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Foreword

Section Il (Encodings) and indeed of the actual ITU-T Recommendations/ISO
Standards for ASN.1.

* Students on courses covering protocol specification techniques:
Undergraduate and postgraduate courses aiming to give their students an
understanding of the abstract syntax approach to protocol specification
(and perhaps of ASN.1 itself) should place the early parts of Section I
(ASN.1 Overview) and some of Section IV (History and Applications) on the
reading list for the course.

¢« The intellectually curious: Perhaps this group will read the whole text
from front to back and find it inferesting and stimulating! Attempts have
been made wherever possible to keep the text light and readable—go to it!

There is an electronic version of this text available, and a list of further ASN.1-
related resources, at the URL given in Appendix 5. And importantly, errata
sheets will be provided at this site for downloading.

The examples have all been verified using the “0OS55 ASN.1 Tools™ package pro-
duced and marketed by Open Systems Solutions (0SS), a U.S. company that has
(since 1986) developed and marketed tools to assist in the implementation of pro-
tocols defined using ASN.1. I am grateful to OSS for much support in the produc-
tion of this book, and for the provision of their tool for this purpose. While OSS has
given support and encouragement in many forms, and has provided a number of
reviewers of the text who have made very valued comments on early drafts, the
views expressed in this text are those of the author alone.

John Larmouth
{ «<hyperlink mailto:j.larmouth@salford.ac.uk »)
May 1999



Introduction

Summary

This introduction
s describes the problem ASN.1 addresses,
*  briefly says what ASN.1 is, and

» explains why it is useful.

1 The Global Communications Infrastructure

We are in a period of rapid advance in the collaboration of computer systems to
perform a wider range of activity than ever before. Traditional computer commu-
nications to support human-driven remote logon, e-mail, file-transfer, and latterly
the World Wide Web (WWW) are being supplemented by new applications requir-
ing increasingly complex exchanges of information both between computer sys-
tems and between appliances with embedded computer chips.

Some of these exchanges of information continue to be human-initiated, such as
bidding at auctions, money wallet transfers, electronic transactions, voting sup-
port, or interactive video. Others are designed for automatic and autonomous
computer-to-computer communication in support of such diverse activities as cel-
lular telephones (and other telephony applications), meter reading, pollution
recording, air traffic control, control of power distribution, and applications in the
home for control of appliances.

In all cases there is a requirement for the detailed specification of the exchanges
the computers are to perform, and for the implementation of software to support
those exchanges.

The most basic support for many of these exchanges today is provided by the use
of TCP/IP and the Internet, but other carrier protocols are still in use, particularly
in the telecommunications area. However, the specification of the data formats for
messages that are to be passed using TCP (or other carriers) requires the design
and clear specification of application protocols, followed by (or in parallel with)
implementation of those protocols.

xxiii
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For communication to be possible between applications and devices produced by
different vendors, standards are needed for these application protocols. The stan-
dards may be produced by recognized international bodies such as the
International Telecornmunications Union Telecommunications Standards Sector
(ITU-T), the International Standards Organization (ISO), or the Internet
Engineering Task Force (IETF), or by industrial associations or collaborative
groups and consortia such as the International Civil Aviation Organization (ICAQ),
the Open Management Group (OMG) or the Secure Electronic Transactions (SET)
consortium, or by individual multinational organizations such as Reuters or IBM.

These different groups have various approaches to the task of specifying the com-
munications standards, but in many cases ASN.1 plays a key role by enabling

* rapid and precise specification of computer exchanges by a standardization
body, and

s easy and bug-free implementation of the resulting standard by those pro-
ducing products to support the application.

In a number of industrial sectors, but particularly in the telecommunications sec-
tor, in security-related exchanges, and in multimedia exchanges, ASN.1 is the dom-
inant means of specifying application protocols. (The only other major contender
is the character-based approach often used by IETF, but which is less suitable for
complex structures, and which usually produces a much less compact set of encod-
ings.) A description of some of the applications where ASN.1 has been used as the
specification language is given in Chapter 20.

2 What Exactly Is ASN.1?

The term “TCP/IP" can be used to describe two protocol specifications
(Transmission Control Protocol—TCP, and Internet Protocol—IP), or more broadly
to describe the complete set of protocols and supporting software that are based
around TCP/IF. Similarly, the term “ASN.1” can be used narrowly to describe a nota-
tion or language called “Abstract Syntax Notation One”, or can be used more
broadly to describe the notation, the associated encoding rules, and the software
tools that assist in its use.

The things that make ASN.1 important and unique include the following:

* [t is an internationally standardized, vendorindependent, platform-indepen-
dent, and language-independent notation for specifying data-structures at a
high level of abstraction, (The notation is described in Sections I and II.)
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Identification of an application area, establishment of consortia
and working groups, decision to proceed with a specification.

.

Identification of the information flows required o support
the application, at a high level of abstraction.

v

Discussion and agreement on a notation or mechanism to

enable the clear specification of the formats of messages _ Not__
1o be used for this application. ASN.1

|

Specify data-structures or classes using the ASN. 1 notation
10 carry the required semantics, and write text for the associated
rules for sending and action on receiving the messages.

|

Tterate, refine, note trial implementation results, standardize

End of initial J

=

Multiple implementation groups, I
different languages, different platforms.

'
Map ASN.1 data-structures to chosen
language, preferably using an ASN.1
compiler.

'

Wnte code to implement rules for
sending messages (or actions on receipt)
using values in defined data-structures.

Compile complete application with calls to ASN.1 compiler run-time routines to
encode values in data-structures into binary messages, and to decode incoming
messages into data-structure values,

v

| Deploy resulting systems. i

The development process with ASN.1.
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It is supported by rules that determine the precise bit-patterns (again plat-
form-independent and language-independent) to represent values of these
data-structures when they have to be transferred over a computer network,
using encodings that are not unnecessarily verbose. (The encoding rules
are described in Section IIL)

It is supported by tools available for most platforms and several program-
ming languages that map the ASN.1 notation into data-structure definitions
in a computer programming language of choice, and which support the
automatic conversion between values of those data-structures in memory
and the defined bit-patterns for transfer over a communications line. (The
tools are described in Chapter 6.)

There are a number of other subtle features of ASN.1 that are important and are dis-
cussed later in this text. Some of these are

It addresses the problem of, and provides support for, interworking
between deployed “version-1" systems and “version-2" systems that are
designed and deployed many years apart. (This is called “extensibility”.)

It provides mechanisms to enable partial or generic specification by one
standards group, with other standards groups developing (perhaps in very
different ways) specific specifications.

It recognizes the potential for interworking problems between large sys-
tems capable of handling long strings, large integer values, large iterative
structures, and small systems that may have a lesser capability.

It provides a range of data-structures that is generally much richer than that
of normal programming languages, such as the size of integers, naming
structures, and character string types. This enables precision in the specifi-
cation of the range of values that need to be transferred, and hence pro-
duction of more optimal encodings.

3 The Development Process with ASN.1

The flow diagram on page xxv illustrates the development process from inception
to deployment of initial systems.

(But it must be remembered that this process is frequently an iterative one, with
both early revisions by the standardization group to “get it right” and with more
substantial revisions some years later when a “version-2" standard is produced.)
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CHAPTER 1

Specification of Protocols
(Or: Simply Saying Simply What Has To Be Said!)

Summary
This chapter
* introduces the concept of a “protocol” and its specification,

* provides an early introduction to the concepts of
— layering,
— extensibility,
- abstract and transfer syntaxes,

* discusses means of protocol specification, and

* describes common problems that arise in designing speci-
fication mechanisms and notations.

(Readers involved in protocol specification should be familiar with
much of the early “concepts” material in this chapter, but may find
that it provides a new and perhaps illuminating perspective on
some of the things they have been trying to do.)

1.1 What Is a Protocol?

A computer protocol can be defined as

A well-defined set of messages (bit-patterns or—increasingly today—
octet strings), each of which carries a defined meaning (semantics),
together with the rules governing when a particular message can be sent.

However, a protocol rarely stands alone. Rather, it is commonly part of a “protocol
stack”, in which several separate specifications work together to determine the
complete message emitted by a sender, with some parts of that message destined
for action by intermediate (switching) nodes, and some parts intended for the
remote end system.
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In this “layered” protocol technique

*  One specification determines the form and meaning of the outer part of the
message, with a “hole” in the middle. It provides a “carrier service” (or just

What Is a Protocol?
A well-defined set of messages,
each of which carries a defined

meaning, and,

the rules governing when a par-
ticular message can be sent,

and

explicit assumptions about the
nature of the service used to
transfer the messages, which
themselves either support a
single-end application or pro-
vide a richer carrier service,

“service”) to convey any material that
is placed in this “hole”.

* A second specification defines
the contents of the “hole”, per-
haps leaving a further hole for
another layer of specification,
and so on.

Figure 1.1 illustrates a TCP/IP stack,
where real networks provide the
basic carrier mechanism, with the IP
protocol carried in the “hole” they
provide, and with IP acting as a car-
rier for TCP (or the less well-known
User Datagram Protocol—UDP),
forming another protocol layer, and

IP or Network
Layer

“Real” Ethernet
Networks header

Application
Layer

TCP or
Transport
Layer

Application
Message

I

TCP

header “Hole™

header

“Hole™

Cyclic
“Hole™ Redundancy
Check

Figure 1.1 Sample protocol stack—TCP/IR
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1

with a (typically for TCP/IP) monolithic application layer—a single specification
completing the final “hole”,

The precise nature of the “service” provided by a lower layer—lossy, secure, reliable—
and of any parameters controlling that service, need to be known before the next
layer up can make appropriate use of that service.

We usually refer to each of these individual specification layers as “a protocol”, and
hence we can enhance our definition.

Note that in Figure 1.1, the “hole” provided by the IP carrier can contain either a
TCP message or a UDP message—two very different protocols with different prop-
erties (and themselves providing a further carrier service). Thus one of the advan-
tages of “layering” is in reusability of the carrier service to support a wide range of
higher level protocols, many perhaps that were never thought of when the lower-
layer protocols were developed.

When multiple different protocols can occupy a hole in the layer below (or pro-
vide carrier services for the layer above), this is frequently illustrated by the lay-
ering diagram shown in Figure 1.2.

Application FTP SMTP HTTP Real etc

Layer Audio

TCP or

Transport TCP UDP

Layer

Internet

IP or Network Protocol

Layer
“Real” Ethernet ATM ADSL Telephone | | etc.
Networks lines

Figure 1.2 Layered protocols—TCP/IP
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1.2 Protocol Specification: Some Basic Concepts

Protocols can be (and historically have been) specified in many ways. One funda-
mental distinction is between character-based specification vs. binary-based
specification.

Character-based specification The “protocol” is defined as a series of
lines of ASCII encoded text.

Binary-based specification The “protocol” is defined as a string of
octets or of bits.

For binary-based specification, approaches vary from various picture-based meth-
ods to use of a separately defined notation with associated application-independent
encoding rules.

The latter is called the “abstract syntax” approach. This is the approach taken
with ASN.1. It has the advantage that it enables designers to produce specifications
without undue concern with the encoding issues, and also permits application-
independent tools to be provided to support the easy implementation of protocols
specified in this way. Moreover, because application-specific implementation code
is independent of encoding code, it makes it easy to migrate to improved encodings
as they are developed.

1.2.1 Layering and Protocol “Holes”

The layering concept is perhaps most commonly associated with the International
Standards Organization (ISO) and International Telecommunications Union (ITU)
“architecture” or “7-layer model” for Open Systems Interconnection; (OSI) shown
in Figure 1.3.

While many of the protocols developed within this framework are not greatly used
today, it remains an interesting academic study for approaches to protocol specifi-
cation. In the original OSI concept in the late 1970s, there would be just 6 layers
providing (progressively richer) carrier services, with a final “application layer”
where each specification supported a single end-application, with no “holes”.

However, over the next decade it became apparent that even in the “application
layer” people wanted to leave “holes” in their specification for later extensions, or
to provide a means of tailoring their protocol to specific needs. For example, one
of the more recent and important protocols—Secure Electronic Transactions
(SET }—contains a wealth of fully defined message semantics, but also provides for
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1.2.2 Early Developments of Layering

The very earliest protocols operated over a single link (called, surprisingly, “LINK"
protocols!) were specified in a single monolithic specification in which different
physical signals (usually voltage or current) were used to signal specific events
related to the application. (An example is the “off-hook” signal in early telephony
systems.) If yvou wanted to run a different application, you redefined and rebuilt
your electronics!

This illustrates the major advantage of “layering”—it enables reusability of carrier
mechanisms to support a range of different higher-layer protocols or applications,
as illustrated in Figure 1.2.

Nobody today would dream of providing a single monolithic specification similar
to the old “LINK" protocols; perhaps the single most important step in computer
communication technology was to agree that current, voltage, sound, and light sig-
naling systems would do nothing more than transfer a two-item alphabet—a zero
or a one—and that applications would build on that. Another important step was to
provide another “layer” of protocol to turn this continuous flow of bits into delim-
ited or “framed” messages with error detection, enabling higher layer protocols to
talk about “sending a message” (which may get lost, may get through, but the unit
of discussion is the message).

But this is far too low a level of discussion for a book on ASN.1! Between these
electrical levels and the normal carriers that ASN.1 operates with we have layers of
protocol concerned with both addressing and routing through the Internet or a tele-
coms network and with recovery from lost messages.

At the ASN.1 level, we assume that an application on one machine can “talk” to an
application on another machine by reliably sending octet strings between them-
selves. (Note that all ASN.1-defined messages are an integral multiple of 8-bits—an
octet siring, not a general bit string.) This is illustrated in Figure 1.4.

Nonetheless, many ASN.1-defined applications are still specified by first specifying a
basic “carrier” service, with additional specifications (perhaps provided differently by
different groups) to fill in the holes. This is illustrated in Figure 1.5. As we will see later,
there are many mechanisms in ASN.1 to support the use of “holes” or of “layering”.

People have sometimes described the OSI 7-layer model as “layering gone mad”.
Layering can be an important tool in promoting reusability of specifications (and
code), and in enabling parts of the total specification (a low or a high layer), to be
later improved, extended (or just mended!) without affecting the other parts of the
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Figure 1.5 Generic and specific protocols with ASN.1.

of “later improvement” is a key phrase, and has importance beyond any discussion
of layering. One of the important aspects of protocol specification recognized in the

1980s is that a protocol specification is

Extensibility Provision
Part of a version 1 specification
designed to make it easy for
future version 2 (extended) sys-
tems to interwork with deployed

version 1 systems.

rarely (probably never!) completed on
date xyz, implemented, deployed, and
left unchanged.

There is always a “version 2", And imple-
mentations of version 2 need to have a
ready means of interworking with the

already-deployed implementations of

“version 1", preferably without having to include in version 2 systems a complete imple-
mentation of both version 1 and version 2 (sometimes called “dual-stacks™).
Mechanisms enabling version 1 and version 2 exchanges are sometimes called a “migra-
tion” or “interworking strategy” between the new and the earlier versions. In the transi-
tion from [Pv4 to IPv6 (the “IP" part of “TCP/IP"), it has perhaps taken as much work to
solve migration problems as it took to design IPv6 itself! (An exaggeration of course, but
the point is an important one—interworking with deployed version 1 systems matters.)

It turns out that provided you make plans for version 2 when you write your ver-
sion 1 specification, you can make the task of “migration” or of defining an “inter-

working strategy” much easier.
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Figure 1.6 Version 1 and Version 2 interworking.

We can define extensibility provision as

* elements of a version 1 specification that allow the encapsulation of
unknown material at certain points in the version 1 messages, and

* specification of the actions to be taken by the version 1 system if such
material is present in a message.

Provision for extensibility in ASN.1 is an important aspect, which will be discussed
further later in this book, and is illustrated in Figure 1.6.

Extensibility was present in early work in ITU-T and ISO by use of a very formal-
ized means of transferring parameters in messages, a concept called “TLV"—Type,
Length, Value, in which all pieces of information in a message are encoded with a
type field identifying the nature of that piece of information, a length field delimit-
ing the value, and then the value itself, an encoding that determines the information
being sent. This is illustrated in Figure 1.7 for parameters and for groups of param-
eters. The approach is generalized in the ASN.1 Basic Encoding Rules (BER) to
cover groups of groups, and so on, to any depth.

Note that the encoding used for the value only needs to unambiguously identify
application information within the context of the parameter identified by the type
field. This concept of distinct octet strings that identify information within the con-
text of some explicit “class” or “type” identifier is an important one that will be
returned to later.

By requiring in the version 1 specification that parameters that are “unrecognized™—
added in version 2—should be silently ignored, the designers of version 2 have a
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Figure 1.7 The "TLV" approach for parameters and groups.

predictable basis for interworking with deployed version 1 systems. Of course, any
other well-specified behavior could be used, but “silently ignore” was a common
specification. ASN.1 provides a notation for defining the form of messages,
together with “encoding rules” that specify the actual bits on the line for any mes-
sage that can be defined using the notation. The “TLV" described above was incor-
porated into the earliest ASN.1 encoding rules (the Basic Encoding Rules; or
BER) and provides very good support for extensibility due to the presence in every
element of the “T" and the “L”, enabling “foreign” (version 2 ) material to be easily
identified and skipped (or relayed). It does, however, suffer from encoding identi-
fication and length fields that are often unnecessary apart from their use in pro-
moting extensibility. For a long time it was thought that this verbosity was an
essential feature of extensibility, and it was a major achievernent in encoding rule
design when the ASN.1 Packed Encoding Rules (PER) provided good support
for extensibility with little additional overhead on the line.

1.2.5 Abstract and Transfer Syntax

The terms abstract and transfer syntax were primarily developed within the OSI
work, and are variously used in other related computer disciplines. The use of these
terms in ASN.1 (and in this book) is almost identical to their use in OSI, but does
not of course make ASN.1 in any way dependent on OSL
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The following steps are necessary when specifying the messages forming a proto-
col (see Figure 1.8):

* The determination of the information that needs to be transferred in each
message; this is a “business-level” decision. We refer here to this as the
semantics associated with the message.

&  The design of some form of data-structure (at about the level of generality
of a high-level programming language, and using a defined notation) capable
of carrying the required semantics. The set of values of this data-structure
are called the abstract syntax of the messages or application. We call the
notation we use to define this data structure or set of values the abstract
syntax notation for our messages; ASN.1 is just one of many possible
abstract syntax notations, but is probably the one most commonly used.

* The crafting of a set of rules for encoding messages such that, given any
message defined using the abstract syntax notation, the actual bits on the
line to carry the semantics of that message are determined by an algorithm
specified once and once only (independent of the application). We call such
rules encoding rules, and we say that the result of applying them to the set
of (abstract syntax) messages for a given application defines a transfer
syntax for that application. A transfer syntax is the set of bit-patterns to be
used to represent the abstract values in the abstract syntax, with each bit-
pattern representing just one abstract value. (In ASN.1, the bit-patterns in a
transfer syntax are always a multiple of 8 bits, for easy carriage in a wide
range of carrier protocols.)

We saw that early LINK protocols did not clearly separate electrical signaling from
application semantics, and similarly today, some protocol specifications do not
clearly separate the specification of an absiract syntax from the specification of the
bits on the line (the transfer syntax). It is still common to specify directly the bit-
patterns to be used (the transfer syntax), and the semantics associated with each
bit-pattern. However, as will become clear later, failure to clearly separate abstract
from transfer syntax has important implications for reusability and for the use of
common tools. With ASN.1 the separation is complete.

1.2.6 Command Line or Statement-Based Approaches

Another important approach to protocol design (not the approach taken in ASN.1)
is to focus not on a general-purpose data-structure to hold the information to be
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Interface Definition Language that enables the data-structures that are passed
across each interface to be specified at a high-level of abstraction.

Probably the most important IDL today is the Common Object Request Broker
Architecture (CORBA) IDL. In CORBA, the IDL is supported by a wealth of specifi-
cations and tools including encoding rules for the IDL, and means of transfer of
messages to access interfaces across networks.

A detailed comparison of ASN.1 and CORBA goes beyond this text, and remarks
made here should be taken as this author’s perception in mid 1999. In essence,
CORBA is a complete architecture and message passing specification in which the
IDL and corresponding encodings form only a relatively small (but important) part.
The CORBA IDL is simpler and less powerful than the ASN.1 notation, and as a
result encodings are generally much more verbose than the Packed Encoding Rule
(PER) encodings of ASN.1. ASN.1 is generally used in protocol specifications
where very general and flexible exchange of messages is needed between commu-
nicating partners, whereas CORBA encourages a much more stylized “invocation
and response” approach, and generally needs a much more substantial supporting
infrastructure.

1.3 More on Abstract and Transfer Syntaxes
1.3.1 Abstract Values and Types

Most programming languages involve the concept of types or classes (and notation
to define a more complex type by reference to built-in types and “construction
mechanisms”), with the concept of a value of a type or class (and notation to spec-
ify values). ASN.1 is no different.

So, for example, in C we can define a new type “My-type” as:

typedef struct My-type {
ghort firgt-item;

boolean second-item} My-type;

The equivalent definition in ASN.1 appears below.

In ASN.1 we also have the concept of values of basic types or of more complex struc-
tures. These are often called abstract values (see Figure 1.8 again), to emphasize
that we are considering them without any concern for how they might be represented
in a computer or on a communications line. For convenience, these abstract values
are grouped together into types. For example, we have the ASN.1 type notation
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Now let us consider a designer who wants to specify the messages of a protocol
using ASN.1. It would be possible to define a set of ASN.1 types (one for each dif-
ferent sort of message), and to say that the set of abstract values to be transmitted
in protocol exchanges (and hence

needing encoding) is the set of all the Abstract Syntax
abstract values of all those ASN.1 The set of abstract values of the
types. The observant reader (some toplevel type for the application.
people will not like me saying that!)

will have spotted that the preceding requirement on a correct set of encoding rules
is not sufficient for unambiguous communication of the abstract values, because
two abstract values in separate but similar ASN.1 types could have the same octet-
string representation. (Both types might be a sequence of two integers, but they
could carry very different semantics.)

It is therefore an important requirement in designing protocols using ASN.1 to spec-
ify the total set of abstract values that will be used in an application as the set of
abstract values of a single ASN.1 type. This set of abstract values is often
referred to simply as the abstract syntax of the application, and the corre-
sponding set of octet strings after applying some set of encoding rules is referred
to as a possible transfer syntax for that application. Thus the application of the
ASN.1 Basic Encoding Rules (as in Figure 1.8) to an ASN.1 type definition produces
a transfer syntax (for the abstract syntax) which is a set of bit patterns that can be
used to represent these abstract val-

ues unambiguously during transfer. Transfer Syntax
Note that in some other areas, where A set of unambiguous octet
the emphasis is on storage of data strings used to represent a
rather than its transfer over a net- value from an abstract syntax
work, the concept of abstract syntax during transfer.

is still used to represent the set of
abstract values, but the term concrete syntax is sometimes employed for a par-
ticular bit-pattern representation of the material on a disk. Thus some authors will
talk about “concrete transfer syntax” rather than just “transfer syntax”, but this
term is not used in this book.

We will see later how, if we have distinct ASN.1 types for different sorts of mes-
sages, we can easily combine them into a single ASN.1 type to use to define our
abstract syntax (and hence our transfer syntax). There is specific notation in the
post-1994 version of ASN.1 to identify this “top-level” type clearly. All other ASN.1
type definitions in the specification are there solely to give support to this top-level
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type, and if they are not referenced by it (directly or indirectly), their definition is
superfluous and a distracting irrelevance! Most people don’t retain superfluous
type definitions in published specifications, but sometimes for historical reasons
(or through sloppy editing or both!) you may encounter such material.

In summary then—ASN. 1 encoding rules provide unambiguous octet strings to rep-
resent the abstract values in any ASN.1 type; the set of abstract values in the top-
level type for an application is called the abstract syntax for that application; and
the corresponding octet-strings representing those abstract values unambiguously
(by the use of any given set of encoding rules) is called a transfer syntax for that
application.

Note that where there are several different encoding rule specifications available
(as there are for ASN.1) there can in general be several different transfer syntaxes
(with different verbosity and extensibility—etc.—properties) available for a partic-
ular application, as shown in Figure 1.8.

In the OSI world, it was considered appropriate to allow run-time negotiation of
which transfer syntax to use. Today, we would more usually expect the application
designer to make a selection based on the general nature and requirements of the
application.

1.4 Evaluative Discussion
1.4.1 There Are Many Ways of Skinning a Cat: Does It Matter?

While the clear separation of abstract syntax specification (with associated
semantics) from specification of a transfer syntax is clearly “clean” in a purist
sort of way, does it matter? Is there value in having multiple transfer syntaxes for
a given application? The ASN.1 approach to protocol design provides a common
notation for defining the abstract syntax of any number of different applications,
with common specification text and common implementation code for deriving
the transfer syntax from this. Does this really provide advantages over the char-
acter line approach discussed earlier? Both approaches have certainly been
employed with success. Different experts hold different views on this subject,
and as with so much of protocol design, the approach you prefer is more likely to
depend on the culture you are working within than on any rational arguments.
Indeed, there are undoubted advantages and disadvantages to both approaches,
so that a decision becomes more one based on which criteria you consider the
most important, rather than on any absolute judgment. So here (as in a number
of parts of this book) Figure 999: Readers take warning (modified—"Smoking”
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Government i
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packets!) applies. (I will refer back
to Figure 999 whenever a remark
appears in this book that may be
Figure 999: Readers take warning. somewhat contentious.)

1.4.2 Early Work with Multiple Transfer Syntaxes

Even before the concepts of abstract and transfer syntax were spelled out and the
terms defined, protocol specifiers recognized the concepts and supplied multiple
transfer syntaxes in their specifications.

Thus in the Computer Graphics Metafile (CGM) standard, the body of the standard
defines the functionality represented by a CGM file (the abstract syntax), with three
additional sections defining a “binary encoding”, a “character encoding”, and a “clear-
text encoding”. The “binary encoding” was the least verbose, was hard for a human
to read (or debug), was not easy to produce with a simple program, and required a
storage or transfer medium that was 8-bit transparent. The “character encoding” used
two-character mnemonics for “commands” and parameters, and was in principle
capable of being produced by a text editor. It was more human readable, but impor-
tantly mapped to octets via printing ASCII characters and hence was more robust in
the storage and transfer media it could use (but was more verbose). The “clear-text”
encoding was also ASCIl-based, but was designed to be very human-readable, and
very suitable for production by a human being using a suitable text editor, or for view-
ing by a human being for debugging purposes. It could be employed before any graph-
ical interface tools for CGM became available, but was irrelevant thereafter.

These alternative encodings are appropriate in different circumstances, with the
compactness of the “binary encoding” giving it the market edge as the technology
matured and tools were developed.

1.4.3 Benefits

Some of the benefits that arise when a notation for abstract syntax definition is
employed are identified here, with counterarguments where appropriate.

1.4.3.1 Efficient Use of Local Representations

Suppose you have an application using large quantities of material, which is stored
on machine-type-A in a machine-specific format—say with the most significant
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octet of each 16-bit integer at the lower address byte. On machine-type-B, however,
because of differing hardware, the same abstract values are represented and stored
with the most significant octet of each 16-bit integer at the higher address byte.
(There are usually further differences in the machine-A/machine-B representations,
but this so-called “big-endian/little-endian” representation of integers is often the
most severe problem.)

When transferring between machine-type-A and machine-type-B, it is clearly nec-
essary for one or both parties (and if we are to be even-handed it should be both!)
to spend CPU cycles converting into and out of some agreed machine-independent
transfer syntax. But if we are transferring between two separate machines both of
machine-type-A, it clearly makes more sense to use a transfer syntax closely related
to the storage format on those machines.

This issue is generally more important for applications involving the transfer of
large quantities of highly structured information, rather than for small headers
negotiating parameters for later bulk transfer. An example where it would be rele-
vant is the Office Document Architecture (ODA) specification. This is an ISO
Standard and ITU-T Recommendation for a large structure capable of representing
a complete service manual for (for example) a Boeing aircraft, so the application
data can be extremely large.

1.4.3.2 Improved Representations over Time

It is often the case that the early encodings produced for a protocol are inefficient,
partly because of the desire to be “protective”, or to have encodings that are easy
to debug, in the early stages of deployment of the application, partly from simple
time pressures. It can also be because insufficient effort is put into the “boring”
task of determining a “good” set of “bits-on-the-line” for this application.

Once again, if the bulk of the protocol is small compared with some “bulk-data”
that it is transferring, as is the case—for most messages—with the Internet’s Hyper-
Text Transfer Protocol (HTTP) or File Transfer Protocol (FTP), then efficiency of
the main protocol itself becomes relatively unimportant.

1.4.3.3 Reuse of Encoding Schemes

If we have a clear separation of the concept of abstract syntax definition from
transfer syntax definition, and have available a notation for abstract syntax defi-
nition (such as ASN.1) that is independent of any application, then specification
and implementation benefits immediately accrue. The task of generating “good”
encoding rules for that notation can be done once, and these rules can be refer-
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data-structures in the implementation language, this encourages (but of course
does not require) a modular approach to implementation design in which the code
responsible for performing the encodings of the data is kept clearly separate from
the code responsible for the semantics of the application.

1.4.3.5 Reuse of Code and Common Tools

This is perhaps the major advantage that can be obtained from the separation of
abstract and transfer syntax specification, which is characteristic of ASN.1.

By the use of so-called ASN.1 “compilers” (dealt with more fully in Chapter 7 and
which are application-independent), any abstract syntax definition in ASN.1 can be
mapped into the (abstract) data-structure model of any given programming lan-
guage, through the textual representation of data-types in that language.
Implementors can then provide code to support the application using that (abstract)
data-structure model with which they are familiar, and can call an application-inde-
pendent piece of code to produce encodings of values of that data-structure for
transmission (and similarly to decode on reception).

It is very important at this point for the reader to understand why “(abstract)” was
included in the preceding text. All programming languages (from C to Java) present
to their users a “memory-model” by which users define, access, and manipulate
structures. Such models are platform independent, and generally provide some
level of portability of any associated code. However, in mapping through compilers
and run-time libraries into real computer memory (concrete representation of the
abstract data-structures), specific features of different platforms intrude, and the
precise representation in memory differs from machine-type to machine-type (see
the “big-endian/little-endian” discussion in Chapter 18).

A tool-vendor can provide (possibly platform-specific, but certainly application-
independent) run-time routines to encode/decode values of the abstract data-struc-
tures used by the implementor, and the implementor can continue to be blissfully
unaware of the detailed nature of the underlying hardware, but can still efficiently
produce machine-independent transfer syntaxes from values stored in variables of
the implementation language.

As with any discussion of code structure, reusability, and tools, real benefits arise
only when there are multiple applications to be implemented. It is sometimes
worthwhile building a general-purpose tool to support a single implementation, but
more often than not it is not. Tools are of benefit if they can be used for multiple
implementations, either by the same implementors or by a range of implementors.
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1.5 Protocol Specification and Implementation:
A Series of Case Studies

This section completes this chapter with discussion of a number of approaches to
protocol specification and implementation, ending with a simple presentation of
the approach that is adopted when ASN.1 is used.

1.5.1 Octet Sequences and Fields within Octets

Protocols for which all or much of the information can be expressed as fixed-length
fields, which are all required to be present, have traditionally been specified by
drawing diagrams such as the one shown in Figure 1.10—Traditional approach.

Figure 1.10 is part of the Internet Protocol Header (the Internet Protocol is the TP
protocol of the TCP/IP stack illustrated in Figure 1.2). A similar picture is used in
X.25 level 2 to define the header fields.

This approach was very popular in the early days, when implementations were per-
formed using assembler language or languages such as BCPL or later C, allowing
the implementor close contact with the raw byte array of a computer memory.

It was relatively easy for the implementor to read in octets from the communica-
tions line to a given place in memory, and then to hardwire into the implementation
code access to the different fields (as shown in the diagram) as necessary (similarly
for transmission). In this approach the terms “encoding” and “decoding” were not
usually used.

The approach worked well in the mid 1970s, with the only spectacular failures aris-
ing (in one case) from a lack of clarity in the specification of which end of the
octets (given in the diagram) was the most significant when interpreting the octet
as a numerical value, and which end of the octets (given in the diagram) was to be
transmitted first on a serial line. The need for a very clear specification of these hit-
orders in binary-based protocol specification is well understood today, and in par-
ticular is handled within the ASN.1 specification, and can be ignored by a designer
or implementor of an ASN.1-based specification.

1.5.2 The TLV Approach

Even the simplest protocols found the need for variable length “parameters” of
messages, and for parameters that could be optionally omitted. This was briefly
described earlier (see Figure 1.7) in 1.2.4,
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Figure 1.10 Traditional approach.

In this case, the specification would normally identify some fixed-length mandatory
header fields, followed by a “parameter field” (often terminated by a length count).
The “parameter field” would be a series of one or more parameters, each encoded
with an identification field, a length field, and then the parameter value. The length
field was always present, even for a fixed-length parameter, and the identification
field even for a mandatory parameter. This ensured that the basic “TLV" structure
was maintained, and enabled “extensibility” text to be written for version 1 systems
to skip parameters they did not recognize.

An implementor would now write some fairly general-purpose code to scan the
input stream and to place the parameters into a linked list of buffers in memory, with
the application-specific code then processing the linked buffers. Note, however, that
while this approach was quite common in several specifications, the precise details
of length encoding (restricted to a count of 255 or unrestricted, for example), varied
from specification to specification, so any code to handle these parameters tended
to be application-specific and not easily reusable for other applications.

As protocols became more complicated, designers found the need to have complete
groups of parameters that were either present or omitted, with all the parameters in
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a given group collected together in the parameter field. This was the approach taken
in the Teletex (and later the OSI Session Layer) specifications, and gave rise to a sec-
ond level of TLV with an outer identifier for a parameter group, a length field point-
ing to the end of that group, and then the TLV for each parameter in the group (revisit
Figure 1.7).

This approach was also very appropriate for information that required a variable
number of repetitions of a given parameter value.

At the implementation level, the code to “parse” an input octet string is now a little
more complex, and the resulting data-structure to be passed to the application-
specific code becomes a two-level tree-structure rather than a simple linked list,
with level 1 nodes being parameter groups, and level 2 nodes parameters.

This approach has been presented here in a very “pure” form, but in fact it was
rarely so pure! The Teletex and Session Protocols actually mixed together at the
top level parameter group TLVs and parameter TLVs!

Those who already have some familiarity with the ASN.1 Basic Encoding Rules
(BER) (to be described in much more detail later), will recognize that this TLV
approach was generalized to form the basic (application-independent) encoding used
by BER. For BER, the entire message is wrapped up with an identifier (that distin-
guishes it from any other message type in the same abstract syntax) and a length field
pointing to the end of the message. The body is then, in general, a sequence of fur-
ther TLV triplets, with the “V" part of each triplet being either further TLV triplets (etc.,
to any depth), or a “primitive” field such as an integer or a character string. This gives
complete support for the power of normal programming language data-structure
definitions to define groupings of types and repetitions of types to any depth, as
well as providing support at all levels for both optional elements and extensibility.

1.5.3 The EDIFACT Graphical Syntax

This approach comes closest to ASN.1, with a clear (graphical) notation for abstract
syntax specification, and a separate encoding rule specification. An example of the
Electronic Data Interchange For Administration, Commerce and Transport (EDIFACT)
graphical syntax is given in Figure 1.11, EDIFACT graphical syntax. As with ASN.1, the
definition of the total message can be done in conveniently sized chunks using refer-
ence names for the chunks, then those chunks are combined to define the complete
message. So in Figure 1.11 we have the message fragment (defined earlier or later)
“UNH", which is mandatorily present once, similarly “AAA”, then “BBB”, which is con-
ditional and is present zero to ten times, then “CCC” similarly, then up to 200 repetitions
of a compaosite structure consisting of one “DDD” followed by up to ten “EEE”, etc.
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Figure 1.11 EDIFACT graphical syntax.

The actual encoding rules were, as with ASN.1, specified separately, but were based
on character encoding of all fields. The graphical notation is less powerful than the
ASN.1 notation, and the range of primitive types much smaller. The encoding rules
also rely on the application designer to ensure that a type following a repeated
sequence is distinet from the type in that repeated sequence, otherwise ambiguity
occurs. This is a problem avoided in ASN.1, where any legal piece of ASN.1 pro-
duces unambiguous encodings.

At the implementation level, it would be possible to map the EDIFACT definition
into a data-structure for the implementation language, but I am not aware of any
tools that currently do this.

1.5.4 Use of BNF to Specify a Character-Based Syntax

This approach was briefly described earlier, and is common in many Internet
protocols.

Where this character-based approach is employed, the precise set of lines of text
permitted for each message has to be clearly specified. This specification is akin to
the definition of an abstract syntax, but with more focus on the representation of
the information on the line than would be present in an ASN.1 definition of an
abstract syntax.

I
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Identification fields for lines in the messages tend to be relatively long names,

and “enumerationg” aleo tend to uge long ligle of nates, ¢o the resulting proto-
col can be quite verbose. In these approaches, length fields are normally
replaced by reserved-character delimiters, or by end-of-line, often with some
form of escape or extension mechanism to allow continuation over several lines
(again these mechanisms are not always the same for different fields or for dif-
ferent applications).

In recent years there has been an attempt to use exactly the same BNF notation to
define the syntax for several Internet protocols, but variations still ensue.

At implementation-time, a sending implementation will typically hardwire the
encoding as a series of “PRINT" statements to print the character information
directly onto the line or into a buffer. On reception, a general-purpose tool would
normally be employed that could be presented with the BNF specification and that
would parse the input string into the main lexical items. Such tools are available
without charge for Unix systems, making it easy for implementations of protocols
defined in this way to be set as tasks for Computer Science students (particularly
as the protocol specifications tend also to be available without charge!).

In summary then, this approach can work well if the information to be transferred
fits naturally into a two-level structure (lines of text, with an identifier and a list of
comma-separated text parameters on each line), but can become complex when a
greater depth of nesting of variable numbers of iterated items becomes necessary,
and when escape characters are needed to permit commas as part of a parameter.
The approach also tends to produce a much more verbose encoding than the binary
approach of ASN.1 BER, and a very much more verbose encoding than the ASN.1
Packed Encoding Rules (PER).

1.5.5 Specification and Implementation Using ASN.1: Early 1980s

ASN.1 was first developed to support the definition of the set of X.400 Message
Handling Systems CCITT (the International Telegraph and Telephone Consultative
Committee, later to be renamed ITU-T) Recommendations, although the basic
ideas were taken from the Xerox Courier Specification.

X400 was developed by people with a strong application interest in getting the
semantics of the information flows for electronic messaging right, but with rela-
tively little interest in worrying about the bit-level encoding of messages. It was
clear that they needed more or less the power of data-structure definition in a high-
level programming language to support their specification work, and ASN.1 was
designed to provide this.
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1.5.6 Specification and Implementation Using ASN.1: 1990s

It is of course still possible to produce an implementation of an ASN.1-based pro-
tocol without tools. What was done in the 1980s can still be done today. However,
there is great pressure today to reduce the “time-to-market” for implementations,
and to ensure that residual bugs are at a minimum. Use of tools can be very impor-
tant in this respect.

Today there are two main families of ASN.1 encoding rules, the original
(unchanged) BER, and the more recent (standardized 1994) Packed Encoding
Rules (PER). The PER encoding rules specification is more complex than that of
BER, but produces very much more compact encodings. (For example, the encod-
ing of a boolean value in PER uses only a single bit, but the TLV structure of BER
produces at least 24 bits!)

There seems to be a “conventional wisdom” emerging that while encoding/decoding
without a tool for BER is an acceptable thing to do if you have the time to spare, it
is likely to result in implementation
bugs if PER is being employed. The
reader should again refer to Figure
099: Readers take wairning!. This
author would contend that there are

ASN.1 Allows
designers to concentrate on
application semantics,

implementation strategies that make design without encoding-related
PER encoding/decoding without tools bugs and with compact encod-
a very viable proposition. Certainly ings available,

much more care at the design stage is
needed to identify correctly the field-
widths to be used to encode various
elements, and when padding bits are
to be added (this comment will be bet- bug-free encode/decode with
ter understood after reading Chapter absence of interworking problems.

implementors to write minimum
code to support the application—
fast development, and

17 on PER), but once that is done,
hardwiring a PER encode/decode into application code is still (this author would
contend) possible.

Nonetheless, today, good tools, called “ASN.1 compilers”, do exist, and for any
commercial development they provide good value for money and are widely used.
How would you implement an ASN.1 specification using a tool? This is covered
more fully (with examples based on the “OSS ASN.1 Tools” package) in Chapter 7.
However, the basic outline is as follows (see Figure 1.12).
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to support the seman-
tics of the application
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of values

~.
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Figure 1.12 Use of an ASN.1 tool for implementation.

The ASN.1 produced by the application designer is fed into the “compile phase” of
the tool. This maps the ASN.1 into a language data-structure definition in any one
of a wide range of supported languages (and platforms), including C, C++, and
Java. The application code is then written to read and write values from these data-
structures, concentrating solely on the required semantics of the application.

When an encode is needed, a run-time routine is called that uses information pro-
vided by the compile phase about certain aspects of the ASN.1 definition, and which
“understands” the way in which information is represented in memory on this plat-
form. The run-time routine encodes the entire message, and returns the resulting
octet string. A similar process is used for decoding. Any issues of big-endian or
little-endian byte order (see 18.2.3), or most-significant bits of a byte, are completely
hidden within the encode/decode routines, as are all other details of the encoding
rule specifications.
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Of course, without using a tool, a similar approach of mapping ASN.1 to a language
data-structure and having separate code to encode and decode that data-structure
is possible, but is likely to be more work (and more error prone) than the more
“hardwired” approach outlined here. But with a tool to provide the mapping and the
encode/decode routines, this is an extremely simple and fast means of producing
an implementation of an ASN.1-based application.

In conclusion then, using a tool, ASN.1 today:

* Provides a powerful, clear and easy to use way for protocol designers to
specify the information content of messages.

* Frees application designers from concerns over encoding, identification of
optional elements, termination of lists, etc.

+ Is supported by tools mapping the ASN.1 structures to those of the main
computer languages in use today.

* Enables implementors to concentrate solely on the application semantics
without any concern with encoding/decoding, using application-indepen-
dent run-time encode/decode routines to produce bug-free encodings for all
the ASN.1 encoding rules.



CHAPTER 2

Introduction to ASN.1
(Or: Read Before You Write!)

Summary

The best way of learning any language or notation is to read some
of it. This chapter presents a small example of ASN.1 type defini-
tions and introduces the main concepts of

buili-in key-words,

construction mechanisms,

user-defined types with type-reference-names,
identifiers or “field-names”, and

alternatives.

There is a reference to “tagging”, which is discussed in more detail
in Section IL.

This chapter is intended for beginners in ASN.1, and can be
skipped by those who have already been exposed to the notation.

2.1 Introduction

Look at Figure 2.1. The aim here is simply to make sense of the data-structure it is
defining—the information that transmission of a value of this structure would convey.

Figure 2.1 is an “artificial” example designed to illustrate the features of ASN.1. It
does not necessarily represent the best “business solution” to the problem it
appears to be addressing, but the interested reader could try to invent a plausible
rationale for some of its more curious features. For example, why have different
“details” been used for “uk” and for “overseas” when the “overseas” case can hold
any information the “uk” case can? Plausible answer, the “uk” case was in version
1, and the “overseas” was added later when the business expanded, and the
designer wanted to keep the same bits-on-the-line for the “uk” case.

This example is built-on as this book proceeds, and the scenario for this *“Wineco
protocol” appears in Appendix 1 with the complete protocol in Appendix 2.

34
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2.2.1 The Top-Level Type

There is nothing in the example (other than that it appears first) to tell the reader
clearly that “Order-for-stock” is the top-level type, the type whose values form the
abstract syntax, the type that when encoded provides the messages that are trans-
mitted by this application. In a real ASN.1 specification, you would discover this
from human-readable text associated with the specification, or in post-1994 ASN.1
by finding a statement:

my-abstract-syntax ABSTRACT-SYNTAX ::

{Order-for-stock IDENTIFIED BY

{joint-iso=-itu-t international-organization(23) set(42) set-vendors(9)

wineco(43) abstract-syntax (1)}}

This simply says that we are naming the abstract syntax “my-abstract-syntax”,
that it consists of all the values of the type “Order-for-stock”, and that if it were
necessary to identify this abstract

syntax in an instance of computer

Top-Level Type communication, the value given in

All application specifications the third line would be used. This is

contain a (single) ASN.1 type your first encounter with a piece of

that defines the messages for ASN.1 called “an OBJECT IDENTI-

that application. It will often FIER value” (which you will fre-

(but need not) appear first in quently find in ASN.1 specifications).

the specification, and is a good The whole of that third line is actu-

place to start reading! ally just equivalent to writing a string
of numbers:

{2 23 42 9 43 1}

But for now, we will ignore the OBJECT IDENTIFIER value and go back to the
main example in Figure 2.1.

2.2.2 Bold Is What Matters!

The parts in bold are the heart of the ASN.1 language. They are reserved words
(note that they are mainly all uppercase—case does matter in ASN.1), and refer-
ence built-in types or construction mechanisms. A later chapter goes through each
and every built-in type and construction mechanism!
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It may be helpful initially to think of the normal font words as the names of fields
of a record structure, with the following bold or italic word giving the type of that
field. The correct ASN.1 terminology is to say that the normal font words are either

* naming elements of a sequence,

* naming elements of a set,

* naming alternatives of a choice, or

* (in one case only) naming enumerations.

If an ASN.1 tool is used to map the ASN.1 specification to a data-structure defini-
tion in a programming language, these normal font names are mapped to identifiers
in the chosen language, and the application code can set or read values of the cor-
responding parts of the data-structure using these names.

The alert reader—again!—will immediately wonder about the length of these names,
and the characters permitted in them, and ask about any corresponding problems in
doing a mapping to a given programming language. These are good questions, but will
be ignored for now, except to say that all ASN.1 names can be arbitrarily long, and
are distinct even if they differ only in their hundredth character, or even their thou-
sandth (or later)! Quite long names are fairly common in ASN.1 specifications.

2.2.5 Back to the Example!

So, . . . what information does a value of the type “Order-for-stock™ carry when it is
sent down the line?

“Order-for-stock” is a structure with a sequence of fields or “elements” (an
ordered list of types whose values will be sent down the line, in the given order).
The first field or element is called “order-no”, and holds an integer value. The sec-
ond is called “name-address” and is itself a fairly complex type to be defined later,
with a lot of internal structure. The next top-level field is called “details”, and is
also a fairly complex structured field, but this time the designer, purely as a mat-
ter of style, has chosen to write out the type “in-line™ rather than using another
type-reference-name.

This field is a “SEQUENCE OF", that is to say, an arbitrary number of repetitions
of what follows the “SEQUENCE OF" (could be zero). There is ASN.1 notation to
require a minimum or maximum number of repetitions, but that is not often
encountered and is left until later.



Chapter 2 / Introduction to ASN.1 | 139

What follows is another “SEQUENCE", binding together an “OBJECT IDENTI-
FIER" field called “item” and an “INTEGER" field called “cases”. (Remember, we
are ordering stocks—cases—of wine!) So the whole of “details” is arbitrarily many
repetitions of a pair of elements—an object identifier value and an integer value.

You already met object identifier values when we discussed identification of the
abstract syntax for this application. Object identifiers are world-wide unambiguous
names. Anybody can (fairly!) easily get a bit of the object identifier name space, and
these identifiers are frequently used in ASN.1-based applications to name a whole
variety of objects. In the case of this example, we use names of this form to iden-
tify an “item” (in this case, the “item” is probably some stock item—identification
of a particular wine). We also see later that the application designer has chosen to
use identifications of this same form in “Branchldentification” to provide a “unique-
id” for a branch.

Following the “details” top-level field, we have a field called “urgency”, that is of
the built-in type “ENUMERATED". Use of this type name requires that it be fol-
lowed by a list of names for the enumerations (the possible values of the type).
In ASN.1, but not in most programming languages, you will usually find the name
followed by a number in round brackets, as in this example. These numbers were
required to be present up to 1994, but can now be automatically assigned if the
application-designer so desires. They provide the actual values that are transmit-
ted down the line to identify each

enumeration, so if the “urgency” is Keyword DEFAULT: Identifies a
“deliver it tomorrow”, what is sent
down the line in this field position is
a zero. (The reason for requiring the
numbers to be assigned by the
designer in the early ASN.1 specifica-

default value for an element of
a SEQUENCE or SET, to be
assumed if a value for that ele-
ment is not included.

tions is discussed later, but basically Keyword OPTIONAL: Identifies an
has to do with trying to avoid inter- element for which a value can be
working problems if a version 1 spec- omitted. Omission carries dif-
ification has an extra enumeration ferent semantics from any nor-
added in wersion Z—extensibility mal value of the element.
again!)

Again, the “urgency” field has a feature not found in programming language data-
structure definition. We see the keyword “DEFAULT”, What this means for the Basic
Encoding Rules (BER—the original ASN.1 Encoding Rules) is that, as a sender’s
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option, that field need not be transmitted if the intended value is the value following
the word “DEFAULT"—in this case “week”. This is an example in which there is
more than one bit-pattern corresponding to a single abstract value—it is an encoder’s
option to choose whether or not to encode a “DEFAULT” value. For the later Packed
Encoding Rules, the encoder is required to omit this simple field if the value is
“week”, and the decoder assumes that value. (If “urgency” had been a more complex
data type the situation would be slightly different, but that is a matter for Section II1.)

There is another ASN.1 keyword similar to “DEFAULT", namely, “OPTIONAL"
(not included in the example in Figure 2.1). Again, the meaning is fairly obvious:
the field can be omitted, but there is no presumption of any default value. The
keyword might be associated, for example, with a field/element whose name was
“additional-information”.

Just to return briefly to the question of “What are the precise set of abstract values
in the type?”, the answer is that the presence of DEFAULT does not change the
number of abstract values, it merely affects encoding options, but the presence of
OPTIONAL does increase the number of abstract values—an abstract value with
an optional field absent is distinct from any abstract value where it is present with
some value, and can have different application semantics associated with it.

Finally, in “Order-for-stock”, the last element is called “authenticator” and is of
some (possibly quite complex) type called “Security-Type” defined by the applica-
tion designer either before or after its use in “Order-for-stock”. It is shown in Figure
2.1 as a “SET", with the contents not specified in the example (in a real specifica-
tion, of course, the contents of the “SET” would be fully defined). “SET" is very
similar to “SEQUENCE". In BER (the original ASN.1 encoding rules), it again sig-
nals a sender's (encoder's) option. The top-level elements (fields) of the SET,
instead of being transmitted in the order given in the text (as they are for
SEQUENCE) are transmitted in any order that is convenient for the
sender/encoder. Today, it is recognized that encoder options are a “BAD THING"
for both security reasons and for the extra cost they impose on receivers and par-
ticularly for exhaustive testing, and there are many who would argue that “SET"
(and the corresponding “SET OF") should never be used by application designers,
and should be withdrawn from ASN.1! But please refer to Figure 999 again!

Figure 2.1 shows “Security-Type" being defined later in the specification, but actu-
ally, this is precisely the sort of type that is more likely to be imported by an appli-
cation designer from some more specialized ASN.1 specification that defines types
(and their semantics) designed to support security features.
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There are mechanisms in ASN.1 (discussed later) to enable a designer to reference
definitions appearing in other specifications, and these mechanisms are often used.
You will, however, also find that some application designers will copy definitions
from other specifications, partly to make their own text complete without the need
for an implementor to obtain (perhaps purchase!) additional texts, and partly to
ensure control over and “ownership” of the definition. If you are using this book
with a colleague or as part of some course, you can have an interesting debate over
whether it is a good thing to do this or not!

2.2.6 The Branchldentification Type

Now let us look briefly at the “Branchldentification” type, which illustrates a few
additional features of the ASN.1 notation. (For now, please completely ignore the
numbers in square brackets in this definition. These are called “tags”, and are dis-
cussed at the end of this chapter.)

This time it has been defined as a *SET”, so in BER the elements are transmitted in
any order, but we will take them in textual order.

As an aside (but an important aside), we have already mentioned in Chapter 1 that
BER uses a TLV type of encoding for all elements. Clearly, if the sender is able to
transmit the elements of a “SET” in any order, the value used for the “T" in the TLV
of each element has to be different. (This would not be necessary for SEQUENCE,
unless there are OPTIONAL or DEFAULT elements whose presence or absence
had to be detected.) It is this requirement that gives rise to the “tag” concept to be
introduced briefly below, and covered more fully later.

The first listed element is “unique-id”, an “OBJECT IDENTIFIER" value, which
has already been discussed. The only other element is “details.” Notice that the
name “details” was also used in

“Order-for-Stock”. This is quite nor- Names of Elements
mal and perfectly legal—the contexts and Alternatives
are different. Should all be distinct within

any given SEQUENCE, SET, or
CHOICE (a requirement post-

It is usual for application designers to
use distinct names for top-level ele-
ments in a SEQUENCE or SET, but it 1994).
was not actually a requirement prior
to 1994. It is now a requirement to have distinct names for the elements of both
“SEQUENCE" and “SET" (and for the alternatives of a “CHOICE"—see later text).
The requirement was added partly because it made good sense, but mainly because

| 41
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However, we have already noted that some restrictions were added in 1994

(names of elements of a “SEQUENCE", “SET" etc. were required to be distinct,
for example). Suppose you can not be bothered to upgrade your (300 pages
long!) specification to conform to 1994 or later, but still want to use UTF8String
in a new version? Well, legally, you can not. (“Oh yeah?", you say, “What gov-
ernment has passed that law?” “Which enforcement agency will punish me if I
break it?" I remain silent!) But as an implementor/reader, and if you see it hap-
pening, you will know what it means. Of course, as part of an application design
team, you would make absolutely sure it did not happen in your specifications,
wouldn’t you?

Back to Figure 2.1. The third alternative in the “details” is “warehouse”, and this
itself is another “CHOICE", with just two alternatives—“northern” and “southern,”
each with a type “NULL". What is “NULL"? “NULL" formally is a type with just a
single value (which is itself perhaps confusingly called “NULL"). It is used where
we need to have a type, but where there is no additional information to include. It
is sometimes called a “placeholder.” Note that in the “warehouse” case, we could
just as well have used a BOOLEAN to decide “northern” vs. “southern”, or an
ENUMERATED. Just as a matter of style (and to illustrate use of “NULL"!) we
chose to do it as a choice of NULLs.

2.2.7 Those Tags

Now we will discuss the numbers in square brackets—the “tags”. In post-1994
ASN.1, it is never necessary to include these numbers. If they would have been
required pre-1994, you can (post-

1994) ask for them to be automati-

cally generated (called AUTOMATIC Tags
TAGGING), and need never actually Numbers in square brackets, not
include them. However, in existing needed post-1994, are there to
published specifications, you will fre- ensure unambiguous encodings.
quently encounter tags, and should They do not affect the informa-
have some understanding of them. tion that can be carried by the

values of an ASN.1 type.
In some of the very oldest ASN.1-

based application specifications you

will frequently find the keyword “IMPLICIT" following the tag, and occasionally
today the opposite keyword “EXPLICIT". These qualify the meaning of the tag, and
are fully described in Chapter 3.
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2.3 Getting Rid of the Different Fonts

Suppose you have a normal ASN.1-based application specification using a single
font. How do you apply fonts as in Figure 2.17

First, in principle, you need to know what are the reserved words in the language,
including the names of the character string and the date/time types, and you make
sure these become bold! In practice, you can make a good guess that any name that
is all uppercase goes to bold, but this is not a requirement. The “Address” type-
reference-name in Figure 1.4 could have been “ADDRESS", and provided that
change was made everywhere in the specification, the result is an identical and
totally legal specification. But as a matter of style, all uppercase for type reference
names is rarely used.

Any other name that begins with an initial uppercase letter you set to italics—itis a
type-reference-name. Type-reference-names are required to begin with an upper-
case letter. After that they can contain uppercase or lowercase interchangeably.

You will see in Figure 2.1 a mixture of two distinct styles. In one case a type-reference-
name (“Order-for-stock™) made up of three words separates the words by a
hyphen. In another case a type-reference-name (“OufletType”) uses another
uppercase letter to separate the words, and does not use the hyphen. “Security-
Type” uses both!

You normally don't see a mix of these three styles in a single specification, but all
are perfectly legal. Hyphens (but not two in adjacent positions, to avoid ambiguity
with comment—see later text) have been allowed in names right from the first
approved ASN.1 specification, but were not allowed by drafts prior to that first
approved specification, so early writers had no choice, and used the “OutletType”
style. Of course, nobody ever reads the ASN.1 specification itself—they just copy
what everybody else does! So that style is still the most common today. It is, how-
ever, just that—a matter of style, and an unimportant one at that—all three forms
are legal and it is a personal preference which you think looks neater or clearer.

And finally, the normal font, most names starting with a lowercase letter are names
of elements or alternatives (“order-no”, “urgency”, etc.), and again such names are
required to start with an initial lowercase letter, but can thereafter contain either
uppercase or lowercase.

Names beginning with lowercase are also required for the names of values. A sim-
ple example is the value “week” for the “urgency”.

| 45
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Application specifications can contain not only type assignment statements such as
those appearing in Figure 2.1 (and which generally form the bulk of most applica-
tion specifications), but can also contain statements assigning values to “value-
reference-names”. The general form of a value reference assignment is illustrated
below:

my-default-cases INTEGER ::= 20

which is defining the value-reference-name “my-default-cases”, of type “INTE-
GER" to reference the integer value “20". It could then be used in the “cases” ele-
ment in Figure 2.1 as, for example:

cases INTEGER DEFAULT my-default-cases

2.4 Tying Up Some Loose Ends
2.4.1 Summary of Type and Value Assignments

First, let us summarize what we have seen so far. ASN.1 specifies a number of
pieces of notation (type-notation) that define an ASN.1 type. Some are very simple,
such as “BOOLEAN", others are more complex such as that used to define an enu-
merated type or a sequence type. A type-reference-name is also a piece of

type-notation that can be used

An application specification wherever ASN.1 requires a piece

contains lots of type assign- of type-notation.

ment statements and occasion- Similarly, ASN.1 specifies a number of

ally (but rarely) some value pieces of value-notation (any type you

assignment statements. can write with ASN.1 has a defined
value-notation for all of its values).

Again, some notations for values are very simple, such as “20" for integer values;
others are more complex, such as the notation for object identifier values that you
saw at the start of this chapter, or the notation for values of sequence types. Again,
wherever ASN.1 requires value-notation, a value-reference-name can be
used (provided it has been assigned a value somewhere).

The general form of a type assignment is:
type-reference-name ::= type-notation
and of a value assignment is:

value-reference-name type-notation ::= wvalue-notation
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where the value-notation has to be the “correct” value-notation for the type
identified by the type-notation. This is an important concept. Anywhere in
ASN.1 where you can use type-notation (for example to define the type of an
element of a “SET” or “SEQUENCE", you can use any legal type-notation.
However, where value-notation is allowed (for example, in value assignments
or after DEFAULT), there is always a corresponding type-notation called the
governor (which might be a type-reference-name) that restricts the syntax of
the value-notation to that which is permitted for the type identified by the type-
notation.

So far, you have seen value notation used in the “IDENTIFIED BY" at the start of
the chapter, and following the word DEFAULT. There are other uses that will be
described later, but it remains the case that value-notation is used much less often
than type-notation.

2.4.2 The Form of Names

All names in ASN.1 are mixed upper/lowercase letters and digits and hyphens (but
not two adjacent or one at the end, to avoid confusion with comment), starting with
either an uppercase letter or with a lowercase letter, depending on what the name
is being used for. (As you will have guessed by now, they cannot contain the space
character!) In every case of naming in ASN.1, the case of the first letter is fixed. If
an uppercase letter is legal, a lowercase letter will not be, and vice versa. Names
can be arbitrarily long, and are different names if they differ in either content or
case at any position in the name.

Note that because names can contain only letters and digits and hyphens, a name
that is followed by any other charac-
ter (such as an opening curly bracket Names and Layout

or a comma), can have the following Names contain letters, digits, or
character adjacent to it with no
space or new-line, or as a matter of
purely personal style, one or more
spaces or new-lines can be inserted.

hyphens. They are arbitrarily
long. Case is significant. Layout
is free format. Comment starts
with a pair of adjacent hyphens
and ends with a pair of adjacent

2.4.3 Layout and Comment

hyphens or a new-line.

Layout is “free-format”—anywhere
you can put a space you can put a new-line. Anywhere you have a new-line you
can remove it and just leave a space. So a complete application specification can
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appear as a single line of text, and indeed that is basically the way a computer
sees it.

As a matter of style, everybody puts a new line between each type or value assign-
ment statement, and generally between each element of a set or sequence and the
alternatives of a choice. The layout style shown in Figure 2.1 is that preferred by
this author, as it makes the pairing of curly brackets very clear, but a perhaps
slightly more commeon layout style is to include the opening curly bracket after
“SEQUENCE" on the same line as the keyword “SEQUENCE", for example:

SEQUENCE {
items OBJECT IDENTIFIER,

cagses INTEGER

Still other authors (less common) will put the closing curly bracket on a line of its
own and align it vertically with its matching opening bracket. All pure (and utterly
unimportant!) stylistic matters.

On a slightly more serious vein, there was pre-1994 value notation for the
“CHOICE" type in the “Branchldentification” that would allow:

details warehouse northern value-ref

as a piece of value notation (where “value-ref” is a value reference name for the
“NULL" value). Remember that ASN.1 allows names to be used before they are
assigned in a type or value assignment, and a poor dumb computer can be hit at the
start of the specification with something looking like:

joe Fred ::= jack jill joseph Mary ::= etc etc

In this case, it cannot determine where the first assignment ends—after “jack” or
after “jill” or after “joseph”™—it depends on the actual type of “Fred"—defined
later). This can give a computer a hard time! Some of the early tool vendors could
not cope with this (even though it probably never actually occurred!), and asked for
the “semicolon” character to be used as a statement separator in ASN, 1. To this day,
if you use these tools, you will need to put in semicolons between all your type
assignments. (The “OSS ASN.1 Tools"” package does not impose this requirement.)
The requirement to insert semicolons in ASN.1 specifications was resisted, but to
assist tool vendors a “colon” was introduced into the value notation for “CHOICE",
s0 that post-1994 the above value notation would be written:
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Structuring an ASN.1
Specification

(Or: The Walls, Floors, Doorways and Elevators,
with Some Environmental Considerations!)

Summary

ASN.1-based application specifications consist mainly of type
definitions as illustrated in Chapter 2, but these are normally (and

are formally required to be) grouped into collections called
modules.

This chapter
* introduces the module structure,
* describes the form of module headers,
* shows how to identify modules, and

* describes how to export and import type definitions
between modules.

The chapter also discusses

* some issues of publication format for a complete applica-
tion specification, and

* the importance of making machine-readable copy of the
ASN.1 parts available.

Part of the definition of a module is the establishment of
* a tagging environment, and
* an exiensibility environment

for the type-notations appearing in that specification. The meaning and importance
of these terms is discussed in this chapter, with final details in Section II

50
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This example forms what is called an ASN. I module consisting of a six-line (in
this—simple!—case) module header, a set of type (or value) assignment state-
ments, and an “END" statement. This is the smallest legal piece of ASN.1 specifica-
tion, and many early specifications were of this form—a single module. Today, it is
more common for a complex protocol to be presented in a number of ASN.1 mod-
ules (usually within a single physical publication or set of Web pages). This is dis-
cussed further later.

Modules
All ASN.1 type and value assign—
ments are required to appear

It is very common in a real publica-
tion for the module header to appear
at the start of a page, for there then to

within a module, Staning with a he up to 10 or more pages of t’}rp[_;
module header and ending with assignments (with the ocecasional
“END", value assignment perhaps), and then

the END statement, which terminates
the module. Normally there would be a page-break after the END statement in a
printed specification, whether followed by another module or not.

However, Figure 3.1 is typical of early ASN.1 specifications, where the total proto-
col specification was probably only a few pages of ASN.1, and a single self-
contained module was used for the entire specification.

Note that while the use of new-lines and indentation at the start of this example is
what is commonly used, the normal ASN.1 rule that white-space and new-lines are
interchangeable applies here too—the module header could be on a single line.

We will look in detail at the different elements of the module header later in this
chapter, but first we discuss a little more about publication style.

3.2 Publication Style for ASN.1 Specifications

Over the years, different groups have taken different approaches to the presenta-
tion of their ASN.1 specifications in published documents. Problems and variations
stem from conflicting desires:

NOTE

The use of three lines of four dots in Figures 2.1 and 3.1 is not legal ASN.1! It is used in this
book out of sheer laziness! In a real specification there would be a complete list of named
and fully specified (directly or by type-reference-names) elements. In Figure 3.1, it is
assumed that no further type-reference-names are used in the body of these types—they use
only the built-in types of the language such as INTEGER, BOOLEAN, VisibleString, etc.
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a. A wish to introduce the various ASN.1 types that form the total specifica-
tion gradually (often in a “bottom-up” fashion), within normal human-read-
able text that explains the

semantics of the different You may want to consider
types and fields. adding line-numbers to your
b. A wish to have in the specifi- ASN.1 to help references and
cation a complete piece of cross-references . . . but these
ASN.1 that conforms to the are not part of the language!

ASN.]1 syntax and is ready to
feed into an ASN.1 tool, with the type definitions in either alphabetical
order of type-reference-name, or in a “top-down” order.

¢. The desire not to repeat text, in order to avoid unintended differences, and
questions of which text takes precedence if differences remain in the final
product.

There is no one perfect approach—application designers must make their own
decisions in these areas, but the following two subsections discuss some common
approaches.

3.2.1 Use of Line Numbers

One approach is to give line numbers sequentially to the entire ASN.1 specification,
as partly shown in Figure 3.2 (again, lines of four dots are used to indicate pieces
of the specification that have been left out).

It is important to note that if this specification is fed into an ASN.1 tool, the line
numbers have to be removed—they are not part of the ASN.1 syntax, and the writer
knows of no tool that provides a directive to ignore them.

If you have tools to assist in producing it (and they exist), this line-numbered approach
also makes it possible to provide a cross-reference at the end of the specification that
gives, for each type-reference-name, the line number of the type assignment where it
is given a type, followed by all the line numbers where that reference is used. For
a large specification, this approach is VERY useful to readers. If you don't do
this, then you may wish to reorder your definitions into alphabetical order.

Once you decide to use line numbers, there are two main possibilities. You can

* put the ASN.1 in only one place, as a complete specification (usually at the
end), and use the line-numbers to reference the ASN.1 text from within the
normal human-readable text that specifies the semantics, or
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001 Wineco-ordering-protocol

002 { joint-iso-itu-t internationalRA(23) set(42) set-vendors(9)
003 wineco(43) modules(2) ordering(l)}

004 DEFINITIONS

0os AUTOMATIC TAGS ::=

006 BEGIN

007

oog Order-for-stock ::= SEQUENCE

009 {order-no INTEGER,

010 name-address Branchldentification,
159 digest OCTET STRING}

160

161 END

Figure 3.2 Module with line numbers.

¢ break the line-numbered ASN.1 into a series of “figures” and embed them
in the appropriate place in the human-readable text, again using the line-
numbers for more specific references.

The latter approach only works well if the order in which you have the type defin-
itions (in the total specification) is the same as the order in which you wish to intro-
duce and discuss them in the main text.

3.2.2 Duplicating the ASN.1 Text

A number of specifications have chosen to duplicate the ASN.1 text (usually but not
necessarily without using line numbers). In this case the types are introduced with

fragments of ASN.1 embedded in the

You may choose to repeat your human-readable text, and the full
ASN.1 text, fragmented in the module specification with the module
body of your specification and header and the “END" are presented
complete in an annex—but as either the last clause of the docu-

be careful the texts are the ment, or in an Appendix.

same! Note that where ASN.1 text is embed-

ded in normal human-readable text, it

is highly desirable for it to be given a distinctive font. This is particularly important
where the individual names of ASN.1 types or sequence (or set) elements or choice
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alternatives are embedded in a sentence. Where a distinctive font is not possible,
then use of italics or of quotation marks is common for such cases. (Quotation
marks are generally used in this text.)

If ASN.1 text appears in more than one place, then it used to be common to say that
the collected text in the Appendix “took precedence if there were differences”.
Today it is more common to say that “if differences are found in the two texts, this
is a bug in the specification and should be reported as such”.

3.2.3 Providing Machine-Readable Copy

An annex collecting together the entire ASN.1 is clearly better than having it totally
fragmented within many pages of printed text, no matter how implementation is to
be tackled.

Prior to the existence of ASN.1 tools, it your Implementors use tools,

the ASN.1 specification was there to
tell an implementor what to code up, copy: consider how to provide
and would rarely need to be fed into this, and to tell them where it is!
a computer, so printed text sufficed.
With the coming of ASN.1 compilers, which enable a major part of the imple-
mentation to be automatically generated directly from a machine-readable ver-
sion of the ASN.1 specification, some attention is needed to the provision of such
material.

they will want machine-readable

Even if the “published” specification is in electronic form, it may not be easy for a
user to extract the formal ASN.1 definition because of the format used for publica-
tion, or because of the need to remove the line numbers discussed in earlier text,
or to extract the material from “figures”.

Wherever possible, the “published” specification should identify an authoritative
source of machine-readable text for the complete specification. This should cur-
rently (1998) be ASCII encoded, with only spaces and new-lines as formatting char-
acters, and using character names (see Chapter 9) for any non-ASCII characters in
value notations. It is, however, likely that the so-called UTF8 encodings (again see
Chapter 9), allowing direct representation of any character, will become increas-
ingly acceptable, indeed, preferable.

It is unfortunate that many early ASN.1 specifications were published by ISO and
ITU-T. These organizations had a history of making money from sales of hard-copy
specifications and did not in the early days provide machine-readable material.
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001 Wineco-ordering-protocol

o002 {joint-ise-itu-t internacionalRA(23) seti(dl) set-vendors(d)
003 wineco(43) modules (2) ordering(l)}

004 DEFINITIONS

0as AUTOMATIC TAGS ::=

006 BEGIN

0o7

Doe Order-for-stock ::s SEQUENCE

009 {order-no INTEGER,

010 name-address BranchIdentification,

Figure 3.3 The module header.

wards compatibility and partly to take account of those who had difficulty in obtain-
ing (or were too lazy to try to obtain!) a bit of the object identifier name-space.

It is relatively easy today to get some object identifier name-space to enable you to give
world-wide unambiguous names to any modules that you write, but we defer a discus-
sion of how to go about this (and of the detailed form of an object identifier value) to
Section II. Suffice it to say that the object identifier values used in this book are “legit-
imate”, and are distinct from others (legally!) used to name any other ASN.1 module in
the world. If name-space can be obtained for this relatively unimportant book. . . !

The fourth and the sixth lines are “boiler-plate”. They say nothing, but have to be
there! No alternative syntax is possible. (The same applies to the “END”" statement
at the end of the module.)

The fifth line is one of several possibilities, and determines the “environment” of
the module that affects the detailed interpretation of the type-notation (but not of
type-reference-names) textually appearing within the body of the module.

Designers please note—Not only is it illegal ASN.1 to write a specification with-
out a module header and an “END” statement, it can also be very ambiguous
because the “environment” of the type-notation has not been determined.

So, what aspects of the “environment” can be specified, and what syntax is possi-
ble in this fifth line?

There are two aspects to the “environment”, called (in this book) “the tagging envi-
ronment” and “the extensibility environment”. The reader will note that these both
contain terms that we have briefly mentioned before, but have never properly
explained. Please do not be disappointed, but the explanation here is again going to
be partial—for a full discussion of these concepts you will need to go to Section II.
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overseas [l] SEQUENCE
{name UTF85tring,
type QutletType,
location Address},
warehouse [2] CHOICE
{northern [0] NULL,
southern [1] NULL}

Figure 3.4 A fragment of Figure 2.1.

the default tag for NULL, and the fact that this TLV does actually represent a NULL
(or in other cases an INTEGER or a BOOLEAN, etc.) is now only implied by the
tag in the “T" part—you need to know the type definition to recognize that [0] is in
this case referring to a NULL. We say that we have “implicitly tagged the NULL".
Similarly, the “overseas” “SEQUENCE" was implicitly tagged with tag “[1]".

But what about the tag we have placed on the “warehouse” “CHOICE"? There is a
superficial similarity between “CHOICE” and “SEQUENCE" (they have almost the
same following syntax), but in fact they are very different in their BER encoding.
With “SEQUENCE", following elements are wrapped up in an outer-level TLV wrap-
per as described earlier, but with “CHOICE", we merely take any one of the TLV
encodings for one of the alternatives of the “CHOICE", and we use that as the entire
encoding (the TLV) for the “CHOICE" itself.

Where does that leave the tagging of “warehouse”™? Well, at first sight, it will over-
ride the tag of the TLV for the “CHOICE” (which is either “[0]” or “[1]" depending
on which alternative was selected) with the tag “[2]". Think for a bit, and then
recognize that this would be a BUST specification! The alternatives were
specifically given (by tagging the NULLs) distinct tags precisely so as to be able to
know which was being sent down the line in an instance of communication, but
now we are overriding both with a common value (“[2]™)! This cannot be allowed.

To cut a long story short—two forms of tagging are available in ASN.1.

+ Implicit tagging—(this is what has been described so far), where the new
tag overrides the old tag and type information which was carried by the old
tag is now only implicit in the encoding; this cannot be allowed for a
“CHOICE" type; and

*» Explicit tagging—we add a new TLV wrapper specifically to carry the
new tag in the “T" part of this wrapper, and carry the entire original TLV
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(with the old tag) in the “V" part of this wrapper; clearly this is OK for
“CHOICE".

While implicit tagging is forbidden for “CHOICE" types (it is an illegal ASN.1
specification to ask for it), both implicit and explicit tagging can be applied to any
other type. However, while explicit
Implicit tagging: overrides the tagging retains maximum type infor-
“T" part mation, and might help a dumb line

monitor to produce a sensible dis-
play, it is clearly more verbose than
implicit tagging.

Explicit tagging: adds an extra
TLV wrapper

Now, what do the different tagging environments mean?

3.3.2.1 An Environment of Explicit Tagging

With an environment of explicit lagging, all tags produce explicit tagging unless
the tag (number in square brackets) is immediately followed by the keyword
“IMPLICIT.”

An environment of explicit tagging was the only one available in the early ASN.1
specifications, so it was common to see the word “IMPLICIT" almost everywhere,
reducing readability. Of course, it was—and is—illegal to put “IMPLICIT” on a tag
that is applied to a “CHOICE" type-notation, or to a type-reference-name for
such notation.

3.3.2.2 An Environment of Implicit

An environment of implicit tag-
, Tagging

ging only produces implicit tag-
ging where it is legal—there is With an environment of implicit tag-
no need to say “EXPLICIT” on a ging, all tags are applied as implicit
“CHOICE". tagging unless one (or both) of the fol-

lowing apply:

* The tag is being applied to a “CHOICE™ type-notation or to a type-reference-
name for such notation; or

¢  The keyword “EXPLICIT” follows the tag notation.

In the preceding cases, tagging is still explicit tagging. In practice most specifica-
tions written between about 1986 and 1995 specified an environment of implicit tag-
ging in their module headers, and it was unusual to see either the keyword
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“IMPLICIT" or the keyword “EXPLICIT" after a tag. Occasionally, EXPLICIT was
used for reinforcement, and occasionally (mainly in the security world to guarantee
an extra TLV wrapper) on specific types within an environment of implicit tagging.

3.3.2.3 An Environment of Automatic Tagging

The rules about explicit and implicit
tagging add to what is already a com- Automatic Tagging
is needed, and in the 1994 specifica- get about tags!

tion, partly to simplify things for the
application designer, and partly because the new Packed Encoding Rules (PER)
were not TLV-based and made little use of tags, the ability to specify an environ-
iment of automatic tagging was added.

In this case, tags are automatically added to all elements of each sequence (or set) and
to each alternative of a choice, sequentially from “[0]" onwards (separately for each
“SEQUENCE", “SET", or “CHOICE" construction). They are added in an environment
of implicit tagging EXCEPT that if tag-notation is present on any one of the elements
of a particular “SEQUENCE" (or “SET") element or “CHOICE" alternative, then it is
assumed that the designer has taken control, and there will be NO automatic applica-
tion of tags. (The tag-notation that is present is interpreted in an environment of
implicit tagging in this case.)

It is generally recommended today that “AUTOMATIC TAGS" be placed in the module
header, and the designer can then forget about tags altogether. However (refer back
to Figure 999 please!), there is a coun-

terargument that “AUTOMATIC TAGS” The Extensibility

can be more verbose than necessary in Marker

BER, and can give more scope for An ellipsis (or a pair) that identi-

errors of implementation if ASN.1 tools fies an insertion point where ver-

are not used. You take your choice; 1 sion 2 material can be added

know what mine would be! without affecting a version 1 sys-
tem's ability to decode version 2

3.3.3 The Extensibility encodings.

Environment

We have already discussed the power of a TLV-style of encoding to allow additions
of elements in version 2, with version 1 specifications able to skip and to ignore
such additional elements. (This extensibility concept actually generalizes to things
other than sequences and sets, but these are sufficient for now.)
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If we are to retain some extensibility capability in ASN.1 and we are to introduce
encoding rules that are less verbose than the TLV of BER (such as the new PER),
then a designer's requirements for extensibility in his application specification have
to be made explicit.

We also need to make sure not only that encoding rules will allow a version 1 sys-
tem to find the end of (and perhaps ignore) added version 2 material, but also that
the application designer clearly specifies the actions expected of a version 1 sys-
tem if it receives such material.

To make this possible, the 1994 specification introduced an extensibility marker
into the ASN.1 notation. In the simplest use of this, the type-notation “Order-for-
stock” could be written as in Figure 3.5.

Here we are identifying that we require encoding rules to permit the later addition
of outer-level elements between “urgency” and “authenticator”, and additional enu-
merations, in version 2, without ill-effect if they get sent to version 1 systems. (Full
details are in Section IL) (Should we have been happy to add the version 2 elements
at the end after “authenticator”, then a single ellipsis would have sufficed.)

The place where the ellipses are placed, and where new version 2 material can be
safely inserted without upsetting deployed version 1 systems is called (surprise,
surprise!) the insertion point. You are only allowed to have one insertion point in
any given sequence, set, choice, ete.

The alert reader (you should be getting used to that phrase by now, but it is probably
still annoying—sorry!) will recognize that in addition to waming encoding rules to
make provision, it is also necessary to tell the version 1 systems what to do with added

Order-for-stock ::= SEQUENCE
{order-no INTEGER,
name-address Branchldentification,
details SEQUENCE OF
SEQUENCE

{item OBJECT IDENTIFIER,
cases INTEGER},
urgency ENUMERATED
{tomorrow(0),
three-day(1l),
week(2), ... } DEFAULT week,

authenticator Security-Type}

Figure 3.5 Orderfor-stock with extensibility markers.
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* When producing the version 2 specification, you have to actually insert the
ellipses explicitly before your added elements—and you might forget!

# There is no provision (when this environment is used) for the presence of
an exception specification with the extension marker, so all rules for the
required behavior of version 1 systems in the presence of version 2 ele-
ments or values have to be generic to the entire specification.

Concluding advice: Think carefully about where you want extension markers and
about the handling you want version 1 systems to give to version 2 elements and val-
ues (using exception specifications to localize and make explicit those decisions),
but do not attempt a blanket solution using an environment of implied extensibility.

3.4 Exports/Imports Statements

It has taken more text to describe the effects of a six-line header than is contained
in the ASN.1 Standard/Recommendation! And we are not yet done!

Following the sixth line (“BEGIN™)
Exports/Imports and (only) before any type or value
Statements assignment statements, we can

A pair of optional statements at include an exports statement (first)

the head of a module that spec- and/or an imports statement. These
ify the use of types defined in are usually regarded as part of the
other modules (import), or that module header.

make available to other mod-
ules types defined in this mod-
ule (export).

At this point it is important to high-
light what has been only hinted at ear-
lier: There is more in the ASN.1
repertoire of things that have refer-
ence names than just types and values, although these are by far the most impor-
tant (or at least, the most prolific!) in most specifications.

Pre-1994 (only) we add macro names, and post-1994 we add names of information
object classes, information objects, and information object sets. These can all
appear in an export or an import statement, but for now we concentrate only on
type-reference-names and value-reference-names.

An exports statement is relatively simple, and is illustrated in Figure 3.6, where we
have taken our type definitions for “OutletType” and “Address”, put them into a
module of commonly used types, and exported them, that is to say, made them
available for use in another module,
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Wineco-common-types
{ joint-iso-itu-t internationalRA(23) set(42) set-vendors(9)
wineco(43) modules(2) common(3)}
DEFINITIONS
AUTOMATIC TAGS ::=
BEGIN

EXPORTS OutletType, Address, Security-Type;

IMPORTS Security-Type FROM
SET-module
{joint-igso-itu-t internationalRA(23) set(42) module(6) 0};

OutletType ::= SEQUENCE
{ ....
.}

Address ::= SEQUENCE

Figure 3.7 The common types module (enhanced).

(a totally separate publication), and will be used in our “Wineco-common-types”
module but also in our other modules. We import this for use in the “Wineco-
common-types” module, but also export it again to make the imports clauses of our
other modules simpler (they merely need to import from “Wineco-common-types”).
This “relaying” of type definitions is legal.

This changes Figure 3.6 to Figure 3.7.

As with EXPORTS, the text between “IMPORTS" and “FROM"” is a comma sepa-
rated list of reference names. We will see how to import from more than one other
module in the next figure.

Note at this point that if a type is imported from a module with a particular tagging
or extensibility environment into a module with a different tagging or extensibility
environment, the type-notation for that imported type continues to be interpreted
with the environment of the module in which it was originally defined. This may
seem obvious from the way in which the environment concept was presented, but
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it is worth reinforcing the point—what is being imported is in some sense the
“abstract type” that the type-notation defines, not the text of the type-notation.

3.5 Refining Our Structure

Now we are going to make quite a few
changes. We will add a second top-level
message (and make provision for more)
called “Return-of-sales” defined in
another module, and we will now
include the “ABSTRACT-SYNTAX" state-
ment (mentioned in Chapter 2) to define
our new top-level type in yet another
module. We will put that module first.

We will do a few more cosmetic
changes to this top-level module, to
illustrate some slightly more advanced

The Final Example
We now use several modules;
we have a CHOICE as our top-
level type, and we clearly iden-
tify it as our top-level type. We
use an object identifier value-
reference-name, we use APPLI-
CATION class tags, we handle
invalid encodings, we have
extensibility at the top-level with
exception handling. We are get-

features. We will ting quite sophisticated in our

¢ use “APPLICATION" class tags use of ASN.1!

for our top-level messages.
This is not necessary, but is often done (see later discussion of tag classes),

* assign the first part of our long object identifiers to the value-reference-
name “wineco-0ID" and use that as the start of our object identifiers, a
commonly used feature of ASN.1, and

s add text to “ABSTRACT-SYNTAX" to make clear that if the decoder detects
an invalid encoding of incoming material our text will specify exactly how
the system is to behave.

The final result is shown in Figure 3.8, which is assumed to be followed by the text
of Figure 3.7. Have a good look at Figure 3.8, and then read the following text that
“talks you through it".

Lines 001 to 006 are nothing new. Note that in lines 10 and 13 we will use “wineco-
OID"” (defined in lines 015 and 016) to shorten our object identifier value, but we
are not allowed to use this in the module header, as it is not yet within scope, and
the object identifier value must be written out in full.

Line 007 simply says that nothing is available for reference from other modules.
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001 Wineco-common-top-level

002 { joint-ise-itu-t internationalRA(23) set(42) set-vendors(9)
003 wineco(43) modulesi(2) top(0}}

oo4 DEFINITIONS

ons AUTOMATIC TAGS ::=

006 BEGIN

0o7 EXPORTE ;

noe IMPORTS Order-for-stock FROM

oos Wineco-ordering-protocol

010 {wineco=-0ID modulesi2) ordering(l]}

011 Return-of-sales FROM

012 Wineco-returns-protocol

013 {wineco-0ID modules(2) returns(?)};

014

01s wineco-0ID OBJECT IDENTIFIER ::=

0le { joint-iso-itu-t internationalRA(23)

017 set{42) set-vendors(9) wineco(43}}
018 wineco-abstract-syntax ABSTRACT-SYNTAX ::w

019 {Wineco-Protocol IDENTIFIED BY

020 {wineco-0ID abstract-syntax(l)}
n21 HAS PROPERTY

D22 {handles-invalid-encodings}
023 ~-Bee clause 45.6 -- }
024

025 Wineco-Protocel ::= CHOICE

026 {ordering [APPLICATION 1] Order-for-stock,

027 sales [APPLICATION 2] Return-of-sales,

028 ... ! PrintableString : "See clause 45.7"

029 }

030

031 END

—New page in published spec.

032 Wineco-ordering-protocol

033 { joint-iseo-itu-t internationalRA(23) set(42) set-vendors(9)
034 wineco(43) modules(2) ordering(l)}

035 DEFINITICNS

036 AUTOMATIC TAGS ::=

037 BEGIN

038 EXPORTS Order-for-stock;

039 IMPORTS OutletType, Address, Security-Type FROM

040 Wineco-common-types

041 {wineco-0ID modules(2) common (3)};

042

D43 wineco-0ID OBJECT IDENTIFIER ::=

044 { joint-iso-itu-t internationalRA(23)

045 set{42) set-vendors(%) wineco(43}}
046

047 Order-for-stock ::= SEQUENCE

D48

{
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070 BranchIldentification ::= SET
07l { i

.}
101 END
--New page in published spec.
102 Wineco-returns-protocol
103 { joint-iso-itu-t internationalRA{23) setc(42)
104 get-vendors (9) wineco(43) modules(2) returns(2)}
105 DEFINITIONS
106 AUTOMATIC TAGS ::=
107 BEGIN
108 EXPORTS Return-of-sales;
109 IMPORTS QutletType, Address, Security-Type FROM
110 Wineco-common-types
111 {wineco-0ID modulesi2) common (3)};
112
113 wineco-0ID OBJECT IDENTIFIER ::=
114 {iso identified-organization icd-wineco(10)}
115
116 Return-of-sales ::= SEQUENCE
117 {

}

139 END

Figure 3.8 (Last figure of this Chapter.)

Lines 008 to 013 are the imports we were expecting from our other two modules. Note
the syntax here: If we had more types being imported from the same module, there
would be a comma separated list as in line 039, but when we import from two differ-
ent modules lines 011 to 013 just run on from lines 008 and 010 with no separator.

Lines 015 and 017 provide our object identifier value-reference-name with a value
assignment. It is a (very useful!) curiosity of the value notation for object identifiers
that it can begin with an object identifier value-reference-name, which “expands”
into the initial part of a full object identifier value, and is then added to, as we see
in lines 010, 013, and 020. If you are interested and want to jump ahead, the OID tree
is more fully described in Chapter 8.

Lines 018 to 023 are the “piece of magic” syntax that defines the top-level type,
names the abstract syntax, and assigns an object identifier value to it—something
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obvious “infinite recursion”) reasons be allowed to use “wineco-OID" in the “FROM”

for that import, s0 we would end up writing out as much text (and repeating it in
each module where we wish to do the import) as we have written in lines 015 to 017
and 043 to 045. What we have is about as minimal as we can get.

Lines 102 to 139 are our third module, structurally the same as 032 to 101, and intro-
ducing nothing new. The whole specification then concludes with the text of Figure
3.7, giving our “common-type” module, which we have already discussed.

3.6 Complete Specifications

As was stated earlier, there is no concept in ASN.1 of a “complete specification”,
only of correct (complete} modules, some of which may include an “ABSTRACT-
SYNTAX" statement to identify a top-level type (or which may contain a top-level
type identified in human-readable text).

In many cases if a module imports a type from some other module, the two mod-
ules will be in the same publication (loosely, part of the same specification), but
this is not a requirement. Types can be imported from any module anywhere,

Suppose we take a top-level type in some module, and follow the chain of all the
type-reference-names it uses (directly or indirectly) within its own module, and
through import and export links (again chained to any depth) to types in other mod-
ules. This will give us the complete set of types that form the “complete specifica-
tion” for the application for which this is the top-level type, and the specifications
of all these types have (of course) to be available to any implementor of that appli-
cation and to any ASN.1 compiler tool assisting in the implementation.
Purely for the purposes of the final part of this chapter of this book, this tree of type
definitions will be called the application-required types.

It is important advice to any application designer to make it very clear
early in the text of any application specification precisely which additional
(physical) documents are required to obtain the definitions of all the
application-required types.

But suppose we now consider the set of modules in which these application-
required types were defined. (Again, purely for the next few paragraphs, we will
call these the application-required modules).

In general, the module textually containing the top-level type probably does not
contain any types other than those that are application-required types (although
there is no requirement that this be so). But as soon as we start importing, particu-
larly from modules in other publications that were perhaps produced to satisfy



CHAPTER 4

The Basic Data Types
and Construction
Mechanisms: Closure

(Or: You Need Bricks of Various Shapes
and Sizes!)

Summary

There are a number of types that are predefined in ASN.1, such as
» INTEGER,
= BOOLEAN, and
= UTF8String.

These are used to build more complex user-defined types with
construction mechanisms such as

* SEQUENCE,

+ SET,

s CHOICE,

« SEQUENCE OF,
s SET OF, and

*  etc.

Many of these construction mechanisms have appeared in the
examples and illustrations of earlier chapters.

This chapter completes the detailed presentation of all the basic
ASN.1 types, giving in each case a clear description of

73
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* the type-notation for the type,
» the set of abstract values in the type, and
* the value-notation for values of that type.

Additional pieces of type/value-related notation are also covered,
largely completing the discussion of syntax commonly used in pre-
1994 specifications.

The chapter ends with a list of additional concepts whose treat-
ment is deferred to either the next chapter or to Section IL

4.1 Illustration by Example

Figure 4.1 has been carefully
constructed to complete your
introduction to all the basic
ASN.1 types—that's it folks!

In order to illustrate some of the type
and value notations, we will define
our Return-of-Sales message as in
Figure 4.1. Figure 4.1 has been
designed to include all the basic
ASN.1 types apart from NULL, and

provides the hook for further discussion of these types.

Return-of-sales ::= SEQUENCE
{version BIT STRING
{versionl (0}, wversion2 (1}} DEFAULT {versicnl},
no-of-days-reported-on INTEGER
{week(7), month (28), maximum (56)} (1..56) DEFAULT week,
cime-and-date-of-report CHOICE
{two-digit-vear UTCTime,
four-digit-year GeneralizedTime},
-- If the system clock provides a four-digit year,
-- the second alternative shall be used. With the
-- first alternative the time shall be interpreted
- as a sliding window.
reagson-for-delay ENUMERATED
{computer-failure, network-failure, other} OPTIONAL,
== Include this field if and only if the
-- no-of-days-reported-on exceeds seven.
additional-information SEQUENCE OF PrintableString OPTIONAL,
-- Include this field if and only if the
-- reason-for-delay is *other®.
sales-data SET OF Report-item,
.. ! PrintableString : "See wineco manual chapter 15"}

Figure 4.1 (Part 1) lllustration of the use of basic ASN.1 types.



Chapter 4 / The Basic Data Types and Construction Mechanisms: Closure | 75

Report-item ::= SEQUENCE
{item OBJECT IDENTIFIER,
item-description ObjectDescriptor OPTIONAL,
-= To be included for any newly-stocked item.
bar-code-data OCTET STRING,

-- Represents the bar-code for the item as specified
-- in the wineco manual chapter 29.
ran-out-of-stock BOOLEAN DEFAULT FALSE,
- Send TRUE if stock for item became exhausted at any
== time during the period reported con.
min-stock-level REAL,
max-stock-level REAL,
average-stock-level REAL
-- Give minimum, maximum, and average levels during the
-- period as a percentage of normal target stock-level-- }

wineco-items OBJECT IDENTIFIER ::=
{ jeoint-iso-itu-t internationalRA(23) set(d2) set-vendors(9)
winecco({43) stock-items (0)}

Figure 4.1 (Part 2) lllustration of the use of basic ASN.1 types.

Have a good look at Figure 4.1. It should by now be fairly easy for you to under-
stand its meaning. If you have no problems with it, you can probably skip the rest
of this chapter, unless you want to understand ASN.1 well enough to write a book,
or to deliver a course, on it! (We included wineco-items in Figure 4.1 to reduce the
verbaosity of the object identifier values in Figure 4.2 later.)

4.2 Discussion of the Built-In Types

4.2.1 The BOOLEAN Type

(See “ran-out-of-stock” in Figure 4.1). There is nothing to add here. A “BOOLEAN"
type has the obvious two abstract values, true and false, but notice that the value-
notation is the words “TRUE" or “FALSE" (all in capital letters). You can regard
the use of capitals as either consistent with the fact that (almost) all the built-in
names in ASN.1 are all uppercase, or as inconsistent with the fact that ASN.1
requires value-reference-names to begin with a lowercase letter! ASN.1 does not
always obey its own rules!

4.2.2 The INTEGER Type

(See “number-of-days-reported-on” in Figure 4.1). This example is a little more
complicated than the simple use of “INTEGER" that we saw in Figure 2.1. The
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example here contains what are called distinguished values. In some early ASN.1
specifications (ENUMERATED was not added until around 1988) people would
sometimes use the “INTEGER” type with a list of distinguished values, whereas
today they would use “ENUMERATED". In fact, the syntax can look quite similar,
s0 we can write the equivalent of the example in Figure 2.1 as:

urgency INTEGER
{tomorrow (0},
three-day (1),

week (2)} DEFAULT week

It is, however, important here to notice some important differences. The presence
of the list following “INTEGER” is entirely optional (for “ENUMERATED"” it is
required), and the presence of the list in no way affects the set of abstract values in
the type.

The following two definitions are almost equivalent:

My-integer ::= INTEGER {tomorrow(0), three-day (1), week(2) }
and

My-integer ::= INTEGER

tomorrow My-integer ::= 0

three-day My-integer ::= 1

week My-integer ::= 2

The difference lies in ASN.1 scope

The Integer Type rules. In the second example, the

» Just the word INTEGER, nice names “tomorrow” etc. are value-
and simple!; and/or, reference-names that can be assigned
- Add a distinguished value only once within the module, can be
list; and/or, used anywhere within that module

where an integer value is needed

+ Add a range specification .
ge sp (even, in fact, as the number on an

(subtyping); then, enumeration or in another distin-
- Put an extension marker and guished value list or in a tag—but all
exception specification in the these uses would be unusual'), and
range specification. (Getting can appear in an EXPORTS statement
complicated again!) at the head of the module. On the

other hand, in the first example, the
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range constraint and no clarifying text, it is usually a safe assumption that a four-
octet integer value will be the largest you will receive.

One final point: The similarity of the syntax for defining distinguished values to that
for defining enumerations can be confusing. As the definition of distinguished val-
ues does not change in any way the set of abstract values in the type or the way
they are encoded, there is never any “extensibility” question in moving to version
2—if additional distinguished values are added, this is simply a notational conve-
nience and does not affect the bits on the line. So the ellipsis extensibility marker
(available for the list in the enumerated type), is neither needed nor allowed in the
list of distinguished values (although it can appear in a range constraint, as we will
see later).

Enumerated 4.2.3 The ENUMERATED Type

Can have an extension marker. (See “urgency” in Figure 2.1 and “rea-
son-for-delay” in Figure 4.1). There is
little to add to our earlier discussions.
The numbers in round brackets were
required pre-1994, and are optional
post-1994, The type consists precisely and only of values corresponding to each of
the listed names.

Numbers for encodings needed
pre-1994, optional post-1994.

The numbers were originally present to avoid extensibility problems; if version 2
added a new enumeration, it was important that this should not affect the values
used (in encodings) to denote original enumerations, and the easiest way to ensure
this was to let the application designer list the numbers to be used. Post-1994,
extensibility is more explicit, and we might see:

Urgency-type ::= ENUMERATED
{tomorrow,
three-day,
weaek,
- Version 1 systems should assume any other value

-- means “week”.

month}

Here “month” was added in version 2, although the requirement placed on ver-
sion 1 systems when version 1 was first specified actually means that such
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a simple means of finding the end of the notation). The mathematical value being
identified by {mantissa x, base y, exponent z} is (x times (y to the power z)), but y
is allowed to take only the values 2 and 10.

There are also explicitly included (and encoded specially) two values with the fol-
lowing value notation:

PLUS-INFINITY

MINUS-INFINITY

Again, all uppercase letters. When “REAL" was first introduced, there was discus-
sion of adding additional special “values” such as “OVERFLOW", or even “PI” etc.,
but this never happened.

That is really all you need to know, as the “REAL" type is infrequently used in actual
application specifications. The rest of the discussion of the “REAL" type is a bit aca-
demie, and you can omit it without any “real” damage. However, if you want to
know which of v1 to v7 represent the same abstract value and which different ones,
read on!

You might expect from the name that the abstract values are (mathematical) real
numbers, but for those of a mathematical bent, only the rationals are included.

Formally, the type contains two sets of abstract values, one set comprising all the
numbers with a finite representation using base 10, and the other set comprising all
the numbers with a finite representation base 2. (Notice that from a purely mathe-
matical point of view, the latter values are a strict subset of the former, but the for-
mer contains values that are not in the latter set). In all ASN.1 encoding rules, there
are binary encodings for “REAL", and there are also decimal encodings as specified
in the ISO standard 6093. This standard specifies a character string to represent the
value, which is then encoded using ASCII. An example of these encodings is:

56.5E+3
but ISO 6093 contains many options!

It is possible (post-1994) to restrict the set of abstract values in “REAL" to be only
the base 10 or only the base 2 set, effectively giving the application designer con-
trol over whether the binary or the decimal encoding is to be used. Where the type
is unrestricted, it is theoretically possible to put different application semantics on
a base 10 value from that on the mathematically equal base 2 value, but probably
no one would do so! (Actually, “REAL” is not used much anyway in real protocols.)
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To wrap this discussion up—looking at the forementioned values vl to v7, we can
observe that the value-reference-names listed on the same line below are value

notation for the same abstract value, and those on different lines are names for dif-
ferent abstract values:

vl, w2
vi
vd
vS, wvb
v7

(v equals vb because vh is defined to represent the base2 value zero.)

4.2.5 The BIT STRING Type

(See “version” in Figure 4.1). There are two main uses of the BIT STRING type. The
first is that given for “version”, where we have a list of named bits associated with
the type. The second and simplest is the type-notation:

BT STRING BIT STRING is often used with
Note that, as we would expect, this is named bits to support a bit-map
all uppercase, but as we might not for version negotiation.

expect, the name of the type (effec-
tively a type-reference-name) contains a space. The space is not merely permitted,
it is required! Again ASN.1 breaks its own rules!

We will return to Figure 4.1 in a moment. Let us take the simpler case where there
is no list of named bits.

If a field of a sequence (say) is defined as simply “BIT STRING”, then this can be a
sign of an inadequately specified protocol, as semantics need to be applied to any
field in a protocol. “BIT STRING™ with no further explanation is one of several ways
in which “holes” can legally be left in ASN.1 specifications, but to the detriment of
the specification as a whole.

We will see later that where any “hole” is left, it is important to provide fields that
will clearly identify the content of the hole in an instance of communication, and to
either ensure that all communicating partners will understand all identifications
(and the resulting contents of the hole), or will know what action to take on an
unknown identifier. ASN.1 makes provision for such “holes” and the associated
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identification and it is not a good idea to use “BIT STRING” to grow your own
“holes™ (but some people do)!

So, BIT STRING without named bits has a legitimate use to carry encodings pro-
duced by well-identified algorithms, and in particular to carry encryptions for
either concealment or signature purposes. But even in this case, there is usually a
need to clearly identify the security algorithm to be applied, and perhaps to indi-
rectly reference specific keys that are in use. The BIT STRING data type is (legiti-
mately) an important building block

BIT STRING without named bits for those providing security enhance-
is also frequently used as part ments to protocols, but further data is
of a more complex structure to usually carried with it.

carry encrypted information. The use of BIT STRING with named

bits as for “version” in Figure 4.1 is
common. The names in curly brackets simply provide names for the bits of the BIT
STRING and the associated bit number. It is important to note that the presence of
a named bit list (as with distinguished values for integers), does not affect the type.
The list in no way constrains the possible length of the BIT STRING, nor do bits
have to be named in order.

ASN.1 talks about “the leading bit” as “bit zero”, down to the “trailing bit". Encoding
rules map the “leading bit” to the “trailing bit” of a bit-string type into octets when
encoding.

(BER—arbitrarily, it could have chosen the opposite rule—specifies that the leading
bit be placed in the most significant bit of the first octet of the encoding, and so on.)

How are these names of bits used? As usual, they can provide a handle for refer-
ence to specific bits by the human-readable text. They can also, however, be used
in the value notation.

The obvious (and simplest) value notation for a BIT STRING is to specify the value
in binary, for example:

'101100110001"B
If the value is a multiple of four bits, it is also permissible to use hexadecimal:
"B31"H

{Note that in ASN.1 hexadecimal notation, only uppercase letters are allowed.)
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If, however, there are named bits available, then an additional value notation is
available, which is a comma-separated list of bit-names within curly brackets (see,
for example, the “DEFAULT"” value of “version” in Figure 4.1). The value being
defined is one in which the bit for every listed bit-name is set to one, and all
other bits are set to zero.

The alert reader (I have done it again!) will spot that this statement is not sufficient
to define a BIT STRING value, as it leaves undetermined how many (if any) trailing
zero bits are present in the value. So, the use of such a “value-notation” if the length
of the BIT STRING is not constrained does not really define a value at all—it
defines a set of values! All those with the same one bits, but zero to infinity trailing
zero bits.

The ASN.1 specifications post-1986 (or so) circumvent this problem with some
“weasel” words (slightly changed in different versions): “If a named bit list is pres-
ent, trailing zero bits shall have no semantic significance”; augmented later by
“encoding rules are free to add (or remove) trailing zero bits to (or from) values
that are being encoded!”

This issue is not a big one for normal BER, where it does not matter if there is doubt
over whether some value exactly matches the “DEFAULT” value, but it matters
much more in the canonical encoding rules to be described later.

The most common use for named bits is as a “version” map, as illustrated in
Figure 4.1. Here an implementation would be instructed to set the bits corre-
sponding to the versions that it is capable of supporting, and—typically—there
would be some reply message in which the receiver would set precisely one bit
(one of those set in the original message), or would send some sort of rejection

message.

4.2.5.1 Formal/Advanced Discussion

N 0 T E — Most readers should skip this next bit! Go on to OCTET STRING, which has
fewer problems! If you insist on reading on, please read Figure 999 again!
There have been many different texts in the ASN.1 specifications over the last 15

years associated with “BIT STRING” definitions with named bits. Most have been
consirained by the desire:

a. not really to change what was being specified, or at least, not to break cur-
rent deployed implementations; and



Chapter 4 / The Basic Data Types and Construction Mechanisms: Closure | a5 |
1

rather abstract(!) problem was first understood.) Existing BER implementations

will frequently include trailing zero bits in the encoding of a value of a BIT STRING
type with a named-bit list.

For canonical encoding rules, however, including PER, a single encoding is neces-
sary, and at first sight saying that such encoding rules never have trailing bits in the
encoding looks like a good solution.

But the choice of encoding (and indeed the selection of the precise abstract BIT
STRING value—from the set of abstract values with the same semantics—that is to
be used for encoding) is complicated if there are length constraints at the
abstract level on the bit-string type.

The matter is further complicated because in BER-related encoding rules, length
constraints are “not visible” that is, they do not affect the encoding. In PER, they
may or may not be visible.

The upshot of all this is that in the canonical versions of BER trailing zero bits are
never transmitted in an encoding, but the value delivered to the application is
required to have sufficient zero bits added (the minimum necessary) to enable it to
satisfy any length constraints that might have been applied. (Such constraints are
assumed to be visible to the application and to the Application Program Interface
(API) code, whether they are visible to—affect—the encoding rules or not.)

However, PER, where (some) length constraints are PER-visible, changes this
slightly: What is transmitted is always consistent with PER-visible constraints, so
(the minimum number of) trailing zero bits are present in transfer if they are
needed to satisfy a length constraint. The encoding can thus be delivered to the
application unchanged, provided there are no not-PER-visible constraints applied,
otherwise the canonical BER rules would apply; the application gets a value that is
permitted by the constraints and carries the same application semantics as that
derived directly from the transmitted encoding.

And if you have read this far, | bet you wish you hadn't! It kind of all works, but it is
not simple!

Issues like this do not affect the normal application designer—just do the obvious
things and it will all work; nor do they affect the normal implementor who obeys the
well-known rules: encode the obvious encoding; and be liberal in your decoding.

These issues are, however, of importance to tool vendors who provide an option
for “strict diagnostics” if incoming material is perceived to be erroneous. In such
cases a very precise statement of what is “erroneous” is required!
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The normal use is very much as in
Figure 2.1, where we need a type to
provide a TLV (whose presence or

For MNULL, you know it all—a
placeholder: no problems.

absence carries some semantics), but
where there is no additional information to be carried with the type. NULL is often
referred to as a “placeholder” in ASN.1 courses.

4.2.8 Some Character String Types

(See “additional-information” in Figure 4.1 and “name” (twice) in Figure 2.1). In the
examples so far, you have met “PrintableString” (present in the earliest ASN.1
drafts), “VisibleString” (deprecated synonym “ISO6465tring”), and “UTF8String”
(added in 1998). There are several others.

Despite not being all-uppercase, these (and the other character string type names)
have been reserved words (names you may not use for your own types) since about
1988/90. The early designers of ASN.1 felt (rightly!) that the character string types
and their names were a bit ad hoc, and gave them a somewhat reduced status!

Actually, in the earliest ASN.1 specification, there was the concept of “Useful
Types”, that is, types that were defined using the ASN.1 notation rather than pure
human language, and these all used mixed upper/lowercase. The character string
types were originally included as “Useful types”, and were defined as a tagged
OCTET STRING. Today (since about 1990 when they became reserved words) they
are regarded as fairly fundamental types with a status more or less equal to that of
INTEGER or BOOLEAN.

The set of characters in “PrintableString” values is “hardwired” into ASN.1, and is
roughly the old telex character set, plus lowercase letters. The BER encoding in
the “V” part of the TLV is the ASCII encoding, so the reduced character set over
“VisibleString™ (following) is not really useful, although a number of application
specifications do use “PrintableString”.

The set of characters in “VisibleString” values is simply the printing ASCII charac-
ters plus “space”. The BER encoding in the “V” part of the TLV is, of course, ASCII.

The set of characters in “UTF85tring” is any character—from Egyptian hieroglyphs
to things carved in wood in the deepest Amazon jungle to things that we will in due
course find on Mars—that has been properly researched and documented (includ-
ing the ASCII control characters). The BER (and PER if the type is not constrained
to a reduced character set) encoding per character is variable length, and has the
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“nice” property that for ASCII characters the encoding per character is one octet,
stretching to three octets for all characters researched and documented so far, and
going to at most seven octets per character once we have all the languages of the
galaxy in there! Those who are “into” character set stuff may recognize the name
“Unicode”. UTFS is an encoding scheme covering the whole of Unicode (and more)
that is becoming (circa 1999) extremely popular for communication and storage of
character information. (Advice: If you are designing a new protocol, use
UTF85tring for your character string fields unless you have a very good reason not
to do s0.)

4.2.9 The OBJECT IDENTIFIER Type

(See “item” and “wineco-items” in Figure 4.1, and module identifiers in Figure 3.8.)
Values of the object identifier type have been used and introduced from the start of
this book. But we are still going to

OBJECT IDENTIFIER—Perhaps postpone to a later chapter a detailed
used more than any other basic discussion of this type.

ASN.1 type—you can get some The OBJECT IDENTIFIER type may
name-space in lots of ways, but well lay claim to being the most used
you don't really need it! of all the ASN.1 types (excluding the

constructors SEQUENCE, SET, and
CHOICE, of course). Wherever world-wide unambiguous identification is needed in
an ASN.1-based specification, the object identifier type is used.

Despite the apparent verbosity of the value-notation, the encoding of values of type
object identifier is actually very compact (the human-readable names present in the
value notation do not appear in the encoding). For the early components of an
object identifier value, the mapping of names to integer values is “well-known”, and
for later components in any value-notation, the corresponding integer value is pres-
ent (usually in round brackets).

The basic name space is a hierarchically allocated tree-structure, with global
authorities responsible for allocation of top-level ares, and progressively more local
authorities responsible for the lower-level arcs.

For you (as an application designer) to be able to allocate values from the object
identifier name space, you merely need to “get hung" from this tree. It really does
not matter where you are “hung” from (although encodings of your values will be
shorter the nearer you are to the top, and international organizations tend to be
sensitive about where they are “hung"!).
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For a standards-making group, or a private company, or even an individual, there is
a range of mechanisms for getting some of this name-space, most of which require
no administrative effort (you probably have an allocation already). These mecha-
nisms are described later, although such is the proliferation of branches of the OID
tree (as it is often described) that it is hard to describe all the finer parts.

It has been a criticism of ASN.1 that you need to get some OID space to be able to
write: ASN.1 modules. This is actually not true—the module identifier is not
required. However, most people producing ASN.1 modules do (successfully) try to
get a piece of the OID space and do identify their modules with OID values. But, if
this provides you with problems, it is not a requirement.

4.2.10 The ObjectDescriptor Type

(See “item-deseription” in Figure 4.1). The type-notation for the ObjectDescriptor
type is:

ObjectDescriptor

without a space, and using mixed uppercase and lowercase! This is largely a his-
torical accident. This type was formally defined as a tagged “GraphicString”
(another character siring type capa-
ble of carrying most of the world's
languages, but regarded as obsolete
today). Because its definition was by
an ASN.1 type-assignment statement,
it was deemed originally to be merely
a “Useful Type", and was given a
mixed upper/lowercase name with no
space. Today, the term “Useful Type” is not used in the ASN.1 specification, and the
use of mixed case for this built-in type is a bit of an anachronism.

ObjectDescriptor
Yes, mixed case! You will never
see it in a specification, and
you are unlikely to want to use
it—ignore this text!

The existence of the type stems from arguments over the form of the OBJECT
IDENTIFIER type. There were those who (successfully) argued for an identifica-
tion mechanism that produced short, numerical identifiers when encoded on the
line. There were others who argued (unsuccessfully) for an identification mecha-
nism that was “human-friendly”, and contained a lot of text (for example, some-
thing like a simple ASCII encoding of the value notation we have met earlier), and
perhaps no numbers. As the debate developed, a sort of compromise was reached
that involved the introduction of the “OBJECT IDENTIFIER" type—short, numeri-
cal, guaranteed to be unambiguous world-wide, but supplemented by an additional
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type “ObjectDescriptor” that provided an indefinitely long (but usually around 80
characters) string of characters plus space to “describe” an object. The
“ObjectDescriptor” value is not in any way guaranteed to be unambiguous world-
wide (the string is arbitrarily chosen by each designer wishing to describe an
ohject), but because of the length of the string, usually it is unambiguous.

There is a strong recommendation in the ASN.1 specification that whenever an object
identifier value is allocated to identify an object, an object descriptor value should
also be allocated to describe it. It is then left for application designers to include in
their protocol (when referring to some object) either an “OBJECT IDENTIFIER" ele-
ment only, or both an “OBJECT IDENTIFIER" and an “ObjectDescriptor”, perhaps
making the inclusion of the latter “OPTIONAL".

In practice (apart from the artificial example of Figure 4.1) you will never
encounter an “ObjectDescriptor” in an application specification! Designers have
chosen not to use it. Moreover, the rule that whenever an object identifier value is
allocated for some object, an object descriptor value should also be assigned, is fre-
quently broken.

Take the most visible use of object identifier values—in the header of an ASN.1 mod-
ule: What is the corresponding object descriptor value? It is not explicitly stated, but
most people would say that the module name appearing immediately before the
object identifier in the header forms the corresponding object descriptor. Well—OK!

But there are other object identifier values originally assigned in the ASN.1 specifi-
cation itself, such as:

{iso standard B571}

This identifies the numbered standard (which is actually a multipart standard), and
also gives object identifier name-space to those responsible for that standard.
There is, however, no corresponding object descriptor value assigned.

4.2.11 The Two ASN.1 Date/Time Types

Yes, you did indeed interpret Figure 4.1 correctly—UTCTime is a date/time type
that carries only a two-digit year!

You will also notice that both “UTCTime" and “GeneralizedTime" are again mixed
upper/lowercase. Again this is a historical accident: They were defined using an
ASN.1 type-assignment statement as a tagged “VisibleString”, and were originally
listed as “Useful Types”.
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to any that are more than 49 years in the future), this system clearly works,
and allows two-digit years to be used indefinitely. A neat solution!

What does “UTC" stand for? It comes from the Consultative Committee on
International Radio (CCIR) and stands for “Coordinated Universal Time" (the curi-
ous order of the initials comes from the name in other languages). In fact, despite
the different name, “GeneralizedTime" also records Coordinated Universal Time.
What is this time standard? Basically, it is Greenwich Mean Time, but for strict
accuracy, Greenwich Mean Time is based on the stars and there is a separate time
standard based on an atomic clock in Paris. Coordinated Universal Time has indi-
vidual “ticks" based on the atomic clock, but from time to time it inserts a “leap-
second” at the end of a year (or at the end of June), or removes a second, to ensure
that time on a global basis remains aligned with the earth’s position in its orbit
around the sun. This is, however, unlikely to affect any ASN.1 protocol!

What is the exact set of values of UTCTime? The values of the type are character
strings of the following form:

yymmddhhmmZ
yymmddhhmmegsZ
yymmddhhmm+ hhmm
yymmddhhmm-hhmm
yymmddhhmms s +hhmm

yymmddhhmms s - hhmm

“yymmdd” is year (00 to 99), month (01 to 12}, day (01 to 31), and “hhmmss” is
hours (00 to 23), minutes (00 to 59), seconds (00 to 59).

The “Z" is a commonly used suffix on time values to indicate “Greenwich Mean
Time” (or UTC time), others being “A” for one hour ahead, “Y” for one hour behind,
etc., but these are NOT used in ASN. 1.

If the “+hhmm” or ““hhmm” forms are used (called a time differential), then the
first part of the value expresses loeal time, with UTC time obtained by subtract-
ing the “hhmm” for “+hhmm”, and adding it for “-hhmm”". The ASN.1 specification
contains the following example (another example, added in 1994 shows a “yy” of
“01" representing 2001!):

If local time is 7am on 2 January 1982 and coordinated universal time

is 12 noon con 2 January 1982, the value of UTCTime is either of
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The ASN.1 specification talks about “The selection type”, but the heading in this
clause is more accurate—this is a piece of notation more akin to “IMPORTS” than
to a type definition and it references
The SELECTION TYPE nota- an existing definition.

tion—you are unlikely ever to
see this—forget it!

The selection-type notation takes the
following form:

identifier-of-a-choice-alternative < Type-notation-for-a-CHOICE
For example, given:
Example-choice ::= CHOICE
falrl Typel,
alt2 Type?,
ale3 Typed}

then the following type-notation can be used wherever type-notation is required
within the scope (module) in which “Example-choice” is available:

altl <« Example-choice
or alt?2 <« Example-choice

or altd « Example-choice

This notation references the type defined as the named alternative of the identified
choice type, and should be seen as another form of type-reference-name. Notice that
if the selection-type notation is in a module different from that in which “Example-
choice” was originally defined, any tagging or extensibility environment applied to
the referenced type is that of the module containing the original definition of
Example-choice, not that of the selection-type notation.

Value notation for “a selection type” is just the value notation for the selected type.

In other words, for the type-notation “alt3 < Example-choice”, the value-notation is
the value-notation for “Type3". (The identifier “alt3” does not appear in the value-
notation for the “selection type”, nor are there any colons present.)

4.3.2 The COMPONENTS OF Notation

This is another example of a rarely used piece of notation that references the inner
part of a sequence or set. The only reason to use it is that you can avoid an extra
TLV wrapper in BER. It is not illustrated in Figure 4.1.
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What follows is described in relation to “SEQUENCE", but applies equally to
“SET". However, a “COMPONENTS OF” in a "SEQUENCE" must be followed by
type-notation for a sequence-type (which remember may, and usually will, be a
type-reference-name), and similarly for SET.

Suppose we have a collection of ele-
The COMPONENTS OF nota- ments (identifiers and type-notation)
tion—you won't often see this that we want to include in quite a few
either, so forget this too! of the sequence types in our applica-
tion specification. Clearly we do not
want to write them out several times, for all the obvious reasons. We could, of
course, define a type:

Common-elements ::= SEQUENCE
{elementl Typel,
elemant2 Typel,

element23 Type2i}

and include that type as the first (or last) element of each of our “actual” sequences:

First-actual-seguence ::= SEQUENCE
{used-by-all Common-elements,
next-element Some-special-type,
next-again Speciall,

etc The-last}

We do the same for all the sequences in which these common elements are needed.
That is fine (and with PER it really is fine!). But with BER, if you recall the way it
works, we get an outer-level TLV for “First-actual-sequence”, and in the “V" part a
TLV for each of its elements, and in particular a TLV for the “used-by-all” element.
Within the “V" part of that we get the TLVs for the elements of “Common-elements”.
But if we had textually copied the body of “Common-elemenis” into “First-actual-
sequence”, there would be no TLV for “Common-elements"—we would have saved
(with BER) two or three, perhaps even four, octeis!

If we use “COMPONENTS OF", we can write:

First-actual-sequence ;:= SEQUENCE
{ COMPONENTS OF Common-elements,
next-element Some-special-type,
next-again Speciall,
eto The-last}
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The “COMPONENTS OF" notation provides for such copying without textually
copying, it “unwraps” the sequence type it references.

Note that there is no identifier on the “COMPONENTS OF element”. This is not
optional—the “identifier” must be omitted. The “COMPONENTS OF” is not really
an element of the SEQUENCE, it is a piece of notation that extracts or unwraps the
elements. It is often referred to as “textual substitution”, but that is not quite cor-
rect (alert reader!) because the tagging and extensibility environment for the
extracted elements remains that of the module where they were originally defined.

There is some complexity if automatic tagging is applied and COMPONENTS OF is
used. The reader has two choices: just forget it and note that it all works (unless
you are a hand-coding implementor, in which case see the next option!), or as a
good exercise (none are formally set in this book!) go to the ASN.1 specification
and work out the answer!

4.3.3 SEQUENCE or SET?

The type-notation for SEQUENCE,
SET, SEQUENCE OF and SET OF has
been well illustrated in earlier text
and examples, together with the use
of “DEFAULT" and “OPTIONAL".
Remember that in BER (not
CER/DER/PER), the default value is essentially advisory. An encoder is permitted
to encode explicitly a default value, or to omit the corresponding TLV, entirely as
an encoder’s option.

An application designer can
generally choose to use
SEQUENCE or SET more or less
arbitrarily. Read this text then
use SEQUENCE always!

We have already discussed briefly the differences hetween
SEQUENCE { .... } and SET { .... 1}

from an encoding point of view in BER (the TLVs are in textual order for
SEQUENCE, in an order chosen by the encoder for SET), and also from the more
theoretical standpoint that “order is not semantically significant” in SET.

The problem is that if we regard the abstract value as a collection of unordered
information, and we want a single bit pattern to represent that in an encoding, we
have to invent some more or less arbitrary criteria to order the collection in order
to form a single bit-pattern encoding. This can make for expensive (in CPU and per-
haps also in memory terms) encoding rules. In the case of SET | .... }, if we want to
remove encoder options, it is possible to use either textual order (not really a good
idea) or tag order (tags are required to be distinct among the elements in a SET) to
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provide the ordering ag a statie decivion. However in the eage of *SET OF, na oia

has found a way of providing a single bit pattern for a complete SET OF value with-
out doing a run-time sort of the encodings of each element. This can be expensive!

We will return to this point when we discuss the canonical (CER) and distinguished
(DER) encoding rules in Section III, but advice today (but see figure 999!) would
be: Best to keep off “SET {“, and avoid “SET OF” like the plague!

One very small detail to mention here: the default tag provided for “SET { " and for “SET
OF” is the same. It is different from that provided for “SEQUENCE (" and for
“SEQUENCE OF", but these are also the same. This only matters if you are carefully
applying tags within CHOICEs and SETs ete. with the minimal application of tags. In
this case you will have studied and be happy with later text on tagging, and will care-
fully check the ASN.1 specification to determine the default tag for all types! If you are
anormal mortal, however, you will routinely apply tags to everything (pre-1994), or will
use “AUTOMATIC TAGS" (post-1994), and the fact that the default tag for “SEQUENCE
|" is the same as that for “SEQUENCE OF" will not worry you in either case!

4.3.4 SEQUENCE, SET, and CHOICE (Etc.) Value-Notation

We have used the type notation for these constructions almost from the first page
of this book, but now we need to look at their value-notation. (Actually, you will
never encounter this except in courses or an illustrative annex to the ASN.1 speci-
fication, but it reinforces the point

that for any type you can define with SEQUENCE, SET,
ASN.1 there is a well-defined notation CHOICE, Etc.
for all of its values.) Value-Notation

You won't ever need to write it,
and will only ever read it in

To say it simply: value notation for
“SET | " and “SEQUENCE | " is a pair of
curly braces containing a comma-sepa-
rated list. Each item in the list is the books like this, but here it is. Itis
identifier for an element of the good to complete your education!
“SEQUENCE [" (taken in order) or
“SET [” (in any order), followed by value-notation for a value of that element. Of
course this rule is recursively applied if there are nested “SEQUENCE (" constructs.

courses and ASN.1 tutorials and

For “SET OF" and “SEQUENCE OF” we again get a pair of curly braces containing
a comma-separated list, with each item being the value notation for a value of the
type-notation following the “OF".

Finally, for “CHOICE" it is NOT what you might expect, there are no curly braces!
Instead you get the identifier of one of the alternatives, then a colon (:), then value
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related subject, but do not appear in X.680; they are in X682 and are also
treated later.)

* Tagging: Touched on briefly already. This was important in the past, but with
the introduction of automatic tagging in 1994 is much less important now.

s The object identifier type: This was fully covered in X.680/1SO 8824-1
pre-1998, but parts of the material are now split off into another
Recommendation/Standard. Previous chapters of this book produced a lot
of introductory material, but the discussion remains incomplete!

* Hole types: This term is used for the more formal ASN.1 terms EXTER-
NAL, EMBEDDED PDV, CHARACTER STRING, and “Open Types” (post-
1994). And dare we mention ANY and ANY DEFINED BY (pre-1994)7 If you
have never heard of ANY or ANY DEFINED BY, that is a good thing. But you
will have to be sullied by later text—sorry!

* The character string types: There are about a dozen different types for
carrying strings of characters from various world-wide character sets. So
far we have met PrintableString, VisibleString, GraphicString, and
UTF8String, and discussed them briefly. There is a lot more to say!

* Subtyping, or constrained types: This is a big area, with treatment split
between X.680/150 8824-1 and X.682/1S0 8824-3. We have already seen an exam-
ple of it with the range constraint “(1..56)" on “no-of-days-reported-on” in Figure
4.1. This form is the one you will most commonly encounter or want to use, but
there are many other powerful notations available if you have need of them.

* Macros: We have to end this chapter on an obscenity! Some reviewers said,
“Don't dirty the book with this word!" But macros were very important
(and valued) in ASN.1 up to the late 1980s, and will still be frequently
encountered today. But I hope none of you will be driven to writing one!
Sections I and IT will not tell you much more about macros, but the histor-
ical material in Section IV discusses their introduction and development
over the life of ASN.1. It is a fascinating story.

Additionally, there are a number of new concepts and notations that appear in
X.681/I1SO 8824-2, X.6821S0 8824-3, and X.683/ISO 8824-4 (published in 1994).
These are: information object classes (including information object definition and
information object sets); and parameterization.

Where the preceding items have already been introduced (in this chapter or ear-

lier), their detailed treatment is left to a chapter of Section II. Where they have not
yet been discussed, a brief introduction appears in the following short chapter.
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* to describe the concept and the problem that is being
Addressed,

* o illusirate where necessary key aspects of the notational
support so that the presence of these features in a pub-
lished protocol can be easily recognized, and

* to summarize the additional text available in Section IL

If further detail is needed on a particular topic (if something takes
the reader’s interest), then the appropriate chapter in Section II
can be consulted. The chapter in Section II provides “closure” on
all items mentioned in this chapter unless otherwise stated.

5.1 Object Identifiers

The OBJECT IDENTIFIER type was briefly introduced in Chapter 4 (4.2.9), where the
broad purpose and use of this type was explained (with the type notation). Examples
of its value notation have appeared throughout the text, although these have not com-
pletely illustrated all possible forms of
this value notation.

QBJECT IDENTIFIERs have a sim-
ple type notation, and a value
notation that has already been
seen. The “Further Details”
chapter tells you about the form
of the name-space and how to

A more detailed discussion of the form
of the object identifier tree (the name-
space) is given in Chapter 8 together
with a full treatment of the possible
forms of OJECT IDENTIFIER value

notation.

get some, and provides discus-
Earlier text has given enough for a

normal understanding of this type and
the ability to read existing specifica-
tions. It is only if you feel you need some object identifier name-space and do not
know how to go about getting some that the “Further Details” material will be use-
ful. This material also contains some discussion about the (legal) object identifier
value notation that omits all names and uses numbers only, and about the (con-
tentious) value notation where different names are associated with components,
depending on where the value is being published and/or the nature of lower arcs.

5.2 Character String Types

The names of types whose values are strings of characters from some particular
character repertoire have appeared throughout the earlier text, and Chapter 4
(4.2.8) discussed in some detail the type notations

sion of the value notation.
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PrintableString
igibleString
ISOR46String

TF8String

although the treatment introduced terms such as “Unicode” that may be unfamiliar
to some readers.

There are many more character
string types than you have met
so far, and mechanisms for con-
structing custom types and
types where the character
repertoire is not defined until
rundtime. The wvalue notation
provides both a simple “quoted
string” mechanism and a more
complex mechanism to deal

with “funny” characters.

There has also been little treatment so
far of the value notation for these
types, nor has the precise set of char-
acters in each repertoire been identi-

fied fully.

Chapter 9 provides a full treatment of
the value notation and provides refer-
ences to the precise definitions of the
character repertoires for all character
string types. Chapter 9 describes the
following additional character string
types that you will encounter in pub-
lished specifications (all the charac-

ter string types are used in at least one published specification):

NumericString
IASString
TeletexString
TElstring
idecotexString

GraphicS8String
GeneralString
UniversalString
BMPString

UTFBString

The simplest value notation for the character string types is simply the actual char-
acters enclosed in quotation marks (the ASCII character QUOTATION MARK, usu-
ally represented as two vertical lines in the upper quartile of the character glyph).
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For example,

*This is an example character string walue”

The (alert—I hope we still have some!) reader will ask four questions:

* How do I express characters appearing in character string values that are
not in the character set repertoire used to publish the ASN.1 specification?
(Publication of ASN.1 specifications as ASCII text is common.)

* How do I include the ASCII QUOTATION MARK character (*) in a charac-
ter string value?

¢ Can I split long character string values across several lines in a published
specification?

* How do I define precisely the white-space characters and control charac-
ters in a character string value?

These are topics addressed in the “Further Details” section.
In summary:

s A QUOTATION MARK character is included by the presence of adjacent
guotation marks (a very common technique in programming languages).

* ASN.1 provides (by reference to character set standards), names for all the
characters in the world (the names of these characters use only ASCII char-
acters), and a value notation that allows the use of these names.

s (Cell references are also available for ISO 646 and for ISO 10646 to provide
precise specification of the different forms of white-space and of control
characters appearing in ASCIL

An example of a more complex piece of character string value notation described
in the “Further Details” is,
{ nul, {0,0,4,29}, cyrillicCapitalLetterle, *ABC"}

go to “Further Details” if you want to know what that represents!

The preceding provision is, however, not the end of the story. If UniversalString or
BMPString or UTF85tring are used, then ASN.1 has built-in names (again defined
by reference to character set standards) for about 80 so-called “collections” of
characters. Here are the names of some of these collections:
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BasicLatin
BasicGreek

Cyrillic

Katakana
IpaExtensions
MathematicalOperators
ControlPictures

Dingbats

Formally, these collections are subsets (subtypes—see 5.3) of the BMPString type,
and it is possible to build custom character string types using combinations of
these pre-defined types.

Chapter 9 provides full coverage of these features, but a more detailed discussion
of the form and historical progression of character set standardization is presented
in Section IV (“History and Applications™). Readers interested in gaining a full
understanding of this area may wish to read the relevant chapter in Section IV
before reading the Section II chapter.

Finally, ASN.1 also includes the type:
CHARACTER STRING

that can be included in a SEQUENCE or SET (for example) to denote a field that
will contain a character string, but without (at this stage) determining either the
character repertoire or the encoding.

This is an incomplete specification or “hole”, and is covered in Chapter 14. If
this character string type is used, both the repertoire and the encoding are
determined by announcement (or if the OSI stack is in use, by negotiation) at
run-time, but can be constrained by additional specification using “con-
straints” (see 5.9), either at primary specification time, or by “profiles™ (addi-
tional specifications produced by some group that reduces options in a base
standard).

5.3 Subtyping

There has been little discussion of this subject so far. We have seen an example of:

INTEGER (1..586)
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A number of other forms of constraint were introduced into ASN.1 in 1994 related
to constraining what can fill in a *hole”, or to relating the contents of that “hole” to
the value of some other field. These other forms of constraint are covered in
Chapter 13.

5.4 Tagging
Earlier text has dipped in and out of tagging, but has never given a full treatment.
The TLV concept (which underlies tagging) was introduced in 1.5.2 and further text
on ASN.1 tagging appeared in 2.2.7 and 3.3.2, where tagging was described entirely
in relation to the TLV encoding philosophy, and the concepts of “implicit tagging”
and “explicit tagging” were introduced.

Some mention has also been made of different “classes” of tag, with syntactic con-
structs such as

[3] INTEGER
My-Useful-Type ::= [APPLICATION 4] SEQUENCE { .... }
[PRI ATE 4] INTEGER

[UNI ERSAL 25] GraphicString

Chapter 11

Up to 1994, getting your tags
right was fundamental to writing * gives a full treatment of the dif-
a correct specification. Post- ferent classes of tag,
1994, AUTOMATIC TAGS in the e provides an abstract model of
module header enables them to types and values that makes
be forgotten. So details are rel the concepts of explicit and
egated to Section Il. If you want implicit tagging meaningful, even
to read and understand a speci if encoding rules are being
fication (or even to implement employed that are not TLV-based,
one), you already know enough * discusses matters of style in the
about the tag concept, but if you choice of tag-class used in a
want to take control of your tags specification, and
as you had to pre-1994), you . .
:vill ::ed the Sec:on ] ma,;e::I. * givesthe d?taﬂEd rules on when

tags on different elements of

sets and sequences or alterna-
tives of choices are required to
be distinct.
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SEQUENCE
{fieldl TypeA,
field2 TypeB,
! PrintableString : “See clause 597,
--— The following is handled by old systems
-- as specified in clause 59.
[[ w2-fieldl Type2A,
v2-field2 Type2B ]],
[[ vI-fieldl TypelA,
vi-fieldZ TypeliB 11,

-= The following is wersion 1 material.

field3d TypeC}

Figure 5.1 lllustration of extensibility markers and version brackets.

this material together with so-called “version brackets". This is illustrated in Figure
5.1, which is repeated and described more fully in Chapter 12.

Notice that it is not mandatory to include version brackets. If they are absent the
effect is as if each element of the sequence had been added separately in a succes-
sion of versions.

Note also that if there is no further version 1 material (“field3 TypeC” in Figure 5.1
is not present), then the final ellipsis is not required, and will frequently be omitted.

5.6 Hole Types

Clause 2.2.1 introduced the concept of “holes™: parts of a specification left undefined
to allow other groups to “customize” the specification to their needs, or to provide
a carrier mechanism for a wide variety
You can leave a hole by using one of other types of material.

of several ASN.1 types, but it

In general, specifiers can insert in
may be better to use Information their protocols any ASN.1 type and
Object Classes instead! leave the semantics to be associated
with values of that type undefined.
This would constitute a “hole”. Thus “holes” can in principle be provided using
INTEGER or PrintableString! But usually when specifiers leave a “hole”, they want
the container to be capable of carrying an arbitrary bit-pattern. Thus using OCTET
STRING or BIT STRING to form a “hole” would be more common. This is generally
not recommended, as there are specific ASN.1 types that are introduced to clearly
identify the presence of a hole, and in some cases to provide an associated identi-
fication field that will identify the material in the “hole”.
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Provision for “holes” has been progressively enriched during the life of ASN.1, and
some of the early mechanisms are disparaged now. The following are the types nor-
mally regarded as “hole” types, and are described fully in Chapter 14:

ANY (removed in 1994)

ANY DEFINED BY (remowved in 1994)
EXTERMAL (deprecated)

EMBEDDED PDV

CHARACTER STRING

5.7 Macros

ASN.1 contained (from 1984 to 1994) a
very complex piece of syntax called

There is much controversy sur-

“the macro notation™. It was removed
in 1994, with eguivalent (but much
improved) facilities provided by the
“Information Object Class” and related
concepts (see below).

Many languages, graphics packages,
and word processors have a macro
facility. The name “macro” is very
respectable. However, the use of this
term in ASN.1 bears very little rela-
tionship to its use in these other pack-
ages. Section IV says a little more
about what macros are all about. You

rounding macros. They were
part of ASN.1 for its first
decade, but produced many
problems, and were replaced by
Information Object Classes in
1994. You will not often see
text defining a macro (and
should certainly not write any
today), but you may still see in
older specifications text whose
form depends on a macro defin-
ition imported into a module.

are unlikely to meet the definition of a macro (use of the macro notation) in specifi-
cations that you read, but Figure 5.2 illustrates the general structure (the four dots
representing further text whose form is defined by the macro notation specification).

MY-MACRD MACRO ::=
BEGIN
TYPE NOTATION ::= ....

VALUE NOTATION ::m ....
END

Figure 5.2 The structure of a macro definition.
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This piece of syntax can appear anywhere in a module where a type reference assign-
ment can occur, and the name of the macro (conventionally always in uppercase) can
be (and usually is) exported from the module for use in other modules.

The macro notation is the only part of ASN.1 that is not covered fully in this book!
Readers of this book should NEVER write macros! However, you will encounter
modules that import a macro name and then have syntax that is an invocation of
that macro. Again, a macro invocation can appear anywhere that a type definition
can appear.

One standard that contains a lot of “holes” is called “Remote Operations Service
Element (ROSE).” ROSE defines (and exports) a macro called the OPERATION
macro to enable its users to provide sets of information to complete the ROSE pro-
tocol. A typical piece of syntax that uses the OPERATION macro would look like
Figure 5.3 (but most real examples are much longer).

To fully understand this you need some knowledge of ROSE. A brief description of
ROSE is given in Chapter 14, partly because of its widespread use, but mainly
because it provides good illustrations of macro use, Information Object Class spec-
ification, and exception handling.

The OPERATION macro definition was replaced in the 1994 ROSE specification by
specification of an OPERATION Information Object Class, and specifications
including syntax like Figure 5.3 are gradually being changed to make use of the
OPERATION Information Object Class instead.

5.8 Information Object Classes and Objects
and Object Sets

When protocol specifiers leave “holes” in their specification, frequently there are
several such holes, and the users of the specification need to provide informa-
tion of a specified nature to fill in these holes. Most of the uses of the macro
notation were to enable these users to have a notation to specify this additional
information.

loockup OPERATION
ARGUMENT IASString
RESULT OCTET STRING
ERRORS {inwvalidName, nameNotFound}
1:= 1

Figure 5.3 An example of use of the ROSE OPERATION macro.
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ASN. 1 Complete teaches you everything you
need to know about ASN. 1—whether you're
specifying a new protocol or implementing
an existing one in a software or hardware
development project. Inside, fhe author begins
with an overview of ASN.1’s most commonly
encountered features, detailing and illustrating
standard techniques for using them. He then
goes on to apply the same practice-oriented
upprouch to all of the notation’s other features,
providing you with an easy-to-navigate, truly

comprehensive tutorial.
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The book also includes tharough documen-
tation of both the Basie and the Packed
Encoding Rules—indispensable coverage for
anyone doing hand-enceding, and a valuable
resource for anyone wanting a deeper un-
derstanding of how ASN.1 and ASN.1 tools
work. The concluding section takes up the
history of ASN.1, in terms of both the evolution
of the notation itself and the role it has played
in hundreds of protocols and thousands of
applications developed since its inception.

— Covers all the features—common and not so common—available to you
when writing a protocol specification using ASN.1.

— Teaches you to read, understand, and implement a specification written

— Explains how ASN. 1 tools work and how to use them.

— Contains hundreds of detailed examples, all verified using OS5’s ASN.1

L— Considers ASN.1 in relation to other protocol specification standards.
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