ZACHARIAS YVOULGARIS, PHD
YUNUS EMRAH BULUT

I for
DATAHSCIENCE

_ '|._“'_1~'I"'F IE

Annncmﬂmummc; FRAMEWORKS
L and Fuuc'rmum.rrv

for DEEP LEARNING, Dpnmznnnu, and BEYON D

. TECHN'CS PUBLICATIONS
_

2 Lindsley Road
Basking Ridge, NJ 07920 USA
https://www.TechnicsPub.com

Cover design by Lorena Molinari
Edited by Sadie Hoberman and Lauren McCafferty

All rights reserved. No part of this book may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying,
recording or by any information storage and retrieval system, without written
permission from the publisher, except for the inclusion of brief quotations in a
review.

The author and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the
information or programs contained herein.

All trade and product names are trademarks, registered trademarks, or
service marks of their respective companies and are the property of their
respective holders and should be treated as such.

First Edition
First Printing 2018
Copyright © 2018 Yunus Emrah Bulut and Zacharias Voulgaris, PhD

ISBN, printed. 9781634624091
ISBN, PDF ed. 9781634624121

Library of Congress Control Number: 2018951809

Infroduction

There 1s no doubt that Artificial Intelligence (commonly abbreviated AI) is
making waves these days, perhaps more than the world anticipated as
recently as the mid-2010s. Back then, Al was an esoteric topic that was
too math-heavy to attract the average computer scientist, but now, it
seems to be a household term. While it was once considered sci-fi lingo,
it’'s now common to see and hear the term “Al” featured in ads about
consumer products like smart phones.

This is to be expected, though; once an idea or technology reaches
critical mass, it naturally becomes more acceptable to a wider audience,
even if just on the application level. This level refers to what Al can do
for us, by facilitating certain processes, or automating others. However,
all this often gives rise to a series of misunderstandings. As Al itself has
become more well-known, so have spread various ominous predictions
about potential dangers of AI — predictions that are fueled by fear and
fantasy, rather than fact.

Just like every other new technology, Al demands to be discussed with
a sense of responsibility and ethical stature. An Al practitioner,
especially one geared more towards the practical aspects of the field,
understands the technology and its limitations, as well as the possible
issues it has, which is why he talks about it without hyperbole and with
projections of measured scope — that is, he projects realistic applications
of Al, without talking about scenarios that resemble sci-fi films. After
all, the main issues stemming for the misuse of a technology like this
have more to do with the people using it, rather than the technology
itself. If an Al system is programmed well, its risks are mitigated, and its
outcomes are predictably positive.

About Al

But what exactly is AI? For starters, it’s nothing like what sci-fi books

and films make it out to be. Modern Al technology helps to facilitate
various processes in a more automatic and autonomous way, with little
to no supervision from a human user. Al initiatives are realistic and
purely functional. Although we can dream about what AI may evolve
into someday, as Al practitioners, we focus on what we know and what
we are certain about, rather than what could exist in a few decades.

Al comprises a set of algorithms that make use of information — mainly
in the form of data — to make decisions and carry out tasks, much like a
human would. Of course, the emulation of human intelligence is not an
easy task; as such, the Als of today are rudimentary and specialized.
Despite their shortcomings, though, these modern systems can be
particularly good at the tasks they undertake, even better than humans.
For example, an Al system, which is a standalone program implementing
one or more Al algorithms, that is created for identifying words from
speech, can be more accurate than humans doing the same task.

It’s important to note that all the AI systems we have today possess
what is termed narrow artificial intelligence. This means that current Als
can do a limited set of tasks (or even just a single task) quite well, but
offer at best mediocre performance at any other task. For instance, an Al
might be great at figuring out your age based on a headshot, but that
same Al almost certainly couldn’t tell a classical music piece from a pop
song.

Some Als are designed to be used in robots, such as those designed for
rescue missions, able to navigate various terrains. Other Als are
specialized in crunching data and facilitating various data analytics tasks.
There are even Als that emulate creative processes, like the Als that
generate artistic works, using the patterns they deduce from catalogs of
existing work. Chatbots and other such Als are focused solely on
interacting with humans. The possibility of a more generalist Al (called
Artificial General Intelligence, or AGI) exists, but it may take a while
before it can manifest, or before we are ready to integrate it into our
world.

Since all this may sound a bit abstract, let’s clarify it a bit. If a system can
make some decisions by capturing and analyzing signals related to the
problem, that’s an Al (sometimes termed “an Al system”). You've
probably used an Al, even if you didn’t know it. Online radios like

Spotify and Pandora use Al to recommend songs, and virtual assistants
(like Siri) use Al to help you troubleshoot. Factors that help us decide
whether a system is Al include the system’s sophistication, its
versatility, and how able it is to perform complex tasks.

Professor Alan Turing was the first to talk about this topic in a scientific
manner. Upon studying this subject from both a theoretical and a
practical perspective (through the creation of the first modern-day
computer, used to crack the Enigma code in World War II'), he
envisioned machines that could think and reason much like humans.

One of Professor Turing’s most famous thought experiments is now
named after him. The Turing test is a simple yet powerful heuristic for
determining if a computer is advanced enough to manifest intelligence.
This test involves taking either a human or a computer, and concealing
it with another human. Another human, known as the examiner, then
asks each of them a series of questions, without knowing which is
which. If the examiner cannot determine from the answers to these
questions whether he 1s speaking with a human or a computer, then the
computer is said to have passed the test. This simple test has remained a
standard for Al, still adding value to related research in the field in

various ways.”

Al facilitates data science

So, how does Al fit within data science? After all, folks have been
working in data science for years without these fancy Al algorithms.
While it is certainly possible to gain valuable insights using traditional
data science, Al-based algorithms can often bring about better
performance in our models — the mathematical abstractions we create to
simulate the phenomena we study. In highly competitive industries, this
extra performance gained from Al-based data models can offer an edge
over others in the market. Because many companies in these industries
already have abundant data they can use to train the AI algorithms, we
term them Al-ready.

Al is now far easier to apply than ever before. The early developers of
Al have proven that Al can deliver a lot of value to the world, without

the help of a rocket scientist to make it work. This is largely thanks to a
series of powerful Al frameworks and libraries that make Al methods
more accessible to most data science practitioners.

In addition, Al has now diversified and matured enough to outperform
conventional data science methods in many applications. For this, we
must thank the increased computing resources at our disposal,
particularly computing power. This is something made possible due to
the graphics processing units (GPUs) becoming cheaper and easier to
integrate to a computer, as add-ons. What’s more, cloud computing has
become more mainstream, enabling more people to have access to a
virtual computer cluster, which they customize and rent, to run their Al
projects. This makes Al systems easily scalable and cost-effective, while
at the same time fostering experimentation and new use cases for this
technology.

All this cooperation between AI and data science has led to a lot of
research interest in Al. Research centers, individual researchers, and the
R&D departments of various large companies have been investigating
new ways to make these Al algorithms more scalable and more robust.
This naturally boosts the field’s impact on the world and makes it a
more attractive technology —not just for the researchers, but for anyone
willing to tinker with it, including many entrepreneurs in this field.

So yes, data science could continue to happen without Al But in many
cases, this wouldn’t make much sense. It is now clear that the world of
data science has a lot of problems and limitations that Al can help
address. The overlap of these two closely related fields will only
continue to grow as they both develop, so now is the perfect time to
jump into learning Al with both feet.

About the book

This book covers various frameworks, focusing on the most promising
ones, while also considering different Al algorithms that go beyond deep
learning. Hopefully, this book will give you a more holistic
understanding of the field of Al, arming you with a wide variety of
tools (not just the ones currently in the limelight). With multiple tools at

your disposal, you can make your own decision about which one is best
for any given data-related problem. After all, a good data scientist must
not only know how to use each and every tool in the toolbox, but which
tool is right for the job at hand.

Although most technologists and executives involved in data-driven
processes can benefit significantly from this book, it is most suitable for
data science professionals, Al practitioners, and those in related
disciplines (such as Python or Julia programmers).

A basic understanding of data science is an important prerequisite to
this book (for a thorough introduction to this, feel free to check out the
book “Data Science Mindset, Methodologies, and Misconceptions” by
Technics Publications). Moreover, a good mathematical background is
recommended for those who want to dig deeper into the methods we
examine in this book. Ultimately, though, the most important
qualifications are determination and a curious nature, since you will
ultimately put this knowledge into practice building your own Al
systems.

Although this book is heavy on programming, you can still derive some
useful understanding of Al, even if you don’t do any coding. However,
for best results, we recommend you work through the various examples
and perhaps experiment a little on your own. We created a Docker image
of all the code and data used in the book’s examples, so you can follow
along and experiment. See Appendix F for how to set up this
environment and use the corresponding code.

This book provides an easy transition for someone with some
understanding of the more well-known aspects of Al. As such, we start
with an overview of the deep learning frameworks (chapter 1), followed
by a briet description of the other Al frameworks, focusing on
optimization algorithms and fuzzy logic systems (chapter 2). The objective
of these first two chapters is to provide you with some frame of
reference, before proceeding to the more hands-on and specialized
aspects.

Namely, in chapter 3 we examine the MXNet framework for deep
learning and how it works on Python. The focus here is on the most
basic (and most widely used) deep learning systems, namely feed forward
neural networks (also known as multi-layer perceptrons, or MLPs for short).

The two chapters that follow examine these deep learning systems using
other popular frameworks: Tensorflow and Keras. All of the deep
learning chapters contain some examples (provided as Jupyter
notebooks with Python code in the Docker image) for hands-on practice
on these systems.

Chapters 6 through 8 examine optimization algorithms, particularly the
more advanced ones. Each chapter focuses on a particular framework of
these algorithms, including particle swarm optimization (PSO), genetic
algorithms (GAs), and simulated annealing (SA). We also consider
applications of these algorithms, and how they can be of use in data
science projects. The programming language we’ll be using for these

chapters is Julia (version 1.0), for performance reasons.”

After that, we look at more advanced Al methods as well as alternative
Al systems. In chapter 9, specifically, we examine convolutional neural
networks (CNNs) and recurrent neural networks (RNNs), which are quite
popular systems in the deep learning family. In chapter 10, we review
optimization ensembles, which are not often discussed, but merit attention
in this era of easy parallelization. Next, in chapter 11, we describe
alternative Al frameworks for data science, such as extreme learning
machines (ELMs) and capsule networks (CapsNets) which are either too
new or too advanced for the mainstream of the Al field.

In the final chapter of the book, we mention about big data, data science
specializations, and to help you practice we provide some sources of
public datasets. The book concludes with some words of advice along
with resources for additional learning. For example, in Appendix A
we’ll talk about Transfer Learning, while the topic of Reinforcement
Learning will be covered in Appendix B. Autoencoder Systems will be
briefly described in Appendix C, while Generative Adversarial Networks
(GANs) will be introduced in Appendix D. Appendix E will take a look
at the business aspect of Al in data science projects, while for those new
to the Docker software, we have Appendix F.

This book contains a variety of technical terms, which are described in
the glossary section that follows these chapters. Note that the first time a
glossary term appears in the text of the book, it is marked in italics. The
glossary also includes a few terms that are not mentioned in the text but
are relevant.

The field of Al is vast. With this book, you can obtain a solid
understanding of the field and hopefully some inspiration to explore it
further as it evolves. So, let’s get right to it, shall we?

https://bit.ly/2mEHUpc.
https://stanford.io/2useY7/T.

For a brief tutorial on the language, you can watch this YouTube video:
http://bit.ly/2Me0bsC.

CHAPTER 1

Deep Learning Frameworks

Deep learning is arguably the most popular aspect of Al, especially when it
comes to data science (DS) applications. But what exactly are deep learning
frameworks, and how are they related to other terms often used in Al and
data science?

In this context, “framework” refers to a set of tools and processes for
developing a certain system, testing it, and ultimately deploying it. Most Al
systems today are created using frameworks. When a developer downloads
and installs a framework on his computer, it is usually accompanied by a
library. This library (or package, as it is often termed in high-level languages)
will be compiled in the programming languages supported by the Al
framework. The library acts like a proxy to the framework, making its various
processes available through a series of functions and classes in the
programming language used. This way, you can do everything the
framework enables you to do, without leaving the programming environment
where you have the rest of your scripts and data. So, for all practical
purposes, that library is the framework, even if the framework can manifest
in other programming languages too. This way, a framework supported by
both Python and Julia can be accessed through either one of these languages,
making the language you use a matter of preference. Since enabling a
framework to function in a different language is a challenging task for the
creators of the framework, oftentimes the options they provide for the
languages compatible with that framework are rather limited.

But what is a system, exactly? In a nutshell, a system is a standalone program
or script designed to accomplish a certain task or set of tasks. In a data science
setting, a system often corresponds to a data model. However, systems can
include features beyond just models, such as an I/O process or a data
transformation process.

The term model involves a mathematical abstraction used to represent a real-

world situation in a simpler, more workable manner. Models in DS are
optimized through a process called training, and validated through a process
called testing, before they are deployed.

Another term that often appears alongside these terms is methodology, which
refers to a set of methods and the theory behind those methods, for solving a
particular type of problem in a certain field. Different methodologies are often
geared towards different applications/objectives.

It's easy to see why frameworks are celebrities of sorts in the Al world. They
help make the modeling aspect of the pipeline faster, and they make the data
engineering demanded by deep learning models significantly easier. This
makes Al frameworks great for companies that cannot afford a whole team of
data scientists, or prefer to empower and develop the data scientists they
already have.

These systems are fairly simple, but not quite “plug and play.” In this chapter
we'll explore the utility behind deep learning models, their key
characteristics, how they are used, their main applications, and the
methodologies they support.

About deep learning systems

Deep Learning (DL) is a subset of Al that is used for predictive analytics, using
an Al system called an Artificial Neural Network (ANN). Predictive analytics is
a group of data science methodologies that are related to the prediction of
certain variables. This includes various techniques such as classification,
regression, etc. As for an ANN, it is a clever abstraction of the human brain, at
a much smaller scale. ANNs manage to approximate every function
(mapping) that has been tried on them, making them ideal for any data
analytics related task. In data science, ANNs are categorized as machine
learning methodologies.

The main drawback DL systems have is that they are “black boxes.” It is
exceedingly difficult — practically unfeasible — to figure out exactly how their
predictions happen, as the data flux in them is extremely complicated.

Deep Learning generally involves large ANNs that are often specialized for
specific tasks. Convolutional Neural Networks (CNNs) ANNs, for instance,
are better for processing images, video, and audio data streams. However, all
DL systems share a similar structure. This involves elementary modules

called neurons organized in layers, with various connections among them.
These modules can perform some basic transtormations (usually non-linear
ones) as data passes through them. Since there is a plethora of potential
connections among these neurons, organizing them in a structured way
(much like real neurons are organized in network in brain tissue), we can
obtain a more robust and function form of these modules. This is what an
artificial neural network is, in a nutshell.

In general, DL frameworks include tools for building a DL system, methods
for testing it, and various other Extract, Transform, and Load (ETL) processes;
when taken together, these framework components help you seamlessly
integrate DL systems with the rest of your pipeline. We'll look at this in more
detail later in this chapter.

Although deep learning systems share some similarities with machine
learning systems, certain characteristics make them sufficiently distinct. For
example, conventional machine learning systems tend to be simpler and have
fewer options for training. DL systems are noticeably more sophisticated;
they each have a set of training algorithms, along with several parameters
regarding the systems’ architecture. This is one of the reasons we consider
them a distinct framework in data science.

DL systems also tend to be more autonomous than their machine
counterparts. To some extent, DL systems can do their own feature engineering.
More conventional systems tend to require more fine-tuning of the feature-
set, and sometimes require dimensionality reduction to provide any decent
results.

In addition, the generalization of conventional ML systems when provided
with additional data generally don’t improve as much as DL systems. This is
also one of the key characteristics that makes DL systems a preferable option
when big data is involved.

Finally, DL systems take longer to train and require more computational
resources than conventional ML systems. This is due to their more
sophisticated functionality. However, as the work of DL systems is easily
parallelizable, modern computing architecture as well as cloud computing,
benefit DL systems the most, compared to other predictive analytics systems.

How deep learning systems work

At their cores, all DL frameworks work similarly, particularly when it comes
to the development of DL networks. First, a DL network consists of several
neurons organized in layers; many of these are connected to other neurons in
other layers. In the simplest DL network, connections take place only between
neurons in adjacent layers.

The first layer of the network corresponds to the features of our dataset; the
last layer corresponds to its outputs. In the case of classification, each class has
its own node, with node values reflecting how confident the system is that a
data point belongs to that class. The layers in the middle involve some
combination of these features. Since they aren’t visible to the end user of the
network, they are described as hidden (see Figure 1).

input hidden output

+ iy,
A " " . I;' ' I_-II ; ?‘|=.I : = I.-
XA L - o
; "'!I' III.|' _'I* . ".'---."-._ l"ll
v l'._—ﬁ-’n' { N
T -~ !..Irll |1 _.' . ¥ F e
MY L " Sl
Il‘-"]!!.lh » I] L F
e LA TN :
L - ' |_I § r "

layer] lanyers ayer3

Figure 1. Depicions of a couple of simplihied deep learming networks, There are often more
hidden layers than seen in these examples. The number of neurons in the output laver can be
arbitrary, depending on the farget mariable. Images created by Richmanoknda and AlexNet22,
respectively, and made available through CC licensing. The image on the right has been processed

ftor addibional com P rehensiveness.

The connections among the nodes are weighted, indicating the contribution of
each node to the nodes of the next layer it is connected to, in the next layer.
The weights are initially randomized, when the network object is created, but
are refined as the ANN is trained.

Moreover, each node contains a mathematical function that creates a

transformation of the received signal, before it is passed to the next layer. This
is referred to as the transfer function (also known as the activation function). The
sigmoid function is the most well-known of these, but others include softmax,
tanh, and ReLU. We'll delve more into these in a moment.

Furthermore, each layer has a bias node, which is a constant that appears
unchanged on each layer. Just like all the other nodes, the bias node has a
weight attached to its output. However, it has no transfer function. Its
weighted value is simply added to the other nodes it is connected to, much
like a constant c is added to a regression model in Statistics. The presence of
such a term balances out any bias the other terms inevitably bring to the
model, ensuring that the overall bias in the model is minimal. As the topic of
bias is a very complex one, we recommend you check out some external

resources’ if you are not familiar with it.

Once the transformed inputs (features) and the biases arrive at the end of the
DL network, they are compared with the farget variable. The differences that
inevitably occur are relayed back to the various nodes of the network, and the
weights are changed accordingly. Then the whole process is repeated until
the error margin of the outputs is within a certain predefined level, or until
the maximum number of iterations is reached. Iterations of this process are
often referred to as training epochs, and the whole process is intimately
connected to the training algorithm used. In fact, the number of epochs used
for training a DL network is often set as a parameter and it plays an
important role in the ANN’s performance.

All of the data entering a neuron (via connections with neurons of the
previous layer, as well as the bias node) is summed, and then the transfer
function is applied to the sum, so that the data flow from that node is y =
f(X(wx, + b)), where w, is the weight of node i of the previous layer, and x; its
output, while b is the bias of that layer. Also, f() is the mathematical
expression of the transfer function.

This relatively simple process is at the core of every ANN. The process is
equivalent to that which takes place in a perceptron system—a rudimentary Al
model that emulates the function of a single neuron. Although a perceptron
system is never used in practice, it is the most basic element of an ANN, and
the first system created using this paradigm.

The function of a single neuron is basically a single, predefined
transformation of the data at hand. This can be viewed as a kind of meta-
feature of the framework, as it takes a certain input x and after applying a
(usually non-linear) function f() to it, x is transformed into something else,

which is the neuron’s outputy.

While in the majority of cases one single meta-feature would be terrible at
predicting the target variable, several of them across several layers can work
together quite effectively — no matter how complex the mapping of the
original features to the target variable. The downside is that such a system
can easily overfit, which is why the training of an ANN doesn’t end until the
error is minimal (smaller than a predefined threshold).

This most rudimentary description of a DL network works for networks of
the multi-layer perceptron type. Of course, there are several variants beyond
this type. CNNs, for example, contain specialized layers with huge numbers
of neurons, while RNNs have connections that go back to previous layers.
Additionally, some training algorithms involve pruning nodes of the network
to ensure that no overfitting takes place.

Once the DL network is trained, it can be used to make predictions about any
data similar to the data it was trained on. Furthermore, its generalization
capability is quite good, particularly if the data it is trained on is diverse.
What’s more, most DL networks are quite robust when it comes to noisy data,
which sometimes helps them achieve even better generalization.

When it comes to classification problems, the performance of a DL system is
improved by the class boundaries it creates. Although many conventional ML
systems create straightforward boundary landscapes (e.g. rectangles or
simple curves), a DL system creates a more sophisticated line around each
class (reminiscent of the borders of certain counties in the US). This is because
the DL system 1is frying to capture every bit of signal it is given in order to
make fewer mistakes when classifying, boosting its raw performance. Of
course, this highly complex mapping of the classes makes interpretation of
the results a very challenging, if not unfeasible, task. More on that later in this
chapter.

Main deep learning frameworks

Having knowledge of multiple DL frameworks gives you a better
understanding of the Al field. You will not be limited by the capabilities of a
specific framework. For example, some DL frameworks are geared towards a
certain programming language, which may make focusing on just that
framework an issue, since languages come and go. After all, things change
very rapidly in technology, especially when it comes to software. What better

way to shield yourself from any unpleasant developments than to be
equipped with a diverse portfolio of DL know-how?

The main frameworks in DL include MXNet, TensorFlow, and Keras. Pytorch
and Theano have also played an important role, but currently they are not as
powerful or versatile as the aforementioned frameworks, which we will focus
on in this book. Also, for those keen on the Julia language, there is the Knet
framework, which to the best of our knowledge, is the only deep learning
framework written in a high-level language mainly (in this case, Julia). You
can learn more about it at its Github repository.”

MXNet is developed by Apache and it's Amazon’s favorite framework. Some
of Amazon’s researchers have collaborated with researchers from the
University of Washington to benchmark it and make it more widely known to
the scientific community. We'll examine this framework in Chapter 3.

TensorFlow is probably the most well-known DL framework, partly because
it has been developed by Google. As such, it i1s widely used in the industry
and there are many courses and books discussing it. In Chapter 4 we’ll delve
into it more.

Keras is a high-level framework; it works on top of TensorFlow (as well as
other frameworks like Theano). Its ease of use without losing flexibility or
power makes it one of the favorite deep learning libraries today. Any data
science enthusiast who wants to dig into the realm of deep learning can start
using Keras with reasonably little effort. Moreover, Keras” seamless integrity
with TensorFlow, plus the official support it gets from Google, have
convinced many that Keras will be one of the long-lasting frameworks for
deep learning models, while its corresponding library will continue to be
maintained. We'll investigate it in detail in Chapter 5.

Main deep learning programming languages

As a set of techniques, DL is language-agnostic; any computer language can
potentially be used to apply its methods and construct its data structures (the
DL networks), even if each DL framework focuses on specific languages only.
This is because it is more practical to develop frameworks that are compatible
with certain languages, some programming languages are used more than
others, such as Python. The fact that certain languages are more commonly
used In data science plays an important role in language selection, too.
Besides, DL is more of a data science framework nowadays anyway, so it is

marketed to the data science community mainly, as part of Machine Learning
(ML). This likely contributes to the confusion about what constitutes ML and
Al these days.

Because of this, the language that dominates the DL domain is Python. This is
also the reason why we use it in the DL part of this book. It is also one of the
easiest languages to learn, even if you haven’t done any programming before.
However, if you are using a different language in your everyday work, there
are DL frameworks that support other languages, such as Julia, Scala, R,
JavaScript, Matlab, and Java. Julia is particularly useful for this sort of task as
it i1s high-level (like Python, R, and Matlab), but also very fast (like any low-
level language, including Java).

In addition, almost all the DL frameworks support C / C++, since they are
usually written in C or its object-oriented counterpart. Note that all these
languages access the DL frameworks through APIs, which take the form of
packages in these languages. Therefore, in order to use a DL framework in
your favorite language’s environment, you must become familiar with the
corresponding package, its classes, and its various functions. We'll guide you
through all that in chapters 3 to 5 of this book.

How to leverage deep learning frameworks

Deep learning frameworks add value to Al and DS practitioners in various
ways. The most important value-adding processes include ETL processes,
building data models, and deploying these models. Beyond these main
functions, a DL framework may offer other things that a data scientist can
leverage to make their work easier. For example, a framework may include
some visualization functionality, helping you produce some slick graphics to
use in your report or presentation. As such, it's best to read up on each
framework’s documentation, becoming familiar with its capabilities to
leverage it for your data science projects.

ETL processes

A DL framework can be helpful in fetching data from various sources, such as
databases and files. This is a rather time-consuming process if done manually,
so using a framework is very advantageous. The framework will also do

some formatting on the data, so that you can start using it in your model
without too much data engineering. However, doing some data processing of
your own is always useful, particularly if you have some domain knowledge.

Building data models

The main function of a DL framework is to enable you to efficiently build
data models. The framework facilitates the architecture design part, as well as
all the data flow aspects of the ANN, including the training algorithm. In
addition, the framework allows you to view the performance of the system as
it is being trained, so that you gain insight about how likely it is to overfit.

Moreover, the DL framework takes care of all the testing required before the
model is tested on different than the dataset it was trained on (new data). All
this makes building and fine-tuning a DL data model a straightforward and
intuitive process, empowering you to make a more informed choice about
what model to use for your data science project.

Deploying data models

Model deployment is something that DL frameworks can handle, too, making
movement through the data science pipeline swifter. This mitigates the risk of
errors through this critical process, while also facilitating easy updating of the
deployed model. All this enables the data scientist to focus more on the tasks
that require more specialized or manual attention. For example, if you (rather
than the DL model) worked on the feature engineering, you would have a
greater awareness of exactly what is going into the model.

Deep learning methodologies and applications

Deep learning is a very broad Al category, encompassing several data science
methodologies through its various systems. As we have seen, for example, it
can be successfully used in classification—if the output layer of the network is
built with the same number of neurons as the number of classes in the
dataset. When DL is applied to problems with the regression methodology,
things are simpler, as a single neuron in the output layer is enough.
Remnforcement learning is another methodology where DL is used; along with

the other two methodologies, it forms the set of supervised learning, a broad
methodology under the predictive analytics umbrella (see Appendix B).

DL is also used for dimensionality reduction, which (in this case) comprises a
set of meta-features that are usually developed by an aufoencoder system (see
Appendix C for more details on this kind of DL network). This approach to
dimensionality reduction is also more efficient than the traditional statistical
ones, which are computationally expensive when the number of features is
remarkably high. Clustering is another methodology where deep learning can
be used, with the proper changes in the ANN’s structure and data flow.
Clustering and dimensionality reduction are the most popular unsupervised
learning methodologies in data science and provide a lot of value when
exploring a dataset. Beyond these data science methodologies involving DL,
there are others that are more specialized and require some domain expertise.
We'll talk about some of them more, shortly.

There are many applications of deep learning. Some are more established or
general, while others are more specialized or novel. Since DL is still a new
tool, its applications in the data science world remain works in progress, so
keep an open mind about this matter. After all, the purpose of all Al systems
is to be as universally applicable as possible, so the list of applications is only
going to grow.

For the time being, DL is used in complex problems where high-accuracy
predictions are required. These could be datasets with high dimensionality
and/or highly non-linear patterns. In the case of high-dimensional datasets
that need to be summarized into a more compact form with fewer
dimensions, DL is a highly effective tool for the job. Also, since the very
beginning of its creation, DL has been applied to image, sound, and video
analytics, with a focus on images. Such data is quite difficult to process
otherwise; the tools used before DL could only help so much, and developing
those features manually was a very time-consuming process.

Moving on to more niche applications, DL is widely used in various natural
language processing (NLP) methods. This includes all kinds of data related to
everyday text, such as that found in articles, books, and even social media
posts. Where it is important to identify any positive or negative attitudes in
the text, we use a methodology called “sentiment analysis,” which offers a
fertile ground for many DL systems. There are also DL networks that perform
text prediction, which is common in many mobile devices and some text
editors. More advanced DL systems manage to link images to captions by
mapping these images to words that are relevant and that form sentences.

Such advanced applications of DL include chatbots, in which the Al system
both creates text and understands the text it is given. Also, applications like
text summarization are under the NLP umbrella too and DL contributes to
them significantly. Some DL applications are more advanced or domain-
specific — so much so that they require a tremendous amount of data and
computing power to work. However, as computing becomes more readily
available, these are bound to become more accessible in the short term.

Assessing a deep learning framework

DL frameworks make it easy and eftficient to employ DL in a data science
project. Of course, part of the challenge is deciding which framework to use.
Because not all DL frameworks are built equal, there are factors to keep in
mind when comparing or evaluating these frameworks.

The number of languages supported by a framework is especially important.
Since programming languages are particularly fluid in the data science world,
it is best to have your language bases covered in the DL framework you plan
to use. What's more, having multiple languages support in a DL framework
enables the formation of a more diverse data science team, with each member
having different specific programming expertise.

You must also consider the raw performance of the DL systems developed by
the framework in question. Although most of these systems use the same
low-level language on the back end, not all of them are fast. There may also
be other overhead costs involved. As such, it’s best to do your due diligence
before investing your time in a DL framework—particularly if your decision
affects other people in your organization.

Furthermore, consider the ETL processes supporting a DL framework. Not all
frameworks are good at ETL, which is both inevitable and time-consuming in
a data science pipeline. Again, any inefficiencies of a DL framework in this
aspect are not going to be advertised; you must do some research to uncover
them yourself.

Finally, the user community and documentation around a DL framework are
important things, too. Naturally, the documentation of the framework is
going to be helpful, though in some cases it may leave much to be desired. If
there is a healthy community of users for the DL framework you are
considering, things are bound to be easier when learning its more esoteric
aspects—as well as when you need to troubleshoot issues that may arise.

Interpretability

Interpretability is the capability of a model to be understood in terms of its
functionality and its results. Although interpretability is often a given with
conventional data science systems, it is a pain point of every DL system. This
is because every DL model is a “black box,” offering little to no explanation
for why it yields the results it does. Unlike the framework itself, whose
various modules and their functionality is clear, the models developed by
these frameworks are convoluted graphs. There is no comprehensive
explanation as to how the inputs you feed them turn into the outputs they
yield.

Although obtaining an accurate result through such a method may be
enticing, it is quite hard to defend, especially when the results are
controversial or carry a demographic bias. The reason for a demographic bias
has to do with the data, by the way, so no number of bias nodes in the DL
networks can fix that, since a DL network’s predictions can only be as good as
the data used to train it. Also, the fact that we have no idea how the
predictions correspond to the inputs allows biased predictions to slip through
unnoticed.

However, this lack of interpretability may be resolved in the future. This may
require a new approach to them, but if it’s one thing that the progress of Al
system has demonstrated over the years, it is that innovations are still
possible and that new architectures of models are still being discovered.
Perhaps one of the newer DL systems will have interpretability as one of its
key characteristics.

Model maintenance

Maintenance is essential to every data science model. This entails updating or
even upgrading a model in production, as new data becomes available.
Alternatively, the assumptions of the problem may change; when this
happens, model maintenance is also needed. In a DL setting, model
maintenance usually involves retraining the DL network. If the retrained
model doesn’t perform well enough, more significant changes may be
considered such as changing the architecture or the training parameters.
Whatever the case, this whole process is largely straightforward and not too
time-consuming.

How often model maintenance is required depends on the dataset and the
problem in general. Whatever the case, it is good to keep the previous model
available too when doing major changes, in case the new model has
unforeseen issues. Also, the whole model maintenance process can be
automated to some extent, at least the offline part, when the model is
retrained as new data is integrated with the original dataset.

When to use DL over conventional data science systems

Deciding when to use a DL system instead of a conventional method is an
important task. It is easy to be enticed by the new and exciting features of DL,
and to use it for all kinds of data science problems. However, not all problems
require DL. Sometimes, the extra performance of DL is not worth the extra
resources required. In cases where conventional data science systems fail, or
don’t offer any advantage (like interpretability), DL systems may be
preferable. Complex problems with lots of variables and cases with non-linear
relationships between the features and the target variables are great matches
for a DL framework.

If there is an abundance of data, and the main objective is good raw
performance in the model, a DL system is typically preferable. This is
particularly true if computational resources are not a concern, since a DL
system requires quite a lot of them, especially during its training phase.
Whatever the case, it’s good to consider alternatives before setting off to build
a DL model. While these models are incredibly versatile and powertful,
sometimes simpler systems are good enough.

Summary

® Deep Learning is a particularly important aspect of Al, and has
found a lot of applications in data science.

® Deep Learning employs a certain kind of Al system called an
Artificial Neural Networks (or ANN). An ANN is a graph-based
system involving a series of (usually non-linear) operations,
whereby the original features are transformed into a few meta-
features capable of predicting the target variable more accurately
than the original features.

® The main frameworks in DL are MXNet, TensorFlow, and Keras,
though Pytorch and Theano also play roles in the whole DL
ecosystem. Also, Knet is an interesting alternative for those using
Julia primarily.

® There are various programming languages used in DL, including
Python, Julia, Scala, Javascript, R, and C / C++. Python is the most
popular.

® A DL framework offers diverse functionality, including ETL
processes, building data models, deploying and evaluating models,
and other functions like creating visuals.

® A DL system can be used in various data science methodologies,
including Classification, Regression, Reinforcement Learning,
Dimensionality Reduction, Clustering, and Sentiment Analysis,

® (lassification, regression, and reinforcement learning are
supervised learning methodologies, while dimensionality reduction
and clustering are unsupervised.

® Applications of DL include making high-accuracy predictions for
complex problems; summarizing data into a more compact form;
analyzing images, sound, or video; natural language processing
and sentiment analysis; text prediction; linking images to captions;
chatbots; and text summarization.

® A DL framework needs to be assessed on various metrics (not just
popularity). Such factors include the programming languages it
supports, its raw performance, how well it handles ETL processes,
the strength of its documentation and user communities, and the
need for future maintenance.

® [t is not currently very easy to interpret DL results and trace them
back to specific features (i.e. DL results currently have low
interpretability).

® (iving more weight to raw performance or interpretability can help
you decide whether a DL system or conventional data science
system is ideal for your particular problem. Other factors, like the
amount of computational resources at our disposal, are also
essential for making this decision.

A good starting point can be found at http://bit.ly/2vzKC30.

https://github.com/denizyuret/Knet.jl.

CHAPTER 2

Al Methodologies Beyond Deep
Learning

As we've seen, deep learning is a key aspect of most robust Al systems
—but 1it’s not the only way to use Al This chapter covers some
alternatives to deep learning. Even if these methods are not as popular
as DL methods, they can be very useful in certain scenarios. We'll take a
look at the two main methodologies — optimization and fuzzy logic — as
well as some less well-known methods such as artificial creativity. We'll
cover new trends in Al methodologies. Finally, we’ll explore some
useful considerations to leverage these methods and make the most out
of them for your data science projects.

Many of the AI methodologies alternative to DL don’t use ANNSs of any
kind, but rely on other systems that exhibit a certain level of
intelligence. As some such systems don’t use an obscure graph for
making their predictions (like ANNSs do) they are more transparent than
DL, making them useful when interpreting results. Most of these
alternative Al methodologies have been around for a few decades now,
so there is plenty of support behind them, making them reliable
resources overall. Others are generally newer, but are quite robust and
reliable nevertheless.

Since the field of Al is rapidly evolving, these alternatives to DL may
become even more relevant over the next few years. After all, many data
science problems involve optimizing a function.

Among the various alternative Al methodologies out there, the ones
that are more suitable for data science work can be classified under the
optimization umbrella. However, fuzzy logic systems may be usetul,

even though they apply mainly to low-dimensionality datasets, as we’ll
see later. Optimization, on the other hand, involves all kinds of datasets,
and is often used within other data science systems.

Optimization

Optimization is the process of finding the maximum or minimum of a
given function (also known as a fitness function), by calculating the best
values for its variables (also known as a “solution”). Despite the
simplicity of this definition, it is not an easy process; often involves
restrictions, as well as complex relationships among the various
variables. Even though some functions can be optimized using some
mathematical process, most functions we encounter in data science are
not as simple, requiring a more advanced technique.

Optimization systems (or optimizers, as they are often referred to) aim to
optimize in a systematic way, oftentimes using a heuristics-based
approach. Such an approach enables the Al system to use a macro level
concept as part of its low-level calculations, accelerating the whole
process and making it more light-weight. After all, most of these
systems are designed with scalability in mind, so the heuristic approach
is most practical.

Importance of optimization

Optimization is especially important in many data science problems—
particularly those involving a lot of variables that need to be fine-tuned,
or cases where the conventional tools don’t seem to work. In order to
tackle more complex problems, beyond classical methodologies,
optimization is essential. Moreover, optimization is useful for various
data engineering tasks such as feature selection, in cases where
maintaining a high degree of interpretability is desired. We'll
investigate the main applications of optimizers in data science later in
this chapter.

Optimization systems overview

There are different kinds of optimization systems. The most basic ones
have been around the longest. These are called “deterministic
optimizers,” and they tend to yield the best possible solution for the
problem at hand. That is, the absolute maximum or minimum of the
fitness function. Since they are quite time-consuming and cannot handle
large-scale problems, these deterministic optimizers are usually used for
applications where the number of variables is relatively small. A classic
example of such an optimizer is the one used for least squared error
regression—a simple method to figure out the optimal line that fits a set
of data points, in a space with relatively small dimensionality.

In addition to deterministic optimizers, there are stochastic optimizers,
which more closely fit the definition of Al. After all, most of these are
based on natural phenomena, such as the movement of the members of
a swarm, or the way a metal melts. The main advantage of these
methods is that they are very efficient. Although they usually don’t
yield the absolute maximum or minimum of the function they are trying
to optimize, their solutions are good enough for all practical purposes
(even if they vary slightly every time you run the optimizer). Stochastic
optimizers also scale very well, so they are ideal for complex problems
involving many variables. In this book we will focus on some of these
stochastic optimization methods.

Programming languages for optimization

Optimization is supported by most programming languages in terms of
libraries, like the Optim and JuMP packages in Julia. However, each
algorithm is simple enough so that you can code it yourself, if you
cannot find an available “off-the-shelf” function. In this book we’ll
examine the main algorithms for advanced optimization and how they
are implemented in Julia. We chose this programming language because
it combines ease of use and high execution speed. Remember that all the
code is available in the Docker environment that accompanies this book.

Fuzzy inference systems

Fuzzy logic (FL) is a methodology designed to emulate the human
capacity of imprecise or approximate reasoning. This ability to judge
under uncertainty was previously considered strictly human, but FL has
made it possible for machines, too.

Despite its name, there is nothing unclear about the outputs of fuzzy
logic. This is because fuzzy logic is an extension of classical logic, when
partial truths are included to extend bivalued logic (true or false) to a
multivalued logic (degrees of truth between true and false).

According to its creator, Professor Zadeh, the ultimate goal of fuzzy
logic is to form the theoretical foundation for reasoning about imprecise
propositions (also known as “approximate reasoning”). Over the past
couple decades, FLL has gained ground and become regarded as one of
the most promising Al methodologies.

A FL system contains a series of mappings corresponding to the various
features of the data at hand. This system contains terms that make sense
to us, such as high-low, hot-cold, and large-medium-small, terms that
may appear fuzzy since there are no clear-cut boundaries among them.
Also, these attributes are generally relative and require some context to
become explicit, through a given mapping between each term and some
number that the system can use in its processes. This mapping is
described mathematically through a set of membership functions,
graphically taking the form of triangles, trapezoids, or even curves. This
way something somewhat abstract like “large” can take very specific
dimensions in the form of “how large on a scale of 0 to 1”7 it is. The
process of coding data into these states is called fuzzification.

Once all the data is coded in this manner, the various mappings are
merged together through logical operators, such as inference rules (for
example, “If A and B then C,” where A and B correspond to states of
two different features and C to the target variable). The result is a new
membership function describing this complex relationship, usually
depicted as a polygon. This is then turned into a crisp value, through
one of various methods, in a process called defuzzification. Since this
whole process is graphically accessible to the user, and the terms used

are borrowed from human language, the result is always something
clear-cut and interpretable (given some understanding of how FL
works).

Interestingly, FL has also been used in conjunction with ANNSs to form
what are referred to as neuro-fuzzy systems. Instead of having a person
create the membership functions by hand, a FL system can make use of
the optimization method in a neural network’s training algorithm to
calculate them on the fly. This whole process and the data structure that
it entails take the form of an automated fuzzy system, combining the
best of both worlds.

Why systems based on fuzzy logic are still relevant

Although FL was originally developed with a certain types of
engineering systems in mind such as Control Systems, its ease of use
and low cost of implementation has made it relevant as an Al
methodology across a variety of other fields, including data science.

What’s more, fuzzy systems are very accessible, especially when
automated through optimization for their membership functions (such
as the neuro-fuzzy systems mentioned previously). Such a system
employs a set of FL rules (which are created based on the data) to infer

the target variable. These systems are called Fuzzy Inference Systems, or
FISs.

The main advantage of this FIS approach is that it is transparent—a big
plus if you want to defend your results to the project stakeholders. The
transparency of a FIS makes the whole problem more understandable,
enabling you to figure out which features are more relevant.

In addition, a FIS can be used in conjunction with custom-made rules
based on an expert’s knowledge. This is particularly useful if you are
looking at upgrading a set of heuristic rules using Al Certain larger
companies that are planning to use data science to augment their
existing systems are likely to be interested in such a solution.

Downside of fuzzy inference systems

Despite all the merits of FIS, these Al systems don’t always meet the
expectations of modern data science projects. Specifically, when the
dimensionality of the data at hand is quite large, the number of rules
produced increases exponentially, making these systems too large for
any practical purposes. Of course, you can mitigate this issue with an
autoencoder or a statistical process, like PCA or ICA, that creates a
smaller set of features. However, when you do this, the whole
interpretability benefit of FIS goes out the window. Why? With a
reduced feature set, the relationship with the original features (and the
semantic meaning they carry) is warped. As such, it is very difficult to
reconstruct meaning; the new features will require a different
interpretation if they are to be meaningful. This is not always feasible.

Nevertheless, for datasets of smaller dimensionality, a FIS is a
worthwhile alternative, even if it’s not a particularly popular one. We'll
explore Fuzzy Logic and FIS more in Chapter 11, where we’ll discuss
alternative Al methodologies.

Artificial creativity

Artificial creativity (AC) is a relatively new methodology of Al, where
new information is created based on relevant data it has been trained
on. Its applications span across various domains, including most of the
arts, as well as industrial design, and even data science.

This kind of Al methodology makes use of a specialized DL network
that is trained to develop new data that retains some characteristics of
the data it was trained on. When you feed such a specialized Al system
some image data, and it's been trained on the artwork of a particular
painter, it will produce new “artwork” that makes use of the images it is
fed, but using the painting patterns of the artist it is trained to emulate.
The results may not win any art prizes, but they are certainly interesting
and original!

It is particularly fascinating when an AC system creates poetry, based
on the verse of certain poets. The results can be indistinguishable from
human-written verse. Take for example the following piece of verse by

the Al poet Deep Gimble I.°

Madness 1n her face and 1

the world that I had seen

and when my soul shall be to see the night to be the same and

[am all the world and the day that is the same and a day I had been
a young little woman I am 1n a dream that you were in

a moment and my own heart in her face of a great world

and she said the little day 1s a man of a little

a little one of a day of my heart that has been in a dream.

In data science, AC can aid in the creation of new data, which is quite
useful in certain cases. This new data may not be particularly helpful as
an expansion of the training set for that ANN, but it can be especially
useful in other ways. For example, if the original data is sensitive like
medical data, and contains too much personally identifiable information
(PII), you can generate new data using AC that, although very similar to
the original data, cannot be mapped back to a real individual.

In addition, data created from an AC system can be useful for different
data models—perhaps as a new test set or even part of their training set.
This way it can offer the potential for better generalization for these
models, as there is more data available for them to train or test on. This
can be particularly useful in domains where labeled data is hard to
come by or is expensive to generate otherwise.

Additional Al methodologies

Beyond all the AI methodologies we’ve discussed so far, there exist
several others worth noting. These systems also have a role to play in
data science, while their similarities to DL systems make them easier to
comprehend. Also, as the Al field 1s constantly expanding, it’s good to
be aware of all the new methodologies that pop up.

The Extreme Learning Machine (or ELM) is an example of an alternative
Al methodology that hasn’t yet received the attention it deserves.
Although they are architecturally like DL networks, ELMs are quite
distinct in the way they are trained. In fact, their training is so

unconventional that some people considered the whole approach
borderline unscientific (the professor who came up with ELMs most
recently has received a lot of criticism from other academics).

Instead of optimizing all the weights across the network, ELMs focus on
just the connections of the two last layers—namely the last set of meta-
features and their outputs. The rest of the weights maintain their initial
random values from the beginning. Because the focus is solely on just
the optimized weights of the last layers, this optimization is extremely
fast and very precise,.

As a result, ELMs are the fastest network-based methodology out there,
and their performance is quite decent too. What’s more, they are quite
unlikely to overfit, which is another advantage. Despite its counter-
intuitive approach, an ELM system does essentially the same thing as a
conventional DL system; instead of optimizing all the meta-features it
creates, though, it focuses on optimizing the way they work together to
form a predictive analytics model. We'll talk more about ELMs in

Chapter 11.

Another new alternative Al methodology 1s Capsule Networks
(CapsNets). Although the CapsNet should be regarded as a member of
the deep learning methods family, its architecture and its optimization
training method are quite novel. CapsNets try to capture the relative
relationships between the objects within a relevant context. A CNN
model that achieves high performance in image recognition tasks may
not necessarily be able to identify the same object from different angles.
CapsNets, though, capture those kinds of contextual relationships quite
well. Their performance on some tasks has already surpassed the
leading models by about 45%, which is quite astonishing. Considering
their promising future, we dedicate a section in Chapter 11 to discussing
CapsNets.

Self-organizing Maps (SOMs) are a special type of Al system. Although
they are also ANNSs of sorts, they are unique in function. SOMs offer a
way to map the feature space into a two-dimensional grid, so that it can
be better visualized afterwards. Since it doesn’t make use of a target
variable, a SOM is an unsupervised learning methodology; as such, it is
ideal for data exploration.

SOMs have been successfully applied in various domains, such as

meteorology, oceanography, oil and gas exploration, and project
prioritization. One key difference SOMs have from other ANNSs is that
their learning is based on competition instead of error correction. Also,
their architecture is quite different, as their various nodes are only
connected to the input layer with no lateral connections. This unique
design was first introduced by Professor Kohonen, which is why SOMs
are also referred to as “Kohonen Maps.”

The Generative Adversarial Network (GAN) is a very interesting type of Al
methodology, geared towards optimizing a DL network in a rather
creative way. A GAN comprises two distinct ANNs. One is for learning,
and the other is for “breaking” the first one — finding cases where the
predictions of the first ANN are off. These systems are comparable to
the “white hat” hackers of cybersecurity.

In essence, the second ANN creates increasingly more demanding
challenges for the first ANN, thereby constantly improving its
generalization (even with a limited amount of data). GANSs are used for
simulations as well as data science problems. Their main field of
application is astronomy, where a somewhat limited quantity of images
and videos of the cosmos is available to use in training. The idea of
GANs has been around for over a decade, but has only recently
managed to gain popularity; this is largely due to the amount of
computational resources demanded by such a system (just like any
other DL-related Al system). A more detailed description of GANSs is
available in Appendix D, while in Chapter 9 we'll also revisit this topic.

Artificial Emotional Intelligence (AEI) is another kind of Al that’s novel
on both the methodological as well as the application levels. The goal of
AEI is to facilitate an understanding of the emotional context of data
(which is usually text-based) and to assess it just like a human.
Applications of AEI are currently limited to comprehension; in the
future, though, more interactive systems could provide a smoother
interface between humans and machines. There is an intersect between
AEI and ANNSs, but some aspects of AEI make use of other kinds of ML
systems on the back end.

Glimpse into the future

While the field of Al expands in various directions, making it hard to
speculate about how it will evolve, there is one common drawback to
most of the Al systems used today: a lack of interpretability. As such, it
1s quite likely that some future Al system will address this matter,
providing a more comprehensive result, or at least some information as
to how the result came about (something like a rationale for each
prediction), all while maintaining the scalability of modern Al systems.

A more advanced Al system of the future will likely have a network
structure, just like current DL systems—though it may be quite different
architecturally. Such a system would be able to learn with fewer data
points (possibly assisted by a GAN), as well as generate new data (just
like variational autoencoders).

Could an Al system learn to build new AI systems? It is possible,
however the limitation of excessive resources required for such a task
has made it feasible only for cloud-based systems. Google may
showcase its progress in this area in what it refers to as Automated

Machine Learning (AutoML).

S0, if you were to replicate this task with your own system, who is to
say that the Al-created AI would be better than what you yourselt
would have built? Furthermore, would you be able to pinpoint its
shortcomings, which may be quite subtle and obscure? After all, an Al
system requires a lot of effort to make sure that its results are not just
accurate but also useful, addressing the end-user’s needs. You can
imagine how risky it would be to have an Al system built that you
know nothing about!

However, all this is just an idea of a potential evolutionary course, since
Al can always evolve in unexpected ways. Fortunately, with all the
popularity of Al systems today, if something new and better comes
along, you’ll probably find out about it sooner rather than later.

Perhaps for things like that it’s best to stop and think about the why’s
instead of focusing only on the how’s, since as many science and
industry experts have warned us, Al is a high-risk endeavor and needs
to be handled carefully and always with fail-safes set in place. For
example, although it’s fascinating and in some cases important to think
about how we can develop Als that improve themselves, it’s also crucial
to understand what implications this may have and plan for Al safety

matters beforehand. Also, prioritizing certain characteristics of an Al
system (e.g. interpretability, ease of use, having limited issues in the
case of malfunction, etc.) over raw performance, may provide more far-
reaching benefits. After all, isn’t improving our lives in the long-term
the reason why we have Al in the first place?

About the methods

It is not hard to find problems that can be tackled with optimization. For
example, you may be looking at an optimum configuration of a
marketing process to minimize the total cost, or to maximize the
number of people reached. Although data science can lend some aid in
solving such a problem, at the end of the day, you’ll need to employ an
optimizer to find a true solution to a problem like this.

Furthermore, optimization can help in data engineering, too. Some
feature selection methods, for instance, use optimization to keep only
the features that work well together. There are also cases of feature fusion
that employ optimization (although few people use this method, since it
sacrifices some interpretability of the model that makes use of these
meta-features).

In addition, when building a custom predictive analytics system
combining other classifiers or regressors, you often need to maximize the
overall accuracy rate (or some other performance metric). To do this,
you must figure out the best parameters for each module (i.e. the ones
that optimize a certain performance metric for the corresponding
model), and consider the weights of each module’s output in the overall
decision rule for the final output of the system that comprises of all
these modules. This work really requires an optimizer, since often the
number of variables involved is considerable.

In general, if you are tackling a predictive analytics problem and you
have a dataset whose dimensionality you have reduced through feature
selection, it can be effectively processed through a FIS. In addition, if
interpretability is a key requirement for your data model, using a FIS is
a good strategy to follow. Finally, if you already have a set of heuristic
rules at your disposal from an existing predictive analytics system, then

you can use a FIS to merge those rules with some new ones that the FIS
creates. This way, you won’t have to start from square one when
developing your solution.

Novel Al systems tend to be less predictable and, as a result, somewhat
unreliable. They may work well for a certain dataset, but that
performance may not hold true with other datasets.

That’s why it is critical to try out ditferent Al systems before settling on
one to use as your main data model. In many cases, optimizing a certain
Al system may yield better performance, despite the time and resources
it takes to optimize. Striking the balance between exploring various
alternatives and digging deeper into existing ones is something that
comes about with experience.

Moreover, it's a good i1dea to set your project demands and user
requirements beforehand. Knowing what is needed can make the
selection of your Al system (or if you are more adventurous, your
design of a new one) much easier and more straightforward. For
example, if you state early on that interpretability is more important
than performance, this will affect which model you decide to use. Make
sure you understand what you are looking for in an Al system from the
beginning, as this is bound to help you significantly in making the
optimal choice.

Although Al systems have a lot to offer in all kinds of data science
problems, they are not panaceas. If the data at your disposal is not of
high veracity, meaning not of good quality or reliability, no Al system
can remedy that. All Al systems function based on the data we train
them with; if the training data is very noisy, biased, or otherwise
problematic, their generalizations are not going to be any better.

This underlines the importance of data engineering and utilizing data
from various sources, thereby maximizing your chances of creating a
robust and useful data model. This is also why it's always good to
always keep a human in the loop when it comes to data science projects
—even (or perhaps especially) when they evolve Al

Summary

Optimization is an Al-related process for finding the
maximum or minimum of a given function, by tweaking the
values for its variables. It is an integral part of many other
systems (including ANNSs) and consists of deterministic and
stochastic systems.

Optimization systems (or “optimizers,” as they are often
called) can be implemented in all programming languages,
since their main algorithms are fairly straightforward.

Fuzzy Logic (FL) is an Al methodology that attempts to model
imprecise data as well as uncertainty. Systems employing FL
are referred to as Fuzzy Inference Systems (FIS). These
systems involve the development and use of fuzzy rules,
which automatically link features to the target variable. A FIS
is great for datasets of small dimensionality, since it doesn’t
scale well as the number of features increases.

Artificial creativity (AC) is an Al methodology of sorts that
creates new information based on patterns derived from the
data it is fed. It has many applications in the arts and
industrial design. This methodology could also be useful in
data science, through the creation of new data points for
sensitive datasets (for example, where data privacy is
important).

Artificial Emotional Intelligence (AEI) is another alternative
Al, emulating human emotions. Currently its applications are
limited to comprehension.

Although speculative, if a truly novel AI methodology were
to arise in the near future, it would probably combine the
characteristics of existing Al systems, with an emphasis on
interpretability.

Even though theoretically possible, an Al system that can
design and build other Al systems is not a trivial task. A big
part of this involves the excessive risks of using such a
system, since we would have little control over the result.

It’s important to understand the subtle differences between all
these methodologies, as well as their various limitations. Most

importantly, for data science, there is no substitute for high
veracity data.

http://bit.ly/2]s4CKd.

CHAPTER 3

Building a DL Network Using MXNet

We'll begin our in-depth examinations of the DL frameworks with that which
seems one of the most promising: Apache’s MXNet. We'll cover its core
components including the Gluon interface, NDArrays, and the MXNet
package in Python. You will learn how you can save your work like the
networks you trained in data files, and some other useful things to keep in
mind about MXNet.

MXNet supports a variety of programming languages through its API, most
of which are useful for data science. Languages like Python, Julia, Scala, R,
Perl, and C++ have their own wrappers of the MXNet system, which makes
them easily integrated with your pipeline.

Also, MXNet allows for parallelism, letting you take full advantage of your
machine’s additional hardware resources, such as extra CPUs and GPUSs. This
makes MXNet quite fast, which is essential when tackling computationally
heavy problems, like the ones found in most DL applications.

Interestingly, the DL systems you create in MXNet can be deployed on all
kinds of computer platforms, including smart devices. This is possible
through a process called amalgamation, which ports a whole system mto a
single file that can then be executed as a standalone program. Amalgamation
in MXNet was created by Jack Deng, and involves the development of .cc
files, which use the BLAS library as their only dependency. Files like this tend
to be quite large (more than 30000 lines long). There is also the option of
compiling .h files using a program called emscripten. This program is
independent of any library, and can be used by other programming
languages with the corresponding APL.

Finally, there exist several tutorials for MXNet, should you wish to learn more
about its various functions. Because MXNet is an open-source project, you
can even create your own tutorial, if you are so inclined. What’s more, it is a

cross-platform tool, running on all major operating systems. MXNet has been
around long enough that it is a topic of much research, including a well-

known academic paper by Chen et al.’

Core components

Gluon interface

Gluon is a simple interface for all your DL work using MXNet. You install it
on your machine just like any Python library:

plp 1nstall mxnet --pre -—--user

The main selling point of Gluon is that it is straightforward. It offers an
abstraction of the whole network building process, which can be intimidating
for people new to the craft. Also, Gluon is very fast, not adding any
significant overhead to the training of your DL system. Moreover, Gluon can
handle dynamic graphs, offering some malleability in the structure of the
ANNSs created. Finally, Gluon has an overall flexible structure, making the
development process for any ANN less rigid.

Naturally, for Gluon to work, you must have MXNet installed on your
machine (although you don’t need to if you are using the Docker container
provided with this book). This is achieved using the familiar pip command:

plip 1nstall mxnet —--pre —--user

Because of its utility and excellent integration with MXNet, we’ll be using
Gluon throughout this chapter, as we explore this DL framework. However,
to get a better understanding of MXNet, we’ll first brietly consider how you
can use some of its other functions (which will come in handy for one of the
case studies we examine later).

NDArrays

The NDArray is a particularly useful data structure that’s used throughout an

MXNet project. NDArrays are essentially NumPy arrays, but with the added
capability of asynchronous CPU processing. They are also compatible with
distributed cloud architectures, and can even utilize automatic differentiation,
which 1s particularly useful when training a deep learning system, but
NDArrays can be effectively used in other ML applications too. NDArrays are
part of the MXNet package, which we will examine shortly. You can import
the NDArrays module as follows:

from mxnet import nd

To create a new NDArray consisting of 4 rows and 5 columns, for example,
you can type the following:

nd.empty((4, 3))

The output will differ every time you run it, since the framework will allocate
whatever value it finds in the parts of the memory that it allocates to that
array. If you want the NDArray to have just zeros instead, type:

nd.zeros((4, 5))

To find the number of rows and columns of a variable having an NDArray
assigned to it, you need to use the .shape function, just like in NumPy:

x = nd.empty((2, 7))
X .shape

Finally, if you want to find to total number of elements in an NDArray, you
use the .size function:

X.s8lze

The operations in an NDArray are just like the ones in NumPy, so we won't
elaborate on them here. Contents are also accessed in the same way, through
indexing and slicing.

Should you want to turn an NDArray into a more familiar data structure
from the NumPy package, you can use the asnumpy() function:

Yy = X.asnumpy ()

The reverse can be achieved using the array() function:

z = nd.array(y)

One of the distinguishing characteristics of NDArrays is that they can assign
different computational contexts to different arrays—either on the CPU or on
a GPU attached to your machine (this is referred to as “context” when
discussing about NDArrays). This is made possible by the cfx parameter in all
the package’s relevant functions. For example, when creating an empty array
of zeros that you want to assign to the first GPU, simply type:

a = nd.zeros(shape=(5,5), ctx=mx.gpu(0))

Of course, the data assigned to a particular processing unit is not set in stone.
It is easy to copy data to a different location, linked to a different processing
unit, using the copyto() function:

y = x.copyto(mx.gpu(l)) # copy the data of NDArray x to
the 2nd GPU

You can find the context of a variable through the .context attribute:

print (x.context)

[t is often more convenient to define the context of both the data and the
models, using a separate variable for each. For example, say that your DL
project uses data that you want to be processed by the CPU, and a model that

you prefer to be handled by the first GPU. In this case, you'd type something
like:

DataCtx = mx.cpu()
ModelCtx = mx.gpu(0)

MXNet package in Python

The MXNet package (or “mxnet,” with all lower-case letters, when typed in
Python), is a very robust and self-sufficient library in Python. MXNet
provides deep learning capabilities through the MXNet framework.
Importing this package in Python is fairly straightforward:

1mport mxnet as mx

If you want to perform some additional processes that make the MXNet
experience even better, it is highly recommended that you first install the
following packages on your computer:

® oraphuviz (ver. 0.8.1 or later)
® requests (ver. 2.18.4 or later)

® numpy (ver. 1.13.3 or later)

You can learn more about the MXNet package through the corresponding
GitHub repository.”

MXNet in action

Now let’s take a look at what we can do with MXNet, using Python, on a
Docker image with all the necessary software already installed. We’ll begin
with a brief description of the datasets we’ll use, and then proceed to a couple
specific DL applications using that data (namely classification and
regression). Upon mastering these, you can explore some more advanced DL
systems of this framework on your own.

Datasets description

In this section we’ll introduce two synthetic datasets that we prepared to
demonstrate classification and regression methods on them. First dataset is
for classification, and the other for regression. The reason we use synthetic
datasets in these exercises to maximize our understanding of the data, so that
we can evaluate the results of the DL systems independent of data quality.

The first dataset comprises 4 variables, 3 features, and 1 labels variable. With
250,000 data points, it is adequately large for a DL network to work with. Its
small dimensionality makes it ideal for visualization (see Figure 2). It is also
made to have a great deal of non-linearity, making it a good challenge for any
data model (though not too hard for a DL system). Furthermore, classes 2 and
3 of this dataset are close enough to be confusing, but still distinct. This makes

them a good option for a clustering application, as we’ll see later.

1.0
0.7
0.50
" .25
0.00
-0.25=
—0.50~
-.75

o

Fealire

Figure 2: A graphical representation of the first dataset to be used in these examples. The difterent
colors correspond to the different classes of the dataset. Although the three classes are defined
clearly, figuring out in which one of them an unknown data point belongs is non-linear. This is
due to the presence of the spherical class, making the whole problem challenging enough o

render a DL 43]1pr:_1-;_11;h to 1t relevant.

The second dataset is somewhat larger, comprising 21 variables—20 of which
are the features used to predict the last, which is the target variable. With
250,000 data points, again, it is ideal for a DL system. Note that only 10 of the
20 features are relevant to the target variable (which is a combination of these
10). A bit of noise is added to the data to make the whole problem a bit more
challenging. The remaining 10 features are just random data that must be
filtered out by the DL model. Relevant or not, this dataset has enough
features altogether to render a dimensionality reduction application
worthwhile. Naturally, due to its dimensionality, we cannot plot this dataset.

Loading a dataset into an NDArray

Let’s now take a look at how we can load a dataset in MXNet, so that we can

process it with a DL model later on. First let’s start with setting some
parameters:

DataCtx = mx.cpu() # assign context of the data used
BatchSize = 64 # batch parameter for dataloader object
r = 0.8 # ratio of training data

nf = 3 # number of features in the dataset (for the
classification problem)

Now, we can import the data like we’d normally do in a conventional DS
project, but this time store it in NDArrays instead of Pandas or NumPy

arrays:
with open(“../data/datal.csv”) as f:
data raw = f.read()
lines = data raw.splitlines() # split the data into
separate lines
ndp = len(lines) # number of data points
X = nd.zeros((ndp, nif), ctx=data ctx)
Y = nd.zeros((ndp, 1), ctx=data ctx)
for 1, line 1n enumerate(lines):
tokens = line.split ()
Y[1] = 1nt(tokens[0])
for token 1n tokens[1l:]:
index = int (token[:-2]) - 1
X[1, 1ndex] = 1

Now we can split the data into a training set and a testing set, so that we can
use it both to build and to validate our classification model:

import numpy as np # we’ll be needing this package as
well

n = np.round(N * r) # number of training data points
train = datal[:n,] # training set partition
test = datal[(n + 1):,] # testing set partition

data train =

gluon.data.DataLoader (gluon.data.ArrayDataset (train[:, : 3],
train[:,3]), batch size=BatchSize, shuffle=True)

data test =

gluon.data.DatalLoader (gluon.data.ArrayDataset (test[:, : 3],
test[:,3]), batch size=BatchSize, shuffle=True)

We'll then need to repeat the same process to load the second dataset—this
time using data2.csv as the source file. Also, to avoid confusion with the
dataloader objects of dataset 1, you can name the new dataloaders data_train2
and data_test2, respectively.

Classification

Now let’s explore how we can use this data to build an MLP system that can
discern the different classes within the data we have prepared. For starters,
let’'s see how to do this using the mxnet package on its own; then we’ll
examine how the same thing can be achieved using Gluon.

First, let’'s define some constants that we’ll use later to build, train, and test
the MLP network:

nhn = 256 # number of hidden nodes for each layer
WeightScale = 0.01 # scale multiplier for weights
ModelCtx = mx.cpu() # assign context of the model i1tself
no = 3 # number of outputs (classes)

ne = 10 # number of epochs (for training)

lr = 0.001 # learning rate (for training)

sc = 0.01 # smoothing constant (for training)

ns = test.shape[0] # number of samples (for testing)

Next, let’s initialize the network’s parameters (weights and biases) for the first
layer:

Wl = nd.random normal (shape=(nf, nhn),
scale=WelightScale, ctx=ModelCtx)
bl = nd.random normal (shape=nhn, scale=WeightScale,

ctx=ModelCtx)

And do the same for the second layer:

W2 = nd.random normal (shape=(nhn, nhn),
scale=WeightScale, ctx=ModelCtx)
b2 = nd.random normal (shape=nhn, scale=WeightScale,

ctx=ModelCtx)

Then let’s initialize the output layer and aggregate all the parameters into a
single data structure called params:

W3 = nd.random normal (shape=(nhn, no),
scale=WeilightScale, ctx=ModelCtx)

b3 = nd.random normal (shape=no, scale=WeightScale,
ctx=ModelCtx)

params = [W1l, bl, W2, b2, W3, b3]

Finally, let’s allocate some space for a gradient for each one of these
parameters:

for param 1n params:
param.attach grad()

Remember that without any non-linear functions in the MLI’’s neurons, the
whole system would be too rudimentary to be useful. We’ll make use of the
ReLU and the Softmax functions as activation functions for our system:

def relu(X): return nd.maximum(X, nd.zeros like (X))
def softmax(y linear):

exp = nd.exp(y linear - nd.max(y linear))

partition = nd.nansum(exp, axis=0,
exclude=True) .reshape((-1, 1))

return exp / partition

Note that the Softmax function will be used in the output neurons, while the
ReLU function will be used in all the remaining neurons of the network.

For the cost function of the network (or, in other words, the fitness function of
the optimization method under the hood), we’ll use the cross-entropy
function:

def cross entropy(yhat, y): return - nd.nansum(y *
nd.log(yhat), axis=0, exclude=True)

To make the whole system a bit more efficient, we can combine the softmax
and the cross-entropy functions into one, as follows:

def softmax cross entropy(yhat linear, y):

return - nd.nansum(y * nd.log softmax(yhat linear),
axi1s=0, exclude=True)

After all this, we can now define the function of the whole neural network,
based on the above architecture:

def net (X) :
hl linear = nd.dot (X, Wl) + bl
hl = relu(hl linear)
h2 linear = nd.dot(hl, W2) + DbZ
h2 = relu(h2 linear)
yhat linear = nd.dot(h2, W3) + b3
return yhat linear

The optimization method for training the system must also be defined. In this
case we'll utilize a form of Gradient Descent:

def SGD(params, 1r):
for param 1n params:

param[:] = param - lr * param.grad
return param

For the purposes of this example, we’ll use a simple evaluation metric for the
model: accuracy rate. Of course, this needs to be defined first:

def evaluate accuracy(data iterator, net):

numerator = 0.

denominator = 0.

for 1, (data, label) 1n enumerate (data 1terator):
data =

data.as 1n context (model ctx) .reshape((-1, 784))

label = label.as 1n context (model ctx)
output = net (data)
predictions = nd.argmax (output, axis=1)
numerator += nd.sum(predictions == label)

denominator += data.shape[0]
return (numerator / denominator) .asscalar ()

Now we can train the system as follows:

for e 1in range (epochs):
cumulative loss = 0
for 1, (data, label) 1n enumerate (train data):
data =
data.as 1n context (model ctx) .reshape((-1, 784))
label = label.as 1n context (model ctx)
label one hot = nd.one hot (label, 10)
with autograd.record() :
output = net (data)
loss = softmax cross entropy(output,
label one hot)
loss.backward/ ()
SGD (params, learning rate)
cumulative loss += nd.sum(loss) .asscalar ()

test accuracy = evaluate accuracy(test data, net)
train accuracy = evaluate accuracy(train data, net)
print ("Epoch %s. Loss: %s, Train acc %s, Test acc

o rr o

TS o

(e, cumulative loss/num examples,
train accuracy, test accuracy))

Finally, we can use to system to make some predictions using the following
code:

def model predict(net, data):

output = net (data)

return nd.argmax (output, axis=1)

SampleData = mx.gluon.data.DatalLoader (data test, ns,
shutffle=True)

for 1, (data, label) 1n enumerate (SampleData) :
data = data.as 1in context (ModelCtx)

im = nd.transpose(data, (1,0,2,3))

im = nd.reshape(im, (28,10*28,1))

imtiles = nd.tile(im, (1,1,3))

plt.imshow (imtiles.asnumpy ())

plt.show()

pred=model predict (net,data.reshape((-1,784)))
print (‘model predictions are:’, pred)

print (‘true labels :’, label)

break

If you run the above code (preferably in the Docker environment provided),
you will see that this simple MLP system does a good job at predicting the
classes of some unknown data points—even if the class boundaries are highly
non-linear. Experiment with this system more and see how you can improve
its performance even further, using the MXNet framework.

Now we’ll see how we can significantly simplify all this by employing the
Gluon interface. First, let’s define a Python class to cover some common cases
of Multi-Layer Perceptrons, transforming a “gluon.Block” object into
something that can be leveraged to gradually build a neural network,
consisting of multiple layers (also known as MLP):

class MLP(gluon.Block):

def 1nit (self, **kwargs):
super (MLP, self). 1nit (**kwargs)

with Self.name_ggape(r?

self.dense0 = gluon.nn.Dense(64) # architecture of 1lst
layer (hidden)

self.densel = gluon.nn.Dense(64) # architecture of 2nd
layer (hidden)

self.dense?2 = gluon.nn.Dense(3) # architecture of 3rd
layer (output)

def forward(self, x): # a function enabling an MLP to

process data (x) by passing 1t forward (towards the
output layer)

x = nd.relu(self.dense0(x)) # outputs of first
hidden lavyer

x = nd.relu(self.densel (x)) # outputs of second
hidden layer

x = self.dense2(x) # outputs of final layer (output)

return x

Of course, this is just an example of how you can define an MLP using Gluon,
not a one-size-fits-all kind of solution. You may want to define the MLP class
differently, since the architecture you use will have an impact on the system’s
performance. (This is particularly true for complex problems where
additional hidden layers would be useful.) However, if you find what follows
too challenging, and you don’t have the time to assimilate the theory behind
DL systems covered in Chapter 1, you can use an MLP object like the one

above for your project.

Since DL systems are rarely as compact as the MLP above, and since we often
need to add more layers (which would be cumbersome in the above
approach), it is common to use a different class called Sequential. After we
define the number of neurons in each hidden layer, and specify the activation
function for these neurons, we can build an MLP like a ladder, with each step
representing one layer in the MLP:

nhn = 64 # number of hidden neurons (in each layer)
af = “relu” # activation function to be used in each
neuron

net = gluon.nn.Sequential ()

with net.name scope () :
net.add(gluon.nn.Dense(nhn , activation=af))
net.add(gluon.nn.Dense (nhn , activation=af))
net.add(gluon.nn.Dense (no))

This takes care of the architecture for us. To make the above network
functional, we’ll first need to initialize it:

sigma = 0.1 # sigma value for distribution of weights

for the ANN connections

ModelCtx = mx.cpu()

lr = 0.01 # learning rate

oa = ‘sgd’ # optimization algorithm

net.collect params().initialize(mx.init.Normal (sigma=sigma),
ctx=ModelCtx)

softmax cross entropy =

gluon.loss.SoftmaxCrossEntropyLoss ()

trailner = gluﬂn.Trainer(net.cmllect_params(), oa,
{‘learning rate’: 1r})
ne = 10 # number of epochs for training

Next, we must define how we assess the network’s progress, through an
evaluation metric function. For the purposes of simplicity, we’ll use the
standard accuracy rate metric:

def AccuracyEvaluation(iterator, net):
acc = mx.metric.Accuracy()
for i1, (data, label) in enumerate (iterator):

data = data.as 1n context (ModelCtx) .reshape ((-1,
3))

label = label.as in context (ModelCtx)

output = net (data)

predictions = nd.argmax (output, axis=1)

acc.update (preds=predictions, labels=label)
return acc.get () [1]

Finally, it’s time to train and test the MLP, using the aforementioned settings:
for e 1n range(ne) :

cumulative loss = 0
for 1, (data, label) 1n enumerate(train data):
data = data.as 1n context (ModelCtx) .reshape ((-1,
7184))
label = label.as 1n context (ModelCtx)
with autograd.record():
output = net (data)
loss = softmax cross entropy (output, label)
loss.backward/ ()
trainer.step(data.shape[0])
cumulative loss += nd.sum(loss) .asscalar ()
train accuracy = AccuracyEvaluation(train data, net)
test accuracy = AccuracyEvaluation(test data, net)
print (“Epoch %s. Loss: %s, Train acc %s, Test acc
s” %

(e, cumulative loss/ns, train accuracy,
test accuracy))

Running the above code should vyield similar results to those from
conventional mxnet commands.

To make things easier, we'll rely on the Gluon interface in the example that
follows. Nevertheless, we still recommend that you experiment with the
standard mxnet functions afterwards, should you wish to develop your own
architectures (or better understand the theory behind DL).

Regression

