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Introduction

This book is addressed to readers whose mathematical knowledge extends
at least as far as the first two years of a university honors course. Its aim is to
provide an extremely sketchy survey of a rather large area of modern mathe-
matics, and a guide to the literature for those who wish to embark on a more
serious study of any of the subjects surveyed.

By “Bourbaki mathematics” I mean, with very few exceptions, the set of
topics covered in the exposés of the Séminaire Bourbaki. Since the beginning
of their collective work, the collaborators of N. Bourbaki have taken a
definite view of mathematics, inherited from the tradition of H. Poincaré
and E. Cartan in France, and Dedekind and Hilbert in Germany. The
“Eléments de Mathématique” have been written in order to provide solid
foundations and convenient access to this aspect of mathematics, in a form
sufficiently general for use in as many contexts as possible.

From 1948 onward, the Bourbaki group has organized a seminar, con-
sisting in principle of 18 lectures each year. The purpose of these lectures is
to describe those recent results that appear to the organizers to be of most
interest and importance. These lectures, almost all of which have been pub-
lished, now exceed 500 in number, and collectively constitute a veritable
encyclopedia of these mathematical theories.

*

* %

No publication under the name of N. Bourbaki has ever described how the
topics for exposition in the seminar have been chosen. One can therefore only
attempt to discern common features by examining these choices from outside,
and their relation to the totality of the mathematical literature of our age.
I wish to make it clear that the conclusions I have drawn from this examina-
tion are my own, and do not claim in any way to represent the opinions of
the collaborators of N. Bourbaki.

The history of mathematics shows that a theory almost always originates
in efforts to solve a specific problem (for example, the duplication of the cube

I



2 INTRODUCTION

in Greek mathematics). It may happen that these efforts are fruitless, and
we have our first category of problems:

(I) Stillborn problems (examples: the determination of Fermat primes,
or the irrationality of Euler’s constant).

A second possibility is that the problem is solved but does not lead to
progress on any other problem. This gives a second class:

(II) Problems without issue (this class includes many problems arising
from “combinatorics”).

A more favorable situation is one in which an examination of the techniques
used to solve the original problem enables one to apply them (perhaps by
making them considerably more complicated) to other similar or more
difficult problems, without necessarily feeling that one really understands
why they work. We may call these

(III) Problems that beget a method (analytic number theory and the
theory of finite groups provide many examples).

In a few rather rare cases the study of the problem ultimately (and perhaps
only after a long time) reveals the existence of unsuspected underlying
structures that not only illuminate the original question but also provide
powerful general methods for elucidating a host of other problems in other
areas; thus we have

(IV) Problems that belong to an active and fertile general theory (the
theory of Lie groups and algebraic topology are typical examples at the
present time),

However, as Hilbert emphasized, a mathematical theory cannot flourish
without a constant influx of new problems. It has often happened that once
the problems that are of the greatest importance for their consequences and
their connections with other branches of mathematics have been solved, the
theory tends to concentrate more and more on special and isolated questions
(possibly very difficult ones). Hence we have yet another category:

(V) Theories in decline (at least for the time being: invariant theory, for
example, has passed through this phase several times).

Finally, if a happy choice of axioms, motivated by specific problems, has
led to the development of techniques of great efficacy in many areas of
mathematics, it may happen that attempts are made with no apparent motive
to modify these axioms somewhat arbitrarily, in the hope of repeating the
success of the original theory. This hope is usually in vain, and thus we have,
in the phrase of Pélya and Szegdt

1 G. Polya and G. Szegd, **Problems and Theorems in Analysis,” Springer-Verlag, Berlin
and New York, 1972.
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(VI} Theories in a state of dilution (following the example of these authors,
we shall cite no instances of this).

In terms of this classification, it appears to me that the majority of the
topics expounded in the Séminaire Bourbaki belong to category (IV) and
(to a lesser extent) category (I11). This is, I believe, as objective an opinion
as I can form, and I shall abstain from further comment.

*

* %

Since the number and variety of the lectures in the Séminaire make them
difficult to use, I have grouped them into sections under a fairly small number
of headings, each of which contains a closely related group of subjects. One
of the characteristics of Bourbaki mathematics is its extraordinary unity:
there is hardly any idea in one theory that does not have notable repercussions
in several others, and it would therefore be absurd, and contrary to the very
spirit of our science, to attempt to compartmentalize it with rigid boundaries,
in the manner of the traditional division into algebra, analysis, geometry,
etc. now completely obsolete. The reader should therefore attach no im-
portance to this grouping, which is purely a matter of convenience; its
aim is to provide a clear overall view, halfway between the chaos of the
chronological order of the lectures, and fragmentation into a dust-cloud of
minitheories. At the beginning of each section I have inserted an “ organization
chart” designed to illustrate graphically its connections with the others, with
arrows to indicate the direction of influence.

Each section contains, to the extent that it is feasible, a rapid didactic
exposition of the main questions to be considered. With a few exceptions,
only those are mentioned that have been covered in the Séminaire Bourbaki;
the order followed is not in general the historical order, and the infrequent
historical indications make no pretence of being systematic. At the end of
each section will be found a list of the mathematicians who have made
significant contributions to the theories described, and a brief mention of the
connections (where they exist) between these theories and the natural
sciences.

Each section or heading is designated by a boldface capital letter followed
by a Roman numeral. This designation refers to the place occupied by the
heading in the Table of subjects {p. 5), the capital letter indicating the level
at which the heading is placed. These levels range from top to bottom,
roughly speaking in decreasing order of what might be called their “ Bourbaki
density,” that is to say (without pretension to numerical accuracy, which
would be absurd), the proportion of the topics covered by the Séminaire
Bourbaki to the total mathematical literature relating to the heading con-
cerned.
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*®
*  *

The references have been organized in such a way as to serve as a guideline
to readers who wish to learn more. References to the Séminaire Bourbaki
are indicated by the letter B followed by the number of the exposé. They are
augmented by references to:

(i) the Séminaires H. Cartan, denoted by the letter C followed by the
year;

(ii) the expository lectures organized by the American Mathematical
Society and published in its Bulletin; these are indicated by the letters BAMS
followed by the volume number of the Bulletin and the name of the lecturer;

(iii) the Symposia organized by the American Mathematical Society,
denoted by the letters SAMS followed by a roman numeral and (sometimes)
the author’s name;

(iv) the lectures given at the recent International Congresses of Mathe-
maticians at Stockholm (1962), Nice (1970), and Vancouver (1974); these are
indicated by the name of one of these cities and the lecturer’s name (in the
case of the Nice Congress, the figure I indicates a one-hour lecture, and an
indication of the section of the Congress a half-hour lecture);

(v) the “Lecture Notes in Mathematics” published by Springer-Verlag,
denoted by the letters LN followed by a number (and by an author’s name,
in the case of a colloquium or symposium);

(vi) various articles and books, denoted by the letter or the number in
brackets under which they are listed in the bibliography.

No reference is given for mathematical terms currently used in the first
two years of a university honors course. For others, either a brief explicit
definition is given, or a reference to a textbook in the bibliography.

The headings at level D in the table of subjects are those of Bourbaki
density zero. They refer to theories that have in part been fixed for a con-
siderable time, and constitute, in the etymological sense of the word, the
classicc’ »art of mathematics, which serves as a basis for the rest of the edifice.
The reader will find these theories expounded in the volumes of the “ Eléments
de Mathématique ” that have already been published. Research still continues
in these various theories, about which I shall say nothing except to remark
on the curious historical phenomenon of a science divided into two parts
that in practice ignore each other, without apparently causing the least
impediment to their respective developments.

I wish to thank readers whose comments enabled me to correct certain
errors and omissions in the second (French) edition. At the end of each
section I have appended a list of references given in the text, together with
some additional ones for the reader’s benefit.
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Al

Algebraic and differential topology

It may already be predicted without great likelihood of error that the 20th
century will come to be known in the history of mathematics as the century
of topology, and more precisely of what used to be called “combinatorial”
topology, and which has developed in recent times into algebraic topology
and differential topology. These disciplines were created in the last years of the
19th century by H. Poincaré, in order to provide a firm mathematical basis
for the intuitive ideas of Riemann. At first they developed rather slowly, and
it was not until the 1930s that they took wing. Since then they have multiplied,
diversified, and refined their methods, and have progressively infiltrated all
other parts of mathematics; and there is as yet no indication of any slowing
down of this conquering march.

1. Techniques

The initial problem of algebraic topology, roughly speaking, is to “classify "
topological spaces: two spaces are to be put in the same “class”™ if they are
homeomorphic. The general idea is to attach to each topological space
“invariants,” which may be numbers, or objects endowed with algebraic
structures (such as groups, rings, modules, etc.) in such a way that homeo-
morphic spaces have the same “invariants” (up to isomorphism, in the case
of algebraic structures). The ideal would be to have enough “invariants” to
be able to characterize a “class™ of homeomorphic spaces, but this ambition
has been realized in only a very small number of cases (for recent progress,
see Vancouver (Sullivan) and T. Price, Math. Chronicle T (1978)).

This original problem may be reformulated as the study of continuous
mappings that are bijective and bicontinuous. In this form it is merely one
of a whole series of problems of existence of continuous mappings subjected
to other conditions, such as to be injective, or surjective, or to be sections or
retractions of given continuous mappings, or extensions of given continuous
mappings, etc. [171 bis]. All these problems are amenable to the methods of
algebraic topology.
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The idea of homeomorphism is related to, but distinct from, the more
intuitive notion of “deformation.” In order to formulate mathematically the
idea that a subspace Y, of a topological space X can be “deformed” into
another subspace Y,, one is led to the following definition: denoting by I
the interval [0, 1] in R, there exists a continuous mapping (y, t) — F(y, t) of
Y, x Iinto X such that (i) F(y, 0) = y for all y € Y, (ii) for each ¢ € I, the
mapping y — F(y, t) is a homeomorphism of Y, onto a subspace of X, and
(iii) when ¢ = 1, this subspace is Y,. The mapping F is said to be an isotopy
of Y, onto Y,. The notion of isotopy is thus a strengthening of the notion of
homeomorphism. The study of isotopy is difficult and has only recently led
to substantial results (B 157, 245, 373; [86]).

Homotopy (C 1949, 1954, [50], [78], [170]). The notion that has be-
come the most important in topology is a weakening of the notion of isotopy.
Two continuous mappings g, h of a space X into a space Y are said to be
homotopic if there exists a continuous mapping F:X x I = Y such that
F(x, 0) = g(x) and F(x, 1) = h(x), but with no conditions imposed on the
mapping x> F(x, t) for ¢ # 0, 1. F is called a homotopy from g to h. The
property of being homotopic is an equivalence relation on the set €(X, Y)
of all continuous mappings of X into Y, and the set [X, Y] of classes of
homotopic mappings is evidently an “invariant” of the two spaces X, Y. It
is functorial (€ T)in X and Y:ifo: X; —» X (resp. f: Y - Y,) is a continuous
mapping, and if g, h € €(X, Y) are homotopic, then so also are go a and h o o
(resp. f g and B - h); whence we have a mapping o*:[X, Y] — [X,, Y]
(resp. B, - [X, Y] = [X, Y,]).

The notion of homotopy leads to a “classification” of topological spaces
that is coarser than classification by homeomorphism, but is much easier to
handle. A continuous mapping f : X — Y is called a homotopy equivalence if
there exists a continuous mapping g:Y — X such that go f: X > X is
homotopic to the identity mapping of X and f - g: Y — Y homotopic to the
identity mapping of Y. If there exists a homotopy equivalence f : X — Y, the
spaces X and Y are said to have the same homotopy type. Most of the “invari-
ants” of algebraic topology are invariants of homotopy type (and not merely
invariants under homeomorphisms). For example, R" (or more generally any
topological vector space over R) and a space consisting of a single point have
the same homotopy type (spaces having the homotopy type of a single point
are said to be contractible).

Besides the general notion of homotopy, there are more restrictive notions,
such as the simple homotopy equivalence of J. H. C. Whitehead for spaces
endowed with a “cellular” subdivision (such spaces are called CW-complexes
or cell-complexes [170]; they are generalizations of polyhedra (B 392;
LN 48; BAMS 72 (Milnor)). Another variant is to consider homotopies
{(x, )= F(x, t) that are independent of t in a given subspace A of X; this leads
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to the notion of homotopy relative to a subspace. The case in which A
consists of a single point is the most common. It is convenient to define a new
category (€ I) in which the objects (called “ pointed spaces™) are pairs (X, xg)
consisting of a topological space X and a point x4 € X, the morphisms
(X, x¢) = (Y, yo) being continuous mappings f : X — Y such that f(xq) = y,.
A homotopy (x, t) — F(x, t) between two such morphisms is then required
to satisfy F(xq,t) = y, for all ¢ € I. In this way we obtain an equivalence
relation, for which the set of equivalence classes is again denoted by [X, Y]
if there is no risk of confusion.

Historically speaking, algebraic topology was at first mainly preoccupied
with finite-dimensional spaces such as subspaces of R". These are the spaces
that arise most frequently in applications to other branches of mathematics.
However, it is better 10 make no restrictive hypotheses on the dimension,
because it is then possible to use with great advantage constructions that,
when applied to finite-dimensional spaces, lead in general to spaces of
infinite dimension: for example, for two spaces X and Y, the space (X, Y)
of all continuous mappings of X into Y, endowed with the “compact-open™
topology (for each compact subset K = X and each open subset U of Y, the
sets WK, U) = {f e €(X, Y): f(K) < U} form a basis of open sets for this
topology). An important special case is the space of paths (1, X). If (X, x,)
is a pointed space, ¥(I, X) is also a pointed space, the distinguished point
being the constant mapping X,:1 — x,. The loop-space of (X, x,) is the
pointed space (Q(X, x,), Xo) consisting of the paths y:1— X such that
y(0) = y(1) = x,; it is usually denoted by QX if there is no risk of confusion.

All these definitions are functorial (€ I). The functor (X, Y) of mor-
phisms (X, x,) — (Y, y,) of pointed spaces is the analog in this category of the
Hom functor for modules (€ I). There is also a construction that gives an
analog of the tensor product: in the product space X x Y, we consider the
subspace X v Y = (X x {yo}) v ({xo} x Y), and the quotient space
X AY=(XxY)(X v Y),obtained by identifying all the points of X v Y
to a single point (which is the distinguished point of X A Y). In particular,
for each pointed space X, S; A X is called the suspension of X, written SX.
If X is a sphere S,, then §; A S, is homeomorphic to S, ;.

In the category of pointed spaces, £ and S are adjoint functors (€ I); that is
to say there exists a canonical functorial bijection

(1) Fo(SX, Y) 3 € (X, QY)
and therefore also a canonical bijection for the homotopy classes
(2) [SX, Y]> [X, QY].

Homotopy groups. Juxtaposition of loops in the space QY is a law of
composition, which gives rise to a group structure when we pass to the
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quotient by considering the homotopy classes of these loops. It follows that
the set [ X, Q2Y](and hence also [ SX, Y1) is canonically endowed with a group
structure. The groups [X, Q*Y] are commutative for k > 2. For n > 1, the
group [S,, Q"X] is called the nth homotopy group of X and is denoted by
n,(X). By virtue of (2), it can also be written [S,, Q" "*X] for 0 < k < n, and
in particular as [S,, X]. The group =,(X), which is the group of homotopy
classes of loops on X, is also called the fundamental group of X; in general it is
not commutative, whereas the 7,(X) for n > 2 are commutative.

If we take Y = SX in (1), the identity mapping SX — SX determines a
canonical mapping X — QSX, hence a canonical mapping (the suspension
mapping) [X, Y] — [X, QSY] x [SX, S§Y]. By iteration we obtain a sequence
of mappings

[X, Y] — [SX, SY] - [$?X,S*Y] > - -,

all of which except for the first are group homomorphisms. If Y is a poly-
hedron (see later) and X is finite-dimensional, these homomorphisms are
isomorphisms from a certain point onward. In particular, we have suspension
homomorphisms 7,(X) = =, ;(SX).

Homotopy groups are difficult to calculate. The case most intensively
studied is that of the homotopy groups of spheres n,(S,). We have 7(S,) = 0
form < m,and n,(S,) = Z; but the groups =,,(S,) for m > n are far from being
completely known. In the sequence of suspension homomorphisms

nn+k(sn) - 1Tn-’-kﬂ-l(sn+ 1) Ry,

the groups end by being isomorphic to 75, . 5(S, + ;) (called the stable groups).
The groups 7,,(S,) are known to be finite for m > n, with the single exception
of the groups n,,_(S,), n even (Serre’s theorem). The stable groups are
known explicitly for the first 60 or so values of k, and so far do not appear to
satisfy any simple general laws; on the other hand, there are general results
for certain p-primary components of these groups (B 44; C 1954-5; [182]).

By contrast, for the homotopy groups of the (compact) classical groups,
there is better information. For the unitary group U(n), the groups n,(U(n))
are known for i < 2n + 2;in particular, for i < 2n we have n,(U(n)) = Zor
i odd, and n(U(n)) = O for i even (Bott’s periodicity theorem). For the
orthogonal group O(n), there are analogous results (with period 8) (B 172,
215, 259; C 1959-60),

Homotopy and cohomology [50]. Let n be an integer >1and let Gbe a
group (commutative if n > 2). A space X is said to be an Eilenberg-MacLane
space K(G, n) if n(X) = 0 for i # n and n,(X) = G. Such spaces exist for all
(G, n). If G, G, are two groups, [K(G, n), K(G,, n)] is in canonical one—one
correspondence with the set Hom(G, G,) of homomorphisms of G into G,.
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In particular, all the spaces K(G, n) for given G and n have the same homo-
topy type. For n > 2, QK(G, n) is a K(G, n - 1).

For a space X, the set [X, K(G, n)] is naturally endowed with a commu-
tative group structure, by virtue of the homotopy equivalence

K(G, n) - Q"K(G, m + n).

This group is called the nth cohomology group of X with coefficients in G,
and is denoted by H"(X, G).
There are canonical isomorphisms

[X, K(G, n)] = [X, Q"K(G, m + n)] > [S"X, K(G, m + n)].

Since the mapping K(G, n) — Q"K(G, m + n) corresponds canonically to a
mapping S"K(G, n}) = K(G, m + n), the isomorphism above is also the
composition

[X, K(G, n)] = [S"X, S"K(G, n)] - [S"X, K(G, m + n)].

This leads to a generalization of the groups H'(X, G). A spectrum of spaces
is a sequence B =(B,,),, .z of pointed spaces and continuous mappings of
pointed spaces SB,, — B, ;. For each space X, we have therefore a sequence
of homomorphisms of commutative groups

o> [8"X, Bl  [S"TX, By g]

and the direct limit (€ I) H"(X, B) of this sequence is called the nth (general-
ized) cohomology group of X relative to the spectrum B (LN 28, 99). The
most important generalized cohomology groups come from K-theory
(BI).

Homology and cohomology. The cohomology groups H'(X, Z) have an
earlier history, and were originally defined in terms of other groups, the
homology groups H,(X, Z). A space X is said to be a {generalized) pelyhedron
if it is homeomorphic to the geometric realization of a simplicial set (B I), and
it is regarded as endowed with the additional structure consisting of the
“n-simplexes” of this polyhedron, i.e., the images s, in X of the {x,} x A(n),
where x, is an n-simplex of the simplicial object of which X is the geometric
realization (n being any integer = 0). The classical notion is that of a finite
polyhedron, the geometric realization of a simplicial set having only a finite
number of simplexes. If X is a polyhedron and A is a commutative ring, we
may consider for each integer n > 0 the A-module C, of formal linear com-
binations of n-simplexes of X with coefficients in A. It is immediate that the
C, form a chain complex (B I) with respect to the boundary operator d,
defined by

L
dnsn = Z (_— 1)1-F?Sn,

=0
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where F7s,, is the image of {F7x,} x A(n — 1)in X. The nth homology module
H,(X, A) is by definition the nth homology A-module of this complex of A-
modules.

For an arbitrary topological space X, we define C, to be the A-module of
formal linear combinations of continuous mappings A(n) — X, and hence
we obtain the singular homology A-modules H, (X, A). A space is said 1o be
triangulable if it is homeomorphic to a polyhedron, and the images of the
simplexes of this polyhedron are said to form a triangulation of the space. For
a topological space homeomorphic to a finite polyhedron, the singular
homology of the space is isomorphic to that of the polyhedron (defined in
terms of the simplexes of the latter). Recently, Sullivan has shown how the
homotopy of a polyhedron may be studied by generalizing the notion of
differential form (B 475).

If we now consider, for a finite polyhedron X, the cochain complex (C¥)
obtained by duality from (C,) (B I), then the nth cohomology object of this
complex is isomorphic to the A-module H*(X, A) defined above by means of
homotopy.

The reason for these isomorphisms is to be found in the axiomatic charac-
terization of cohomology (Eilenberg—Steenrod): the H'(X, G) satisfy a small
number of properties that characterize them, in the sense that two systems of
groups that satisfy these properties for finite polyhedra are necessarily
isomorphic (C 1948-9; LN 12; [52], [170]). We remark also that the gener-
alized cohomology groups H"(X, B) defined by a spectrum of spaces B
satisfy the Eilenberg—Steenrod axioms, with the exception of the “dimension
axiom,” which fixes the cohomology of a space consisting of a single point
(LN 28, 99). We can also define (generalized) homology groups relative to a
spectrum B: for we have a sequence of homomorphisms of commutative
groups

oo M kl(By A X) = Mg 1By A X) =
arising from the mappings SB; — B, . |, and H,(X, B) is defined to be the
direct limit (€ I) of this sequence. The groups H*(X, B) and H,(X, B) are
related by duality properties that generalize the relations indicated above for
the classical homology and cohomology of finite polyhedra (LN 28, 99;
Nice (Mischenko); [194], [195)).

Cohomology and homology rings. For a space X and a commutative ring
A, H'(X, A) = (P H(X, A) is a graded A-module (CII), and X — H'(X, A)
n>0
is a contravariant functor from the category of topological spaces into the
category of graded A-modules. The diagonal mapping 6:X - X x X
therefore defines a homomorphism of graded A-modules

H'(X x X, A) > H(X, A).



| TECHNIQUES 13

On the other hand, under fairly weak conditions on X, Y, and A,
H(X x Y, A) is isomorphic to the graded tensor product A-module
H(X, A) ® , H(Y, A) (Kiinneth theorem). The preceding homomorphism
thetefore defines on H(X, A) a structure of a graded A-algebra, which is
anticommutative (i.e., x,x, = (— 1)"x,x, for x, € H/(X, A), x, € HY(X, A)).
Likewise, we may consider the graded A-module H(X, A) = @ H (X, A);
n=0
but this time the functor X+ H (X, A) is covariant, and we cannot define a
“homology ring” in the same way as before. However, if X is a compact
connected triangulable manifold of dimension n, and if C' is a p-chain and
C” a g-chain (not necessarily belonging to the same tnangulatlon) it is
possible under certain conditions of “general position” to define an “inter-
section (p + g — n)-chain” C’- C" (provided that p + g > n) in such a way
that C'- C"isa(p + g — n)-cycle if C’ and C” are cycles, and that in this case
the homology class of C' - C” depends only on those of C" and C”. In this way
we obtain on H (X, A) a structure of a graded anticommutative A-algebra,
by reason of the fact that for any two given homology classes, it is always
possible to find cycles in these classes that are in general position [152]. For
a O-cycle C = Z n;P;, where the P; are distinct points of X and the n; are

integers (of elther sign), the number Z n; is called the degree of C, denoted by

deg(C); it depends only on the homology class of C. If C’ (resp. C"}is a p-cycle
(resp. g-cycle) with p + g = n,and C’, C" are in general position, the number
deg(C’ - C")is called the intersection number of C' and C”, denoted by (C' - C");
it depends only on the homology classed of C' and C”. _

In particular, the intersection product determines a canonical bilinear
mapping H,(X, R) x H,_ (X, R) - R that, for a compact manifold, puts
H,(X, R) and H,_ (X, R) in duality (“Poincaré duality”). Hence we have a
canonical isomorphism H”(X, R) = H,_ (X, R) (which, however, is not
valid for an arbitrary finite polyhedron).

Fibrations. Let p:X — B be a continuous mapping and let F be a
topological space. The space X is said to be a locally trivial fiber bundle with
base B, fiber F, and projection p if, for each point b € B, there exists an open
neighborhood U of b and a homeomorphism ¢ : U x F — p~ }(U) such that
p(e(y, z)) = yforall y e Uand z € F (in other words, X is “locally” (over B)
a product). For each y € U, the “fibers” p~!(y) are all homeomorphic to F.

A covering X of B is a locally trivial bundle over B with discrete fibers. A
vector bundle is such that in the above definition F and each fiber p~(y) is
a vector space over R, and for each y € U the mapping z — ¢(y, z) is a linear
bijection of F onto p~!(y). The classic example is the tangent bundle T(B) of
a differential manifold B, in which the fibers are the tangent spaces at the
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points of B [D, Chapter 16]. A principal bundle is a fiber bundle X with pro-
jection p: X — B, endowed with the additional structure consisting of the
action of a topological group G on X, such that this action is continuous, the
orbits of G are the fibers p~ '(»), and G acts simply transitively on each fiber
([D, Chapter 16], [87], [170], [171]).

When G acts continuously on a space E, we can associate canonically to a
principal G-bundle X a bundle over B with fibers homeomorphic to E. The
bundles obtained in this way are called bundles with structure group G. For
example, a vector bundle over a differential manifold B may be regarded as
a bundle with structure group the orthogonal group O(n), where n is the
dimension of the fibers ([D, Chapter 16], [87]).

These definitions can be transposed into other categories, for example,
categories of manifolds of various types (see below): we have simply to
replace the continuous mappings by morphisms of the category in question.

An important property of fiber bundles is the homotopy lifting property:
if P is a polyhedron, g : P — X a continuous mapping of P into a bundle X
with base B and projection p, and if F: P x I - B is a homotopy from
S =peg to the mapping z+ F(z, 1), then there exists a homotopy
G: P x I - X such that p - G = F. More generally, a mapping p: X — B is
called a Serre fibration (or simply a fibration) if it satisfies the homotopy
lifting property. A typical example is the mapping p : E(B) — B where, for a
pointed space (B, by), E(B) is the space of paths I — B with origin b,, and p
maps each path to its endpoint, so that p~ !(b,) = QB. It can be shown that
every continuous mapping can be factorized into the composition of a
fibration and a homotopy equivalence: this result often makes it possible to
reduce the study of an arbitrary continuous mapping to that of a fibration,

If X is a fiber bundle with base B and projection p, and if f : B’ =+ Bisa
continuous mapping, we define a fiber bundle X' over B’ by taking X' to be
the set of points (b, x) € B’ x X such that f(b") = p(x). The restriction
p': X' — B’ of the first projection defines X' as a fiber bundle over B’; this
bundle is denoted by f*(X) and is called the inverse image of X by f. At each
point b’ € B', the fiber p'~!(b’) is canonically homeomorphic to p~*( f(b")).
If X is a vector bundle (resp. a principal G-bundle), then so is X'. There is an
analogous definition for Serre fibrations.

This construction leads in particular to a classification of principal bundles
with given group G over the most familiar types of space. It can be shown that
there exists a “classifying space™ BG and a principal bundle E with base BG
and group G, which is contractible and such that every principal bundle with
group G and base B is isomorphic to a bundle f*(E) for some continuous
mappingf : B = BG; moreover, two such bundles are isomorphic if and only
if the corresponding mappings of B into BG are homotopic. There is an analo-
gous property for the classification of bundles with structure group G. This
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leads to the definition of cohomological invariants attached to the isomor-
phism classes of bundles over B: the mapping /' : B — BG defines a homo-
morphism of cohomology rings

f*:H'(BG, A) » H'(B, A).

The elements of the image of  * are called characteristic classes of the bundle
S *(E); since they do not vary when f is replaced by a homotopic mapping,
they are invariants of the isomorphism class of f *(E), which play a large role
in numerous questions of differential topology, differential geometry, and
global analysis (BAMS 75 (F. Peterson)). The most important are the
Stiefel-Whitney classes, Pontrjagin classes, and Chern classes; the first two
correspond to orthogonal groups, the third to the unitary group [126].

The notion of fibration also enables us to characterize homotopy types by
a system of invariants. Given a sequence of groups G,, G,,...,G,,...,
commutative for n > 2, we define a sequence of spaces X, X,,..., X,,...,
where X, = K(G,, 1) and X,, for n > 2 is a bundle with base X,,_; and fiber
K(G,, n). The inverse limit (C I) X of the sequence (X,) is such that 7,(X) =
G, for all n, and every space Y has the same homotopy type as such an
inverse limit; this homotopy type is characterized by the G, and, for each
n > 2, theisomorphism class of the bundle X, with base X,,_; ; it can be shown
that these isomorphism classes are in one-one correspondence with coho-
mology classes in H"* '(X,,_ ;, G,) (Postnikov’s construction).

If p: X — B is a fibration of pointed spaces, and F = p~'(b,), where b, is
the distinguished point of B, there is an exact sequence (€ I) of homotopy
groups

3 (B) « 7(X) « 7y(F) — 7,(B) «
e JTn(B) « ﬂn(X) A TC,.,(F) — J'Er|+l(B) =
For cohomology, the relations between the cohomology groups of B, X, and
F are more complex and are expressed by the spectral sequence of a fibration
(B 44; C 1958-9; LN 2).

We remark that a space E (even if “ very good,” for example, a homogeneous
space of a Lie group) may admit no “nontrivial” fibration (i.e., in which
neither the base nor the fiber consists of a single point) (B 472).

These are the most fundamental basic notions of algebraic and differential
topology. In addition there are a considerable number of auxiliary notions
and various geometrical or topological constructions, in which all the tech-
niques of homological algebra may be brought into play (B 54; C 1954-5,
1958-9; BAMS 74 (Heller), 77 (M. Curtis); SAMS XXI1; LN 2, 12, 13, 157,
161, 168, 368) and more recently techniques inspired by commutative algebra
and group theory, such as Galois theory, the theory of nilpotent groups,
localization and completion of rings (Nice C 2 (Sullivan); LN 304, 418;[79]),
or the theory of formal groups (B 408).
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There exists also a purely combinatorial version of the notions of homo-
topy and of fibration, in which there is no longer any mention of continuous
mappings, but only simplicial sets (B I); often it is more convenient to work
in this category, and then pass back to topology by consideration of “geo-
metric realizations™ of these sets (Kan theory: B 199; C 1954-5, 1956-7;
LN 43,252, 271; [119]).

2. Results

We shall encounter applications of algebraic or differential topology in
almost all the great mathematical theories of the present age. Here we shall
restrict our survey to problems whose initial formulation has obvious
topological aspects.

As a general rule, a positive solution of such a problem usually consists
of an effective construction of the solution by geometrico-topological
methods; on the other hand, a negative answer is generally obtained by
showing that a positive solution, if it existed, would imply certain relations
between topological invariants, and then by showing that these relations
cannot be satisfied.

The different sorts of “manifolds.” Riemann and Poincaré were led to
develop topological notions in the context of the spaces most frequently en-
countered in classical analysis and geometry, namely, “manifolds.” A
topological manifold of dimension n is a metrizable space X in which each
point admits a neighborhood U that is homeomorphic to an open subset of
R"; an atlas of X is a family of such homeomorphisms ¢, : U, = ¢,(U,) = R",
where the U, form an open covering of X (observe that this definition makes
sense only by virtue of the celebrated theorem of Brouwer on the invariance
of dimension, namely, that there exists no homeomorphism of an open subset
of R™ onto an open subset of R*ifm # n). We may impose additional structure
on X by requiring the existence of an atlas with supplementary conditions on
the transition homeomorphisms @z @7 ' : (U, N Up) = @u(U, n Uy) for
each pair of indices such that U, n Uy # . In particular we define in this
way the notions of piecewise-linear manifold, differential manifold, real-analytic
manifold, and complex-analytic manifold by requiring the @z ;' to be
respectively piecewise-linear, of class C®, real-analytic, or complex-analytic
(in which case n must be even and R" identified with C"2). The topological
manifolds form a category TOP, in which the morphisms are continuous
mappings. The other types of manifold also form categories in which the
morphisms are continuous mappings which, relative to the distinguished
“charts” for the type of manifold in question, are “locally ” piecewise-linear,
of class C*®, real-analytic, or complex-analytic, respectively; the first two of
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these categories are denoted by PL and DIFF. We shall see in (A II) and
(A VIII) the consequences, for the topology of a space, of the existence of a
differential or analytic manifold structure.

After the introduction of simplicial methods by Poincaré, the question
naturally arose of whether a topological manifold necessarily admits a PL-
manifold structure, and whether such a structure is unique (“Hauptver-
mutung”). Again, it can be shown that every DIFF-manifold can be
“triangulated ” and hence endowed with an essentially unique PL-structure;
conversely, the question arises of whether every PL-manifold admits a
DIFF-manifold structure, and whether such a structure is unique. Finally,
there is the question of classifying TOP (or PL, or DIFF) manifolds having
the same homotopy type, in terms of “concordance” (a weakened version of
isotopy that takes account of the structures of manifold under consideration)
[188].

These problems have been almost completely resolved.

The general idea is to work in the tangent bundle (for the category DIFF)
or analogous constructs (microbundles, Spivak bundles) for the other
categories. This introduces classifying spaces: for the category DIFF, it is
the classifying bundle BO of the direct limit (C I) of the orthogonal groups
O(n) as n — co; for the other two categories, there are analogous spaces
BPL, BTOP, with fibrations

BO — BPL — BTOP

in which the fibers of the distinguished points are denoted by PL/O and
TOP/PL. To a DIFF (resp. PL, TOP) structure on M there corresponds
therefore a continuous mapping f of M into BO (resp. BPL, BTOP). For a
PL-manifold to admit a DIFF-structure, it is necessary and sufficient that
the mapping f : M — BPL should factorize into M - BO — BPL, and the
concordance classes of the DIFF-structures on M are then in one-one corre-
spondence with [M, PL/O]. The first particular cases of these theorems were
the celebrated example (Milnor) of an “exotic” DIFF-structure on the
sphere S, (not isomorphic to the usual structure), and an example due to
Kervaire of a PL-manifold of dimension 10 that does not admit a DIFF-
structure. When M = S,, the set [M, PL/O] has a natural structure of a
finite group O, for n > 4 (Kervaire-Milnor): for example, ©,, is cyclic of
order 992. The passage from TOP structures to PL structures is more com-
plex, but the set [M, TOP/PL] plays a preponderant role; an essential fact
(Kirby-Siebenmann) is that TOP/PL has the homotopy type of the
Eilenberg-MacLane space K(Z/2Z, 3). It follows that if M is a compact
topological manifold of dimension 25, there is an “obstruction” to the
existence of a PL-structure on M that is a cohomology class in H¥(M, Z/2Z);
if this class is zero, the classes of possible PL-structures are in one-one
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correspondence with H*(M, Z/2Z). There are explicit examples of five-
dimensional manifolds that have no PL-structure, and others having several
nonisomorphic PL-structures (B 263, 280, 362; Nice I (W. Browder, C. T. C.
Wall); Nice C 2 (Siebenmann); LN 197; [210]).

These results are the culmination of a whole series of researches pursued
over a decade by many mathematicians. Besides the general techniques of
algebraic topology, great use is made of cobordism and the theory of im-
mersions (see below), and especially of the technique called “surgery,” which
comes from Morse theory. If D, denotes the closed unit ball in R, D, is
homeomorphic to D, x D,_,, and its boundary is therefore the union of
Si—; xD,_, and D, x S,_;_,. A handle of type k in an n-dimensional
manifold M is a closed subset A of M homeomorphic to D, x D,_;, the
intersection of A and M — A being the portion §,_; x D, _, of the boundary
of A (the terminology is justified only when k = 1). Surgery on such a handle
is a geometrical operation that results in replacing the k-handle by an
(n — k)-handle (B 230, 397; BAMS 68 (A. Wallace); SAMS 111 (Milnor);
[26], [188]).

Finally, we remark that a good proportion of the results on finite-dimen-
sional manifolds become simpler for manifolds of infinite dimension (in
which the “models” R" are replaced by a Hilbert space); it is remarkable that
this theory has led to a proof of a conjecture of J. H. C. Whitehead on finite
cell-complexes, namely, that every homeomorphism of such complexes is a
simple homotopy equivalence (B 428).

The Poincaré conjecture. Elementary algebraic topology shows that
every compact, orientable, simply connected surface is homeomorphic to
the sphere S,. Poincaré conjectured that the same is true for manifolds of
dimension 3 and S,: at present, neither proof nor counterexample is known.
The conjecture may be generalized to any dimension: if a compact, simply
connected manifold of dimension n has the same homology (or cohomology)
as§,, is it homeomorphic to S, ? Surprisingly, this question has been answered
affirmatively for n > 5, first by Smale for DIFF-manifolds, then by Stallings
for PL-manifolds, and by M. H. A. Newman for TOP-manifolds; for n = 4,
as for n = 3, the problem remains open (B 208, 230; BAMS 69 (Smale);
C 1961-2).

Cobordism. The modern flowering of differential topology can be dated
from Thom's solution (1954) of two problems posed earlier by Steenrod: in
a differential manifold M, when is a homology class “represented” by a sub-
manifold, and when is an r-dimensional manifold the boundary of an
(n + 1)-dimensional manifold? Thom’s principal idea was to reduce these
problems to problems of homotopy of mappings into a “Thom complex”
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constructed from a ball bundle associated with a principal bundle over a
classifying space BO(N), for N sufficiently large. Another of Thom’s ideas
was to introduce an equivalence relation in the set of oriented manifolds:
two manifolds V, V' are cobordant if the oriented manifold V' — V, the dis-
joint union of V' and the manifold — V with the opposite orientation to that of
V, is the boundary of a manifold W. The set Q" of “cobordism classes ™ of
dimension n is naturally endowed with a commutative group structure, the
group operation being defined by disjoint union (B 78, 89, 180, 188). A re-
markable fact is that certain invariants of the DIFF structure are also in-
variants for the relation of cobordism; and a knowledge of " leads to
unsuspected relations between these invariants (B 88, [180]).

These ideas have been considerably developed and diversified in several
directions (B 408; LN 178; [174]). An important variant is the notion of h-
cobordism, which requires that in the definition above the injections V - W
and V' = W should be homotopy equivalences. Smale deduced his theorem
on the Poincaré conjecture from a fundamental result on h-cobordism: if
dimV > 5 and if V and V' are simply connected, an h-cobordism W of V
with V' isdiffeomorphic to V x L His method of proof consists of considering
W as obtained by “attaching handles” to the manifold V x I, and then
showing that, under the given hypotheses, the handles can be removed one
by one without changing W (up to diffeomorphism).

When V and V' are no longer assumed to be simply connected, the h-
cobordism theorem is no longer true; a supplementary condition is needed,
which is related 1o the notion of “Whitehead torsion™ (B 392; LN 48).

Let us note at this point a problem in some sense opposite to Steenrod’s
problem: given a noncompact manifold V without boundary, does there
exist a manifold W with boundary such that V is the interior of W? This
problem has been solved by Siebenmann by means of K-theory (B 304).

Immersions, embeddings, and knot theory. An immersion of a differential
manifold M of dimension m in a differential manifold N of dimension n > m
is a C*-mapping f :M — N whose tangent mapping is everywhere injective.
The mapping fitself need not be injective; an injective immersion is called an
embedding. The classification problem for embeddings is the determination
of the classes of embeddings for the following equivalence relation: “ fand g
are isotopic under a differential isotopy.” For immersions, we must (since
immersions are not in general injective) replace “isotopy” by “regular
homotopy,” which means a homotopy (x, t) — F(x, t) such that x — F(x, t)
is an immersion for each t € 1.

The most interesting case is that in which N = R" and M is compact; the
classification of immersions was first achieved by Smale for M = S, and
then by M. Hirsch in the general case. The idea is to reduce to a homotopy
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problem by passing to the tangent bundles of M and N: for example, the
immersions of S, in R" are classified by the elements of the homotopy group
(S, m) of the Stiefel manifold S, ,, [D, Chapter 16] of orthogonal m-frames
in R". For embeddings, again the classification problem has been reduced to
a problem of homotopy, provided that n > 3(m + 1)/2 (Haefliger) (B 157,
245; BAMS 69 (Smale)).

The classical theory of knots is the particular case of the classification of
embeddings for M = S, and N = R?; it is far from complete, so that the
inequality n > 3(m + 1)/2 is essential (B 485). When n > 3(m + 1)/2 there
are no “knotted m-spheres” in R", and all embeddings of S,, in R" are regularly
isotopic; if n < 3(m + 1)/2, the theory of “knotted spheres” has hardly
begun (B 280; [37]).

The whole of the preceding theory has its analogs in the categories PL and
TOP ([71],[86]; SAMS XXII (Lashof)). But there are some rather surprising
differences: for example, there are no knotted m-spheres in R* (in the PL
sense) as soonasn > m + 3, whereas for 3(m + 1)/2 > n > m + 3 there may
be m-spheres that are knotted in the DIFF sense but not in the PL sense.

For the case M = S,_;, N = R”, a problem which goes back to Jordan
and Schoenflies is whether an embedding of S, _ ; in R” can be extended to an
embedding of the ball D, in R"; this is true in the category DIFF, and for
n = 2 in the category TOP, but (in TOP) there is a counterexample of
Alexander (the “horned sphere”) when n = 3. Mazur and Morton Brown
have proved that a homeomorphism f:S,_; = R" of S,_; onto a closed
subspace of R” can be extended to a homeomorphism of D, onto a closed
subspace of R", provided that f can be extended to a homeomorphism of an
open neighborhood of S, _, in R" onto an open subset of R" (B 205).

Finally, on the question of the existence of embeddings or immersions, a
classical result of Whitney (for the category DIFF) is that there always exists
an immersion of M in R?"~! and an embedding in R?™; but it can be asked
whether it is not possible in certain cases to reduce the number n. The theory
of characteristic classes and K-theory provide answers to this question. The
case in which M is a projective space P,(R) has been studied the most. For
example, it is known that Whitney’s results are the best possible when
m = 2"; on the other hand, if m = 2" + 2, we may take n = 2m — 4 for
immersions and n = 2m — 3 for embeddings (LN 279; SAMS XXII (Gitler)).

Fixed points; spaces with group action. The property, for a continuous
mapping f : X —» X of a space into itself, of having a fixed point, i.e., a point
x € X such that f(x) = x, is fundamental in existence proofs in functional
analysis. One of the most famous theorems from the beginnings of algebraic
topology is Brouwer’s theorem, to the effect that every continuous mapping
[fof the closed ball D, into itself has at least one fixed point. Another capital
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result is the Lefschetz trace formula, which, under certain conditions, expresses
the number of fixed points of fin terms of cohomology: if X is a finite oriented
polyhedron of dimension n, the mapping f determines endomorphisms f* of
the cohomology vector spaces H(X, R) for 0 < i < n;if Tr(f") is the trace of

the endomorphism f*, the Lefschetz number L(f) = 3 (—1)' Tr(f") is equal
=0

to the sum, over all the fixed points of f, of the “indices” a(x), provided that
the fixed points are isolated (and hence finite in number) and such that at
each of them the diagonal of X x X and the graph of f intersect “trans-
versally,” so that their “intersection number” ¢(x) = +1 at this point is
defined. (See (A V) for a generalization of this formula.)

If f : X — X is a homeomorphism, the positive and negative powers f”"
form a group G acting on X, and the fixed points of f are the orbits of G that
consist of a single point. We are thus led to the general study, from the topo-
logical point of view, of the orbits and the orbit space of a topological group
G acting continuously on a space X. This study has many applications and
ramifications, in diverse domains, such as the existence of fixed points or the
topology of Lie groups and their homogeneous spaces (see B 1I) (B 45, 251;
BAMS 66 (P. Smith, Conner-Floyd), 76 (Fadell); LN 34, 36, 46, 73, 298, 299,
[20]).

3. Connections with the natural sciences

The majority are indirect, via other mathematical theories in which
topology plays a part. Doubtless the reason for this is to be found in the fact
that the theorems of algebraic topology are qualitative in nature, and affirm
for example the existence (or the nonexistence) of an object, without in general
providing any means of determining it explicitly. However, there is a very
recent application of the calculation of homotopy groups of certain homo-
geneous spaces to the classification of “defects” of crystalline structures and
liquid crystals (Poenaru, Toulouze, L. Michel, Bouligand).

4. The originators

The principal ideas in algebraic and differential topology are due to the
following mathematicians:

Homology and cohomology. B.Riemann (1826-1866), H. Poincaré (1854—
1912), L. E. J. Brouwer (1881-1966), S. Lefschetz (1884—1972), E. Noether
(1882-1935), J. Alexander (1888-1971), H. Hopf (1894-1971), H. Whitney,
H. Cartan, N. Steenrod (1910-1971), M. Atiyah, F. Hirzebruch, J. F. Adams,
D. Sullivan.



22 A1 ALGEBRAIC AND DIFFERENTIAL TOPOLOGY

Homotopy. W. Hurewicz (1904-1956), H. Hopf (1894-1971), J. H. C.
Whitehead (1904-1960), S. Eilenberg, 8. MacLane, H. Cartan, J.-P. Serre,
D. Kan.

Fiber bundles, characteristic classes. H. Whitney, H. Hopf (1894-1971),
S. Chern, L. Pontrjagin, N. Steenrod (1910-1971), J. Leray, A. Borel, F.
Hirzebruch, J.-P. Serre, J. Milnor, D. Kan, S. Novikov.

Topology of manifolds. J. Milnor, M. Kervaire, S. Smale, J. Stallings,
D. Sullivan, C. T. C. Wall, W. Browder, R. Kirby, L. Siebenmann, T. Chapman.

Cobordism. R. Thom, J. Milnor, C. T. C. Wall, D. Quillen, S. Novikov.

Immersions, embeddings, knots. C. Jordan (1838-1922), J. Alexander
(1888-1971), H. Whitney, S. Smale, B. Mazur.

Fixed points, transformation groups P. Smith (1900-1980), A. Borel.

Topology of Lie groups and homogeneous spaces. E. Cartan (1869-1951),
H. Hopf (1894-1971), L. Pontrjagin, J. Leray, A. Weil, A. Borel, R. Bott.

Topology in dimensions <3. R. Bing, E. Moise, C. Papakyriakopoulos
(1914-1976), W. Thurston.

The following have also made substantial contributions to these theories:
J. Adem, P. Alexandroff, D. Barden, M. Barratt, J. Boardman, M. Bockstein,
K. Borsuk, G. Bredon, E. H. Brown, Morton Brown, A. Bousfield, G. Brum-
fiel, S. Cairns, E. Cech (1893-1960), J. Cerf, A. Cernavskii, P. Conner, M.
Dehn (1878-1952), A. Dold, E. Dyer, B. Eckmann, R. D. Edwards, C.
Ehresmann (1905-1979), F. Farreli, J. Feldbau (1914-1945), E. Floyd, R. Fox
{1913-1973), H. Freudenthal, T. Ganea (1923-1971), H. Gluck, W. Gysin,
A. Haefliger, P. Heegard (1871-1948), P. Hilton, G. Hirsch, M. Hirsch, W. C.
Hsiang, W. Y. Hsiang, J. Hudson, 1. James, H. Kiinneth (1892-1974), P.
Landweber, R. Lashof, H. Lebesgue (1875-1941), J. Lees, J. Levine, E. Lima,
A. Liulevicius, G. Livesay, L. Lusternik, M. Mahowald, W. Massey, P. May,
R. Milgram, E. Mischenko, D. Montgomery, J. C. Moore, C. Morlet, J.
Munkres, M. H. A. Newman, F. Peterson, V. Poenaru, M. Postnikov, D.
Puppe, K. Reidemeister (1893-1971), V. Rohlin, J. Roitberg, M. Rothen-
berg, H. Samelson, L. Schnirelmann (1905-1938), A. Schoenflies (1853-1928),
G. Segal, H. Seifert, J. Shaneson, A. Shapiro (1921-1962), W. Shih, L. Smith,
E. Spanier, M. Spivak, J. Stasheff, E. Stiefel (1909-1978), A. Svarg, E. Thomas,
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H. Tietze (1880-1964), H. Toda, T. tom Dieck, E. van Kampen (1908-1942),
L. Vietoris, F. Waldhausen, A. Wallace, H. C. Wang (1919-1978), J. West,
G. W. Whitehead, W. T. Wu, C. Yang, C. Zeeman, J. Zilber, W. Meeks, S. Yau.
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A 11

Differential manifolds.

Differential geometry

The study of problems in analysis such as the behavior of solutions of
differential equations, partial differential equations, integral equations, etc.,
leads naturally to formulating these problems not only on open sets in R”,
but on differential manifolds; this is particularly true of the problems of this
nature that have arisen from mechanics or physics ever since the classical
epoch, and they are joined nowadays by all those that inevitably arise in the
theory of Lie groups and their homogeneous spaces (B IT). Modern analysis,
when it goes beyond “local” results (valid only in an unspecified neighbor-
hood of a point or a subset) is therefore analysis on differential manifolds,
also called global analysis: its methods and its principal results are described
in (AII), (AIV),and (A V).

Of course, analysis on manifolds deals only with notions defined intrin-
sically, that is to say independently of all choices of charts (A I). The study
of these notions constitutes the general theory of differential manifolds. On
the other hand, differential manifolds can be endowed with richer structures,
involving additional data (G-structures, connections, etc.) that originate from
problems of geometry or mechanics, and the problems concerning these
structures form the province of differential geometry. In both cases, the
problems envisaged almost always involve the underlying topological
properties of the manifolds under consideration.

1. The general theory

The main subjects studied concern the singularities of differentiable
mappings and of vector fields.

Singularities of differentiable mappings. 1If fis a real-valued C*-function
on a differential manifold V, the critical points of f are the points x € V at
which the differential df vanishes. Simple examples show that the set of

25
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critical points of f can be an arbitrary closed set in V, and it appears therefore
unrealistic to attempt a classification of C*-functions based on the nature of
their critical points. A critical point is said to be nondegenerate if the poly-
nomial formed by the second-degree terms in the Taylor expansion of fin a
neighborhood of this point (with respect to any chart) is a nondegenerate
quadratic form; the index of this form is by definition the index of the critical
point. Functions that have only nondegenerate critical points and take
distinct values at these points (which are necessarily isolated) are very special,
being closely related to the topology of V (they are functions that determine
a “presentation by handles” of V; see (A I)); but the remarkable fact is that,
with respect to a suitable topology on the space £(V) of C*-mappings of V
into R, these “Morse functions” form a dense open set in &(V).

These results, which constitute the beginnings of Morse theory (B 36;
BAMS 64 (Pitcher); [124]), have provided the starting point of a vast
program of study of the C®-mappings of a compact differential manifold M
into a differential manifold N, inaugurated in about 1955 by Whitney and
Thom. The fundamental ideas introduced by these authors are the following:

(2) Only “generic” mappings are considered: these are mappings
characterized by conditions on the “jets "+ of a certain order (depending on
the dimensions m, n of M and N).

(b) Introduction of two equivalence relations on the set &(M, N} of
C>-mappings f : M — N: differential equivalence, which means that f and "
are equivalent if there exists a diffeomorphism g (resp. h) of M (resp. N) onto
itself such that f' = h o f o g; and topological equivalence, in which g and h
are only required to be homeomorphisms.

(c) Introduction of a natural topology on the set &(M, N). A mapping
fe&M,N) is said to be differentiably (resp. topologically) stable if the
mappings differentiably (resp. topologically) equivalent to f form a neigh-
borhood of f.

These definitions make it plausible that a “generic” mapping should be
stable in one or other of the two senses just defined, and that the generic
mappings should be dense in £(M, N).

(d) A singular point x € M for f : M — N is a point at which the tangent
linear mapping of  does not have maximum rank. For a generic mapping f,
one expects that the singular points will form a submanifold S(f); when
restricted to S(f), the mapping f will have a submanifold S(S( f)) of singular
points, and so on. Moreover, from the homological point of view, the singular

t A jet of order k is an equivalence class of C*-mappings that, at a point, have the same deriva-
tives up to and including order k {with respect to any charts). The jets of order I may be identified
with tangent linear mappings [D, Chapter 16].
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loci S(f), S(S8(f)), etc., are related to the Sticfel-Whitney classes of M (A I)
and to the images under f* of those of N, by universal polynomial formulas
(“Thom polynomials”) (B 134; C 1956-7).

The realization of this program is far advanced, primarily by the work of
J. Mather. It is established that the topologically stable mappings always
form a dense open subset of §(M, N), but the same statement for differential
stability is true only for certain explicitly determined pairs of dimensions
(m, n) (the “good dimensions™). Generic mappings are always topologically
stable, and in good dimensions, generic mappings are identical with differ-
entiably stable mappings. There are regular methods for determining
explicitly the germs of generic mappings, up to equivalence, for given m and
n; finally, regular methods are now beginning to be developed for the calcu-
lation of the Thom polynomials. The techniques of proof consist in reducing
questions of differential stability to analogous questions about the jets of the
mappings under consideration, and then using the instruments of the theory
of commutative local rings (C II), by virtue of a key result, namely, Mal-
grange’s generalization to C®-functions of the Weierstrass “preparation
theorem™ (B 336, 424; BAMS 75 (Thom); LN 192, 197, 209, 371, 373;
Vancouver (Arnol'd); [51], [204]).

Vector fields on differential manifolds. On a differential manifold M, the
critical points at which a vector field X [D, Chapter 16] of class C" {r > 1)
vanishes play an important role in the study of the integral curves of the field,
of which they are the singular points (A III). H. Poincaré was the first to
discover a relation between the critical points of a vector field on a surface
and the topological invariants of the surface, and the general form of this
relation was given by H. Hopf. Suppose that M is compact, and that the
critical points of X are finite in number; to each of these points there is
intrinsically associated an integer, called the index of the point, and the sum
of the indices (also called the index of X) is equal to the Euler-Poincaré
characteristicof M. If X, ..., X, are k vector fields on M, the singular points
of this system are the points x € M at which the vectors X,(x),..., X\ (x)
are linearly dependent ; the notion of index can be generalized to such systems,
and there are results on its relations with the homology of M when k = 2. A
much studied problem is the determination of the largest integer k for which
there exist k vector fields X, ..., X, with no singular points. If k = n =
dim(M), the manifold M is said to be parallelizable. This problem is com-
pletely solved in the case of spheres S, (J. F. Adams): write # + 1 in the form
(2a + 1)2°**, where a, ¢, d are integers >0, and ¢ < 3;then it can be shown
with the help of generalized cohomology based on K-theory that the number
k is equal to 2° + 84 — 1 (B 233, BAMS 75 (Thomas), 76 (Baum)). In par-
ticular, the only parallelizable spheres are S, S;, S,.
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2. G-structures

The method of the moving trihedron was invented in the 19th century
by Ribaucour and Darboux for the differential study of surfaces. E. Cartan
was the first to perceive the much greater range of this method, and he applied
it with virtuosity to many questions of differential geometry and the general
theory of partial differential equations. C. Ehresmann clarified and systema-
tized the ideas of E. Cartan, by setting them in the context of the theory of
fiber bundles. With the tangent bundle T(M) of a manifold M of dimension n
there is naturally associated a principal bundle R(M), called the bundle of
frames of M. Its fiber at each point x € M is the set of bases of the tangent
space T,(M), and the structure group is the general linear group GL(n, R);
moreover, T(M) may be considered as the associated vector bundle with
fiber R" [D, Chapter 20]. If G is a closed subgroup of GL(n, R), a G-structure
on M is a subspace Sg(M) of R{M) that is a principal G-bundle over M (the
action of G on the fibers being the restriction of the action of GL(n, R))
[D, Chapter 20]. Then T(M) appears as a vector bundle with G as structure
group, and the relation between S;(M) and T(M) is very analogous to that
which exists between a group G and a homogeneous space G/H; and just as
in this latter case it is better to work in G rather than in G/H, in order to
benefit from the richer group structure, in the same way the essential idea of
E. Cartan’s “method of moving frames” consists in calculating in Sg(M)
rather than in T(M).

The most important cases are: (1) G = O(n), the orthogonal group, in
which case the G-structures are called Riemannian structures; (2) n = 2m is
even, G = Sp(2m, R), the symplectic group, to which correspond the almost-
Hamiltonian (or symplectic) structures; (3) n = 2m is even, G = GL(m, C),
the complex general linear group, in which case the G-structures are called
almost-complex structures, Every complex-analytic manifold is canonically
endowed with an almost-complex structure, but the converse is false: an
almost-complex structure does not necessarily come from a complex-analytic
structure on M, unless a supplementary condition of “integrability” is
satisfied (B 166).

On any manifold it is always possible (in infinitely many ways) to define a
Riemannian structure. On the other hand, for other subgroups G of GL(n, R),
the existence of a G-structure on M implies relations between the topological
invariants of M, notably the characteristic classes. For example, it can be
shown (Borel-Serre) that the only spheres that admit an almost-complex
structure are S, and Sg. In the other direction, the same differential manifold
may be subjacent to several nonisomorphic complex structures: for example,
there are infinitely many nonisomorphic complex structures on S; x S,
(B 35; BAMS 72 (Chern)).



2 G-STRUCTURES 29

The general notion of a connection on a manifold endowed with a G-
structure was also introduced in substance by E. Cartan. Essentially thisis a
structure that allows one to “compare ™ the tangent spaces at two infinitely
near points. In order to define it we require at each point r € Sg(M) a “hori-
zontal” supplement, in the tangent space to Sg(M) at r, to the subspace
tangent to the fiber at r; it is necessary that this horizontal subspace should
vary differentiably with r, and that the set of horizontal subspaces should be
stable under G (B 24, 101;[D, Chapters 17 and 20]; BAMS 72 (Chern); [100]).
Given a connection, it is possible to define the parallel transport of a frame
along a path y in M: it is enough to lift y to a path in Sg(M) for which the
tangent at each point is “horizontal.” The geodesics of a connection are the
curves for which a tangent vector remains tangent under parallel transport
along the curve.

The presence of a connection also enables one to define the derivative of a
tensor field in the direction of a tangent vector at a point (the covariant
derivative relative to the connection). Furthermore, to each connection there
are intrinsically attached two tensors, the curvature tensor and the torsion
tensor. For a Riemannian structure, there is a distinguished connection, called
the Levi-Civita connection, characterized by the fact that its torsion is zero
[D, Chapters 17 and 20].

Riemannian manifolds. The assignment of a Riemannian structure on M
is equivalent to the assignment of a ds?, a tensor field that on each tangent
space is a positive-definite quadratic form, If dim(M) = n, this tensor field
gives rise canonically to a “p-dimensional element of area™ for 1 < p < n,
which is a positive measure on each p-dimensional submanifold. In particular,
when p = 1, the length of a curve in M is defined, and the geodesics of the
Levi-Civita connection are precisely the extremal curves with respect to this
length. The global study of the geodesics of a Riemannian manifold has been
pursued unremittingly since the time of Jacobi (see [D, Chapter 20]; LN 55),
and has given rise to Morse theory [124]. A problem studied first by Poincaré
is that of the existence and number of distinct closed geodesics on a compact
manifold; this is related to the topology of the manifold, and is still not
completely solved (B 364, 406; [ 1447, [223]).

The problem of extremal submanifolds with respect to the p-dimensional
area can be posed not only for p = 1, but also for 1 < p < »n — 1, and leads
to a system of nonlinear partial differential equations of the second order.
Up to now, this problem has been considered mainly in the case p = n — 1,
in which the extremals are called “minimal hypersurfaces.” When n = 3, it
goes back to Lagrange, and the study of minimal surfaces in R® was the
subject of much work throughout the 19th century (Weierstrass, Schwarz,
etc.), and today still presents many unanswered questions (BAMS 71
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on E. The remarkable fact is that the theory of these manifolds is much simpler
than that of manifolds of finite dimension; all Hilbert manifolds are diffeo-
morphic to open subsets of E, and if two open subsets of E have the same
homotopy type, then they are diffeomorphic (B 284, 378, 540; BAMS 72
(Eells); Nice C 1(R. D. Anderson), C 2 (Kuiper), C 4 (Ebin—Marsden, Eells-
Elworthy); LN 259, 282; SAMS XV).

5. Connections with the natural sciences

The fundamental postulate of the theory of Relativity is that space-time
is a differential manifold endowed with a pseudo-Riemannian structure, i.e., a
G-structure where G is the Lorentz group, which leaves invariant the
quadratic form x3 — x} — x2 — x3 on R*. The theory of geodesics for such
a structure and the theory of singularities of differentiable mappings therefore
play an important part in relativistic theories of cosmology, in particular in
the study of singularities of space-time (“black holes™) ([141]; BAMS 83
(R. Sacks-H. Wu); LN 209).

About ten years ago, R. Thom developed some extremely original ideas
on the possibility of applying the theory of singularities of differentiable
mappings to the qualitative study of physicochemical and biological phenom-
ena, and even to linguistics: this is what he calls catastrophe theory, which has
aroused considerable interest in many places, and some controversy [180].

6. The originators

The principal ideas in the theory of differential manifolds and G-structures
are due to the following mathematicians:

The notion of a differential manifold. C.F.Gauss(1777-1855), B. Riemann
(1826-1866), H. Weyl (1885-1955).

Singularities of differentiable mappings. H. Whitney, R. Thom, B.
Malgrange, J. Mather, D. Sullivan.

Vector fields. A. Poincaré (1854-1912), H. Hopf (1894-1971), J. F.
Adams, M. Atiyah.

G-structures, connections. E. Cartan (1869-1951), T. Levi-Civita (1873-
1941), S. Chern.

Riemannian manifolds. B. Riemann (1826-1866), E. Cartan (1869-1951),
J. Nash,
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Topology of differential manifolds. E. Cartan (1869-1951), G. de Rham,
S. Chern, A. Weil, W. Thurston.

Infinite-dimensional manifolds. M. Morse (1892-1977), S. Smale, V.
Arnol’d.

The following have also made substantial contributions to these theories:
C. Allendoerfer (1911-1974), W. Ambrose, R. Anderson, L. Auslander,
A. Avez, F. Almgren, E. Beltrami (1835-1899), M. Berger, S. Bernstein
(1880-1968), C. Bessaga, L. Bianchi (1856-1928), W. Blaschke (1885-1962),
J. Boardman, S. Bochner, E. Bombieri, R. Boni¢, O. Bonnet (1819-1892), D.
Burghelea, E. Calabi, J. Cheeger, E. Christoffel (1829-1900), S. Cohn-Vossen
(1902-1936), G. Darboux (1842-1917), E. De Giorgi, A. Douady, D. Ebin,
B. Eckmann, J. Eells, C. Ehresmann (1905-1979), H. Eliasson, K. Elworthy, C.
Fefferman, W. Fenchel, A. Fet, J. Frampton, E. Giusti, D. Gromoll, M.
Gromov, J. Hadamard (1865-1963). A. Haefliger, P. Hartman, D. Henderson,
D. Hilbert (1862-1943), W. Y. Hsiang, . James, H. Karcher, W. Klingenberg,
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Ordinary differential equations

For 300 years, the theory of ordinary differential equations has been one of
the most intensively studied branches of mathematics, and a great variety
of methods have been devised to attack the innumerable problems it has
raised.

1. The algebraic theory

In the 18th century, the study of differential equations was directed pri-
marily toward obtaining “general” solutions by operations considered as
“simple,” such as “quadratures” and series expansions. This period of
empiricism generated a heterogeneous collection of results and was followed
in the 19th century by an effort of reflection on the methods used, analogous
to that which, between 1770 and 1830, led,to the theory of Galois for algebraic
equations. And indeed these investigations culminated in a “Galois theory,”
in an almost completely algebraised framework, first for linear differential
equations (Picard—Vessiot theory), and then for algebraic differential equa-
tions, in ever closer liaison with the modern theory of algebraic groups
(AIX) (B 17;[101]).

2. Ordinary differential equations in the complex domain

After the creation by Cauchy of the theory of holomorphic functions, the
analysts of the 19th century embarked on the study of singular points, in
the complex domain, of solutions of analytic differential equations. This
study culminated in the spectacular results of Painlevé on second-order
equations all of whose integrals are meromorphic [89]. Recently, this
subject has again become an area of active research, in the current of
ideas flowing from the general theory of singularities in analytic geometry
(A VIID.
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3. The qualitative study of ordinary differential equations

Around 1880, Liapunov and H. Poincaré gave a new direction to the
theory by initiating a global geometrical study of the family of integral curves
of a differential equation. Liapunov was primarily interested in probiems of
stability of an integral curve under small variations of the initial conditions;
the methods he invented in order to determine the stability of an integral
curve have been applied and developed in a great many investigations
([111]; LN 35), and even the notion of stability is capable of many variations.
Poincaré started with a first-order differential equation, written in the form
dx _dy
X~v
and straightaway set himself the most general problem, namely, the “qualita-
tive” description of all the integral curves of the equation. In order to be able
to deal with infinite branches, he projected the plane Oxy onto a sphere (with
center outside the plane) from the center of the sphere, and this led him to the
study of integral curves of a field of tangent vectors to the sphere. A little later,
in order to deal with first-order differential equations F(x, y, y) = 0 not
solved for y', he considered the problem as being equivalent to the deter-
mination, on the surface F(x, y, p) = 0, of the integral curves of the equation
dy — p dx = 0; again this is a particular case of integral curves of a vector
field on a surface. Generally speaking, problems relative to differential
equations of higher order, or to systems of differential equations, can be
thought of in terms of the integral curves of a vector field on a differential
manifold M of arbitrary dimension. The most frequently studied case is that
in which M is a compact manifold and X is a C®-vector field: if we denote by
Fx(x, t) the value at r € R of the integral v such that v(0) = x, then Fy(x, 1)
is defined for all t, and the mapping (z, x) — Fy(x, t) is a C®-action of the
additive group R on the manifold M (B II). A whole chapter of the qualitative
theory of differential equations is thus included as a particular case in the
study of such actions by an arbitrary topological group G ([67], [133], [173]).

The fundamental notions in the study of a vector field X and its integral
curves are those of critical point (A II) and closed integral curve. At a critical
point a, the characteristic multipliers of X are by definition the eigenvalues
of the Jacobian matrix of the components of the field X at the point a (relative
to any system of local coordinates). A closed integral curve y:t+ y(t) by
definition contains no critical point and is periodic; if T > 0 is the smallest
period, then for each point x € y, the mapping y — Fx(y, t)isadiffecomorphism
of a neighborhood of x onto a neighborhood of x, and its tangent linear
mapping at x is an automorphism of the tangent space T, (M). The charac-
teristic multipliers of y are the eigenvalues of this automorphism (one of them
is always equal to 1).

where X and Y are polynomials in x and y with no common factor,
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of modulus 1; the set W3(x) (resp. W*(x)) of points y such that f"#(y) —» x as
n — oo {resp.n — —o0)is then a submanifold of M, and the generic property
of Kupka-Smale is that every periodic point of f is hyperbolic, and that if x,
y are two periodic points (distinct or not), the submanifolds W*(x) and W*(y)
intersect transversally.

An important notion is that of a structurally stable diffeomorphism, i.e., a
diffeomorphism f that has a neighborhood in Diff(M) consisting of diffeo-
morphisms conjugate to f. The structurally stable diffeomorphisms form a
nonempty open set in Diff(M), and in fact every diffeomorphism is isotopic
to a structurally stable diffeomorphism. When M = S, the set of structurally
stable diffeomorphisms is dense in Diff(M), but this is no longer the case for
manifolds of dimension > 1.

Among the structurally stable diffeomorphisms are the Morse-Smale
diffeomorphisms, which are those satisfying the Kupka-Smale property,
having only finitely many periodic points and such that for each x € M, the
sequence f"(x) tends to a periodic point as n tends to + ou. The set of these
diffeomorphisms is always open and nonempty.

Another important class is the Anosov diffeomorphisms. To define these,
assume that M carries a Riemannian structure, and hence a Euclidean norm
on each tangent space T (M). A diffeomorphism f is said to be an Anosov
diffeomorphism if the tangent bundle T(M) decomposes into a direct sum
E* @ E" of vector bundles, each stable under the tangent mapping T(f), and
such that T(f) (resp. T(f ~')) is a contraction on E* (resp. E¥). The Anosov
diffeomorphisms are structurally stable and form a (possibly empty) open
set in Daff (M) [167].

There are analogous notions and results for differential equations on M
(B 348, 374; BAMS 73 (Smale), 78 (J. Robbin), 80 (M. Shub); SAMS XIV;
LN 206; [2], [48)).

5. Boundary-value problems

Many problems in analysis require solutions of a differential equation
defined on an interval of R and satisfying various conditions at the endpoints
(finite or not) of the interval. A typical example is to find solutions of a second-
order equation that take given values at the (finite) endpoints of the interval.
These problems have not been the subject of a general theory valid for
equations of arbitrary order except in the case of linear equations, in the
context of the spectral theory of operators (C III).

6. Connections with the natural sciences

Ever since the 17th century, almost all natural phenomena that involve
certain quantities varying continuously as functions of a parameter (usually
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time) have led to problems about differential equations, and these problems
have been a constant source of stimulation for the mathematical theory. We
shall not attempt to list these innumerable applications. However, a special
mention should be given to celestial mechanics, which historically was the
first of these applications, and without doubt has instigated the largest
quantity of important mathematical work ([168], [173]), the practical
interest of which has been considerably augmented by its applications to the
control of guided missiles and artificial satellites. As another example out of
the common run, we may cite the research on the functioning of the heart
and its representation by solutions of suitably chosen differential equations
([48] (Zeeman)).

7. The originators

We shall restrict ourselves to the gualitative theory, in which the most
important ideas are due to the following mathematicians: H. Poincaré
(1854-1912), A. Liapunov (1857-1918), G. D. Birkhoff (1884-1944), A.
Denjoy (1884-1974), C. Siegel (1896-1981), A. Kolmogorov, S. Smale,
A. Peixoto, V. Arnol'd, D. Anosov, J. Moser.

The following have also contributed substantially to the theory: R.
Abraham, V. Alexyev, A. Andronov, R. Arenstorf, J. Auslander, A. Avez,
J. Bendixson (1861-1936), N. Bhatia, R. Bowen (1947-1978), C. Camacho,
L. Cesari, J. Chazy (1882-1955), R. Ellis, J. Franks, H. Furstenberg, W. Gott-
schalk, J. Guckenheimer, J. Hadamard (1865-1963), O. Hajek, J. Hale, P.
Hartman, G. Hedlund, M. Herman, H. Hilmy, M. Hirsch, W. Kaplan, A.
Kelley, H. Kneser (1898-1973), N. Kuiper, L. Kupka, J. La Salle, S. Lefschetz
(1884-1972), A. Liénard, J. Littlewood (1885-1977), A. Manning, L. Markus,
J. Massera, J. Mather, M. Morse (1892-1977), R. Moussu, V. Nemytskii
(1900-1967), S. Newhouse, J. Palis, O. Perron (1880-1975), 1. Petrowski
(1901-1973), C. Pugh, L. Pontrjagin, G. Reeb, J. Robbin, R. Roussarie, A.
Schwartz, H. Seifert, S. Shub, K. Sitnikov, J. Sotomayor, V. Stepanov
(1889-1950), S. Sternberg, D. Sullivan, K. Sundman (1873-1949), G. P.
Szegd, B. Van der Pol (1889-1959). T. Wazewski, H. Whitney, R. Williams,
A. Wintner (1903-1958).
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Partial differential equations

The theory of partial differential equations has been studied incessantly
for more than two centuries. By reason of its permanent symbiosis with
almost all parts of physics, as well as its ever closer connections with many
other branches of mathematics, it is one of the largest and most diverse
regions of present-day mathematics, and the vastness of its bibliography
defies the imagination.

For a long time, the theory of ordinary differential equations served more
or less consciously as a model for partial differential equations, and it is only
rather recently that it has come to be realized that the differences between
the two theories are much more numerous and more profound than the
analogies.

1. The local study of differential systems

Here the paradigm was the Cauchy-Lipschitz theorem of existence and
uniqueness of solutions of ordinary differential equations: if I is an open
neighborhood of a poeint t, € R, consider a differential equation

) & = A,

where x takes its values in an open set Hin R, and A is a function with values
in H which is continuously differentiable on H x I (or at least satisfies a
Lipschitz condition in x on a neighborhood of each point of H x I); then for
each xo € H, there exists a suitably small neighborhood J < I of ¢, such that
the equation (1) admits a unique solution ¢ — x(t) in J such that x(ty) = x,.
[D, Chapter 10].

The only analogous general theorem we possess for partial differential
equations is the Cauchy-Kowalewska theorem. Consider a system of r
equationsin r unknown real-valued functions vy, ..., v,0f p + 1real variables
Xy, .. .5 Xp4 1, Of the form

49
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manifold on which the Pfaffian system is defined (they are not, in general,
locally closed submanifolds) [D, Chapter 18].

The study of properties of foliations from the point of view of differential
topology was inaugurated by Ehresmann and Reeb in 1948, but only recently
has it begun to attract the attention of many mathematicians: it is now a very
active field of research. The emphasis is on the topological properties of the
leaves, in particular on the existence of compact leaves (which generalizes
the periodic trajectories in the theory of ordinary differential equations
(A I11)). The example that has served as a model is the Reeb foliation of the
sphere S;, which is of codimension 1 and has only one compact leaf; only
recently have generalizations to other compact manifolds been obtained
(B 499). On the other hand, a completely integrable Pfaffian system on a
manifold M determines a sub-bundle E of the tangent bundle T(M), satisfying
the Frobenius condition at each point; but it has recently been realized that
such a sub-bundle must also satisfy global conditions of a topological nature.
The first of these was obtained by Bott, and expresses that the Pontrjagin
classes of order k of the quotient bundle Q = T(M)/E must vanish for
k > 2q,where gis therank of Q (LN 279). The present study of these problems
depends on techniques from homotopy theory (in which homological algebra
also plays a large part) introduced by Haefliger; it is necessary to enlarge
somewhat the notion of foliation, by admitting “singular” leaves whose
dimension is smaller than that of the “generic” leaves. The theory is also
related to the cohomology of vector fields (B I) of Gelfand and Fuks (B 192,
339,390, 393,412,434, 523, 524, 551, 574; LN 197, 206, 279, 392, 484, 493, 652,
712, 725; Nice I (Bott); BAMS 80 (Lawson); [34]).

3. Linear partial differential equations: general theory

A linear partial differential equation of order m on an open subset X of R"

is an equation of the form P-u = f where P= 3 A/(x)D" is a linear
|vl<m
combination of derivatives of order <m, the coefficients being functions of

x € X, and f a given real-valued function on X. We shall limit our attention
to the case in which the A, are real-valued functions of class C®; the notion
of “solution” can then be extended to the case where f is a distribution
[D, Chapter 17], and a solution is a distribution u satisfying P -u = f.

In the same way we define systems of linear partial differential equations,
or vector partial differential equations P - u = f, where now f=(f},..., fu~)
is a given vector-valued function of x € X, u = (uy, ..., uy.) is an unknown
vector-valued function of x, and the A (x) are functions of x whose values are
N” x N’ matrices. With the help of charts we pass from this situation to the
case where f is a section of a vector bundle F over a differential manifold X,
and u is a section of a vector bundle E over X (which may or may not be the
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2n — 1) obtained by taking an (n — 1)-dimensional submanifold of (5) and
forming the union of the integral curves of (6) that intersect this submani-
fold, and then we project these submanifolds into R". The integral curves
of (6) are called the bicharacteristic bands of the operator P, and their pro-
jections in R" the bicharacteristic curves of P [D, Chapter 18].

Problems. As for ordinary differential equations, the essential problems
of the theory of linear partial differential equations center on questions of
existence and unigueness of solutions of P-u = f; but have many diverse
aspects. They can be considered globally, where the domain X of the variables
is fixed ; but they can also (as for the Cauchy theorems) be studied from the
local point of view, that is to say in an unspecified neighborhood of a point
of X. In either case, the data for these problems will contain not only the
given equation, but also various supplementary conditions on the given func-
tion f or the unknown function u; these may be either “boundary-value
conditions” on the behavior of 1 and fin a neighborhood of the boundary
of X (when X is embedded in a larger manifold), or they may be “regularity”
conditions imposed on u or f. A general and suggestive way of presenting them
is to envisage u and fas points of two topological vector spaces o/, 4 (distinct
or not) defined by the given conditions; the problem then consists of studying
the image and the kernel of P, regarded as a linear mapping of .« into %.

Once in possession of a theorem of existence and uniqueness, other prob-
lems present themselves: whether explicit formulas or, alternatively, methods
of “approximation” (in various senses) can be given for the solution. Finally,
it may be asked whether the solution varies “continuously” (in various
senses) when the data (i.e., the function £, the coefficients of P, or the domain
X) are subjected to variation. When this is the case, the problem is said, in
Hadamard’s phrase, to be “well posed” (cf. LN 316).

Techniques. A first point to consider is the judicious choice of the function
spaces &/ and 2 in which to work. For maximum generality, one can use the
general spaces of distributions such as 2'(X), #'(X), or #'(R") [D, Chapters 17
and 22] or, even more generally, spaces of “hyperfunctions” (B 214, LN 126,
287, 325, 449; Nice D 10 (Sato)). If on the other hand one seeks solutions that
are as “regular” as possible (in view of applications to analysis or physics),
it is natural to take spaces of C* or analytic functions (or intermediates such
as the “Gevrey classes”). A class of spaces that has turned out to be very useful
is the Sobolev spaces and their many variants (LN 82). The simplest of these
are the spaces H™(X), where m is a positive integer: H™(X) consists of the
classes of functions in L%(X) whose partial derivatives (in the sense of distri-
butions) belong to L*(X), up to and including order m, and is a Hilbert space



Index

The references are either to a chapter in the text, or to the bibliography in the case of a defini-

tion not given (or incomplete) in the text.

A

Abelian category: € |

Abelian S-scheme: A IX

Abelian variety: A TX

Absolute class-field: A X

Absolute value on a field: C 11

Additive category: C1

Additive group-scheme: A IX

Adele, adele group: A X

Adjoint functors: C 1

Adjoint of a pseudodifferential operator: AV

Adjoint of an element of an algebra with
involution: C 11T

Adjoint of an operator: C 111

Admissible representation: A VI

Ado’s theorem: B 1]

Albanese variety: A [X

Algebra with involution: € 111

Algebraic curve, cycle, space, group, surface,
variety: A IX

Algebraically equivalent cycles: A IX

Almost-complex structure: A 11

Almost-periodic function: BTV

Almost-simple Lie group: B 11

Almost surely: B VII

Ample Cx-Module: A IX

Analytic manifold, analytic space: A I, A VIII

Anosov diffeomorphism; A 111

Area (p-dimensional): [D, Chapter 20]

Arithmetic genus: A IX

Arithmetic group: A X

Artin homomorphism: A X

Atiyah-Singer formula: [140]

Automorphic form, automorphic function:
A VII

Banach algebra: € I1I

Base space of a fiber bundle: A 1

Bernoulli scheme: A 1V

Bicharacteristic curve, strip: A V

Bicomplex: B1

Bifunctor: €1

Bigebra: [42]

Birkhoff’s ergodic theorem: A 1V

Bitrace: C I1I

Blowing up (down) a subvariety: A VILI,
AlIX

Borel subgroup: A IX

Boundary: B 1

Brauer group: B

Brauer’s theorem on characters: B 111

Brouwer’s theorem on invariance of
dimension: Al

Brownian motion: B VII

Bruhat decomposition: A IX

Bundle of frames: [D, Chapter 20]

Burnside problem: B 111

C*-algebra: €111

Canonical contravariant (covariant) functor:
Cl

Canonical divisor: A IX

Canonical immersion of a subscheme: A IX

Carleman operator: € [11, [D, Chapter 23]

Carleson’s theorem: B 1V

Cartan subalgebra, subgroup: A VI

Castelnuovo’s criterion: A 1X

Castelnuovo’s theorem: C 11

283



284

Catastrophe: [180]

Category: C 1

Cauchy problem: AV

Cauchy-Kowalewska theorem: A V

Cell complex: [170]

Chain: BI

Chain complex: B I

Character of a commutative normed algebra:
CII

Character of a compact group: A VI

Character of a finite group: BIII

Character of a locally compact abelian
group: BIV

Characteristic classes: Al

Characteristic hyperplane, hypersurface: A V

Chevalley group: B III

Chevalley-Warning theorem: € II

Chow point: [40]

Class-field: A X

Classical group: [D, Chapter 21]

Classifying space: A 1

Closed immersion: A 1X

Cobordism, h-cobordism: A [

Cochain, cochain complex: B 1

Cocompact subgroup: A VII

Cocycle: B

Coherent ¢x-Module: € 1

Cohomological dimension of a group: B 1

Cohomologous cocycles: B 1

Cohomology class, exact sequence, group,
object: B

Cohomology ring: AT, BI

Coincidence set: C 1

Cokernel: €1

Commuting algebra: BV

Compact-open topology: A 1

Compact operator: C 11

Complementary series: A VI

Complete algebraic variety, intersection,
linear series: A 1X

Complete Riemannian manifold: A 11

Completely integrable Pfaffian system: A V

Completion of a Noetherian local ring: € 11

Complex-analytic manifold: A I, A VIII

Concordance: [86]

Connection: [D, Chapters 17 and 20]

Continuous spectrum: C 11

Contractible space: A 1

Contravariant functor: €1

Convolution: BIV, [D, Chapters 14 and 17]

INDEX

Coproduct in a category: € |

Covariance: B VII

Covariant derivative: [D, Chapters 17 and
20]

Covariant functor: C 1

Covering: A1

Covering family: €1

Critical point: A 11, A 111

Curvature tensor: [D, Chapters 17 and 20]

Cusp form: A VII, [61]

CW-complex: [170]

Cylindrical set: B V11

D

Declining function on R": [D, Chapter 22]

Defects of a Hermitian operator: € 111

Defined over k (algebraic variety): A IX

Degenerate series: A VI

Degeneration operator: B 1

Degree of an O-cycle: Al

De Rham complex: AV

Derived category: LN 20

Derived functor: BI

Descent: A1X

Diagonalization of a normal operator: € 111

Differentiable equivalence of two mappings:
All

Differentiably stable mapping: A I1

Differential form: [D, Chapter 16]

Differential form of the first kind: A VIII

Differential manifold: A1

Dimension axiom for cohomology: Al

Dimension in a von Neumann algebra: BV

Dimension of a commutative ring: C I

Direct image of a sheaf: €1

Direct limit, direct system: C 1

Direct sum of representations: B I11

Dirichlet problem: AV

Discrete series: A VI

Discrete valuation: C 11

Distribution of a random variable: B VII

Divisor: A IX

Dolbeault isomorphism: A VIII

Domain of holomorphy: A VIII

Dual category: €1

Dual of a locally compact abelian group:
BIV

Dual of an abelian variety: A IX

Duality: C [



INDEX

E

Eilenberg-MacLane space: Al

Eilenberg-Steenrod axioms for cohomology:
AL[52]

Eisenstein series: [157]

Elementary subgroup: B II1

Elliptic complex: AV

Elliptic curve: A VII

Elliptic operator: AV

Embedding: Al

Entropy: A IV

Envelope of holomorphy: A VIII

Epimorphism: C I

Equivalence of categories: € I

Equivalent representations: B 111, A VI

Ergodic transformation: A IV

Etale morphism, étale topotogy: A 1X

Euler-Poincaré characteristic of a coherent
("x-Module: A IX

Event: B VII

Exact diagram, sequence: € 1

Exceptional curve: A IX

Exceptional set: A VIII

Exotic sphere: A |

Exponential monomial: B IV

F

Face operator: B 1

Factor: BV

Factor of automorphy: A VII

Faithful functor: € 1

Faithfully flat morphism: A IX

Feit-Thompson theorem: B I11

Fiber bundle: Al

Fiber bundle with structure group:
[D, Chapter 16]

Fiber product in a category: € |

Fibration: A 1

Filtration of a complex: B1

Filtration of a module or ring: C 11

Final object: €1

Finite algebra: C11

Finite morphism: A IX

Finite polyhedron: A I

Finite presentation (morphism): A 1X

Finite type (morphism): A 1X

Finite von Neumann algebra: BY

Finite weight: BV

Finitely generated module, algebra: € 11

285

Finitely presented module, algebra: € 11
Flat module: CII

Flat morphism: A IX

Forgetful functor: €1

Formal group: A IX, [42], [69], [208]
Formal power series: C 11

Formal scheme: A IX

fppf, fpqc topologies: A IX

Fredholm mapping: € [11

Free group: BIIL, CI

Frobenius morphism, substitution: AX
Full subcategory: C1

Fully faithful functor: C I

Functor: €I

Functorial morphism: € [
Fundamental group: A I, A IX, LN 224

G

G-structure: A1l

Gaussian distribution: B VII
Gelfand-Naimark theorem: C 111

Gelfand transform: CIII

Generalized cohomology groups: Al
Generator of a semigroup of operators: A V
Generators of a group: B 111

Generic point: AIX

Geodesic: A [L [D, Chapter 18]

Geometric genus: A IX

Geometric realization of a simplicial set: B1
Graded module, ring: C 11

Graduation of a module or ring: CII
Grassmannian: A IX, [D, Chapier 16], [40]
Grauert’s theorem on direct images: A VIII
Grothendieck group: AIX, B1
Grothendieck topology: €1, [7]

Group acting continuously: [D, Chapter 12]
Group algebra: BIII

Group-scheme: A IX

H

Hamiltonian, Hamiltonian system: A III

Handie: A 1, [124]

Harmonic differential form: A V

Harmonic function: B VII

Hasse principle: AX

Hasse-Weil zeta function: AX

Hauptvermutung: A1

Height of an algebraic number, of a point:
AX



286 INDEX

Helson set: BIV

Henselian ring: € 11

Henselization of a local ring: € 11

Hermitian operator: € HI

Hilbert algebra: CI11

Hilbert form: C 111

Hilbert-Samuel polynomial: €11

Hilbert scheme: A IX

Hilbert-Schmidt operator: € IT1

Hilbert sum of representations: A VI, CI1l

Hilbert’s irreducibility theorem: € 11

Hilbert's Nullstellensatz: € IL

Hilbert’s syzygy theorem:C 11

Holomorphically convex domain: A VIII

Homogeneous space: [D, Chapter 12

Homologous cycles: AL, BT

Homology class, exact sequence, group,
object: BI

Homeology ring of a finite polyhedron: A |

Homotopic mappings: Al

Homotopic morphisms of complexes: B1

Homotopy equivalence: A1, LN 48

Homotopy exact sequence of a fibration: Al

Homotopy groups: Al

Homotopy lifting property: A [

Homotopy types: A 1

Horizonta! subspace: A 11, [D, Chapter 20]

Horned sphere: A1

Huyghens’s principle: A V

Hyperbolic operator: AV

Hyperbolic point: A 111

Hypoelliptic operator: AV

1

J-adic filtration, topology: € 11

Idele: A X

Immersion of a differential manifold:
[D, Chapter 16]

Independent random variables: B V11

Index of a critical point: A T1

Index of a fixed point: {170]

Index of an operator: € I11

Induced representation: A VI, BI1I

Induced ringed space: C 1

Infinitesimal algebra of a Lie group: BT,
[D, Chapter 19]

Initial object: € 1

Injective object: C 1

Injective resolution: B 1

Integral closure, integral element over a ring:
cn

Integral scheme: A IX

Integrally closed integral domain: € I1

Intersection number of two cycles: [152]

Inverse image of a fiber bundle: A

Inverse image of a sheaf: C 1

Inverse limit, inverse system: C I

Irreducible representation: A VI, BIL B 111

Irreducible scheme: A TX

Isogenous algebraic groups: A [X

[sotopy: A1

J

Jacobian of an algebraic curve: A 1X
Jet: A TIL

K

Kahler manifold: A VIII

Kan theory: A1

Katznelson’s theorem: B IV
Kernel: €1

Kleinian group: A VII

Knot: Al

Korteweg-de Vries equation: A 'V
Kronecker-Weber theorem: A X

L

Langlands decomposition: A VI
Laplacian: AV

Law of composition in a category: C 1
Lefschetz theorems: A VIII, A IX
Lefschetz trace formula: A1, A IX
Left Hilbert algebra: BV

Length of an arc: [D, Chapter 20}
Leray-Schauder method: LN 346
Levi decomposition: A IX, BIL

Levi form, Levi problem: A VIII
Levi-Civita connection: (D, Chapter 207
Linear algebraic group: A IX

Linear representation: A VI, BII, BIII
Linear series: A1X

Linearly equivalent divisors: A IX
Local field: C1I

Local ring: CII

Localization of a ring: € II

Locally trivial fibre bundle: A1

Loop space: A1

Liroth’s theorem: € I



M

Malgrange’s preparation theorem: B 336
Manifold: A |
Manifold modeled on a Banach space: A 11
Margulis’s theorem: A X
Martingale: B VII
Maximum principle: A V
Mean-periodic function: B IV
Measurable function: B VII
Metamathematics: B VI
Microbundle: B 263
Minimal model: A IX
Minimal surface; ATl A IV
Mixed problem: AV
Moadular Hilbert algebra: BV
Moduli scheme: A IX, [129]
Monodromy: A IX
Monogenic representation: € III
Monomorphism: € I
Mordell- Weil theorem: A X
Mordell’s conjecture: A X
Morphism: C I
Morse theory: [124]
Multiplet layer: A V
Multiplicatively closed subset of a

commutative ring: C II

N

Natural transformation: € [
Néron model: A 1X

Néron-Severi theorem: A 1X
Neutralizing extension: B
Noetherian ring: € I
Nonsingular variety: A IX
Nonstandard analysis: B V1
Norm of an idéle: A X

Normal distribution: B VII
Normal operator: € 111

Normal scheme (at a point): A IX
Normed algebra: C 111

Nuclear space: [68 bis]
Numerically equivalent cycles: A IX

0

¢y-Module: €1

Object in a category: €1
Opposite category: C [

Orbit: [D, Chapters 12 and 16]
Ornstein’s theorem: A [V

INDEX 287

P

p-adic integer, number: € I
Parabolic operator: A 'V
Parabolic subgroup: A VI, ATX, [22]
Parallel transport: [D, Chapter 18]
Parallelizable manifold: A Il
Parametrix: AV
Periodic point: A 11
Pfaffian system: A V_ [D, Chapter 18]
Picard group, scheme, variety: A IX
Piecewise-linear manifold: A |
Pisot number: B IV
Plancherel measure: A VI
Plancherel’s theorem: B IV
Plurigenus: A X
Plurisubharmonic function: A VIII
Poincaré conjecture: A 1
Poincaré duality: A 1
Poincaré series: A V11
Pointed space: A ]
Polarization of an abelian variety: A IX
Polyhedron: AT
Pontrjagin duality: BTV
Positive linear form: € I11
Positive self-adjoint operator: C 111
Postnikov’s construction: Al
Potential: AV
Presheaf: €1
Principal bundle: A L, [D, Chapter 16]
Principal divisor: A IX
Principal series: A VI
Probability space: B VII
Process: B&VIIT
Product in a category: C 1
Projections of a product: C 1
Projective object: €1
Projective resolution: B 1
Projective morphism, S-scheme: A IX
Proper morphism: A [X
Pseudoconvex open set: A VIIL
Pseudodifferential operator: AV,

[D, Chapter 23]
Pseudofunction, pseudomeasure: B1V

Q

Quasi-algebraically closed field: € I1
Quasi-character: A X
Quasi-coherent ('x-Module: A 1X
Quasi-compact morphism: A IX



