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AN ODE TO THE UNKNOWABLE

&
==

Mirroring Dicken’s A Tale of Two Cities, this volume depicts the extreme contrast between the simplest,
and the unknowable, local rules of one-dimensional cellular automata. The simplest class (Group 1) consists
of 67, out of 256, local rules where almost all initial configurations tend to period-1 attractors. The unknow-
able class (Group 5 and Group 6) embodies 40 local rules where almost all initial configurations tend to
unpredictable, dubbed quasi-ergodic, attractors bearing the telltale fingerprints of Gddel’s incompleteness
theorem. While despairing over the human frailty to decipher God’s forbidden secrets, CA affecionados
can rejoice at the prospect of never running out of challenges of teasing out partial truths, however mea-
ger, hidden within the 18 globally-equivalent unknowable local rules, including rule 137, the prototypic
universal Turing machine.

xi



Chapter 1
QUASI-ERGODICITY

=

Our scientific odyssey through the theory of 1-D cellular automata is enriched by the definition
of quasi-ergodicity, a new empirical property discovered by analyzing the time-1 return maps of
local rules. Quasi-ergodicity plays a key role in the classification of rules into six groups: in fact,
it is an exclusive characteristic of complexr and hyper Bernoulli-shift rules. Besides introducing
quasi-ergodicity, this paper answers several questions posed in the previous chapters of our quest.
To start with, we offer a rigorous explanation of the fractal behavior of the time-1 characteristic
functions, finding the equations that describe this phenomenon. Then, we propose a classification
of rules according to the presence of Isles of Eden, and prove that only 28 local rules out of 256
do not have any of them; this result sheds light on the importance of Isles of Eden. A section of
this paper is devoted to the characterization of Bernoulli basin-tree diagrams through modular
arithmetic; the formulas obtained allow us to shorten drastically the number of cases to take
into consideration during numerical simulations. Last but not least, we present some theorems
about additive rules, including an analytical explanation of their scale-free property.

Keywords: Cellular automata; quasi-ergodicity: ergodicity; nonlinear dynamics; attractors; Isles
of Eden; Bernoulli shift; shift maps; basin tree diagram; Bernoulli velocity; Bernoulli return time:
complex Bernoulli shifts; hyper Bernoulli shifts: Binomial series; scale-free phenomena; Rule 45;
Rule 60; Rule 90; Rule 105; Rule 150; Rule 154; additive rules; permutive rules; dissipative rules:
conservative rules; fractals; basin-tree generation formula.
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1. Remembrance of Things Past

This exposition continues our saga on a nonlinear
dynamics perspective of the 256 elementary cellular
automata rules, as featured in eight tutorial-review
papers: Part I [Chua et al., 2002], Part IT [Chua
et al., 2003], Part III [Chua et al., 2004], Part IV

[Chua et al., 2005a], Part V [Chua lg]agolﬂ_ﬂl)],
Part VI [Chua et al., 2006, Part VII [Chua et al.,
2007a], and Part VIII [Chua et al., 2007b].! In this
paper, we examine the 18 yet untamed rules listed
in Tables 11 and 12 of [Chua et al., 2007a]; namely,

the ten complex Bernoulli-shift rules { 18, 22, 54,

IParts T to VI have been collected into two recent edited volumes [Chua, 2006] and [Chua, 2007], respectively. Part VII and

VIIT will appear in a future edited volume III.



73, 90, 105, 122, 126, 146, 150 } and the
eight hyper Bernoulli-shift rules {26, 30, 41,
45, 60, 106, 110, 154 }

Remarkably, we have observed empirically that
all complex and hyper Bernoulli-shift rules ex-
hibit an Ergodic-like dynamics, which we christened
quasi-ergodicity. Our main goal of this paper is to
describe and characterize this unifying empirical
phenomenon.

We will revisit our fabled Isles of Eden from
Parts VII and VIII and offer an alternate perspec-
tive of such rare gems. We will show that all local
rules harbored a few precious Isles of Eden, except
for 28 rules, which we will prove analytically to be
devoid of Isles of Eden; these are the God forsaken
rules!

We will also revisit the scale-free phenomenon
reported in Parts VII and VIII for additive rules,
and prove these empirical observations are in fact
fundamental properties possessed by such rules. In
particular, we will present and prove several analyt-
ical theorems for rules 60, 90, 105 and 150 .

For the reader’s convenience, let us briefly
review some highlights from our earlier ad-
ventures, henceforth referred to collectively as
Age-1 Episodes, a la Tolkien's “The Lord of the
Rings”.

We are concerned exclusively with our tiny uni-
verse of 256 one-dimensional binary cellular au-
tomata, with a periodic boundary condition, as de-
picted in Fig. 1(a). Each “ring” has L £ I + 1 cells,
labeled consecutively from ¢ = 0 to ¢ = I. Each
cell “” has two states z; € {0,1}, where we usu-
ally code the states “0” and “17 by the color “blue”
and “red”, respectively. A clock sets the pace in dis-
crete times, dubbed “iterations” by the mathemat-
ical community, or “generations” by the life science
community. The state :ci“ of all “¢" at time ¢+ 1
(i.e. the next generation) is determined by the state
of its nearest neighbors x!_,, and 2! . and itself
zt, at time t [Fig. 1(c)], in accordance with a pre-
scribed Boolean truth table of eight distinct 3-input
patterns [Fig. 1(d)].2

1 18

We have found it extremely useful to map these
eight 3-input patterns into the eight vertices of

Boolean cube representation
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the “cube” shown in Fig. 1(b), henceforth called a
Boolean cube. The rationale for identifying which
vertex corresponds to which pattern was presented
in [Chua et al., 2002], in order to provide the genesis
of the truth tables from a nonlinear physical sys-
tem perspective, namely, cellular neural networks
(CNN) [Chua, 1996], thereby providing a bridge be-
tween nonlinear dynamics and cellular automata.
For readers who have not been exposed to the age-
1 episodes alluded to above, it is not necessary to
read the cited literature. Simply map the output of
each prescribed Boolean function (i.e. the 8-bit, yet
unspecified, binary string in Fig. 1(d)) onto the cor-
responding colors (red for 1, blue for 0) at the ver-
tices of the Boolean cube. Since there are 2% = 256
distinct combinations of eight bits, there are exactly
256 Boolean cubes with distinct vertex color combi-
nations, one for each Boolean function, as displayed
in Table 1.

1.2. Ipdex[of complewity
A careful examination of these 256 Boolean dubbs
shows that it is possible to separate, and segregate,
all red vertices of each Boolean cube from the blue
tices by & = 1, 2, or 3 parallel planes. An ex-
ample illustrating this separation is shown in Fig. 2
for rules 170, 110 and 184 , respectively. The in-
teger  is called the index of complexity of rule N .
We will always use the color red for k = 1, blue for
r = 2, and green for £ = 3 to code the rule number
N of each of the 256 Boolean cubes, as printed at
the bottom of each Boolean cube in Table 1.
It is natural to associate the 8-bit pattern of
each Boolean function with a decimal number N
representing the corresponding 8-bit word; namely,

N:,6‘;027+,!36026+,:35025+.,5’4024+ﬁ3023
+ 32022+ 3102 1 B02°, B ec{0,1}.
Observe that since 3; = 0 for each blue vertex
in Fig. 1(b), N is simply obtained by adding the
weights (indicated next to each pattern in Fig. 1(b))

associated with all red vertices. For example, for the
Boolean cube shown in Fig. 3(b), we have

N=002"+102°1102° 002"+ 102
+1e2? 102! +102°
=20 425 123 422 49!
=110

2 5 r 5 g 5 . ) &
“Throughout the paper we intentionally use both ¢ and n to indicate the time (or iterations) to stress the equivalence between
a discrete Cellular Automaton and a continuous nonlinear system.
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Table 1. Boolean cubes defining 256 CA rules. Each vertex @(‘L‘JKIL!H for a 3-bit input pattern.
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Consequently, the Boolean function defined by
the Boolean cube in Fig. 3(b) is identified as
N = 110.

1.3. Omne formula specifies all
256 rules

While the usual procedure for specifying a Boolean
function is to give the truth table, as God-given
laWs, we have discovered the following mnonlin-
ear difference equation, with eight parameters
{c],ca,...,c8}, which is capable of generating
any of the 256 Boolean cubes in Table 1, by
merely assigning eight real numbers to these eight
parameters:

t11

z;7 = {cg+ crl[ce + es|(ca + eazi_,

Feaxl + erxl )]} (1)

The difference equation (1) is extremely robust in
the sense that a very large set of real numbers can
be chosen to generate epdy Boolean cube, as de-
picted in the parameter|space R® in Fig
such set of numbers is_givern each o
rules in Table A-3 o

N252

All points inside
give the same

rule

FFig. 4. An abstraction showing a curve meandering through
8-dimensional parameter space, showing all 256 local rules,
not necessary in consecutive order. The robustness of the uni-
versal formula is depicted by an open sel of parameter points
(surrouudiug a typical parameter vector for rule No ) all of

which would generate the same truth table as Ny .
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For example, for rule 110, we read off the fol-
lowing values from page 1363 of [Chua et al., 2006]:

1

cp==-3, =2, e3=1, ¢c4=—_,
& (2)

cs=1 eg=-1, ec3=0, cg=0

Substituting the eight real numbers from Eq. (2)
into Eq. (1), tain the following difference equa-
tion for executing rule 110 :

1
et = {—1 + (:{:.':-'_ +2af —3xt — 2)” (3)

To verify that Eq. (3) can indeed generatg the truth
table for rule 110, let us substitute the eight input
patterns listed on the left side of Fig. 1(d):

Input code @: (ol b zh 4) = (0,0,0)

41 1
" = [—1 | ‘(01200—3‘0—2)‘]

= [=T408]
=0 (4a)
Input code (1): (z}_,2t,2t, ;) = (0,0,1)

t+1 1
g = [—1—|—‘(0+200—301—2)H

— [-1+35
=1 (4b)
Input code @: (& _ypzhyotg) = (0,1,0)

t41 1
;= [—ll‘(U{QOI—ScU—Q)H

= [-1+ 1.5]
=1 (4c)
Input code @: (£f_j355 5k )= (0,1,1)

:c:_’;_"l: [—1+‘(U+201—301—;)H

— -1+ 15
=1 (4d)
Input code (4): (a}_,2t,2¢, 1) = (1,0,0)

it+1 1

= [~1+0.5]
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Input code (5): (zt_,at, 2t ) = (1,0,1)

t+1 1
T = -1+ 1|20[J—301—2

= [-1+4.5]
=1 (4f)

Input code @: (2} j.ahmiiy) =

1
it = [—1+ ‘(1+2-1—3-0— 2)“

= [-1+2.5]
=1 (4g)

Input code @: (5. i, 2,

1
;1':+] . [—I-I— ‘(1+201—301—2)H

[=] [-1+05]
I (4h)

Mapping each vertex @ red if $§+1 = 1, and
t+1
= 0,

(1,1,0)

e sl )

blue if x; onto the “blank™ vertices in the
Boolean cube in Fig. 1(b), we obtain the Boolean
cube for 110 in Fig. 3(b), which indeed defines rule
110 , as expected.

For ease of futurc ro['oroncc we have enshrined
the "‘qho@ Eq. (1) in Fig. 1(e). Observe that
in the most g(‘n(‘ral case, tm universal formula
has eight non-zero parameters and two “nested”
absolute value functions. The analytical derivation
of this formula in [Ch al., 2002] shows that
the nfmhjer of absolute value functions required for
each rule N is precisely equal to k — 1, where &
is the index of complexity of N , which in turn is
defined to number of parallel planes needed
to separate the “red” vertices from the “blue” ver-
tices. In the case of rule 110, we recall from Fig. 3
that x ;;, = 2 because we only need two parallel
planes. Consequently, we expect the two parameters
cr = cg = 0 so that only one absolute value function
is needed for 110 .% For the readers convenience, Ta-
ble 2 gives the explicit formula for each of the 256
local rules defined by the Boolean cubes displayed
in Table 1.

1at the
on en-

We end this subsection by emphasizin
significance of the univérsal @’

Iled in Fig. 1(e) should not be E:Ollstrued merely

as an elegant mathematical formula, but rather as
a mathematical bridge essential for deriving and
proving analytical results and theorems, as demon-
strated in the rigorous derivation of the Bernoulli
shift formulas for rules 170, 240, 15, 85, and
184 for finite L in [Chua et al., 2005a]. Such a
feat would not have been possible without exploit-
ing this universal formul an essential way.

1.4. Space-time pattern and time-t
return maps

Given any initial binary bit-string configuration at
time ¢ = 0, the local rule N is used to update the
state J“l of each cell *i" at time ¢ + 1, using the
states .i'.:_l, zt, and xf, of the three neighboring
cells ¢ — 1, ¢, and i + 1, centered at location “i”,
respectively. The space-time pattern for the initial
state shown in Fig. 3(a) is shown in Fig. 3(c) for
t = 0,1,2,...,11. For simplicity, space-time pat-
terns are generally plotted by displaying a line of
L cells, with the implicit understanding that the
leftmost bit is “glued” to the rightmost bit. Such
space-time patterns are useful if they are T-periodic
with a small period T" and a relatively short tran-
sient regime. For large period T, such as the space-
time patterns generated from the 18 complexr and
hyper Bernoulli rules to be studied in this paper,
it is much more revealing to recast space-time pat-
terns into a time-1 return map [Chua et al., 2005a)

pr[N]: bpner — dn (5)
where
I -
683 2y, ©
i=0

is the decimal equivalent of the binary bit string

ri-1) (7)

and 7 is an integer. In most cases, such as the
quasi-ergodic space-time patterns to be presented
in Sec. 2, we choose 7 = 1 and will be concerned
usually with the time-1 map p[N] £ pi[N], where
we drop the subscript “1” to avoid clutter. Observe

n__ /.n n n
x" = (z5 z{ w3

3We caution the reader that to avoid ambiguity, Eq. (1) should actually be written as three separate “telescoping” equations,

as in Eq. (A.3) of [Chua et al., 2006]. Hence, cg = c7
absolute value function associated with ¢g and e7.

= 0 in Eq. (1) should be interpreted to mean the deletion of the outer
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Formula for Local Rule

Formula for Local Rule

: 1 ] All neurons i 3 ]
o L e i+l _ sl f o, e
“ =020 = | quenched n X = AL X A
[ 1" Ei
= dft o SR LA CEREER |
. i 1 i
L i T 2_ ] s ! i+ 2
; 2 2 x! tH __ d —_2 ab cond [ ]
[ 1 i 1
S -
Bl -l z] " = d =t 3]
4 i l - L 1_
e d_—x;_1—xj+,+5] | | x" = 4] -2x, +x] —x], +]
1 i ]— -_ — |
n =4 —~|(2x, =X — x”,-t-l)l] (W | X" =4|2x  +x +x,— |
+1 s I - 3 + i o ] ‘omplemente
% =4 -2%, X x‘+1+2:| X" =4 x| '+?] = X1 = | “Rigneshin




P

Table 2. [ Continued )

Formula for Local Rule

=

Formula for Local Rule

L |
xrlr—l _x: _x:"'l S ]
L ' 2

24

fol - d

:_ I+ I (ot = =i +%) | ]

1
! i
__xl, _x”] +;]

x'=4

I

3| -2+, =)

£—| (x', +2x' +x., -1 ]

le — d'

I

:§—|(2x: =X +4x, =3) :

[

=2 A — X +§]
. T

[\
~1

= d 1] (Lol 2¢, e )]

20

L |(2x,-2¢+x,+2)] ]

x,”' = dv[%_l(zx: HAx] =X, _3)| ]

i 3
__x:—l _x.: _2x:‘r| +E ]

v = 4 G-l -, +D))]

:%_l (x:—l +X; +*x§—l ”])l ]

xu-i — d

!

_I_ I (_zx:—l _x: _'x:+] +%)| ]

o

o B M ==

[ 3
_x:—l _x: _x:*'l > ]
- o

Wl e I S | B
- < e il oo = | B4

x:+l o d

_—3}(?; 1_xf _x:d +%]

i




Table 2. (Continued )

e 1
I:“ =d|- —2.7( +xul+ ]

=
W

r+x+]

i+1

L [

N Formula for Local Rule N Formula for Local Rule

32 —x +II+| - ] 40 x;f—l = d_%_l(_z'x;—l_zx:—l_xfﬂ +])|]
¥ =4 _%—l(—Zx;’_l +X| +2xj+,)|] x'=4 _%—|(—x,’ =X “Hf:.])l]
.x;'"=d-—x+r,+| ;] x”zd-— —x+2x1— ]

xf*lzd, _'1+|( Xi i x:+x:|l_%)|]

T—

_—|(2x; ! —x,’ —43(7:.1 +1)|:

_|—| 7 A g g A +%)I]

x;l] =d’ E_|(—x |+2X +4 :+l_3) ]

x =4[ 1| (G- (et ~2x -3, )]

CHCPCHTHISST YT~

x =d[1- | (=5 +] (e, —2x+ )]

i
|

(=) N

. J
xit = 4 -3x —xt 4ty 42




9T

Table 2. ([ Continued )

Formula for Local Rule

Formula for Local Rule

N N
48 |EEEr :x; =X +—%] X =4 :%—I(Zx,*_l +4x; —x;,, —2)l]
m xH =4 :xj_l —2x! —x',, +% x =4 :1—| (—x',—2x' +x' +%)]]
v =4l 204, L Ll | =[Gl +2v-ax,+3))]
51 1B =d:—x§+%]= ..;:. — CGmiTLLent 50 1EwET’ :—xj_]—3x;’.,+lel+§]
vt =a[2-l2x-av-v 3| ] || =4l e +x -l
v =d[H el o -3e,-2) (] || I | =sl2-12x-2x 42,401
X :d:1—|(—xj_]—2x§—xj_]+%)|] e =d:§—|(—2xj_| 2 —x,+2)] ]
55 1B :d:—xj_,—Bx;—xLlJr%] o :d[—x{_,—x{+%]




Table 2. [ Continued )

Formula for Local Rule

=

Formula for Local Rule

ks =d | X, X —x, 3] L (—2xl i+ _2"5;.|+1)|]

I

~J
(\®]
=1
=
Il
.
b

g=g ——|(2rr| 25 +x..)| ] ARy ESTCAREEE |

_?CHI = d _—]+| (—x:_] —X: +x:+] +%)| | o (2.1'; | +x: _,_4:‘.:" _4)| ]

=
~1

xt=4 ——|(2x, | —4x! —x| +])|: X" d[l_ (27, —xj+xj_,—%)|]

i+l

P I __ 4l _1
X _d_xi Xl ;]

~]
|
Rl
I
9-
]
e-{
+
!...-l
|
__\_1"‘
“+
I—I

i+l

xit = d|—x! , +x! —2x! +l]

R R [1—|<— At -+20)))]

!

sk

~1 B 1 . (=)
=,
1 i ~1 B 1 M3
o il = P Y
: A
"
&
|
,_H
o
2
Rkl
|
H
a3
 I—

5
xttl — d,[—?;xf_l X =X +E ]

i

— d[]_|(§—|(—4,xj -2, +l)|)|]




8T

Table 2. [ Continued )

Formula for Local Rule

Formula for Local Rule

t+l _ ol — —I
.)fr — d['}”a 1 ‘xa'll E:I

v = a2 f x 26,49 ]

B 1
X = 4] X\ — x| —2x{, +- ]

x'r'] —] d. _]_l (.X;_l _x: +2‘}":+| _é)l ]

Xt = 8] 2-| (2 —x—4x,+3)]

!

-+ I f
B TR,

—_

v = a1 G| 3w +4x 22, +1))]

X = 42| (=2xt, +xf =2x!, +1)]

3-—-
, -2

1
i+ _ - — =
X = d | X1 + X 2’1’-"4] ”

)

J.‘f” =d I.]—l(%—l(.‘lff_, —23(: +4Jﬁ';+])|) ]

0

()

1 [ 1 f Complemented
x'=4 | =Xt ]:x:'+|:>
o

Left shift

W

—

; 3
X" =d|—x +x —3x, +E]

=4 _1“| (L% —2x, +%)|]

X' =4 _%—[(—ZXj_l ~% ~ 2% +2)| ]

i

_ B 8

i I

J.":'] =d __x.:-l =X +%]




Table 2. (Continued )

Formula for Local Rule

=

Formula for Local Rule

xHI — d

I

. (—2xj]+x;'+X,’|]+l)|]

[—
o]
&

X = d‘[%_l(_x: 1 —X; — X +2‘)|]

B
-E_ (_x: [+x: +‘x:rl)|:|

105

w0 = 1| =t +x = 4]

%— (—I:_l —2X: _437;:1 +4)| ]

=il o2,

=

1|t + 20+, - D) ]

xT=4 —I+|(_xj1_x:+x{ +1)

F 173 i+1 o

-3 t ! g
-E_l (—.X}_l —4.1',- _2xx—l +4)| ]

X = 81| (=xi, -2x/ -x], %’

:1—|(x:_] _x:" _zx:H +%)| ]

— 7

R ! __%-'-l(._x:—l T =X+

[ ]
__I(XJr +x.:'r+l _])l]

e

ey =
= =
— ~

il

- Zd:_]+|(-‘ff-1+2*‘f: —3x] %) ]

N=—J | N
=3 | [= =
m!E’:’HH!EZ

3

2| #2250, 1)

=
[E==0
o

x = a[-Lo|(e, ~2x 420, -]

I




Table 2. ([ Continued )

Formula for Local Rule Formula for Local Rule

=

:1—|(2x +x+x,— —)|]

et

o
! 2

Y

| I_

S

i+l _ | ST\ . _l
X = 6'_2'xr'l X, —Xin ;]

—_

e
[y
(W)

0z

it =d) x} —x -, +%]

! L~ #

121

[—
—
(W

[ 1
_-5+|(—x +x! +xI|—1)|]

S 220, 09]

=4[

;_l(_zlx:_l +2:€f . +3)|)|]

—
(Y
(>

114

: il d[ —3x! —x', += ]

—y
—
h
=
)
(9
..H.,

| IF

B

:—%+|(2x =2, )| |

e

]

=1
I
-

v = 81| G-l (ax —x+2¢, 43))] :%—I (@xt,+2x +x,-3)| ]

) [ ] ' ol
X =¥ =2k +2] __E+|(_xrl+'}"i+2x:-l_2)|]

i+l

.
)
¥ )|

xt=4 :%—ul (—x—2x —2xi. +2)|] :lwl(—xj_l —x'—=x!, +%)| ]

et
o
=)

I I 5
X" =d|—-x/—x],+ T ] =% ,—x{—x,’,,Jr;]

127

o S )
fi=0 =208
o ~J
= :
I
9-.




Table 2. (Continued )

Formula for Local Rule

=

Formula for Local Rule

2 T 3
=8| x+x+x, _E] 5t =4 Pt B ]

i

—
o)
==

[}

o
(>
!2

J:: "= d’ __]+| (x;—l +‘fo +I‘r'r+l _%) | o L%_l (_x:—l _2'}": 2 4x:+1 B l) | ]

THI o d'

i

|RY,

[
(9]
\o

[ 3
xM =4l =—|(—x",+x' —-2x, +2) ] xt =d|-x, +x'+2x, —;]

130

-

14

= |
W i W
O B S0

v =4 %— (4x! ,—fo—xfn)l]

= d[l—l(—%"'l(_x: | — 2 +3x,, _2)|)|]

e
(o
[—

RPN | =4l -l@ —x—2v,+0| | |(FUERRR | = o[ 2w+ 2]

RRY |« = 4[2-12¢ —x+ax )] || RERR| < =e[-IC-l2x -4 +3x,+2)]) ]
134 |ERET B CAREE A R [

REY |« = o[-l@x —x—x,+ D] 143 | R BT TR e,




ot

Table 2. Continued )

=

Formula for Local Rule

Formula for Local Rule

e

w0 = 8[| 2xt 41—, +2) ]

i

, -2

:%_|(x;_,, +4x] —2x;,~2)| ]

|

o

h

X = 6] 2| (. —21’:"‘4-’5:4)']

(1 e
N N

[l ]

—1
(=)

Jfr.r:I =4 _%—l (x.f--l i +xfr-.1 _I) |]

o
N
I "‘\..

:|_| (X~ +2%, —%)l]

~J

X :d__1_|(x;_|—2x,f+x;’__i—%)|]

—h
hn
th

2t 420~ 208, 41| ]

J—
N
o

x.'-l-l = d __|(—_)(:_| —x; +.r:__] ‘Jf"])l ]

—
N
=)}

= ; ’ p 3
_]—|(:q +2x =Xt —g)l]

o
S

|~ + 22,4+ D)] ]

==t
N

~J

2|ty + 250241, -D) |

—
hn
()

SRR EN [ TR MR ) |

2

—y
h

Qo

ERm—

1

S

1

X = d[_%+|(xj i txf, =2)| ]

52

__%+ | (_23(:--: +x: +.’C;,,| +1) | ]




1

Table 2.  (Continued )

Formula for Local Rule

Formula for Local Rule

—
=
!2

N

160 B2 =¢£-.x; HXL - ;] xit = 8| xi, +x+2x],— ;]
161 |ERRT Cf@x rx—ax+0|] |G| = el 16 -2 D
wt = d[xt, v +2x, -2 ] 170 |ERR B EEAY

JORY | = = o[- G-l ~ax 2.0 ]| WRAW | = = 6l +2x,+1
Rl | = ol 2l 20,00 ] || QA< =ol-1C-1 3~ 22, +3)D)]
| 65 x"=4 _%_l(_x:—l +x:+1)| ] 1 73 x" =d _;:_l(_zx;-l -X; +2x§+|)| ]
m ¥ =3 1| (& -2 -2x5 +%)|] LY | < =4 +x+2x, —%]
x =¢£:§—|(—2x: (X +2x) —1)|] ]75 2 i =d:—x +x!,, +l ]




Table 2. ([ Continued )

Formula for Local Rule

=

Formula for Local Rule

=

x =420, x4, -2 ] = 61| (24 -2x 43w, -3))

—
Q0
Y

3|y 2x 42, ]

=
o
h
=3
Il
.

|

~1

vt =[] (E e, -2 -2, -2 ]

2 i 1
X' =4 s il e oo 48 —%] X; =4 _Jf:_| —X; +2x;,, _E ]

e

. [
~1 i !
o g 90
HE
@0

~1

- . T I
xi = d| xi_, —3x! +x,.'|.+—] Xt =4 —x§+.x:,l+—]
| X1 =3x - L 2

x1=4 :1_| (=2, =X +X;,) +%)| = %_| (25,25 ~%~2)] ]

—
0
e
ot
Q0
Qo

: cih :d:l—l(xf_] +x —x!,, —%)|]

a3l 20,1

f—
oo
(P

=4 __%—F_I(_x:—l +X; _x;—1)| ] X' =4 -_%+|(_2x:'l ek +JCL|)|]

_“_;‘Fl(x:- = 2% + X, +1)| ]

+ 3
X" =8| X —x +x,+

[—
@0
e’
Rl
Il
&,

I,
=
—




Gz

Table 2.  (Continued )

Formula for Local Rule

Formula for Local Rule

—
o
!2

]

i 2
X" =d) x_ +x _E]

" =4|x+2x+x, —g]

!

—
o
9

I

1. =
xH.] - d %_|(4x:--l —2x: _"“ﬁ:+| _]')l .

xt=4 _l—|(xj_| -2x +xt, +%) | ]

!

i

!

E r+1 _3‘ ! ' -l i+ 3’ f I i
CRN |« =2 -[2x +4x+x,-2) 1 = d[1- (5—|(3:rr_,—4x,+2x,+1)|)|]
195 | EREE BRI x =22 20—l ]

gt

X

!

g i 3
(=4 _xfr—l +.2% —% _E]

()
o

0

=4 x’——]= X, = | Identity

| L 2

7 =8 G-l rava2e-2))]

| ol il o
= ==l =
WAL= S

2035

1
xt =d|—x,+2x] —x!, +—

!

x"=4d _'l_l (X —2x —x,, "%) | i

206

1
xt =4 -x +2x' +x!,, =

e =t
o =
W ~J

5 d :_i__|(2x:_] —2.1": _x:-rl +]) ]

207

T =k —xj_,+xj+%]




Table 2. Continued )

Formula for Local Rule Formula for Local Rule

=

.1.’:” Zd[l_l(_§+l{_3x: 5 frl +4)|)|]

()
HZ

.f+J _d’[ZYr |+x x.,” i ]

x*' =4 :g_l(_x:—l +2x: _2x’r"")| ]

]

i
pa——
-~

L =d[1_|(§.—|(7r +x; 4r,||_1)l)|]

218

\®
—
—

wt =d[ 1] (25 2 —xty+ )| ] 2|t —x+2x,-2)] ]

9z

211 |EREESICRIRS RSN ([ 219 [ERE [RICARETRRo(]
212 B Py v =4[ x +2x—x, -1 ]

i | i1 i i+1 2 o | | i1 i i+1 2
2]3 xt =4 Xy X —3x;l+§] i _d:xf —x{,,+%]

vt =d L4 +xi-x) ] -l -2+ ]

{

b
-
o
(]
A

3
X X =X o ]
i H 1y

i+l [ 1 : ;
X =d-__5+|(2xr -l+2x1’ +x"'+|_3)|]

i

223

o
pa—
N




Table 2. (Continued )

=

Formula for Local Rule

=

Formula for Local Rule

!

x“’] :d. _2.x;_| +-x: +‘x:—l _g]

f I b o 3
_xf_l +x;' +"}‘—J+! E

!

il b]—l(—Zx: HX X +%)| ]

I+

:_%-I-l(x:—l +x: +X; |_l)|]

X = d[1_|(§—|(—2xj_1 —x, —4x,,, +5)|)|]

W

=d|x', +x' +2x, —% ]

o (3 (A
o Hl N
<1 & i i

X! =d[%_|(2x:_] — 28— X )l ]

x{ll :d :_%—I_l(zx: I +2x: +x:|1 _2)|]

228

DX TR

I:"I =4 x;_1 —|‘2x; -+ X; ]

b | W

i+l

N | S o
e c ’d w UJ
~ 1 |-

PLY |« =4] 2|25 45424 ] 1 =6 -1+ @u -5 424, -2)] |
RN | < =¢|2- | r2v2v,-2) | ((RREY | =6l v ]
pRI|| ' =4 il-|(x,I =X =X}, +%)|] pR1E| X =¢:£i—xfI HX X, +%]




Table 2. (Conlinued )

=

Formula for Local Rule

=

Formula for Local Rule

x"=4

Right
Shift

-r’ —]]— 5
X~ 5T A =

¢ 3
4 =¢£[2xf_l +x +xt, “5]

x.r+] o d'

T 1
| 20 — X — X,y +E ]

=N

'

{+ ]' af ! !
xt =4[ -1+l @ut, v -x, 41| ]

i

o
N
<~

I 1
XX ]
- .

i+l

87

243

o
N
)

! i

g i 1
X =8 x —xi +xi, +5]

244

[ I
xM=d|2x,—x' +x!, ——]
= 2
, i 1
xt =d|x, —x+=
= 2
" =4 22, x5 ——]

[ 0
N
9

245

Xt =4

(]
n
7'y

" =d

[ 1
——E+| {(—x 2% 2%, )l ]

(|9
h
SN

x.r+] = d

f 1 { 3
Xi1—Xi —Xia T ]
2

253

All neurons
L2 Firing




that 0 < ¢ < 1 for finite I, and when I — 00, we
have a time-1 map over the unit interval

p: [0,1) = [0,1) 8)

It is important to remember that each time-1 map
is uniquely associated with one space-time pattern,
or “orbit”, from one initial bit-string configuration.

1.5.

Although there are 256 local rules, only 88 rules are
globally independent [Chua et al., 2004] from

other. All other rules are equivalent to one of the
88 rules listed in Table 4 of [Chua et al., 2007a).

We only need to study 88 rules!

These 88 Tuleg are listed* in Table 3 along with
I—&n—mfeegef—eedi M € {1,2,3,4,5,6}, where M de-
notes one of the following six distinct qualitative
dynamics exhibited by a particular local rule N

[Chua et al., 2007a], corresponding to random ini-
tial configurations:

Group 1 Rules

Almost all space-time patterns converge to a
Lpe-m'-ed—]—eﬂai-t—.rTThe time-1 map corresponding to
each period-1 orbit would consist of a single point
attractor, or an Isle of Eden,” on the main diagonal

line, after deleting points belonging to the transient
regime.

Jroup 2 Ruleg

Almost all space-time patterns converge to a
period-2 orbit. The time-1 map of each period-2 at-
tractor, or Isle of Eden, consists of two points, sym-

metrical with ITe.spect to the main diagonal line.

Group 3 Rules

Almost all space-time patterns converge to a
period-3 orbit. The time-1 map of the period-3 at-
tractor, or Isle of Fden, consists of three points.
Group 4 Rules

Almost all space-time patterns converge to a

Bernoulli o--shift attractor, or Isle of Eden, where
lo| € {1,2,3} and |7| € {1,2,3,4,5}. ] ]

We stress that the above qualitative behaviors
do not depend on the length L of the bit strings,
and do not depend on the initial configurations,

C,‘ha.ptler 1: Quasi-Ergodicity 29

even though there may exist several Bernoulli at-
tractors with different ¢ and 7, each with its basin
of attraction.

Group 5 and Group 6 Rules

The space-time patterns typically have very long
transients and converge to a period-T attractor with
a very large period T'. Moreover, the asymptotic be-
havior depends not only on the initial configuration,
but also on the length L of the bit string. One dif-
ference between a group 5 rule and a group 6 rule
is that the former is bilateral (and hence has only
one globally-equivalent rule), whereas the latter is
non-bilateral (and hence has three other globally-
equivalent rules).

The classification of each of the 256 local rules
is given in Tables 7-9, 11, and 12 in [Chua et al.,
2007a).

Given any rule not among those listed in the
88 globally-equivalence classes in Table 3, one can
easily look up Table 4 from [Chua et al., 2007a],
or Table 3 from [Chua et al., 2007b], to identify its
equivalent rule, and then look up its complexity in-
dex £ (red, blue or green), and group M (1,2,... or
6) from Table 3. For future reference, the complex-
ity index s and class M of all 256 rules are listed in
Table 4. Counting the number of globally equivalent
rules from each class from Tables 3 and 4, respec-
tively, we summarize their distributions in Figs. 5
and 6, respectively.

1.6.

In [Cattaneo & Quaranta Vogliotti, 1997], a subset
of 104, among 256, local rules have been derived
and shown to exhibit “neural-like” behaviors. The
authors’ approach is based on an exhaustive math-
ematical analysis on a bi-infinite sequence space,
consuming more than 20 printed pages. The au-
thors were so perplexed by their discovery that they
dubbed these rules “magic”.

A cursory inspection of the 256 Boolean cubes
listed in Table 1 would extract, in a few minutes,
104 local rules with a complexity inder £ = 1,
namely, those Boolean cubes whose red vertices can
be separated from the blue vertices by no more than

The “Magic” rule spaces

4This list is not unique in the sense that one can pick many other groups containing 88 independent rules. Our choice is
obtained by scanning the 256 rules from N = 0 to N = 255, and deleting any rule that is equivalent to a previously listed

rule.

SRobust Isles of Eden can be observed only for those rules endowed with dense Isles of Eden orbits [Chua et al., 2007a,

2007b).
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Table 3. List of 88 globally independent rules. Color surrounding rule number N corresponds to complexity index

k = 1 (red), 2 (blue) or 3 (green). The integer on the lower right corner identifies the characteristic property of the
rule, as specified in the color legend.

1 4 1 2 4 1 1 1

Color Legend

N N N N N N
1 2 3 4 5 6
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88 Equivalence Classes of Local Rules
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Fig. 6. Partitioning of the 256 local rules into 6 classes.

one plane.% These 104 rules are listed in Table 5
_along with their classification number M, extracted
from Table 4. A comparison lof the [104]x = 1 rules
in Table 5 with those derived in [Cattaneo & Quar-
anta Vogliotti, 1997] shows that they are identical.”
From our Boolean cube perspective, the “magigZ
connotation is perhaps a bit of an anti-climax.

ram’s New Kind of Science

1.7. Symmetries among Boolean cubes

Many of the 256 Boolean cubes in Table 1 share
interesting symmetrical features which give rise to
important predictable dynamics and applications.
We will briefly recall some of these symmetries and
present new interpretations.

[] [ ]

.71 cal complementation T

We define the Tocal complementation

N & Ne (9)
I
of a Boolean cube N to be the Boolean cube N€
obtained by complementing the color of each ver-
tex, i.e. 0 — 1 and 1 — 0. Table 6 shows ten
Boolean cubes and their local complements. This
transformation js called local to emphasize that the
space-time patt! of N€¢ , with the same
initial configuration, are not the complem f each
r because the complementation is valid only for
one iteration. This observation is demonstrated in
Fig. 5 of [Chua et al., 2004], where
110 = 145 (10)
Observe that the space-time patterns of 110 and
145 (for the same initial configuration) are not
the complement of each other, except for the first
iteration.®

1.7.2.

Three equivalence transformations
TH, T, and T*

There are exactly three global transformations that
hold for all iterations, and for all initial config-
urations. They are the Left-Right Transformation
Tt, the Global Complemnentation T, and the Left-
Right Complementation T* [Chua et al., 2004].
These three transformations, along with the identity
transformation, have been shown in [Chua et al.,
2004] to form an Abelian group known as Klein’s
Vierergruppe.

Given any local rule N | the transformed rules
Nt &2 TY(N), N £ T(N), and N* & T*(N) can
b -ived by inspection via the simple geometrical
omions illustrated in Fig. 7.

6Since no plane is needed for rules 0 and 255 , these two rules may be reclassified with a complexity index x = 0.

?Except for rule “36” listed in Tables 4 and 8 of [Cattaneo & Quaranta Vogliotti, 1997], which we believe is a typo that should
be rectified to rule 136, as correctly reported in Fig. 12 of the same paper.

8There are some rules, however, where the local complementation T°(N) coincides with the global complementation T'(N) to

be defined below. In such cases, the space-time patterns of N and N® are also complements of each other for all .



Table 5.
inder k = 1 for all 104 rules.

A gallery of 104 linearly-separable local rules. The red color engulfing each rule number
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N implies a complerity

: List of 104 Linearly-Separable Boolean Function Rules.
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Color  period-1
Legend Rule 1

To derive the left-right transformation NT £
TTEﬁof any local rule N, simply obtain {he drir-
roi ge of oolean| e N about the main
_diagonal plane (shown shaded in Fig. 7(a)) pass-
ing through the vertex @ Note that this opera-
tion can be implemented by identifying each pair of
symmetrically located vertices with opposite colors,

and then complementing the colors. Hence 124 =
Tt(110), and 110 = TT( 124

To derive the global complementation@
T(N) of any local rule N, simply identify each
pair of diagonally opposite vertices that have the
same color (either both red or both blue), and
then change the color. For the example illustrated
in Fig. 7(b), we have N = 110. Among the
four pairs of diagonally opposite vertices of 110,

we find that only three pairs of vertices {@

®} {@ @} and {@ @} have the same

colors. Changing only the color of these three

4 1 4 4 1 1 4
4 1 4 4 4 4 4
4 1 1 1 1 1 1
) 4 4 4 4 4 2
1 4 1 4 4 4 4
1 1 1 1 1 1 1
1 1 1 1 1 1 4

1 1 1 1 1 1 1

Bernoull
Rule 4

pairs, respectively, we obtain its global comple-
ment 137 = T 110 ), and conversely, 110 =
T(137).

To derive the left-right complementation N* =
T*(N) of any local rule N, simply take the global
complementa.tiot, followedthe _Eeht
transformation, or vice-versa, i.e. |:|

=T(T'(N))

Nﬁ r*(N) £TUT (N)) (11)
For example, consider taking first the global com-
plementation of 110 to obtain 137 = T(110)
in Figl 7(1)). If wle_follow this operation by apply-
ing the left-right transformation to 137, we would
obtain 193 = TJF( 137) by reflecting the Boolean
cube 137 in Fig. 7(b) about the main diagonal, as
shown in Fig. 7(c), to obtain

TH(T(110))

193 =T1(137) = (12)
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Table 6. Some Boolean cubes and their local complements.

N N° N N°
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Table 7.

1.7:3.

It follows from the geometrical construction of the
global complementary transformation T'(N) — N
in Fig. 7(b) that if all four pairs of diagonally oppo-

&%{3 vertices {@ ® @,@ , @, @ 3 @,

Perfect complementary rules

of N have identical colors, respectively, then

A A 2 ¢
N-LT(N _ pCOrary & arC (13)

LVA
) RNy B LA

We will henceforth call such perfectly symmetri-
cal transformations (relative to the complementa-
tion transformation) perfect complementations. The
set of all perfect complementary rules are listed in

A gallery of 16 centrally-symmetric local rules.

Table 7. Since these Boolean cubes exhibit perfect
symmetry in color with respect to the origin lo-
cated at the center of the cube, we will henceforth
call them centrally-symmetric local rules. Clearly,
the local complementary space-time patterns of all
centrally-symmetric local rules hold for all times.

1.7.4. Permutive rules’

There are 28 local rules whose Boolean cubes
exhibit an anti-symmetry with respect to some
vertical plane through the center of the cube, as
illustrated in Fig. 8.

YPermutive rules are originally defined by [Hedlund, 1969] on a formal topological setting. We have opted for an equivalent

but geometrical definition via the Boolean cubes for pedagogical reasons. These two representations are equivalent, as shown

in Appendix C.
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Fig. 8. Geometl1L:.11~¢1:LL10115 of permutive rules. (a) Rule 30 Left-Permutive because the colors of the vertices
LL::»]

{@ @ @ @} in the back face are the complement of the

face. (b) Rule 154 is Right-Permutive because the colors of the vertices {

's of the vertices {@ @ @ @} in the front
@ @ @ in the right face are the com-

plement of the colors of the vertices {@ @._ @, @} on the left face. (¢) Rule 150 is Bi-Permutive because it is both

Left and Right Permutive.

A local rule N is said to be Left-Permutive,
iff the vertical symmetry plane is parallel to the pa-
er, as depicted by the “green” plane in Fig. 8(a).
[Ip_tlis said to be Right-Permut iff the vertical
symmetry plane is perpendicular to the paper, as
depicted by the “pink™ plane in Fig. 8(b). It is said
to be Bi-Permutive, iff it is both Left- and Right-
Permutive as depicted by the “green” and “pink”
vertical symmetry planes, respectively. A local rule
N is said to be Permutive iff N is Left and/or
Right-Permutive.

An examination of the 256 Boolean cubes in Ta-
ble 1 shows that there are only 16 Left-Permutive
rules, 16 Right-Permutive rules, and 4 Bi-Permutive
rules, as displayed in Tables 8-10, respectively. The
union of all these local rules gives only 28 distinct
Permutive rules, as exhibited in Table 11. We will
show in the following sections that Permutive rules
possess some remarkable properties.

1,7:5.

The eight Boolean cubes exhibited in Table 12 are
independent in the sense that it is impossible to
decompose any of them into the “wnion” of two
or more simpler Boolean cubes by taking the logic
“OR" operation between the colors of correspond-
ing vertices, where “red” is coded “1” and “blue”
is coded “07, respectively. Since each of these eight
Boolean cubes contains one, and only one, red ver-
tex, together they constitute a basis function where
the “union” of two or more such rules can generate
any of the remaining 256 — 8 = 248 local rules, as

Superposition of local rules

depicted in Table 13. It is easy to prove that each
rule N in Table 13 has a unique decomposition via
the eight Boolean cubes basis functions in Table 12.

1.7.6. Rules with explicit period-1 and/or
period-2 orbits

Recall from Fig. 6 that among the 256 local rules, 69
are endowed with robust period-1 (attractor or Isle-
of-Eden) orbits, and another 25 rules are endowed
with period-2 orbits. It is generally impossible to
predict the bit-string pattern of such period-1 or
period-2 orbits without actually evolving the rule
from some initial state.

The purpose of this subsection is to prove a sur-
prising and quite remarkable result asserting that
the period-1 and period-2 bit strings of a large num-
ber of local rules can be predicted without carrying
out any simulations. Such period-£ bit string (k = 1
or k = 2) patterns are endowed upon those Boolean

cubes whose main-diagonal vertices {@ @ @

@} exhibit certain color combinations.

Explicit period-(1,2) pattern theorem

There are ten distinct color combinations among
the four vertices {@ @, @, ®} on the main-
diagonal plane of the Boolean cubes, labeled Type
A B,...,J in Tables 14(A), (B)( ) for which
the corresponding local rules have an ezxplicit
period-1 and/or period-2 bit-string pattern, regard-
less of the colors of the remaining nondiagonal ver-

fices {@ @; @; @}‘



