = 10000

d = len(conversionRates)

Here, you have five slot machines. They have some win chance; for example, slot
machine no. 1 offers a 15% chance of a win. Then you create a number of samples,

N. Remember, you are performing a simulation, so you need to have a predetined
dataset that will tell you whether you won or not when you're playing. You also
introduce a variable, d, which is the length of your conversion rates list; that is, the
number of slot machines. It's useful to use short variable names like that, because the
code would be longer and less readable otherwise.
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Do you have an idea of what you should do next? You are running a simulation, so
you need to have a predefined set of wins and losses for every slot machine for every
sample. I highly recommend that you try to do this on your own. You need to have

a set that will tell you if at some timestep i you have won or not by playing a certain
slot machine. The answer is in the next snippet of code.

# Creating the dataset
X = np.zeros((N, d))
for i in range(N):
for §j in range(d):
if np.random.rand() < conversionRates[j]:
X[i1[3]1 =1

In the first line, you create a 2d-array full of zeros, of size N * d. This means
that you've created an array with i (in this case 10000) rows and 4 (in this case
5) columns. Then, in a for loop, you iterate through every row in that 2d-array
X. In a nested for loop, vou iterate through each column in that row. In line 5 of
the preceding code snippet, for each slot machine (each column), we check if a
random float number from range (0,1) is smaller than the conversion rate for the
corresponding slot machine.

That's just like playing the slot machine; since there is an equal chance of getting any
float number from this range, the chances of getting a number smaller than x (where
x is also in range (0,1)) is equal to x. For example, for d = 0.15, there are 15 instances
out of 100 of getting a smaller float number than 0.15, and thus a 15% chance of
returning a high reward for slot machine 1. In other words, if the random float is
smaller, then that means you will win if you play this certain machine at this certain
timestep.

To make sure you understand, if one of the N samples from your dataset x looks like
this: [0, 1, 0, 0, 1], youwould win at that point in time by playing slot machine
no. 2 or no. 5.

Next, you need to create two arrays that will count how many times you have lost
and won by playing each slot machine, like this:

# Making arrays to count our losses and wins
nPosReward = np.zeros(d)
nNegReward = np.zeros (d)
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Name them nPosReward (number of wins) and nNegReward (number of losses).

Now that you have made a simulation set and these two counters, you can start
coding some Thompson Sampling. Keep in mind that the theory, as well as another
example, will be covered later.

Next, initialize a for loop that will iterate through every sample in our dataset
and choose the best slot machine. Initially, only create two variables, one called
selected, which will tell you which slot machine was chosen, and maxrRandom,
which you will use to get the highest Beta distribution guess across all slot machines:

# Taking our best slot machine through beta distribution and updating
its losses and wins

for i in range(N):
selected = 0
maxRandom = 0

So now you can get to the core of Thompson Sampling. You'll take random guesses
from our Beta distribution and find the highest value across all your slot machines.

You can use a method taken from NumPy, called np . random.beta (a, b), that
returns this random guess. Knowing that, try to find the highest guess and the best
machine on your own! It is totally fine if you fail —we haven't covered the theory
yet—and I will provide you with an answer. Good luck!

I'hope you've given it a try. Whether it's worked out for you or not, here's my
answer:

for j in range(d):
randomBeta = np.random.beta(nPosReward[j] + 1, nNegReward[]j] +
1)
if randomBeta > maxRandom:
maxRandom = randomBeta
selected = 7
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You haven't missed anything — this is all the code needed for this task. You create

a for loop to iterate through every slot machine and find the best one. For each slot
machine of index j (remember that you are still in the bigger for loop with index 1),
you take a random draw, called randombeta, from our Beta distribution, and check if
it is greater than maxRandom.

If it is, then you reassign maxRandom to be equal to randomBeta, and set selected
to be equal to the index of this new highest-guess slot machine 7. It is also worth
mentioning what the a and b arguments of the Beta function are in this case; they're
the number of wins and losses we've had on the specific slot machine. Remember,
the bigger the first argument, the better, and the higher our random guess will be;
the bigger the second argument, the worse, and the lower our random guess will be.

Now that you have selected the best slot machine, what do you think you should
do next?

You have to update your nPosReward or nNegreward depending on whether you
have won or not. We can do that with this code:

if X[i] [selected] == 1:
nPosReward [selected] += 1
else:
nNegReward [selected] += 1

Here, you can see the use of the X array you created earlier. You check if you have
won this round by checking if there's a 1 in the appropriate place in your X array. If
you win, you update the index corresponding to the selected machine in nPosrReward
by adding 1. If you lose, however, you update nNegreward by adding 1 in the same
index there. You can clearly see that if you win, next time, your random guess from
the Beta distribution for that machine will be higher; and if you lose, it will be lower.

This code works already, although it is worth adding a few lines of code to display
which slot machine your code considers the best:

# Showing which slot machine is considered the best
nSelected = nPosReward + nNegReward
for i in range(d) :

print ('Machine number ' + str(i + 1) + ' was selected ' +
str (nSelected[i]) + ' times')

print ('Conclusion: Best machine is machine number ' + str(np.
argmax (nSelected) + 1))

[46]



Chapter 5

Here, you simply display how many times each slot machine was chosen by your
algorithm. To get these numbers you can add together the lists nPosReward and
nNegReward. In the final line, you show which machine was chosen the highest
number of times, making it the slot machine that is considered the best.

Now, you can just run your code and see the results:

Machine number was selected 7927.0 times

Machine number was selected 82.0 times

was selected 306.0 times

1
2

Machine number 3 was selected 1622.0 times
Machine number 4
5

Machine number was selected 63.0 times

Conclusion: Best machine is machine number 1

As we can see, your algorithm quickly found out that machine no. 1 is the best. It did
it in around 2,000 rounds (2,000 samples in your X set).

Understanding the model

Thompson Sampling is, by far, the best model for this kind of problem; at the end of
this chapter, you will see a comparison with another method. Here's how it works its
magic. The first thing we do, when finding the best slot machine, is obviously to play
the arm of each of the five slot machines one by one. So here we go:

Round 1: We play the arm of slot machine number 1. Let's say we get reward 0.
Round 2: We play the arm of slot machine number 2. Let's say we get reward 1.
Round 3: We play the arm of slot machine number 3. Let's say we get reward 0.
Round 4: We play the arm of slot machine number 4. Let's say we get reward 0.
Round 5: We play the arm of slot machine number 5. Let's say we get reward 1.

Now, why do you think we had to do this? We only did that to collect some starting
information from each of the slot machines. This information will be needed in
future rounds.

Now, things start to get interesting. What are we going to do at round 6? Which arm
are we going to play?
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Well, we need to look back at what happened during the first five rounds. For each
slot machine, we introduce two new variables, one that counts the number of times
the slot machine returned a 0 reward, and another one that counts the number of
times the slot machine returned a 1 reward.

Let's denote these variables as N/ (7) and N/ (n), where N/ () is the number of times
slot machine number i returned reward 0 up to round n, and N!(#) is the number of
times slot machine number i returned reward 1 up to round n. These two variables
are denoted by nNegReward and nPosReward in our code. So, based on what we've
obtained so far at round 5, let's give some values examples of these variables:

N/ (1)=1 means that slot machine 1 has returned 1 loss over 1 round.

N/ (1) =0 means that slot machine 1 has returned 0 wins over 1 round.
N7 (1)=0 means that slot machine 2 has returned 0 losses over 1 round.
N.(1)=1 means that slot machine 2 has returned 1 win over 1 round.
N?(4)=0 means that slot machine 5 has returned 0 losses over 4 rounds.
N!(4)=0 means that slot machine 5 has returned 0 wins over 4 rounds.
N!(5)=0 means that slot machine 5 has returned 0 losses over 5 rounds.
N,(5)=1means that slot machine 5 has returned 1 win over 5 rounds.

Alright, that was the easy part. The good news is that we've created all the variables
we needed for our Al. The bad news is that now comes the hard part, the math. If
you think math is good news, I like your spirit; but don't worry if you don't like
math, I won't let you down.

What is a distribution?

The next step of our Al journey is to introduce distributions in mathematics. For
this, I'll give you a simple definition with my own words, not the very formal ones
you find in math books. I want to make sure everybody understands. Here it is: the
distribution of a variable is a function that will give, for each value in the possible
range of values the variable could take, the probability that this variable is equal to
that value.
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Let's really understand what it is through an example:

f(x) The Normal Distribution
A

1]

Figure 1: The normal distribution

In the preceding graph, you can see an example of a distribution. Now, remember
in the definition I gave you, I mentioned two measures: "range of values the variable
could take", and "probability that this variable is equal to that value". In any
distribution, on the x-axis you have the range of values the variable could take, and
on the y-axis you have the probability that the variable is equal to each value.

Don't worry if this isn't clear yet. To extend our example, let's say that on the
preceding graph, this variable is the annual salary people have in a specific country.

On the x-axis, we would have the range of annual salaries from the minimum wage
to the maximum wage, let's say from 15,000 dollars to 150,000 dollars. And on the
y-axis, we would have the probabilities that a person would have that salary.

Now it should make more sense. For the low salaries, the curve is low, meaning that
the probability that an individual earns a salary of around 15,000 dollars is low.

Then, up to the center of the x-axis, marked as ¢, which is the average of the salaries,
the probabilities of people's salaries increase. Let's say that # is equal to 45,000
dollars. We intuitively understand that the probability that an individual in a specific
country earns 45,000 dollars per year is the highest, simply because the majority of
people earn something in the region of 45,000 dollars per year. And that's exactly
why the distribution in the graph is the highest at this salary.
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The higher we go above an annual salary of 45,000 dollars, the fewer people we'll
find earning such salaries, and therefore the probability of people earning such
salaries will decrease, until we go beyond an annual salary of 150,000 dollars, where
very few people earn that much, therefore leading to a close-to-zero probability.

Alright, that was the distribution explained intuitively. Now, you have to know
that there are many types of distributions: Gaussian distributions (that look like
the preceding graph), normal distributions (Gaussian distribution of mean 0 and
variance 1), Beta distributions, and many more.

That's the next step: Beta distributions. The Beta distribution is at the heart of the
Al we built to solve our bandit problem. Here are what Beta distributions look like:

Figure 2: Three Beta distributions

Let's do some practice to make sure you understand how distributions work.
Imagine these three distributions correspond to three different countries, and again
let's say that they are the distributions of salaries in these countries. Which country
has the highest salaries? Is it the purple one, the green one, or the yellow one?

The answer is the yellow one, of course! It is in this country that we have positive
probabilities for the highest salaries (remember, the salaries are on the x-axis, and the
probabilities are on the y-axis).

That was just a quick test to make sure you were with me. Now, you don't have to
remember the exact formula of a Beta distribution, but you do have to know that it
has two parameters and how they impact the distribution. Don't forget that this was
already mentioned when we solved the problem in practice, now it is explained in
much more detail.

If we denote these two parameters as 2 and b again, we can denote the Beta
distribution with the following;:

y = p(x,a,b)
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You might be asking what just happened — Why did x appear? Don't worry, we

will demystify all this. In the formula above, y is the probability, # is a function of x
only, x is the salary, and a,b are the two parameters present in any Beta distribution.
Again, you don't have to know the exact definition of the function g, but just keep in
mind the shape of its curve as given in the preceding graph.

However, what is really important for you to understand now is the role of the two
parameters a and b. Following are the two points that you must know and visualize
in your head:

1. Given two Beta distributions with the same parameter b, the one having
a larger parameter a will be shifted more to the right.

2. Given two Beta distributions with the same parameter g, the one having
a larger parameter b will be shifted more to the left.

That's it! That's enough to have an intuitive understanding of how our Al will solve
the Bandit problem. In other words, the larger the parameter a, the more it will shift
the Beta distribution to the right, and the larger the parameter b, the more it will shift
the Beta distribution to the left.

Let's practice this! If1 give you the follow'mg three Beta distributions:

1. A(L5)
2. B(5.1)
3. BA(3.3)

Could you tell me which of the three Beta distributions in the following graph they
would approximately look like?

Figure 3: Three Beta distributions

Based on the two statements above, £(1.5) is the purple one, £(5,1) is the yellow one,
and f(3.3) is the green one. Congratulations to you if you guessed that right!

Now you are ready to solve our bandit problem. But let me ask you a question first,
which might lead you to understand the magic faster than this book:
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If, instead of the salaries in a country, the x-axis contained the success rates of the
machines in the casino, and if each of the three Beta distributions represented one
particular slot machine, which one would you choose to bet your 1,000 dollars?

You would choose the yellow one!

Of course! This distribution has positive probabilities for the highest conversion
rates, since it is the one most shifted to the right.

This was already discussed in the previous code section of this chapter; I told you
there that the higher the first parameter, the better the slot machine. Indeed, the Beta
distribution will be shifted more to the right, meaning that this slot machine has a
higher chance of giving us a win. Additionally, the higher the second parameter, the
worse the slot machine is and now, the Beta distribution will be shifted to the left,
meaning that this machine has a lower chance of us winning.

And now another question, before we solve our bandit problem. Remembering that
you have five slot machines to play with, try to answer this question: if the five slot
machines are associated with the following five Beta distributions of success rates:

B(1,3) A(L5), A(3.3), (5.3), and A(5.1),
Which one would you pick to bet your 1,000 dollars?
The answer is 3(5,1)!

Of course, again! Because it is the one with the largest parameter a and the lowest
parameter b, therefore the most shifted to the right, and hence the one having the
positive probabilities for the highest conversion rates.

If you are still with me, you are definitely ready to understand the Al magic. If not,
please read through this section again. In the next section, I will finally reveal what
happens next after Round 5.

Tackling the MABP

What we are going to do from now on before playing each round is to associate each
slot machine with a specific Beta distribution. At each round n, the slot machine
number i (i=1,2,3,4,5) will be associated with the following Beta distribution:

B(N/ (n)+1.N] (n)+1)
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Here, you should recall the following:

*  N/(n) is the number of times the slot machine number i returned a 1 reward
up to round n.

*  N/(n) is the number of times the slot machine number / returned a 0 reward
up to round n.

Remember, in the Beta distribution g(a.t), the higher the parameter a, the more that
shifts the distribution to the right. The higher the parameter 5, the more that shifts
the distribution to the left. Therefore, since at each round » and for each slot machine,
the parameter a is the number of times (plus 1) it returned 1 up to round #,

and the parameter 5 is the number of times (plus 1) it returned 0 up to round #, then
that means the following: the more the slot machine returns 1 (success), the more

its distribution will be shifted to the right; and the more the slot machine returns 0
(failure), the more its distribution will be shifted to the left.

Congratulations if you figured out what @ and 4 should be on your own. We already
used them in the practical tutorial above; we had two arrays, nPosReward and
nNegReward, that correspond to N/(7) and N/ (n) respectively.

Once you understand this, try to figure out the strategy before I give you the
solution.

Alright, you are about to see the magic. What we are going to do, before playing

the arm at each round, is take a random draw from each of the five distributions
corresponding to the five slot machines. In case you're not clear what that means, I'll
explain. Let me show you again the graph of the three Beta distributions:

Figure 4: Three Beta distributions

What did I mean by taking a random draw? First, remember that for our bandit
problem, on the x-axis, we have the success rates from 0 to 1. For example, x = 0.25
means that the machine returns a 1 reward (success) 25% of the time. Then, on the
y-axis, we still have the probabilities to have these success rates.
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Let's focus on one distribution, for example, the purple one. What would it mean to
take a random draw from that distribution? That would mean very simply that we
randomly pick a value on the x-axis where the distribution is positive, such that the x
values where the probability is the highest will get the highest chance to be picked.
For example, let's say the top of the purple curve corresponds to x = 0.2 and
y=0.35.

Then, taking a random draw from that purple distribution means that we will have

a 35% chance to pick a success rate of 20%. To generalize this, let's say that y = £, (¥)
is the function associated with the purple distribution, so taking a random draw
from that purple distribution means that for each success rate x on the x-axis, we

will have £, (x) chance of picking x. That is what "to take a random draw from a
distribution" means, and this is also called "to sample a distribution".

Now that you understand this, let's see where we left off. We said that before playing
the arm at each round, we were going to take a random draw from each of the five
distributions corresponding to the five slot machines. We thus obtain five values

on the x-axis, each one corresponding to each of the five slot machines. Then, here
comes the crucial question, the one that will tell whether you have the right intuition
about the strategy.

According to you, which slot machine are you going to play, based on the
observation of these five values? I really want you to take some time to answer this
question, because right now, we are at the heart of the strategy (you can also have a
look at our previously written code). The answer can be found in the next paragraph.

I really hope you tried figuring this out by yourself: the slot machine that you are
going to play next is the one for which we got the highest of the five random draws.
Why? Because the highest random draws correspond to the highest success rate, and
for this highest success rate, the Beta distribution associated with the slot machine
picked has positive probabilities around that highest success rate.

Since we want to maximize the success rate of the machines we play (because we
want to make money), we must pick the slot machine for which the Beta distribution
has positive probabilities around the highest success rates. In the following graph,
that's the yellow distribution.
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Figure 5: Three Beta distributions

Now, we must take a step back. I've been in your situation many times when I am
learning something new and technical, which sometimes felt overwhelming. In that
case, the best move is to take a step back, which is exactly what we are going to do
now by giving a recap of the strategy and its intuition.

The Thompson Sampling strategy in three
steps

After we play each of the five slot machines over the first five rounds, here's what the
AT will do at each round 7:

1.

For each slot machine i (i=1,2,3,4,5), we take a random draw 6, (») from its
Beta distribution:

0.(n)~ B(N} (n)+1,N! (n)+1)
where:

N!(n) is the number of times the slot machine number i returned a 1 reward
up to round #.

N;'(n) is the number of times the slot machine number i returned a 0 reward
up to round 7.

We pull the arm of the slot machine s(n) that has the highest sampled &, (7):
s(n) = argmax(9;(n))
i=1,2,34,5
We don't forget to update N, (n) or Ny, (n):

If the played slot machine s(#) returned a 1 reward:
Ny (n)=Ng, (n)+1
If the played slot machine s(7) returned a 0 reward:
Ny, (n)= Ny, (n)+1
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Then, we repeat these three steps at each round until we spend our 1,000 dollars.
This strategy, called Thompson Sampling, is a basic but powerful model of a specific
branch of Al, called Reinforcement Learning.

The final touch of shaping your Thompson
Sampling

intuition

Your intuition about why and how this works should be as follows (try to keep it in
mind or visualize it on the graphic):

Each slot machine has its own Beta distribution. Over the rounds, the Beta
distribution of the slot machine with the highest conversion rate will be
progressively shifted to the right, and the Beta distributions of the strategies with
lower conversion rates will be progressively shifted to the left (Steps 1 and 3).
Therefore, because of Step 2, the slot machine with the highest conversion rate will
be selected more and more.

And voila! Congratulations —you just learned about a powerful Al model, a massive
step in your journey. To see Thompson Sampling in action and check that it indeed
works, I won't force you to go to a casino and try it out; We'll apply it to another real-
life model in Chapter 6, Al for Sales and Advertising - Sell like the Wolf of Al Street.

Finally, let me finish this theory tutorial with a question for you. Remember earlier
in the book I told you that any Al we build today takes as input a state, returns

as output an action to play, and, after playing the action, gets a reward (positive
or negative). For this particular bandit problem, what are the input states, the
actions played, and the rewards received? Think about this before reading the
next paragraph.

Here we go with the answer:
* The input state is the exact round we've reached, including the information
of the two parameters N, (n) and Ny, (7).
* The output action is the arm we pull from the selected slot machine.

e Therewardis1 or0, 1 if the slot machine returns twice our dollar invested,
and 0 if we lose our dollar.
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Congratulations to you if you answered that one correctly, and for tackling this
tirst Al model, Thompson Sampling. And don't forget, in Chapter 6, Al for Sales and
Advertising - Sell like the Wolf of Al Street, we put this into practice to solve a real-
world business problem.

Thompson Sampling against the standard
model

When I learned Thompson Sampling for the first time, I had one main question in

my mind: is it really that good? In fact, if you were to run the standard model (by
"standard model" I mean playing every slot machine a certain number of times) and
Thompson Sampling separately you might not see much difference; you would likely
come to the conclusion that they work pretty much as well as each other.

To check whether it is true that Thompson Sampling isn't any better, I implemented

a code to test both solutions on many different scenarios. The changes included:
number of samples (200 or 1,000 or 5,000), number of slot machines (from 3 to 20), and
conversion rate ranges (ranges in which conversion rates could be set: 0-0.1; 0-0.3; 0-0.5).

Every scenario was tested 100 times to compute the accuracy of each model.

The results and the code used are provided in the resultsModified.x1lsx and
comparison.py files, respectively, in Chapter 05 of this book's GitHub page. Here,
you can see some graphs taken from this Excel file that show the performance of both
models:
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Figure 6: Accuracy vs. Number of slot machines (200 samples)
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This first graph in Figure 6 illustrates the accuracy of both models depending on the
number of slot machines. The number of samples was set to 200 and the conversion
rate ranges were set to 0-0.1, meaning that the differences between these rates were
minor. This is the toughest setting for this comparison. Overall, Thompson Sampling
performed better than the standard model (22% better).
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Figure 7: Accuracy vs. Number of slot machines (5,000 samples)

This second graph in Figure 7 shows the performance under the easiest conditions.
The number of samples was set to 5,000 and the conversion rate ranges were set to
0-0.5, meaning that the differences were clearly visible. The overall drop of accuracy
for Thompson Sampling is smaller than the drop in accuracy for the standard
solution. Thompson Sampling performed significantly better this time (41% better).

Taking all scenarios into consideration, Thompson Sampling achieved a mean
accuracy of 57% and the standard model achieved 43% accuracy. This is a significant
difference taking into account the fact that very tough scenarios were tested (for
example, only 200 samples, a range of 0-0.1, and 20 slot machines).

Summary

Thompson Sampling is a powerful sampling technique that enables you to quickly
figure out the highest of a number of unknown conversion rates. It is always applied
in the same frame, called the multi-armed bandit problem, which in the classic sense
is composed of several slot machines, each one having a different conversion rate of
positive outcomes. We had a first glance at how this Al solves this problem better
and faster than standard methods.

In the next chapter, we will perform a full practical activity where we will see
how the multi-armed bandit frame can easily model a business problem —online
advertising —and how Thompson Sampling can bring significant added value.
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