TEXTS AND MONOGRAPHS IN COMPUTER SCIENCE

A PRACTICAL
THEORY OF
PROGRAMMING

Eric C.R. Hehner

A Practical Theory
of Programming

Eric C.R. Hehner

Springer Science+Business Media, LLC

Eric C.R. Hehner
Department of Computer Science

University of Toronto

Toronto, Ontario M5S 1A4

Canada

Series Editors:

David Gries Fred B. Schneider

Department of Computer Science Department of Computer Science
Cornell University Cornell University

Upson Hall Upson Hall

Ithaca, NY 14853-7501 Ithaca, NY 14853-7501

USA USA

With ten illustrations.

Library of Congress Cataloging-in-Publication Data
Hehner, Eric C. R.
A practical theory of programming / Eric C.R. Hehner.
. cm. — (Texts and monographs in computer science)
Includes bibliographical references and index.
ISBN 978-1-4612-6444-6 ISBN 978-1-4419-8596-5 (eBook)
DOI 10.1007/978-1-4419-8596-5
1. Programming (Electronic computers). 1. Title. Il. Series.
QA76.6.H428 1993
005.1—dc20 93-5269

Printed on acid-free paper.

© 1993 Springer Science+Business Media New York

Originally published by Springer-Verlag New York, Inc. in 1993

Softcover reprint of the hardcover 1st edition 1993

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC), except for brief excerpts in
connection with reviews or scholarly analysis. Use in connection with any form of information sto-
rage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodolo-
gy now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former
are not especially identified, is not to be taken as a sign that such names, as understood by the Trade
Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Camera-ready copy prepared from the author's PostScript files using MacWrite.

987654321

ISBN 978-1-4612-6444-6

Contents

0

1

Preface
Introduction
Quick Tour
Acknowledgments

Basic Theories

Boolean Theory
Axioms and Proof Rules
Expression and Proof Format
E lizati

Number Theory

Character Theory

2 Basic Data Structures

3

Bunch Theory
Set Theory

String Theory
List Theory

Multidimensional Structures

Function Theory

4

Functions
bbreviated Function Notafi
Scope and Substitution
Quantifiers
Function Fine Points

Substitution versus Distribution
Function Inclusion and Equality
Function Composition

List as Function

Program Theory

Specifications
Specification Notations

Specification Laws
Refinement
Conditions

Programs

N = O O

00 N W W

11
12

14

BREL

BB BEBRERRER

Contents

Program Development
Refinement Laws
List Summation
Binary Exponentiation

Real Time

cursive Time
Termination
Linear Search
Binary Search
Fast Exponentiation

Eil | Numbers
Robustness

Refinement in Place

5 Programming Language
Scope
Variable Declaration
Variable Suspension
Data Structures
Arrays
Records
Control Structures
While Loop
Repeat Loop
Exit Loop

Two-Dimensional Search

For Loop
Minimum Sum Segment

Go To
Time Dependence
Assertions
Checking
Backtracking
Subprogram
Result Expression
Function
Procedure
Alias

Functional Programming

Function Refinement

g

SR

SRR ED

ERRRER IR B IGNERERRER 2

Contents

6 Recursive Definition 9]

Recursive Data Definition 91

Construction and Induction 91

Least Fixed-Points 94
Recursive Data Cons i

Recursive Program Definition 98

Recursive Program Construction 99

Loop Definition 100

Limits 101

7 Theory Design and Implementation 102

Data Theories 102

Data-Stack Theory 102

Data-Stack Implementation 103

Simple Data-Stack Theory 104

Data-Queue Theory 105

Data-Tree Theory 107

Data-Tree Implementation 107

Program Theories 110

Program-Stack Theory 110

Program-Stack Implementation 111

Fancy Program-Stack Theory 111

Weak Program-Stack Theory 111

Program-Queue Theory 112

Program-Tree Theory 112

Specification by Implementation 115

Data Transformation 116

8 Concurrency 120

Independent Composition 121

Laws of Independent Composition 123

List Concurrency 124

Circuit Design 125

Security Switch 125

Found Concurrency 127

Buffer 128

Insertion Sort

129

Contents

9 Communication 131
Implementability 132

Input and Output 132
Communication Timing 134

Recursively Defined Communication 135

Input Composition 135

Merge 136

Mopitor 137

Reaction Controller 139
Communicating Processes 140

Channel Declaration 141

Deadlock 142

Power Series Multiplication 143

10 Exercises 149
Basic Theories 149

Basic Data Structures 155

Function Theory 158
Program Theory 162
Programming Language 182
Recursive Definition 185
Theory Design and Implementation 192
Concurrency 197
Communication 199
11 Reference 204
Justifications 204
Sources 213
Bibliography 215
Index 219
Axioms and Laws 229
Symbols and Names 241

Precedence

243

0 Preface
Introduction

What good is a theory of programming? Who wants one? Thousands of programmers program
every day without any theory. Why should they bother to learn one? The answer is the same as
for any other theory. For example, why should anyone learn a theory of motion? You can move
around perfectly well without one. You can throw a ball without one. Yet we think it important
enough to teach a theory of motion in high school.

One answer is that a mathematical theory gives a much greater degree of precision by providing a
method of calculation. It is unlikely that we could send a rocket to Jupiter without a mathematical
theory of motion. And even baseball pitchers are finding that their pitch can be improved by hiring
an expert who knows some theory. Similarly a lot of mundane programming can be done without
the aid of a theory, but the more difficult programming is very unlikely to be done correctly without
a good theory. The software industry has an overwhelming experience of buggy programs to
support that statement. And even mundane programming can be improved by the use of a theory.

Another answer is that a theory provides a kind of understanding. Our ability to control and
predict motion changes from an art to a science when we learn a mathematical theory. Similarly
programming changes from an art to a science when we learn to understand programs in the same
way we understand mathematical theorems. With a scientific outlook, we change our view of the
world. We attribute less to spirits or chance, and increase our understanding of what is possible

and what is not. It is a valuable part of education for anyone.

Professional engineering maintains its high reputation in our society by insisting that, to be a
professional engineer, one must know and apply the relevant theories. A civil engineer must know
and apply the theories of geometry and material stress. An electrical engineer must know and
apply electromagnetic theory. Software engineers, to be worthy of the name, must know and
apply a theory of programming.

The subject of this book sometimes goes by the name “programming methodology”, sometimes
“science of programming”, “logic of programming”, “theory of programming”, “formal methods
of program development”, or “verification”. It concerns those aspects of programming that are
amenable to mathematical proof. A good theory helps us to write precise specifications, and to
design programs whose executions provably satisfy the specifications. We will be considering the
state of a computation, the time of a computation, and the interactions with a computation. There
are other important aspects of software design and production that are not touched by this book:

the management of people, the user interface, documentation, and testing.

1 0 Preface

There are several theories of programming. The first usable theory, often called “Hoare's Logic”,
is still probably the most widely known. In it, a specification is a pair of predicates: a
precondition and postcondition (these and all technical terms will be defined in due course).
Another popular and closely related theory by Dijkstra uses the weakest precondition predicate
transformer, which is a function from programs and postconditions to preconditions. Jones's
Vienna Development Method has been used to advantage in some industries; in it, a specification is
a pair of predicates (as in Hoare's Logic), but the second predicate is a relation. Temporal Logic is
yet another formalism that introduces some special operators and quantifiers to describe some
aspects of computation.

The theory in this book is simpler than any of those just mentioned. In it, a specification is just a
boolean expression. Refinement is just ordinary implication. This theory is also more general than
those just mentioned, applying to both terminating and nonterminating computation, to both
sequential and parallel computation, to both stand-alone and interactive computation. And it
includes time bounds, both for algorithm classification and for tightly constrained real-time
applications.

End of Introduction

Quick Tour

All technical terms used in this book are explained in this book. Each new term that you should
learn is underlined. As much as possible, the terminology is descriptive rather than honorary
(notable exception: “boolean”). There are no abbreviations, acronyms, or other obscurities of
language to annoy you. No specific previous mathematical knowledge or programming experience
is assumed. However, the preparatory material on booleans, numbers, lists, and functions in
Chapters 1, 2, and 3 is brief, and previous exposure might be helpful.

The following chart shows the dependence of each chapter on previous chapters.

5

/!

l—>2—>3—>24-—>26—>7

8—>9

Chapter 4, Program Theory, is the heart of the book. After that, chapters may be selected or
omitted according to interest and the chart. The only deviations from the chart are that Chapter 9
uses variable declaration (var) presented in the first section of Chapter 5, and a small optional
section within Chapter 9 depends on Chapter 6.

0 Preface 2

Chapter 10 consists entirely of exercises grouped according to the chapter in which the necessary
theory is presented. All the exercises in the section “Program Theory” can be done according to
the methods presented in Chapter 4; however, as new notations and methods are presented in later
chapters, those same exercises can be redone taking advantage of the later material.

At the back of the book, Chapter 11 contains reference material. The first section, “Justifications”,
answers questions about earlier chapters, such as: why was this presented that way? why was
this presented at all? why wasn't something else presented instead? It may be of interest to
teachers and researchers who already know enough theory of programming to ask such questions.
It is probably not of interest to students who are meeting formal methods for the first time. If you
find yourself asking such questions, don't hesitate to consult the Justifications.

Chapter 11 also contains an index of terminology and a complete list of all laws used in the book.
To a serious student of programming, these laws should become friends, on a first name basis.
The final pages list all the notations used in the book. You are not expected to know these
notations before reading the book; they are all explained as we come to them. You are welcome to
invent new notations if you explain their use. Sometimes the choice of notation makes all the
difference in our ability to solve a problem.

Transparency masters and solutions to exercises are available to course instructors from the author.

End of Quick Tour

Acknowledgments

For inspiration and guidance I thank Working Group 2.3 (Programming Methodology) of the
International Federation for Information Processing, particularly Edsger Dijkstra, David Gries,
John Guttag, Tony Hoare, Jim Horning, Cliff Jones, Bill McKeeman, Carroll Morgan, Greg
Nelson, John Reynolds, Wlad Turski. Ithank my graduate students and teaching assistants from
whom I have learned so much, especially Ray Blaak, Lorene Gupta, Chris Lengauer, Andrew
Malton, Theo Norvell, Alan Rosenthal. For their critical and helpful reading of the first draft I am
most grateful to Wim Hesselink, Jim Horning, Jan van de Snepscheut. For good ideas I thank
Ralph Back, Eike Best, Jo Ebergen, Wim Feijen, Netty van Gasteren, Nicolas Halbwachs, Gilles
Kahn, Alain Martin, Martin Rem, Pierre-Yves Schobbens, Mary Shaw, Bob Tennent, Jan Tijmen
Udding. For reading the draft and suggesting improvements I thank Jules Desharnais, Andy
Gravell, Peter Lauer, Ali Mili, Bernhard Moller, Helmut Partsch, Jgrgen Steensgaard-Madsen,
Norbert Volker. I thank my class for finding errors.

End of Acknowledgments

This book is dedicated to my daughter, Amanda Susan, who at age 3 already shows signs of the
organization and attention to detail of a good programmer.

End of Preface

3
1 Basic Theories
Boolean Theory

Boolean Theory, also known as logic, was designed as an aid to reasoning, and we will use it to
reason about computation. The expressions of Boolean Theory are called boolean expressions. We
divide boolean expressions into two classes; those in one class are called theorems, and those in
the other are called antitheorems.

The expressions of Boolean Theory can be used to represent statements about the world; the
theorems represent true statements, and the antitheorems represent false statements. That is the
original application of the theory, the one it was designed for, and the one that supplies most of the
terminology. Another application for which Boolean Theory is perfectly suited is digital circuit
design. In that application, boolean expressions represent circuits; theorems represent circuits
with high voltage output, and antitheorems represent circuits with low voltage output.

The two simplest boolean expressions are T and L. The first one, T , is a theorem, and the
second one, 1 ,is an antitheorem. When Boolean Theory is being used for its original purpose,
we pronounce T as “true” and L1 as “false” because the former represents an arbitrary true
statement and the latter represents an arbitrary false statement. When Boolean Theory is being
used for digital circuit design, we pronounce T and L as “high voltage” and “low voltage”, or
as “power” and “ground”. They are sometimes called the “boolean values”; they may also be
called the “nullary boolean operators”, meaning that they have no operands.

There are four unary (one operand) boolean operators, of which only one is interesting. Its
symbol is — , pronounced “not”. It is a prefix operator (placed before its operand). An
expression of the form —x is called a pegation. If we negate a theorem we obtain an antitheorem;
if we negate an antitheorem we obtain a theorem. This is depicted by the following truth table.

T 1

—.IJ.T

Above the horizontal line, T means that the operand is a theorem, and 1 means that the operand
is an antitheorem. Below the horizontal line, T means that the result is a theorem, and 1 means
that the result is an antitheorem.

There are sixteen binary (two operand) boolean operators. Mainly due to tradition, we will use
only six of them, though they are not the only interesting ones. These operators are infix (placed
between their operands). Here are the symbols and some pronunciations; for each symbol, the
first pronunciation is the preferred one.

1 Basic Theories 4

A “and”

v “or”

= “implies”, “is as strong as”, “is equal to or stronger than”

= “follows from”, “is implied by”, “is as weak as”, “is weaker than or equal to”
= “equals”, “if and only if”

* “differs from”, “is unequal to”, “exclusive or”, “boolean plus”

An expression of the form xay is called a conjunction, and the operands x and y are called
conjuncts. An expression of the form xvy is called a disjunction, and the operands are called
disjuncts. An expression of the form x=y iscalled an implication, x is called the antecedent,
and y is called the consequent. An expression of the form x<=y is also called an implication, but
now x isthe consequent and y is the antecedent. An expression of the form x=y is called an
equation, and the operands are called the left side and the right side. An expression of the form

x#y is called an unequation, and again the operands are called the left side and the right side.

The following truth table shows how the classification of boolean expressions formed with binary
operators can be obtained from the classification of the operands. Above the horizontal line, the
pair TT means that both operands are theorems; the pair Tl means that the left operand is a
theorem and the right operand is an antitheorem; and so on. Below the horizontal line, T means
that the result is a theorem, and 1 means that the result is an antitheorem.

TT TL 1T 11

A T 1 1 1
v T T T 1
= T 1 T 7T
= T T 1 T
= T 1 1L 7
* 1L T T 1

Infix operators make some expressions ambiguous. For example, L AT v T might be read as
the conjunction 1 A T , which is an antitheorem, disjoined with T , resulting in a theorem. Or it
might be read as L conjoined with the disjunction T v T , resulting in an antitheorem. To say
which is meant, we can use parentheses: either (L A T)v T or L A(T v T). Topreventa
clutter of parentheses, we employ a table of precedence levels, listed on the final page of the book.
In the table, A can be found on level 9, and v on level 10; that means, in the absence of
parentheses, apply A before v . Theexample L A T v T is therefore a theorem.

Each of the operators = = <« appears twice in the precedence table. The large versions = =
< on level 14 are applied after all other operators. Except for precedence, the small versions and
large versions of these operators are identical. Used with restraint, these duplicate operators can
sometimes improve readability by reducing the parenthesis clutter still further. But a word of

5 1 Basic Theories

caution: a few well-chosen parentheses, even if they are unnecessary according to precedence, can

help us see structure. Judgment is required.

There are 256 ternary (three operand) operators, of which we show only one. It is called
conditional composition, and written if x then y else z . Here is its truth table.
TTT TTL TLT Til1 LITT LT1 11T 111

if then elsel T T 1 1 T 1 T 1

For every natural number n , there are 22" operators of n operands, but we now have quite
enough.

When we stated earlier that a conjunction is an expression of the form xay , we were using xAy
to stand for all expressions obtained by replacing the variables x and y with arbitrary boolean
expressions. For example, we might replace x with (L = —(L v T)) and replace y with
(L v T) to obtain the conjunction
(L=2=(LvTNaALVvT)

Replacing a variable with an expression is called substitution or instantiation. With the
understanding that variables are there to be replaced, we admit variables into our expressions,
being careful of the following three points.

» We sometimes have to insert parentheses around expressions that are replacing variables in order
to maintain the precedence of operators. In the example of the preceding paragraph, we replaced a
conjunct x with an implication 1 = —(L v T); since conjunction comes before implication in
the precedence table, we had to enclose the implication in parentheses. We also replaced a conjunct

y with a disjunction L v T , so we had to enclose the disjunction in parentheses.

* When the same variable occurs more than once in an expression, it must be replaced by the same

expression at each occurrence. From x Ax wecanobtain T AT ,butnot T A L.

* We are free to replace different variables by the same expression. From xAy we can obtain
TAT.

As we present other theories, we will introduce new boolean expressions that make use of the
expressions of those theories, and classify the new boolean expressions. For example, when we
present Number Theory we will introduce the number expressions 1+1 and 2, and the boolean
expression 1+1=2, and we will classify it as a theorem. We never intend to classify a boolean
expression as both a theorem and an antitheorem. A statement about the world cannot be both true
and (in the same sense) false; a circuit's output cannot be both high and low voltage. If, by
accident, we do classify a boolean expression both ways, we have made a serious error. But it is

1 Basic Theories 6

perfectly legitimate to leave a boolean expression unclassified. For example, 0/0=5 will be
neither a theorem nor an antitheorem. An unclassified boolean expression may correspond to a
statement whose truth or falsity we do not know or do not care about, or to a circuit whose output
we cannot predict. A theory is called consistent if no boolean expression is both a theorem and an
antitheorem, and inconsistent if some boolean expression is both a theorem and an antitheorem. A
theory is called complete if every fully instantiated boolean expression is either a theorem or an
antitheorem, and incomplete if some fully instantiated boolean expression is neither a theorem nor

an antitheorem.
Axioms and Proof Rules

To prove that a boolean expression is a theorem, or to prove that it is an antitheorem, we must
follow the five rules of proof. We state them first, then discuss them after.

Axiom Rule If a boolean expression is an axiom, then it is a theorem. If a boolean
expression is an antiaxiom, then it is an antitheorem.

Evaluation Rule If all the boolean subexpressions of a boolean expression are classified, then it
is classified according to the truth tables.

Completion Rule If a boolean expression contains unclassified boolean subexpressions, and all
ways of classifying them place it in the same class, then it is in that class.

Consistency Rule If a classified boolean expression contains boolean subexpressions, and at most
one way of classifying them is consistent, then they are classified that way.

Instance Rule If a boolean expression is classified, then all its instances have that same
classification.

We present a theory by saying what its expressions are, and what its theorems and antitheorems
are. An axiom is a boolean expression that is stated to be a theorem. An antiaxiom is similarly a
boolean expression stated to be an antitheorem. The only axiom of Boolean Theory is T and the
only antiaxiom is L . So, by the Axiom Rule, T is atheoremand 1 is an antitheorem.

Before the invention of formal logic, the word “axiom” was used for a statement whose truth was
supposed to be obvious. In modern mathematics, an axiom is part of the design and presentation
of a theory. Different axioms may yield different theories, and different theories may have
different applications. When we design a theory, we can choose any axioms we like, but a bad
choice can result in a useless theory.

7 1 Basic Theories

The first entry in the truth table for the binary operators does not say TAT = T . It says that the
conjunction of any two theorems is a theorem. To prove that TAT =T is a theorem requires the
boolean axiom (to prove that T is a theorem), the first entry in the truth table (to prove that TAT
is a theorem), and the first entry on the = row of the truth table (to prove that TAT =T isa
theorem).

The boolean expression

Tvx
contains an unclassified boolean subexpression, so we cannot use the Evaluation Rule to tell us
which class it is in. If x were a theorem, the Evaluation Rule would say that the whole
expression is a theorem. If x were an antitheorem, the Evaluation Rule would again say that the
whole expression is a theorem. We can therefore conclude by the Completion Rule that the whole
expression is indeed a theorem. The Completion Rule also says that

X VX
is a theorem, and when we come to Number Theory, that

00=5v -0/0=5
is a theorem. We do not need to know that a subexpression is unclassified to use the Completion
Rule. If we are ignorant of the classification of a subexpression, and we suppose it to be

unclassified, any conclusion we come to by the use of the Completion Rule will still be correct.

In a classified boolean expression, if it would be inconsistent to place a boolean subexpression in
one class, then the Consistency Rule says it is in the other class. For example, suppose we know
that expression0 is a theorem, and that expression0 = expressionl is also a theorem. Can we
determine what class expressionl is in? If expression] were an antitheorem, then by the
Evaluation Rule expression0 = expressionl would be an antitheorem, and that would be
inconsistent. So, by the Consistency Rule, expressionl is a theorem. This use of the
Consistency Rule is traditionally called “detachment” or “modus ponens”. As another example, if

—expression is a theorem, then the Consistency Rule says that expression is an antitheorem.

Thanks to the negation operator and the Consistency Rule, we never need to talk about
antitheorems. Instead of saying that expression is an antitheorem, we can say that —expression
is a theorem. But a word of caution: if a theory is incomplete, it is possible that neither
expression nor -—expression is a theorem. Thus “antitheorem” is not the same as “not a
theorem”. Our preference for theorems over antitheorems encourages some shortcuts of speech.
We sometimes state a boolean expression, such as 1+1=2 , without saying anything about it;
when we do so, we mean that it is a theorem. We sometimes say we will prove something,
meaning we will prove it is a theorem.

End of Axioms and Proof Rules

1 Basic Theories 8

With our two axioms (T and —.1) and five proof rules we can now prove theorems. Some
theorems are useful enough to be given a name and be memorized, or at least be kept in a handy
list. Such a theorem is called a Jaw. Some laws of Boolean Theory are listed at the back of the
book. Laws concerning <= have not been included, but any law that uses => can be easily
rearranged into one using 4= . All of them can be proven using the Completion Rule, classifying
the variables in all possible ways, and evaluating each way. When the number of variables is more
than about 2, this kind of proof is quite inefficient. It is much better to prove new laws by making
use of already proven old laws. In the next subsection we see how.

Expression and Proof Format

The precedence table on the final page of this book tells how to parse an expression in the absence
of parentheses. To help the eye group the symbols properly, it is a good idea to leave space for
absent parentheses. Consider the following two ways of spacing the same expression.

anb v ¢

a A bve
According to our rules of precedence, the parentheses belong around aab , so the first spacing is
helpful and the second misleading.

An expression that is too long to fit on one line must be broken into parts. There are several
reasonable ways to do it; here is one suggestion. A long expression in parentheses can be broken
at its main connective, which is placed under the opening parenthesis. For example,

(first part

A second part) _
A long expression without parentheses can be broken at its main connective, which is placed under
where the opening parenthesis belongs. For example,

first part

= second part

Attention to format makes a big difference in our ability to understand a complex expression.

A proof may be written in the following format.

expression(short hint 0
= expressionl short hint 1
= expression2 short hint 2
= expression3 short hint 3

On the left side of the page is a continuing equation. If we did not use equations in this continuing
fashion, we would have to write
expression() = expressionl
A expressionl = expression2
A expression2 = expression3

9 1 Basic Theories

We intend it to be clear that this continuing equation is a theorem. The hints on the right side of the

page are used, when necessary, to help make it clear. The “short hint 0” is supposed to make it
clear that expressionQ = expressionl is a theorem. The “short hint 17 is supposed to make it clear

that expressionl = expression2 is a theorem. And so on. If the theorem to be proven is

expression() = expression3 , then there is no “short hint 3”, and the theorem to be proven follows
from the transitivity of = . If the theorem to be proven is expression0 , then “short hint 3” is

supposed to make it clear that expression3 is a theorem, and the theorem to be proven follows
from the transitivity of = and the Consistency Rule.

Here is an example. Suppose we want to prove the first Law of Portation
anb=>c=a=b=c
Here is a proof.

anb=c Material Implication
= =(aab)ve Duality
= —av-bve Material Implication
= a=-bvc Material Implication
= a=>k=0

From the first line of the proof, we are told to use “Material Implication”, which is the first of the
Laws of Inclusion. This law says that an implication can be changed to a disjunction if we also
negate the antecedent. Doing so, we obtain the second line of the proof. The hint now is
“Duality”, and we see that the third line is obtained by replacing —(a A b) with —av =b in
accordance with the first of the Duality Laws. By not using parentheses on the third line, we
silently use the Associative Law of disjunction, in preparation for the next step. The next hint is
again “Material Implication™; this time it is used in the opposite direction, to replace the first
disjunction with an implication. And once more, “Material Implication” is used to replace the
remaining disjunction with an implication. Therefore, by transitivity of =, we conclude that the
first Law of Portation is a theorem.

Here is the same proof again, but using the proof format the other way.

(anb=c=a=(b=0) Material Implication, 3 times
= (=(anb)vc = —av(=bvc) Duality
= (=av=bvc = —av-bvo) Reflexivity of =

The final hint tells us that the final line is a theorem, hence each of the other lines is a theorem, and
in particular, the first line is a theorem. It may be tempting to write one more line in this proof:
= T

so that every hint takes us from one line to the next. But once we see that we have a theorem, it is
superfluous to write more. Indeed, it is always superfluous to equate a boolean expressionto T
Just as it is to add O to a number expression. On the other hand, it doesn't hurt, and it makes
proof the same as simplification, with the last line being the simplest expression that's equal to the
first line. So we leave it as a matter of taste whether to add this line.

1 Basic Theories 10

Sometimes it is clear enough how to get from one line to the next without a hint, and in that case no
hint will be given. Hints are optional, to be used whenever they are helpful.

Sometimes a hint is too long to fit on the remainder of a line. When that is the case, the hint may
be written in normal text form, between the lines of the proof. We may have
expression() short hint
= expressionl
and now a very long hint, written just as this is written, on as many lines as necessary, followed
by
= expression2

We cannot excuse an inadequate hint by the limited space on one line.

Our proof of the first Law of Portation was a continuing equation. A proof can also be a
continuing implication, or a continuing mixture of these and other operators. As an example, here
is a proof of the first Law of Confutation, which says

@=balc=d = anc=bnad

The proof goes this way:
anc=bnad distribute = over second A
= (anc=bar@arc=4d antidistribution twice
= ((a=b) v(c=b) A ((a=d) v (c=d)) distribute A over v twice

(a=b)n(a=d) v (a=b)n(c=d) v (c=b)A(a=d) v (c=b)A(c=d) generalization
&= (a=b) A (c=d)

From the mutual transitivity of = and <= , we have proven
anc=bard & (a=b) A(c=d)

which can easily be rearranged to give the desired theorem.

A proof, or part of a proof, can make use of local assumptions. A proof may have the format
assumption = (expression0
= expressionl
= expression2
= expression3)
for example. The step expression0 = expressionl can make use of the assumption just as
though it were an axiom. So can the step expression] = expression2 , and so on. Within the
parentheses we have a proof; it can be any kind of proof including one that makes further local
assumptions. We thus can have proofs within proofs, indenting appropriately. If the subproof is
proving expression() = expression3 , then the whole proof is proving
assumption = (expression() = expression3)
If the subproof is proving expression0 , then the whole proof is proving

assumption => expression(

11 1 Basic Theories

If the subproof is proving L , then the whole proof is proving
assumption = L

which is equal to —assumption . This is called “proof by contradiction”.

We can also use if then else as a proof, or part of a proof, in a similar manner. The format is
if possibility
then (first subproof
assuming possibility
as a local axiom)
else (second subproof
assuming —possibility
as a local axiom)
If the first subproof proves something and the second proves something else , the whole proof
proves
if possibility then something else something else
If both subproofs prove the same thing, then by the Case Idempotent Law, so does the whole
proof, and that is its most frequent use.

In this book, a proof is just a theorem, written with enough detail so that it is easily seen to be a
theorem.

End of Expression and Proof Format
Formalization

‘We use computers to solve problems, or to provide services, or just for fun. The desired computer
behavior is usually described at first informally, in a natural language (like English), perhaps with
some diagrams, perhaps with some hand gestures, rather than formally, using mathematical
formulas (notations). In the end, the desired computer behavior is described formally as a
program. A programmer must be able to translate informal descriptions to formal ones.

A statement in a natural language can be vague, ambiguous, or subtle, and can rely on a great deal
of cultural context. This makes formalization difficult, but also necessary. We cannot possibly say
how to formalize, in general; it requires a thorough knowledge of the natural language, and is
aiways subject to argument. In this subsection we just point out a few pitfalls in the translation
from English to boolean expressions.

The best translation may not be a one-for-one substitution of symbols for words. Also, the same
word in different places may be translated to different symbols. And conversely, different words
may be translated to the same symbol. The words “and”, “also”, “but”, “yet”, “however”, and

1 Basic Theories 12

“moreover” might all be translated as A . Just putting things next to each other sometimes means
A . For example, “They're red, ripe, and juicy, but not sweet.” becomes red A ripe A juicy

—sweet .

The word “or” in English is sometimes best translated as v , and sometimes as #* . For example,
“They're either small or rotten.” probably includes the possibility that they're both small and
rotten, and should be translated as small v rotten . But “Either we eat them or we preserve them.”
probably excludes doing both, and is best translated as eat * preserve .

The word “if” in English is sometimes best translated as = , and sometimes as =. For example,
“If it rains, I'll get wet.” probably leaves open the possibility that I might get wet for some other
reason, and should be translated as rain = wet . But “If I get wet, I'll blame you for it.” probably
means “if and only if”, and is best translated as wet = blame .

End of Formalization

End of Boolean Theory
Number Theory

Number Theory, also known as arithmetic, was designed to represent quantity. In the version we
present, a number expression is formed in the following ways.
a sequence of one or more decimal digits

oo “infinity”

+x “plus x 7

-x “minus x”

xX+y “x plus y”

xX-y “x minus y "

XXy “x times y ” (when unambiguous, x may be omitted)
xly “x dividedby y”

x¥ “x to the power y ”

if athen x else y
where x and y are any number expressions, and a is any boolean expression. The infinite
number expression e will be essential when we talk about the execution time of programs. We
also introduce several new ways of forming boolean expressions:

x<y “x islessthan y ™, “ x is smaller than y ”

xSy “x isless thanorequalto y ”, “x isassmallas y "
x>y “x is greater than y ”, “ x is biggerthan y”

x2y “x is greater than orequalto y ”,*“x isasbigas y”
x=y “x equals y”,“x isequalto y”

” L

X%y “x differs from y ”, “x isunequalto y”

15 2 Basic Data Structures

Here are the axioms of Bunch Theory. In these axioms, x and y areelements (elementary
bunches), and A, B, and C are arbitrary bunches.

xiy = x=y elementary axiom
xAB = x:AvxB compound axiom
AA=A idempotence
A,B=B,A symmetry
A,(B,C)=(A,B),C associativity
A'A=A idempotence
A‘B=B'A symmetry
A'BC)=(A'B)‘C associativity

AB:C = A:.C A B:C
A:B'C = A:B A A:C

A'A,B generalization
A'B:A specialization
A A reflexivity
A:B A B:A = A=B antisymmetry
A:B ABC = AC transitivity
gx=1

¢(A, B) + ¢(A'B) =¢A +¢B
—x:A = ¢(A'x)=0
A:B = ¢A<¢B

From these axioms, many laws can be proven. Among them:

A, (A‘B) = A absorption
A‘(A,B) = A absorption
A:B = C,A:C,B monotonicity
A:B = C‘A:C'B monotonicity
A:B = ALB=B = A=A'B inclusion
A,(B,C) = (A,B),(A,0) distributivity
A,(BC) = (A,B)'(A,0) distributivity
A‘(B,C) = (A'B), (A*C) distributivity
AYBC) = (A'B)"(A*C) distributivity
A:B AC:D = A,C:B,D confutation
A:B AC:D = A'C:B‘D confutation

Here are several bunches that we will find useful:

rull the empty bunch
bool = T,1 the booleans

nat = 01,2,.. the natural numbers
int = ..,-2,-1,01,2, .. the integer numbers

2 Basic Data Structures 16

rat = 0, -1, 2/3, ... the rational numbers
xnat = nat, o the extended naturals
xint = —oo int, oo the extended integers
xrat = —oo, rat, o the extended rationals
char = .., "a, "A, ... the characters

We define the empty bunch, null , with the axioms
null: A

¢A=0 = A=null
This gives us three more laws:

A, null = A identity
A ‘null = null base
¢null = 0

The bunch bool is defined by the axiom bool = T, L . The next six of these bunches (the
number bunches) are infinite, and we have not yet defined them formally; the three dots are saying
“guess what goes here”. We define them formally in the chapter “Recursive Definition”; until
then, we rely on your experience. In some books, particularly older ones, the natural numbers
start at 1 ; we will use the term with its current and more useful meaning, starting at 0. The
bunch char may or may not be infinite; we do not care to define it.

We also use the notation
X,..y “x to y” (not“x through y ")
where x and y are extended integers and x<y . Its axiom is
iix,..y = x<igy
The notation ,.. is asymmetric as a reminder that the left end of the interval is included and the

right end is excluded. For example,

0,...c = nat
5,.5 = null
¢(x,..y) = y—=x

The operators , * ¢ : = % if then else apply to bunch operands according to the axioms already
presented. Other operators can be applied to bunches with the understanding that they apply to the
elements of the bunch. In other words, they distribute over bunch union. For example,

—null = null

—(A,B) = -A, -B

(A, B)+null = null

(A, B)+C = A+C, B+C

(A, B)+(C, D) = A+C, A+D, B+C, B+D
This makes it easy to express the positive naturals (nar+1) , the even naturals (narx2) , the squares
(nar?) , the powers of two (274%) , and many other things. We will make great use of this
distribution. (The operators that distribute over bunch union are listed on the final page.)

End of Bunch Theory

17 2 Basic Data Structures

Except for a few brief mentions, we do not use sets in this book. After bunches, it is only a small
step to define sets, and since they are so well-known, they may help to place the other theories in
this chapter in perspective.

Set Theory

Let A be any bunch (anything). Then

{A} “set containing A ”
is a set. Thus {null} is the empty set, and the set containing the first three natural numbers is
expressed as {0, 1,2} oras {0,.3}. All sets are elements; not all bunches are elements; that is
the difference between sets and bunches. We can form the bunch 1, {3, 7} consisting of two
elements, and from it the set {1, {3, 7}} containing two elements, and in that way we build a
structure of nested sets,

The powerset operator , is a unary prefix operator that takes a set as operand and yields a set of
sets as result. Here is an example.

2{0, 1} = {{null}, {0}, {1}, {0, 1}}

The inverse of set formation is also useful. If § is any set, then

~§ “contents of §”
is its contents. For example,
~{0,1} = 0,1

We “promote” the bunch operators to obtain the set operators $ € € U n=. Here are the axioms.

{A} # A

~{A} = A “contents”
J{A}=¢A “size”, “cardinality”
Ae{B} = A:B “elements”

{A} e (B} = A:B “subset”

{Ale ,{B} = AB “powerset”

{A}u {B} = {A, B} “union”

{A}n{B} = {A B} “intersection”
{A}={B} = A=B “equation”

End of Set Theory

Just as bunches and sets are, respectively, unpackaged and packaged collections, so strings and
lists are, respectively, unpackaged and packaged sequences. There are sets of sets, and lists of
lists, but there are neither bunches of bunches nor strings of strings.

2 Basic Data Structures 18

String Theory

The simplest string is

nil the empty string
Any number, character, boolean, set (and later also list and function) is a one-item string, or item.
For example, the number 2 is a one-item string, or item. Strings are catenated (joined) together
by semicolons to make longer strings. For example,

4;2;4;6
is a four-item string. The length of a string is the number of items, and is obtained by the #
operator.

#(4;2;4;6) = 4

We can measure a string by placing it along a string-measuring ruler, as in the following picture.

Each of the numbers under the ruler is called an index. When we are considering the items in a
string from beginning to end, and we say we are at index n , it is clear which items have been
considered and which remain because we draw the items between the indexes. (If we were to
draw an item at an index, saying we are at index n would leave doubt as to whether the item at

that index has been considered.)

The picture saves one confusion, but causes another: we must refer to the items by index, and two
indexes are equally near each item. We adopt the convention that most often avoids the need for a
“+1” or “~1” in our expressions: the index of an item is the number of items that precede it. In
other words, indexing is from 0. Your life begins at year 0, a highway begins at mile 0, and so
on. An index is not an arbitrary label, but a measure of how much has gone before. We refer to
the items in a string as “item 07, “item 17, “item 27, and so on; we never say “the third item” due
to the possible confusion between item 2 and item 3. When we are at index n , then n items have

been considered, and item n will be considered next.

We obtain an item of a string by subscripting. For example,

(33579, =7
In general, §, isitem n of string § . We can even pick out a whole string of items, as in the
following example.

(3:5: 7,99, 1.2 = 1,57

19 2 Basic Data Structures

If n isanatural and S is a string, then n*S means n copies of § catenated together.
3*(0;1) =0;1;0; 1, 0, 1

Without any left operand, *S means all strings formed by catenating any number of copies of § .
¥O0; 1) = nil, 0;1, 0;1;0;1, ...

Strings can be compared for equality and order. To be equal, strings must be of equal length, and
have equal items at each index. The order of two strings is determined by the items at the first
index where they differ. For example,

3:6;4:7 < 3:7;.2
If there is no index where they differ, the shorter string comes before the longer one.

3;6;4 < 3;6;4;,7
This ordering is known as lexicographic order; it is the ordering used in dictionaries.

Here is the syntax of strings. If i isanitem, S and T are strings, and » is a natural number,

then
nil the empty string
i an item
ST *“S§ catenate T”
St “§ sub T”
n*s “n copiesof §”

are strings,
*S “copies of §”
is a bunch of strings, and
#S “lengthof §”
is a natural number. The order operators < <> 2 apply to strings.

Here are the axioms of String Theory. In these axioms, §, T,and U arestrings, i and j are

items, and n is a natural number.

nl;S = S;nil =8 identity
S(TU) = (5;T),U associativity
#nil = 0

#i=1

#(S;T) = #S + #T

S, = nil

(86T yg = i

St,u =S5y

2 Basic Data Structures 22

Let L = [10;..15]. Then
2—>L3|3-=L2|L = [10; 11; 13; 12; 14]
The order operators < <> = apply to lists; the order is lexicographic, just like string order.

Here are the axioms. Let § and T be strings, let n be a natural number, and let i and j be
items.

#(S] = #S length
[STHT] = [S;T) catenation
[SIn =35, indexing
[STIT] = [S4] composition
(#S) = i|[S:5T] = [8:5T) modification
[S1=[T] = §=T equation
[S1<[T] = §<T order

[S; T]: [S] inclusion

We can now prove a variety of theorems, such as for lists L, M, N, and natural n that
(LM)n=L(Mn)
(LM)N = L(MN) associativity
L(M*N) = LM+*LN distributivity

(The proofs assume that each list has the form [S] .)

When a list is indexed by a list, we get a list of results. More generally, the index can be any
structure, and the result will have the same structure.

L null = null
L(A,B) =LA LB
L{A} = {LA]}

L nil = nil
L(S:T)=LS,LT
L[S] = [LS]

Here is a fancy example. Let L =[10; 11; 12]. Then
L[O,{1,[2;1);0}] = [LO, {L1,[L2;L1];L0}] = [10, {11, [12; 11]; 10}]

The text notation is an alternative way of writing a list of characters. A text begins with a double-
quote, continues with any natural number of characters (but a double-quote must be repeated), and
concludes with a double-quote. Here is a text of length 15.
"Don't say ""no""." = [D; 0; m; 7t s My Ty Y5 Ty 0y]
Composing a text with a list of indexes we obtain a subtext. For example,
"abcdefghij" [3;..6] = "def"
Here is a self-describing expression (self-reproducing automaton).

" [0;0:2%(0;..17)]"[0;0:24(03..17)]

23 2 Basic Data Structures

Multidimensional Structures

Lists can be items in a list. For example, let
A =[1[6;3;7;,0];
[4;9;2;5];
[1;5;8;3]]
Then A is a2-dimensional array, or more particularly, a 3x4 array. Formally, A: [3*[4*nar]] .
Indexing A with one index gives a list
Al =10492;5]
which can then be indexed again to give a number.
Al2 =2
Warning: The notations A(1,2) and A[1,2] are used in several programming languages to index
a 2-dimensional array. But in this book,
A(1,2) = A1,A2 =[4;9;,2;5],[1;5;8; 3]
All,2] = [A1,A2] = [[49;2;5],[1;5;8;3]]

We have just seen a rectangular array, a very regular structure, which requires two indexes to give
anumber. Lists of lists can also be quite irregular in shape, not just by containing lists of different
lengths, but in dimensionality. For example, let

B = [[2;3;4[5[6:71]]
Now B00=2 and B1=4,and B 11 isundefined. The number of indexes needed to obtain
a number varies. We can regain some regularity in the following way. Let L be alist, let n be an
index, and let § and T be strings of indexes. Then

Lenil = L

Léen = Ln

Le(S;T) = LeSeT
Now we can always “index” with a single string, called a pointer, obtaining the same result as
indexing by the sequence of items in the string. In the example list,

Be(2;1;0) =B210 =6

We generalize the notation S—i|L toallow S to be a string of indexes. The axioms are
nil—i|L = i
(§;T)—=i|lL = §»(T-i|LeS)|L
Thus S—i|L isalistlike L exceptthat § points toitem i. For example,
O:) =>6][[0;1;2];
[3;4:511 = [[0;6;2];
[3;4;5]]

End of Multidimensional Structures

End of List Theory

End of Basic Data Structures

3 Function Theory

We are always allowed to invent new syntax if we explain the rules for its use. A ready source of
new syntax is names (identifiers), and the rules for their use are most easily given by some
axioms. We might say something like “let pi = 3.14 ”, meaning that we introduce the name pi
and the axiom pi= 3.14 . A similar example is “let x be an element such that x: nat ”, or more
briefly, “let x:nat”. Wecall pi aconstant because the axiom constrains it to one value, and we

call x a variable because the axiom allows it many possible values.

Here is an intermediate example: let p and ¢ be numbers such that

p, q: nat

pPxq =p+q
From the axioms of Number Theory, plus nat induction (Chapter 6), plus these two axioms, we
can prove p=¢q=0 v p=g=2. Whatare p and ¢ ? They are not very variable, yet they are not
completely constant. A theory is defined when we know what expressions we can write and how
to prove theorems. Beyond that, it does not matter what we call anything. It no more matters
whether p and g are called variables or constants than whether < is called “less than” or
“smaller than”.

Usually when we introduce names and axioms we want them for some local purpose; we do not
want to shout them to the world. The reader is supposed to understand their scope, the region
where they apply, and not use them beyond it. Though the names and axioms are formal
(expressions in our formalism), they were introduced informally in our examples (by an English
sentence beginning with “let”), and the scope of informally introduced names and axioms is not
always clear. In this chapter we present a formal notation for introducing a local name together

with a local axiom to say what its possible values are.
Functions

Let v be aname, let D be a bunch of items (possibly using previously introduced names but not
using v), and let b be any expression (possibly using previously introduced names and possibly
using v). Then

Av:D- b “map v in D to ”,“local v in D mapsto b”
is a function of variable v with domain D and body & . The inclusion v: D is a local axiom

within the body b . For example,
An: nat n+1
is the successor function on the natural numbers. Here is a picture of it.

