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Reference Architecture )
of an Autonomous Agent for Cyber it
Defense of Complex Military Systems

Paul Theron, Alexander Kott, Martin Drasar, Krzysztof Rzadca,
Benoit LeBlanc, Mauno Pihelgas, Luigi Mancini, and Fabio de Gaspari

1 Future Military Systems and the Rationale for
Autonomous Intelligent Cyber Defense Agents

Modern defense systems incorporate new technologies like cloud computing, artifi-
cial intelligence, lasers, optronics, electronics and submicronic processors, on-board
power-generation systems, automation systems, sensors, software defined radios

This chapter reuses portions of an earlier paper: Theron, P., et al, “Towards an Active, Autonomous
and Intelligent Cyber Defense of Military Systems: the NATO AICA Reference Architecture”, Pro-
ceedings of the International Conference on Military Communications and Information Systems
Warsaw, Poland, 22nd - 23rd May 2018; © 2018 IEEE.
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and networks, etc. They are more and more relying on software, and will also embed
new hardware technologies, including high performance computers and quantum
technologies, nanoparticles, metamaterials, self-reconfigurable hardware, etc.

While defense infrastructures and systems engaged on the battle ground may not
fail, the multitude of high-tech features and interconnections that they embed make
cyber-attacks a good way to affect their functionality and the missions in which they
are involved.

Today, five broad classes of systems coexist in Land, Sea and Air operations:

* Office and information management systems: these include web services, email-
ing systems, and information management applications ranging from human
resource management to logistics through maintenance and project management;

* C4ISR systems for the command of war operations: they include associated
Battlefield Management Systems that extend the C4ISR down to single vehicles
and platoons;

* Communication systems: they include SATCOM, L16, line of sight networks,
software defined radios, and the Internet of Battle Things (IoBT) can be seen as
a major operational innovation and extension of communication capabilities;

* Platform and life automation systems: they are similar to industrial systems and
provide sea vessels or armored vehicles, for instance, with capabilities such as
air conditioning, refrigeration, lifts, video surveillance, etc.;

* Weapon systems: these include sensors and effectors of all kinds, operating in all
kinds of situations and contested battle grounds.

On the battlefield, these platforms and technologies will operate together in
complex large scale networks of massively interconnected systems.

Autonomy can be defined as the capacity of systems to decide by themselves on
their course of action in uncertain and challenging environments without the help of
human operators. It should not be confused with automation, the aptitude of systems
to perform set tasks according to set rules in environments where uncertainty is low
and characterized [11].

Despite the fact that “Full autonomy might not necessarily be the objective” and
the existence of a variety of definitions [5], the number of autonomous military
systems will grow [10]. They will be able to mitigate operational challenges such
as needs for rapid decision-making, high heterogeneity and/or volumes of data,
intermittent communications, the high complexity of coordinated actions, or the
danger of missions, while they will require persistence and endurance [11, p. 12].
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NATO Cooperative Cyber Defence Centre of Excellence, Tallinn, Estonia
e-mail; mauno.pihelgas @ccdcoe.org
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Sapienza University, Rome, Italy
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Examples of autonomous capabilities and systems [11] include:

* Unmanned Air Systems, Unmanned Surface Vehicles and Unmanned Underwa-
ter Vehicles, will be able to carry out reconnaissance or attack missions stealthily,
some of them with a large endurance. For instance, the Haiyan UUV [24] is
a mini-submarine built on a civilian platform that China’s People’s Liberation
Army Navy (PLAN) sponsors to create an autonomous UUV capable of carrying
out dangerous missions like minesweeping and submarine detection operations
without any human intervention. Weighing only 70 kg, energy efficient and fitted
with advanced computing capacities, it has an endurance of up to 30 days.

* Today’s Intelligence, Surveillance & Recognition (ISR) missions request more
and more high-definition (HD) images and videos being captured and transmitted
back to ground stations for analysis. As HD means large volumes of raw data
(possibly encrypted, which adds to volumes), communication means cannot
provide the ad hoc transmission throughput (and continuity in contested environ-
ments). Autonomous sensors equipped with artificial intelligence will be capable
of generating on the ground aggregated, high-level information that can be more
easily transmitted to command posts as they require much less bandwidth than
raw data, also lowering the human workload needed to process high volumes of
complex multi-source raw data.

* Autonomous Unmanned Ground Vehicles can be employed in dealing with
chemical, biological, radiological and nuclear (CBRN) threats as well as with
Improvised Explosive Devices (IED), as was the case in Iraq and Afghanistan
conflicts.

* The US MK-18 Mod 2 program has demonstrated significant progress in utilizing
Remote Environmental Monitoring UnitS (REMUS) Unmanned Underwater
Vehicles for mine countermeasure missions, thus allowing pulling military
personnel away from dangerous mine fields and reducing tactical reaction times.

* Unmanned Aircrafts (UA) could be used in anti-access and area denial (A2/AD)
missions to perform functions that today require the intervention of personnel
such as aerial refueling, airborne early warning, ISR, anti-ship warfare, com-
mand, offensive strike facilitation (electronic warfare, communications jamming,
decoys) and actions supporting defense by creating confusion, deception or
attrition through decoys, sensors and emitters, target emulators. Similar functions
could be used in underwater combat.

* Agile ground forces could get local tactical support from Unmanned Aircraft
Systems (UAS) embarking sensors, ISR capacities, communication means,
electronic warfare functions and weapon systems. These UAS would reach
greater levels of efficiency and could better deal with large numbers of ground, air
and possibly sea sensors and actuators if they could themselves work in swarms
or cohorts and collectively adapt their action dynamically on the basis of mission
and environment-related data collected in real time.

* Logistics could be another area of utilization of autonomous land, sea and air
vehicles and functions. Autonomous capabilities could be used in contested
changeable environments either in support and defense of friendly logistic
deployment and operation, or to disturb or strike enemy logistics.
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Another two fundamental issues need to be taken into account.

The first of these issues is the fact that the level of interconnectedness, and
therefore of interdependence and cross-vulnerability, of military systems will
increase to unseen heights [42].

The Internet of Things is increasing rapidly in both numbers and types of smart
objects, and this is a durable trend with regards to Defense [11] despite the massive
scale of their deployment, their meager configurability and the new (cyber) risks
they create. In effect, with the shift to the IPv6 addressing standard, the number of
devices that can be networked is up to 340 undecillion unique devices (340 with 36
zeroes after it) and this immense network of interconnected devices could become
a global platform for massively proliferated, distributed cyber-attacks [11].

This multitude of devices will work together in clusters, likely hard to map
out, likely subject to unstable changing configurations of their dependencies.
These changes will occur beyond our control because of the degrees of autonomy
conferred to objects in shifting operative conditions.

Massively interconnected military systems will become more and more difficult
to engineer, test, maintain, operate, protect and monitor [42], which leads the
authors to recommend “reducing the number of interconnections by reversing the
default culture of connecting systems whenever possible” to improve cybersecurity.
This recommendation, however intelligent it seems, is very likely never to be
listened to. . .

Thus, cyber defending such complex systems will become arduous. For instance,
they will not anymore allow for the sort of cybersecurity monitoring we currently
deploy across IT and OT systems as they will prevent the implementation of classic,
centralized, and even big data/machine learning-based security operations centers
(SOCs).

They will also overwhelm human SOC operators’ cognitive capacities as it will
become impossible for the latter to get instantly a clear and adequate picture of the
systems they defend, of their condition, of the adverse events taking place and of
the remedies to apply and of their possible impacts.

To defend them against cyber-attacks, only locally implemented distributed and
resilient swarms of cyber defense agents adapting to these frequent reconfigurations
and emerging circumstances will be able to monitor and defend this vast fuzzy
network, learning superior abilities from cumulated experience.

In this particular context, different from the previously exposed context of the
cyber defense of a few well-identified and carefully managed autonomous mission
systems, cyber defense agents will evolve themselves into more and more unknown,
less and less controllable and maintainable states.

Given this last parameter, they may either show decreasing levels of efficiency or
generate uncontrollable adverse effects.

The second issue stems from the fundamental military need to proceed suc-
cessfully with defense missions while operational personnel of Air, Land and Sea
forces are not primarily specialists of cybersecurity and cyber defense. This is not to
mention that on the battlefield there will always be a scarcity of cyber competencies
[22].
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Cyber-attacks may cause human operators sometimes to be fooled, for instance
when radar or GPS data are spoofed, or stressed, for instance when anomalies
multiply while their cause appears unclear and their consequences detrimental.
Studies in a variety of domains such as air, sea and ground transportation have
drawn attention to this phenomenon. Attacks may trigger human errors of varying
consequences. For instance, NAP [29] points out that “Inaccurate information
sent to system operators, either to disguise unauthorized changes, or to cause the
operators to initiate inappropriate actions, [] could have various negative effects”.

The burden of cyber defending systems must therefore be relieved from unquali-
fied operators’ shoulders, while the lack of specialists of cybersecurity on the ground
prohibits calling upon rapid response teams in case of trouble.

In this context, handling cyber-attacks occurring in the course of operations
requires an embedded, undisturbing, seamless autonomous intelligent cyber defense
technology [45]. Autonomous intelligent cyber defense agents should resolve (at -
least most of) cyber-attacks without technology users being aware of issues at hand.

Only when they would reach their limits, i.e. when being unable to understand
situations, to reconciliate disparate pieces of information, or to elaborate cyber
defense counter-measures, such multiple agents should collaborate with human
operators. NAP [28] provides inspiring examples of machine-human collaboration
in a variety of contexts. Such a need for collaboration might also exist in the context
of massively interconnected systems of systems evoked earlier.

2 NATO’s AICA Reference Architecture: A Concept for
Addressing the Need for an Autonomous Intelligent Cyber
Defense of Military Systems

Inspired by the above rationale, NATO’s IST-152 Research and Technology Group
(RTG) is an activity that was initiated by the NATO Science and Technology
Organization and was kicked-off in September 2016. The group has developed
is developing a comprehensive, use case focused technical analysis methodology
in order to produce a first-ever reference architecture and technical roadmap for
active autonomous intelligent cyber defense agents. In addition, the RTG worked
to identify and evaluate selected elements that may be eligible contributors to such
capabilities and that begin to appear in academic and industrial research.

Scientists and engineers from several NATO Nations have brought unique exper-
tise to this project. Only by combining multiple areas of distinct knowledge along
with a realistic and comprehensive approach can such a complex software agent be
provided.

The output of the RTG may become a tangible starting point for acquisition
activities by NATO Nations. If based on a common reference architecture, software
agents developed or purchased by different Nations will be far more likely to be
interoperable.
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Related research includes Mayhem (from DARPA Cyber Challenge, but also
Xandra, etc.), agents from the Pechoucek’s group, Professor Mancini’s work on
the AHEAD architecture [9] and the Aerospace Cyber Resilience research chair’s
research program [45], Anti-Virus tools (Kaspersky, Bitdefender, Avast, Norton,
etc.), HBSS, OSSEC, Various host-based IDS/IPS systems, Application Perfor-
mance Monitoring Agents, Anti-DDOS systems and Hypervisors. Also, a number
of related research directions include topics such as deep learning (especially if
it can be computationally inexpensive), Botnet technology (seen as a network of
agents), network defense games, flip-it games, the Blockchain, and fragmentation
and replication. The introduction of Artificial Intelligence into military systems,
such as C4ISR, has been studied, for instance by Rasch et al. [35, 36]. Multi Agent
Systems form an important part of Al

Since the emergence of the concept of Multi Agent Systems, e.g., [46], MAS
have been deployed in a number of contexts such as power engineering [25] and their
decentralized automated surveillance [7], industrial systems [33], networked and
intelligent embedded systems [16], collective robotics [19], wireless communication
[21], traffic simulation and logistics planning [8], home automation [20], etc.

However, if the use of intelligent agents for the cyber defense of network-centric
environments has already long been envisaged [43], effective research in this area is
still new.

In the context of the cyber defense of friendly systems, an “agent” has been
defined [45] as a piece of software or hardware, a processing unit capable of
deciding on its own about its course of action in uncertain, possibly adverse,
environments:

* With an individual mission and the corresponding competencies, i.e. in analyzing
the milieu in which the agent is inserted, detecting attacks, planning the required
countermeasures, or steering and adapting tactically the execution of the latter,
or providing support to other agents like for instance inter-agent communication;

*  With proactivity, i.e. the capacity to engage into actions and campaigns without
the need to be triggered by another program or by a human operator;

* With autonomy, i.e. a decision making capacity of its own, the capacity to
function or to monitor, control and repair itself on its own, without the need
to be controlled by another program or by a human operator, and the capacity
to evaluate the quality of its own work and to adjust its algorithms in case of
deviance from its norm or when its rewards (satisfaction of its goals) get poor;

* Driven by goals, decision making and other rules, knowledge and functions fit
for its purpose and operating circumstances;

* Learning from experience to increase the accuracy of its decisions and the power
of its reactions;

* With memories (input, process, output, storage);

* With perception, sensing and action, and actuating interfaces;

* Built around the adequate architecture and appropriate technologies;

* Positioned around or within a friendly system to defend, or patrolling across a
network;
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* Sociable, i.e. with the capacity to establish contact and to collaborate with other
agents, or to enter into a cyber cognitive cooperation when the agent requires
human help or to cooperate with a central Cyber C2;

* Trustworthy, i.e. that will not deceive other agents nor human operators;

* Reliable; i.e. that do what they are meant to do, during the time specified and
under the conditions and circumstances of their concept of operation;

* Resilient, i.e. both robust to threats (including cyber-threats aimed at disabling
or destroying the agent itself; the agent being able to repel or withstand everyday
adverse events and to avoid degrading), and resistant to incidents and attacks that
may hit and affect the agent when its robustness is insufficient (i.e. the agent is
capable of recovering from such incidents or attacks);

* Safe, i.e., conceived to avoid harming the friendly systems the agent defends, for
instance by calling upon a human supervisor or central cyber C2 to avoid making
wrong decisions or to adjust their operating mode to challenging circumstances,
or by relocating when the agent is the target of an attack and if relocation is
feasible and allows protecting it, or by activating a fail-safe mode, or by way of
self-destruction when no other possibility is available.

In the same context (ibid), a multi agent system is a set of agents:

* Distributed across the parts of the friendly system to defend;

* Organized in a swarm (horizontal coordination) or cohort (vertical coordination);

* In which agents may have homogeneous or heterogeneous roles and features;

* Interoperable and interacting asynchronously in various ways such as indiffer-
ence, cooperation, competition;

* Pursuing a collective non-trivial cyber defense mission, i.e. allowing to piece
together local elements of situation awareness or propositions of decision, or to
split a counter-attack plan into local actions to be driven by individual agents;

* Capable of self-organization, i.e. as required by changes in circumstances,
whether external (the attack’s progress or changes in the friendly system’s health
or configuration) or internal (changes in the agents’ health or status);

* That may display emergent behaviors [26], i.e. performances that are not
explicitly expressed in individual agents’ goals, missions and rules; in the context
of cyber defense, “emergence” is likely to be an interesting feature as, consisting
in the “way to obtain dynamic results, from cooperation, that cannot easily be
predicted in a deterministic way” [26]; it can be disturbing to enemy software in
future malware-goodware “tactical” combats within defense and other complex
systems;

* Extensible or not, i.e. open or closed to admitting new agents in the swarm or
cohort;

* Safe, trustworthy, reliable and resilient as a whole, which is a necessity in the
context of cyber defense whereas in other, less challenging contexts may be
unnecessary. Resilience, here, may require maintaining a system of virtual roles
as described in a human context by Weick [47].
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AICA will not be simple agents. Their missions, competencies, functions and
technology will be a challenging construction in many ways.

Among many such challenges, we can mention [45] working in resource-
constrained environments, the design of agents’ architecture and the attribution of
roles and possible specialization to each of them, agents’ decision making process
[3], the capacity to generate and execute autonomously plans of counter-measures
in case of an attack, agents’ autonomy, including versus trustworthiness, MAICA’s
safety to defense systems, cyber cognitive cooperation [23], agents’ resilience in
the face of attacks directed at them by enemy software, agents’ learning capacities
and the development of their functional autonomy, the specification and emergence
of collective rules for the detection and resolution of cyber-attacks, AICA agents’
deployment concepts and rationale, their integration into host hardware as [33]
showed in industrial system contexts, etc.

To start the research with an initial assumption about agents’ architecture, the
IST-152-RTG designed the AICA Reference Architecture [22] on the basis of
classical perspective reflected in [37].

At the present moment, it is assumed to include the following functional
components (Fig. 1).

The AICA Reference Architecture delivers five main high-level functions
(Fig. 2):

* Sensing and world state identification.
* Planning and action selection.

* Collaboration and negotiation.

* Action execution.

* Learning and knowledge improvement.

ENVIRONMENT

AGENT Selfl-assurance SO, et
i Security management
wmmowf @ m
| Leaming |
World state Planner - Action Action
Parceie -'{ s H identifier Predictor H selector H execution I"' Paton

Collaboration
& Negotiation

v

Other agents. or cyber Command & Conftrol. or human operator

Fig. 1 Assumed functional architecture of the AICA
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Fig. 2 The AICA’s main five /= ™
high-level functions

| Sensing and world state identification

Planning and action selection

Collaboration and negotiation

Action execution

Learning and knowledge improvement

2.1 Sensing and World State Identification

Definition: Sensing and World state identification is the AICA’s high-level function
that allows a cyber-defense agent to acquire data from the environment and systems
in which it operates as well as from itself in order to reach an understanding of the
current state of the world and, should it detect risks in it, to trigger the Planning and
Action selection high-level function. This high-level function relies upon the “World
model”, “Current world state and history”, “Sensors” and “World State Identifier”
components of the assumed functional architecture.

The Sensing and World state identification high-level function includes two
functions: (1) Sensing; (2) Word state identification.

2.1.1 Sensing

Description: Sensing operates from two types of data sources: (1) External (system
and device-related) current world state descriptors; (2) Internal (agent-related)
current state descriptors.

Current world state descriptors, both external and internal, are captured on
the fly by the agent’s Sensing function. They may be double-checked, formatted
or normalized for later use by the World state identification function (to create
processed current world state descriptors).

2.1.2 World State Identification

Description: The World state identification function operates from two sources of
data: (1) Processed current world state descriptors; (2) Learnt world state patterns.
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Learnt world state patterns are stored in the agent’s world knowledge repository.
Processed current world state descriptors and Learnt world state patterns are
compared to identify problematic current world state patterns (i.e. presenting an
anomaly or a risk). When identifying a problematic current world state pattern, the
World state identification function triggers the Planning and Action selection high-
level function.

2.2 Planning and Action Selection

Definition: Planning and action selection is the AICA’s high-level function that
allows a cyber-defense agent to elaborate one to several action proposals and to
propose them to the Action selector function that decides the action or set of
actions to execute in order to resolve the problematic world state pattern previously
identified by the World state identifier function. This high-level function relies upon
the “World dynamics”™ that should include knowledge about “Actions and effects”,
“Goals”, “Planner - Predictor” and “Action selector” components of the assumed
functional architecture.

The Planning and action selector high-level function includes two functions:
(1) Planning; (2) Action selector.

2.2.1 Planning

Description: The Planning function operates on the basis of two data sources:
(1) Problematic current world state pattern; (2) Repertoire of actions (Response
repertoire).

The Problematic current world state pattern and Repertoire of actions (Response
repertoire) are concurrently explored in order to determine the action or set of
actions (Proposed response plan) that can resolve the submitted problematic current
world state pattern. The action or set of actions so determined are presented to the
Action selector. It may be possible that the Planning function requires some form of
cooperation with human operators (cyber cognitive cooperation, C3).

It may alternatively require cooperation with other agents or with a central cyber
C2 (command and control) in order to come up with an optimal set of actions
forming a global response strategy. Such cooperation could be either to request from
other agents or from the cyber C2 complementary action proposals, or to delegate
to the cyber C2 the responsibility of coordinating a global set of actions forming the
wider response strategy.

It may be possible that the Planning function requires some form of cooperation
with human operators (cyber cognitive cooperation, C3). It may alternatively require
cooperation with other agents or with a central cyber C2 (command and control) in
order to come up with an optimal set of actions forming a global response strategy.
Such cooperation could be either to request from other agents or from the cyber C2
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complementary action proposals, or to delegate to the cyber C2 the responsibility of
coordinating a global set of actions forming the wider response strategy.

These aspects have been the object of an initial study in [3] where options such as
offline machine learning, pattern recognition, online machine learning, escalation to
a human operator, game theoretic option search, and failsafe have been envisaged,
and in [23] for cyber cognitive cooperation processes.

2.2.2 Action Selector

Description: The Action selector function operates on the basis of three data
sources: (1) Proposed response plans; (2) Agent’s goals; (3) Execution constraints
and requirements, e.g., the environment’s technical configuration, etc.

The proposed response plan is analyzed by the Action selector function in the
light of the agent’s current goals and of the execution constraints and requirements
that may either be part of the world state descriptors gained through the Sensing and
World state identifier high-level function or be stored in the agent’s data repository
and originated in the Learning and Knowledge improvement high-level function.
The proposed response plan is then trimmed from whatever element does not fit
the situation at hand, and augmented of prerequisite, preparatory or precautionary
or post-execution recommended complementary actions. The Action selector thus
produces an Executable Response Plan, and then submitted to the Action execution
high-level function.

Like with the Planning function, it is possible that the Action selector function
requires to liaise with human operators, other agents or a central cyber C2 (com-
mand and control) in order to come up with an optimal Executable Response Plan
forming part of and being in line with a global response strategy. Such cooperation
could be to exchange and consolidate information in order to come to a collective
agreement on the assignment of the various parts of the global Executable Response
Plan and the execution responsibilities to specific agents. It could alternatively be to
delegate to the cyber C2 the responsibility of elaborating a consolidated Executable
Response Plan and then to assign to specific agents the responsibility of executing
part(s) of this overall plan within their dedicated perimeter. This aspect is not yet
studied in the present release of the AICA Reference Architecture.

2.3 Collaboration and Negotiation

Definition: Collaboration and negotiation is the AICA’s high-level function that
allows a cyber-defense agent (1) to exchange information (elaborated data) with
other agents or with a central cyber C2, for instance when one of the agent’s
functions is not capable on its own to reach satisfactory conclusions or usable
results, and (2) to negotiate with its partners the elaboration of a consolidated
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conclusion or result. This high-level function relies upon the “Collaboration &
Negotiation” component of the assumed functional architecture.

The Collaboration and negotiation high-level function includes, at the present
stage, one function: Collaboration and negotiation.

Description: The Collaboration and negotiation function operates on the basis
of three data sources: (1) Internal, outgoing data sets (i.e. sent to other agents or
to a central C2); (2) External, incoming data sets (i.e. received from other gents or
from a central cyber C2); (3) Agents’ own knowledge (i.e. consolidated through the
Learning and knowledge improvement high-level function).

When an agent’s Planning and action selector function or other function needs
it, the agent’s Collaboration and negotiation function is activated. Ad hoc data are
sent to (selected) agents or to a central C2. The receiver(s) may be able, or not, to
elaborate further on the basis of the data received through their own Collaboration
and negotiation function. At this stage, when each agent (including possibly a
central cyber C2) has elaborated further conclusions, it should share them with other
(selected) agents, including (or possibly not) the one that placed the original request
for collaboration. Once this (these multiple) response(s) received, the network of
involved agents would start negotiating a consistent, satisfactory set of conclusions.
Once an agreement reached, the concerned agent(s) could spark the next function
within their own decision making process.

When the agent’s own security is threatened the agent’s Collaboration and
negotiation function should help warning other agents (or a central cyber C2) of
this state.

Besides, the agent’s Collaboration and negotiation function may be used to
receive warnings from other agents that may trigger the agent’s higher state of alarm.

Finally, the agent’s Collaboration and negotiation function should help agents
discover other agents and establish links with them.

2.4 Action Execution

Definition: The Action execution is the AICA’s high-level function that allows
a cyber-defense agent to effect the Action selector function’s decision about an
Executable Response Plan (or the part of a global Executable Response Plan
assigned to the agent), to monitor its execution and its effects, and to provide the
agents with the means to adjust the execution of the plan (or possibly to dynamically
adjust the plan) when and as needed. This high-level function relies upon the
“Goals” and “Action execution” components of the assumed functional architecture.
The Action execution high-level function includes four functions:

¢ Action effector;

* Execution monitoring;
+ Effects monitoring;

* Execution adjustment.
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2.4.1 Action Effector

Description: The Action effector function operates on the basis of two data
sources:

* Executable Response Plan;
* Environment’s Technical Configuration.

Taking into account the Environment’s Technical Configuration, the Action
effector function executes each planned action in the scheduled order.

2.4.2 Execution Monitoring

Description: The Execution monitoring operates on the basis of two data sources:

* Executable Response Plan;
* Plan execution feedback.

The Execution monitoring function should be able to monitor (possibly through
the Sensing function) each action’s execution status (for instance: done, not done,
and wrongly done). Any status apart from “done” should trigger the Execution
adjustment function.

2.4.3 Effects Monitoring

Description: The Effects monitoring function operates on the basis of two data
sources: (1) Executable Response Plan; (2) Environment’s change feedback.

It should be able to capture (possibly through the Sensing function) any
modification occurring in the plan execution’s environment. The associated dataset
should be analyzed or explored. The result of such data exploration might provide
a positive (satisfactory) or negative (unsatisfactory) environment change status.
Should this status be negative, this should trigger the Execution adjustment function.

2.44 Execution Adjustment

Description: The Execution adjustment function operates on the basis of three data
sources: (1) Executable Response Plan; (2) Plan execution feedback and status; (3)
Environment’s change feedback and status.

The Execution adjustment function should explore the correspondence between
the three data sets to find alarming associations between the implementation of the
Executable Response Plan and its effects. Should warning signs be identified, the
Execution adjustment function should either adapt the actions’ implementation to
circumstances or modify the plan.
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2.5 Learning and Knowledge Improvement

Definition: Learning and knowledge improvement is the AICA’s high-level function
that allows a cyber-defense agent to use the agent’s experience to improve progres-
sively its efficiency with regards to all other functions. This high-level function relies
upon the Learning and Goals modification components of the assumed functional
architecture.

The Learning and knowledge improvement high-level function includes two
functions: (1) Learning; (2) Knowledge improvement.

2.5.1 Learning

Description: The Learning function operates on the basis of two data sources: (1)
Feedback data from the agent’s functioning; (2) Feedback data from the agent’s
actions.

The Learning function collects both data sets and analyzes the reward function of
the agent (distance between goals and achievements) and their impact on the agent’s
knowledge database. Results feed the Knowledge improvement function.

2.5.2 Knowledge Improvement

Description: The Knowledge improvement function operates on the basis of two
data sources: (1) Results (propositions) from the Learning function; (2) Current
elements of the agent’s knowledge.

The Knowledge improvement function merges Results (propositions) from the
Learning function and the Current elements of the agent’s knowledge.

3 Use Cases

The use-case of military UAVs that operate in teams illustrates a possible deploy-
ment of the AICA Reference Architecture. It is based on the AgentFly project
developed within the Agent Technology Center [44].

The AgentFly project facilitates the simulation of multi agent Unmanned Aerial
Vehicles (UAV). Its features include flight path planning, decentralized collision
avoidance and models of UAVs, physical capabilities and environmental conditions
[41]. In addition to simulation, AgentFly was implemented on a real fixed-wing
Procerus UAV [32].

The basis of this use-case is the set of missions selected for the AgentFly
project. It is here extended to include an adversarial cyber-attack activity against
the AgentFly UAV to disrupt its mission. The use case is that a swarm of AgentFly
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UAVs perform a routine tactical aerial surveillance mission in an urban area.
Collaboration between AgentFly UAVs aims at collision avoidance, trajectory
planning, automatic distributed load-balancing and mission assurance.

The AgentFly UAVs use case is built around the following assumptions:

+ AgentFly UAVs self-assess and share information with neighboring UAVs.

*  When setting up a communication channel, AgentFly UAVs have to determine
whether they trust their correspondent.

* Network-wide collaboration and negotiation is affected by timing, range, and
reachability issues.

* The AgentFly UAV lacks modern cyber defense capabilities and is thus vulnera-
ble to potential cyberattacks.

* Due to environmental conditions, AgentFly UAVs might be offline for some time
and later re-join the swarm when connectivity allows.

* A single AICA agent is implemented within each AgentFly UAV.

* The AICA connects with the modules of the UAV and can supervise the activity
and signals in and between various UAV modules (e.g., sensors, navigation, and
actuators).

* The AICA can function in isolation from other AgentFly UAVs’ AICA agents
present in the AgentFly UAV swarm.

Attackers have acquired a technology similar to that used in AgentFly UAVs’
COMMS module. They have discovered a zero-day vulnerability that can be
exploited remotely over the radio link from the ground and they plan to use the
vulnerability in order to gain control over the swarm of UAVs and cut them off from
the theatre’s Command & Control (C2) system. The UAVs are using the COMMS
module to collaborate among themselves and report to the C2 when needed.

The vulnerability lies in the functionality responsible for dynamically registering
new UAV agents in the swarm upon due request. The COMMS module is intercon-
nected with other intrinsic modules of the AgentFly UAV via a central control unit.

The adversary has set up a ground station in the area of the surveillance mission.
When AgentFly UAVs enter the area, the cyberattack is launched.

The AICA detects a connection to the COMMS module and allows the incoming
connection for the dynamic registration of a new UAV agent into the swarm. Due to
the nature of zero-day attacks, an Intrusion Detection System (IDS) would not have
any corresponding signatures to detect a compromised payload.

The AICA’s Sensor monitors the entire set of modules of the AgentFly UAV.

The AICA’s World-state identifier module flags the connection from a newly
connected UAV agent as anomalous since it does not follow the baseline pattern
that has been established out of previous connections with legitimate UAVs. It
also detects a change in the UAV’s system configuration and deems it anomalous
because no new configurations have been received from the C2. The AICA launches,
through its Sensor module, a system integrity check. A compromise within the
UAV’s COMMS module is detected.

The AICA decides (Planner-Selector and Action selection modules) to isolate
(Action execution module) the COMMS module from other UAV modules in order
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to prevent further propagation. Alerting the C2 is not possible because of the
compromised COMMS module.

In order to reduce the attack surface, the AICA requests (Action execution
module) that the UAV’s central control unit resets the COMMS module, raises the
security level and disables auxiliary functions (among others, the dynamic inclusion
of new UAVs into the swarm).

The AICA performs another integrity check to verify that no other compromise
exists. It keeps its Sensor and World-state identifier modules on a high-level of
vigilance in relation to integrity monitoring. The AICA adds the signature of the
payload that caused the anomaly into its knowledge base. And it sends out an alert
along with malware signature updates to other agents as well as to the C2.

This basic, single AICA agent, use case should be expanded to Multi AICA
agents deployed across the AgentFly UAV’s architecture and modules. Future
research will benchmark Multi AICA agents versus Single AICA agent deployments
in order to assess the superiority and context of Multi AICA agent solutions.

4 Discussion and Future Research Directions

The AICA Reference Architecture (AICARA) [22] was elaborated on the basis of
[37, 38].

Since the end of 70°s and the early works on Artificial Intelligence (Al), the
concept of agent was used by different authors to represent different ideas. This
polymorphic concept was synthesized by authors such as [30, 48]. Since 1995,
Russell and Norvig [38] proposed an architecture and functional decomposition of
agents widely regarded as reference work in the ever-growing field of AL

Their agent architecture can be seen as an extension of the developments in
object-oriented methods for software development that culminated in the Unified
Modeling Language [4] and design patterns [17]. Both concepts form the basis of
modern software development.

The concept of cooperating cognitive agents [38] perfectly matches requirements
for AICA agents.

First, AICA agents need to prove trustworthy, and therefore the AICA Reference
Architecture is conceived as a white-box. The agent’s architecture involves a set of
clearly defined modules and specifies the links connecting information perception
to action actuation or else the agent to external agents or a central cyber defense C2.

Second, the AICA agents must go beyond merely reactive agents because in
situations of autonomy they will need to make decisions by themselves. Reactive
agents are today widely used in cybersecurity and are based on rule sets in the form
of “if X suspicious, then trigger Y.

Third, Russell and Norvig [38] has attributes highly required by AICA agents:
autonomous decision making, learning and cooperation. This is important because
these agents may operate for prolonged periods of time if deployed in autonomous
weapon systems. The latter may face multiple and unknown cyber-attacks and AICA
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agents, by learning and cooperating with one another, will sustain their capacity to
equip the weapon system with an autonomous intelligent cyber defense.

Applied to the field of the autonomous cyber defense of military systems [38],
well-known concepts must be reassessed, prototypes must be built and tested, and
the superiority of the concept must now be benchmarked.

Developing the concepts described here also presents many other challenges that
require research in the coming years.

Agents’ integrity, agent communications’ security, the inclusion of cyber defense
techniques such as deception, or else identifying and selecting the right actions, are
only a few of them.

4.1 Agents’ Integrity

A compromise of agents can potentially threaten the entire military platform they
are supposed to defend. It is paramount to harden the agents’ architecture in order to
minimize the chance of such compromise. Methods that assess the integrity of the
agent during runtime are required.

Virtualization techniques have been successfully employed to improve systems’
resiliency [2, 18]. For instance, systems such as [18] allow providing security
guarantees to applications running on untrusted operating systems. It is possible
to build upon such techniques in order to harden AICA agents and to maintain
their functionality even under attack or in case of partial compromise. Furthermore,
periodical assessment of agents’ integrity can be performed through attestation
techniques [15], based on a trusted hardware core (Trusted Platform Module,
TPM). Such techniques allow ensuring that the software of the agent has not been
altered at any time, even during the operations of the platform, and can easily
scale up to millions of devices [1]. Finally, while the topic of protecting machine
learning systems from adversarial examples is still relatively new, techniques such
as distillation [31] could be leveraged to increase robustness.

4.2 Agent Communications’ Security

Sensors are the fundamental building blocks providing the agents with a consistent
world view. As such, they are a part of the AICA architecture most exposed to adver-
sarial tampering. The AICA architecture needs to provide secure communications
to ensure that the agent’s world view is not corrupted.

To this end, cryptographic protocols such as random key pre-distribution [12, 13],
can be employed to provide secure agent-sensor communication even when one or
more sensor channels are compromised.
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4.3 The Inclusion of Cyber Defense Techniques
Such as Deception

Deception is a key component of active defense systems and, consequently, could
be part of the AICA architecture. Active defense deception tools can be used to
thwart an ongoing attack. To provide this functionality, the AICA architecture can
employ deception techniques such as honeyfiles [6, 49], mock sensors [14] and fake
services [34]. Moreover, implementing dynamic tools deployment and reconfigura-
tion is required for actuating functions. To this end container technologies can be
employed, such as in [9] to provide isolation and configuration flexibility.

4.4 Identifying and Selecting the Right Actions

Identifying the appropriate actions to take in response to external stimuli is one of
the key requirements for the AICA architecture. The AICA agent should include
autonomous decision making that can adapt to the current world state. Machine
learning-based techniques can be employed [39] to this end, to devise complex
plans of action [40] to mitigate an attack, and to learn from previous experiences.
However, Blakely and Theron [3] have shown that a variety of techniques may be
called upon by AICA agents to elaborate their decisions.

5 In Conclusion

AICA agents are required by foreseeable evolutions of military systems, and it
is likely that civil systems, such as the wide-scale deployment of the Internet of
Things, will generate similar demands.

The AICA Reference Architecture (AICARA) [22] is a seminal proposition to
answer the needs and challenges of the situation.

NATO’s IST-152 Research and Technology Group (RTG) has initiated this piece
of work and in a recent meeting held in Warsaw, Poland, has evaluated that future
research is likely to span over the next decade before efficient solutions be operated.

The AICARA opens discussions among the scientific community, from computer
science to cognitive science, Law and moral philosophy.

Autonomous intelligent cyber defense agents may change the face of the fight
against malware, This is our assumption.
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encrypted and anonymized. In side-channel attacks [22, 23], an attacker can infer a
system’s cryptographic keys via leveraging ML to analyze the power consumption,
processing time, and access patterns. In membership inference attacks [24-26],
an attacker can infer whether a data record is in a classifier’s training dataset via
leveraging ML to analyze the confidence scores of the data record predicted by the
classifier or the gradient of the classifier with respect to the data record. In sensor-
based location inference attacks [27, 28], an attacker can infer a user’s locations via
leveraging ML to analyze the user’s smartphone’s aggregate power consumption
as well as the gyroscope, accelerometer, and magnetometer data available from the
user’s smartphone. In feature inference attacks [29, 30],2 an attacker can infer a
data point’s missing features (e.g., an individual’s genotype) via analyzing an ML
model’s prediction for the data point. In CAPTCHA breaking attacks [31-33], an
attacker can solve a CAPTCHA via ML.

2.2 Defenses

Game-Theoretic Methods and Differential Privacy Shokri et al. [35], Calmon
et al. [38], and Jia and Gong [39] proposed game-theoretic methods to defend
against inference attacks. These methods rely on optimization problems that are
computationally intractable when the public data is high dimensional. Salamatian
et al. [47] proposed Quantization Probabilistic Mapping (QPM) to approximately
solve the game-theoretic optimization problem formulated by Calmon et al. [38].
Specifically, they cluster public data and use the cluster centroids to represent
them. Then, they approximately solve the optimization problem using the cluster
centroids. Huang et al. [58] proposed to use generative adversarial networks to
approximately solve the game-theoretic optimization problems. However, these
approximate solutions do not have formal guarantees on utility loss of the public
data. Differential privacy or local differential privacy [40-46] can also be applied
to add noise to the public data to defend against inference attacks. However, as we
discussed in Introduction, they achieve suboptimal privacy-utility tradeoffs because
they aim to provide privacy guarantees that are stronger than needed to defend
against inference attacks.

Other Methods Other methods [2, 59] leveraged heuristic correlations between
the entries of the public data and attribute values to defend against attribute inference
attacks in online social networks. Specifically, they modify the k entries that have
large correlations with the attribute values that do not belong to the target user. k
is a parameter to control privacy-utility tradeoffs. For instance, Weinsberg et al. [2]
proposed BlurMe, which calculates the correlations based on the coefficients of a
logistic regression classifier that models the relationship between public data entries

2These attacks are also called attribute inference attacks [30]. To distinguish with attribute
inference attacks in online social networks, we call them feature inference attacks.
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and attribute values. Chen et al. [59] proposed ChiSquare, which computes the
correlations between public data entries and attribute values based on chi-square
statistics. These methods suffer from two limitations: (1) they require the defender
to have direct access to users’ private attribute values, which makes the defender
become a single point of failure, i.e., when the defender is compromised, the private
attribute values of all users are compromised; and (2) they incur large utility loss of
the public data.

3 Problem Formulation

We take attribute inference attacks in online social networks as an example to
illustrate how to formulate the problem of defending against inference attacks.
However, our problem formulation can also be generalized to other inference
attacks. We have three parties: user, attacker, and defender. Next, we discuss each
party one by one.

3.1 User

We focus on protecting the private attribute of one user. We can protect different
users separately. A user aims to publish some data while preventing inference of its
private attribute from the public data. We denote the user’s public data and private
attribute as x (a column vector) and s, respectively. For instance, an entry of the
public data vector x could be the rating score the user gave to an item or 0 if the user
did not rate the item; an entry of the public data vector could also be 1 if the user
liked the corresponding page or 0 otherwise. For simplicity, we assume each entry
of x is normalized to be in the range [0, 1]. The attribute s has m possible values,
which we denote as {1, 2, - - - , m}; s = i means that the user’s private attribute value
is i. For instance, when the private attribute is political view, the attribute could
have two possible values, i.e., democratic and republican. We note that the attribute
s could be a combination of multiple attributes. For instance, the attribute could
be s = (politicalview, gender), which has four possible values, i.e., (democratic,
male), (republican, male), (democratic, female), and (republican, female).

Policy to Add Noise Different users may have different preferences over what kind
of noise can be added to their public data. For instance, a user may prefer modifying
its existing rating scores, while another user may prefer adding new rating scores.
We call a policy specifying what kind of noise can be added a noise-type-policy. In
particular, we consider the following three types of noise-type-policy.

* Policy A: Modify_Exist. In this policy, the defender can only modify the non-
zero entries of x. When the public data are rating scores, this policy means that
the defender can only modify a user’s existing rating scores. When the public data
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4 Design of AttriGuard

4.1 Overview

The major challenge to solve the optimization problem in Eq. (1) is that the
number of parameters of the mechanism M, which maps a given vector to another
vector probabilistically, is exponential to the dimensionality of the public data
vector. To address the challenge, Jia and Gong [39] proposed AttriGuard, a two-
phase framework to solve the optimization problem approximately. The intuition
is that, although the noise space is large, we can categorize them into m groups
depending on the defender’s classifier’s output. Specifically, we denote by G; the
group of noise vectors such that if we add any of them to the user’s public data,
then the defender’s classifier will infer the attribute value i for the user. Essentially,
the probability g; that the defender’s classifier infers attribute value i for the
user is the probability that M will sample a noise vector in the group Gy, i.e.,
qi = erG,— M(r|x). AttriGuard finds one representative noise vector in each group
and assumes M is a probability distribution concentrated on the representative noise
vectors.

Specifically, in Phase I, for each group G;, AttriGuard finds a minimum noise
r; such that if we add r; to the user’s public data, then the defender’s classifier
predicts the attribute value i for the user. AttriGuard finds a minimum noise in
order to minimize utility loss. In adversarial machine learning, this is known as
adversarial example. However, existing adversarial example methods [50, 52-55]
are insufficient to find the noise vector r;, because they do not consider the noise-
type-policy. AttriGuard optimizes the adversarial example method developed by
Papernot et al. [54] to incorporate noise-type-policy. The noise r; optimized to evade
the defender’s classifier is also likely to make the attacker’s classifier predict the
attribute value i for the user, which is known as transferability [50-53] in adversarial
machine learning.

In Phase II, AttriGuard simplifies the mechanism AM® to be a probability
distribution over the m representative noise vectors {ry, ra, - - - , Iy, }. In other words,
the defender randomly samples a noise vector r; according to the probability
distribution M™* and adds the noise vector to the user’s public data. Under such
simplification, AM* only has at most m non-zero parameters, the output probability
distribution q of the defender’s classifier essentially becomes M*, and we can
transform the optimization problem in Eq. (1) to be a convex problem, which can
be solved efficiently and accurately. Moreover, Jia and Gong derived the analytical
forms of the solution using the Karush—Kuhn—Tucker (KKT) conditions [56], which
shows that the solution is intuitive and interpretable.
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learning to defend against inference attacks in various domains. For the adversarial
machine learning community, there are opportunities to develop new adversar-
ial machine learning methods that consider the unique privacy and utility-loss
challenges. For the privacy community, adversarial machine learning brings new
opportunities to achieve better privacy-utility tradeoffs. For the security community,
adversarial machine learning brings new opportunities to enhance system security
such as designing more secure and usable CAPTCHAs as well as mitigating side-
channel attacks. Specifically, we envision that AttriGuard’s two-phase framework
can be applied to defend against other inference attacks, e.g., the ones we discussed
in Sect. 2.1. However, Phase I of AttriGuard should be adapted to different inference
attacks, as different inference attacks may have their own unique privacy, security,
and utility requirements on the representative noise vectors. Phase II can be used
to satisfy the utility-loss constraints via randomly sampling a representative noise
vector according to a certain probability distribution. We note that some recent
studies [61,62] have tried to leverage adversarial examples to defend against website
fingerprinting attacks and side-channel attacks. However, they did not consider the
utility-loss constraints, which can be satisfied by extending their methods using
Phase II of AttriGuard. Moreover, recent studies [63, 64] have explored adversarial
example based defenses against author identification attacks for programs.

Data Poisoning Attacks Based Defenses Other than adversarial examples, we
could also leverage data poisoning attacks [65-72] to defend against inference
attacks. Specifically, an attacker needs to train an ML classifier in inference attacks.
For instance, in attribute inference attacks on social networks, an attacker may train
a classifier via collecting a training dataset from users who disclose both public data
and attribute values. In such scenarios, the defender could inject fake users with
carefully crafted public data and attribute values to poison the attacker’s training
dataset such that the attacker’s learnt classifier is inaccurate. In other words, the
defender can perform data poisoning attacks to the attacker’s classifier. For instance,
an online social networking service provider could inject such fake users to defend
against inference attacks performed by third-party attackers.

Adaptive Inference Attacks We envision that there will be an arms race between
attackers and defenders. Specifically, an attacker could adapt its attacks when
knowing the defense, while a defender can further adapt its defense based on the
adapted attacks. For instance, an attacker could first detect the noise added to
the public data or detect the fake users, and then the attacker performs inference
attacks. Jia and Gong tried a low-rank approximation based method to detect the
noise added by AttriGuard and AttriGuard is still effective against the method.
However, this does not mean an attacker cannot perform better attacks via detecting
the noise. An attacker could also leverage fake-user detection (also known as Sybil
detection) methods (e.g., [73-82]) to detect and remove the fake users when the
defender uses data poisoning attacks as defenses. We believe it is an interesting
future work to systematically study the possibility of detecting noise and fake users
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Fig. 1 Overview of coevolutionary adversarial Al framework concept. The coevolutionary com-
ponent performs search over the actions of adversary controllers. The engagement component
evaluates the strategies of the adversaries and returns the measurements of the engagement

Coevolutionary search methods results in population-wide adversarial dynamics.
Such dynamics can expose adversarial behaviors for a defense to anticipate.

We present an extension of a framework called RIVALS that we previously have
used to generate robust defensive configurations [31]. It is composed of different
coevolutionary algorithms to help it generate diverse behavior. The algorithms,
for further diversity, use different “solution concepts”, i.e. measures of adversarial
success and quality measures.

One way to evaluate solutions in a multi-player setting is to consider Nash
equilibria. These are points which satisfy every player’s optimizing condition
given the other players’ choices. That is, a player does not have incentive to
deviate from its strategy given the other players’ strategies. This concept has been
used to understand the strategic actions of multiple players in a deterministic
gaming environment [28]. We can model different threat scenarios in RIVALS and
Nash equilibria may offer insight into possible outcomes in the attacker-defender
coevolution.

The RIVALS framework supports a number of threat scenario use-cases using
simulation and emulation of varying model granularity. These include:

(a) Defending a peer-2-peer network against Denial of Service (DOS)
attacks [13, 40]

(b) Defenses against spreading device compromise in a segmented enterprise
network [15], and

(c) Deceptive defense against the internal reconnaissance of an adversary within a
software defined network [16]

The RIVALS framework is linked to a decision support module named
ESTABLO [35, 40]. The engagements of every run of any of the coevolutionary
algorithms are cached and, later, ESTABLO collects adversaries from the cache for
its compendium. It then evaluates all the adversaries of each side against those of
the other side inn the environment and ranks them according to multiple criteria.
It can also provide comparisons of adversarial behaviors. This information can be
incorporated in the decision process of a defensive manager.
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