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PREFACE

Advanced Mathematical Thinking has played a central role in the development of human
civilization for over two millennia. Yet in all that time the serious study of the nature of
advanced mathematical thinking — what it is, how it functions in the minds of expert
mathematicians, how it can be encouraged and improved in the developing minds of
students — has been limited to the reflections of a few significant individuals scattered
throughout the history of mathematics. In the twentieth century the theory of mathematical
education during the compulsory years of schooling to age 16 has developed its own body
of empirical research, theory and practice. But the extensions of such theories to more
advanced levels have only occurred in the last few years.

In 1976 The International Group for the Psychology of Mathematics (known as PME)
was formed and has met annually at different venues round the world to share research
ideas. In 1985 a Working Group of PME was formed to focus on Advanced Mathematical
Thinking with a major aim of producing this volume.

The text begins with an introductory chapter on the psychology of advanced mathemati-
cal thinking, with the remaining chapters grouped under three headings:

« the nature of advanced mathematical thinking,

* cognitive theory,

and

+ reviews of the progress of cognitive research into different areas of advanced
mathematics.

It is written in a style intended both for mathematicians and for mathematics educators, to
encourage an interest in the cognitive difficulties experienced by students of'the former and
to extend the psychological theories of the latter through to later stages of development. We
are cognizant of the fact that it is essential to understand the nature of the thinking of
mathematical experts to see the full spectrum of mathematical growth. We therefore begin
with an introductory chapter on the psychology of advanced mathematical thinking. This
is followed by three chapters which focus on the nature of advanced mathematical thinking:
a study of the mental processes involved, the essential qualities of mathematical creativity
and the mathematician’s view of proof.

The processes prove to be subtle and complex and, sadly, few of the more advanced
processes are made available to the average student in an advanced mathematical course.
Creativity is concerned with how the subtle ideas of research are built in the mind. Proof
is how they are ordered in alogical development both to verify the nature of the relationships
and also to present them for approval to the mathematical community.

Xiii
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However, there is a huge gulf between the way in which ideas are built cognitively and
the way in which they are arranged and presented in a deductive order. This warns us that
simplypresenting amathematical theory asa sequence of definitions, theorems and proofs
(as happens in a typical university course) may show the logical structure of the
mathematics, but it fails to allow for the psychological growth of the developing human
mind.

We begin the part of the book on cognitive theory by considering the way in which
formal mathematical definitions are conceived by students and how this can be at variance
with the formal theory. As a result of mentally manipulating a (mathematical) concept an
individual develops an idiosyncratic personal concept image which is the product of
experience and mental activity. Empirical research shows how this can give rise to subtle
conflicts that can cause cognitive obstacles in the mind of the developing student and act
as a barrier to attaining the formal ideas in the theory. The next chapter looks at the mental
objects that arc the material of mathematical thought — the conceptual entities that are
manipulated in the mind during advanced mathematical thinking, and how these entities
are represented by different kinds of symbolism. The final chapter in this part considers how
these conceptual entities are formed — through the process of reflective abstraction. All
advanced mathematical concepts arc “abstract”. This chapter postulates a theory of how
these concepts start as processes which are encapsulated as mental objects that are then
available for higher level abstract thought. Such a theory can give insight into how
mathematicians develop advanced mathematical ideas, yet may fail to pass these thinking
processes on to students, and what might be done to improve the situation.

The remainder of the book is concerned with overviews of empirical research and theory
in various specific topics. First the question of the nature of advanced mathematical
thinking is addressed and how (if at all) it differs from more elementary thinking occurring
in younger children. Then there follow chapters on functions, limits, analysis, infinity,
proof, and the growing use of the computer in advanced mathematics. Each one of these
reveals a wide variety of obstacles in students’ mental imagery and often extremely limited
conceptions of formal concepts which are the unforseen consequences of the manner in
which the subject is presented to the student. A variety of more cognitively appropriate
approaches are postulated, some with empirical evidence of success. These include:

* the participation of the student in the process of mathematical thinking through
an active process of “scientific debate”, rather than passive receipt of pre-
organized theory,

+ the direct confrontation of the student with conflict which occurs in developing
new theoretical constructs, to help them reflect on the problem and build a new,
more coherent, cognitive structure.

+ the building up of appropriate intuitive foundations for the advanced math-

ematical concepts, through an approach which balances cognitive growth and
an appreciation of logical development.

+ the use of visualization, particularly utilizing a computer, to give the student an
overall view of concepts and enabling more versatile methods of handling the
information,
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+ the use of programming to cause the student to think through mathematical
processes in a way which can be encapsulated by reflective abstraction.

In all these ways we believe that empirical research into advanced thinking processes
related to complementary cognitive theory can have a significant effect in improving the
education of students at an advanced level.

In every chapter the authors have been encouraged to impress their own personalities
on their view of the phenomena, but this has been done within a framework of internal
consultation. Each participant operates from personal constructs within acontext of mutual
support and constructive criticism from other authors and the final manuscript has been
recast by the editor to enable it to be read throughout as a single text rather than as a
collection of disconnected papers. This was made possible through the wonders of modem
technology, using a Macintosh SE/30 computer to enable the editor to redraft the chapters
and set the whole book as camera-ready copy.

The cognitive theory of advanced mathematical thinking is developing apace. This
study is the first step in making the broad sweep of current ideas in the advanced

mathematical education community available to a wider readership.

David Tall
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CHAPTER 1

THE PSYCHOLOGY
OF
ADVANCED MATHEMATICAL THINKING

DAVID TALL

In the opening chapter of The Psychology of Invention in the Mathematical Field, the
mathematician Jacques Hadamard highlighted the fundamental difficulty in discussing the
nature of the psychology of advanced mathematical thinking:

... that the subject involves two disciplines, psychology and mathematics, and would require, in
order to be treated adequately, that one be both a psychologist and a mathematician. Owing to the
lack of this composite equipment, the subject has been investigated by mathematicians on the one
side, by psychologists on the other ... (Hadamard, 1945, page 1.)

Exponents of the two disciplines are likely to view the subject in different ways — the
psychologist to extend psychological theories to thinking processes in a more complex
knowledge domain — the mathematician to seek insight into the creative thinking process,
perhaps with the hope of improving the quality of teaching or research. Although we will
consider the nature of advanced mathematical thinking from a psychological viewpoint,
our main aim will be to seek insights of value to the mathematician in his professional work
as researcher and teacher.

We begin by looking at pertinent psychological considerations which will lay the
foundations for ideas introduced not only in the remainder of the chapter, but in the book
as a whole. We then focus our attention on the full cycle of activity in advanced math—
ematical thinking: from the creative act of considering a problem context in mathematical
research that leads to the creative formulation of conjectures and on to the final stage of
refinement and proof. We postulate that many of the activities that occur in this cycle also
occur in elementary mathematical problem-solving, but the possibility of formal definition
and deduction is one factor which distinguishes advanced mathematical thinking. We will
also find that teaching undergraduate mathematics often presents the final form of the
deduced theory rather than enabling the student to participate in the full creative cycle. In
the words of Skemp (1971), current approaches to undergraduate teaching tend to give
students the product of mathematical thought rather than the process of mathematical
thinking.

Not only may current methods of presenting advanced mathematical knowledge fail to
give the full power of mathematical thinking, it also has another, equally serious,
deficiency: a logical presentation may not be appropriate for the cognitive development
of the learner. Indeed, much of the empirical theory reported in the later chapters of the book
reveals cognitive obstacles which arise as students struggle to come to terms with ideas
which challenge and contradict their current knowledge structure. Fortunately, we are also
able to report empirical evidence that appropriate sequences of learning and instruction
designed to help the student actively construct the concepts can prove highly successful.

3



4 DAVIDTALL

1. COGNITIVE CONSIDERATIONS

We begin by looking, not at the logic and order of the public evidence of mathematical
thinking found in research articles and text-books, but at the way in which these coherent
relationships are built in mathematical research and implications for how this might be
implemented in teaching and learning.

1.1 DIFFERENT KINDS OF MATHEMATICAL MIND

Writing in the first decade of this century, the celebrated mathematician Henri Poincaré
asserted:

It is impossible to study the works of the great mathematicians, or even those of the lesser,
without noticing and distinguishing two opposite tendencies, or rather two entirely different kinds
of minds. The one sort are above all preoccupied with logic; to read their works, one is tempted to
believe they have advanced only step by step, after the manner of a Vauban' who pushes on his
trenches against the placebesieged, leaving nothing to chance. The other sort are guided by intuition
and at the first stroke make quick but sometimes precarious conquests, like bold cavalrymen of the
advanced guard. (Poincaré, 1913, p. 210)

He supported his arguments by contrasting the work of various mathematicians, including
the famous German analysts, Weierstrass and Riemann, relating this to the work of
students:

Weierstrass leads everything back to the consideration of series and their analytic transformations;
to express it better, he reduces analysis to a sort of prolongation of arithmetic; you may turn through
all his books without finding a figure. Riemann, on the contrary, at once calls geometry to his aid;
each of his conceptions is an image that no one can forget, once he has caught its meaning.

... Among our students we notice the same differences; some prefer to treat their problems ‘by
analysis’, others ‘by geometry’. The first are incapable of ‘seeing in space’, the others are quickly
tired of long calculations and become perplexed. (Poincaré, 1913, p. 212)

Of course, therearenotjust two different kinds of mathematical mind, but many. Kronecker
agreed with Weierstrass that logical proof was of paramount importance and transcended
intuitive visual arguments, but their fundamental beliefs in the nature of mathematical
concepts were very different. Weierstrass declared that “an irrational number has as real an
existence as anything else in the world of concepts™, but Kronecker was unable to accept
the actual infinity of real numbers, asserting that “God gave us the integers, the rest is the
work of man”. Based on the Weierstrassian notion of the actual infinity of real numbers,
Cantor was able to produce an infinite counting argument to show that there are strictly
“more” real numbers than algebraic numbers (solutions of polynomial equations with
integer coefficients). He therefore claimed that there exists a real non-algebraic number,
without giving an explicit method to construct one. This was anathema to Kronecker who
caused Cantor’s paper to be rejected from publication in Crelle’s Journal in 1873.

' Sebastien de Vauban (1633-1707) was a French military engineer who revolutionized the art
of siege craft and defensive fortifications.
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Such arguments about the foundations of mathematics led to the development of several
different strands of mathematical philosophy at the beginning of the twentieth century. The
intuitionist view represented by Kronecker asserted that mathematical concepts only exist
when their construction is demonstrated from the integers, the formalist view of Hilbert
affirmed that mathematics is the meaningful manipulation of meaningless marks written
on paper, whilst the /ogicist view of Russell, declared that mathematics consists of
deductions using the laws of logic.

Practising mathematicians tend to distance themselves from esoteric arguments and
simply get on with their work of stating and proving theorems. Thus the twentieth century
has seen the demise of Kronecker’s views and the triumph of a pragmatic mixture of
formalism and logic. It has seen the creation of a large number of formal systems based on
logical deduction from formal definitions and axioms — an approach that survived the
apparently mortal blow struck by Godel’s incompleteness theorem, that any axiomatic
system including the integers must contain true statements that cannot be proved by a finite
sequence of steps within the system.

The textbook by Bishop (1967) on constructive analysis — which insists on algorithmic
construction proofs and disallows proof by contradiction alone — seems but an isolated
singularity in the dynamic flow of twentieth century mathematical creativity.

Nevertheless, the recent introduction of computer technology may yet see a new
renaissance in constructibility because of the way that computers manipulate data:

Computers have affected mathematics as inevitably as the development of railroads affected
patterns of land development. With computers it is possible to test hypotheses and compile data with
ease that formerly would have been accessible, if at all, only via the most sophisticated techniques.
This has affected not only the sort of questions that mathematicians work on, but the very way that
they think. One has to ask oneself which examples can be tested on a computer, a question which
forces one to consider concrete algorithms and to try to make them efficient. Because of this and
because algorithms have real-life applications of considerable importance, the development of
algorithms has become a respectable topic in its own right. (Edwards, 1987)

The reason for raising these differences in mathematician’s perceptions is to heighten the
readers” awareness of their own part in life’s rich tapestry, with a personal view of
mathematics that will differ in many ways from the conceptions of others. It may come as
a surprise when one first realizes that other people have radically different thinking
processes. It happened to the author when using pictures to help students visualize ideas in
mathematical analysis, at a time when he did not question the implicit belief that such an
approach was universally valid. Whilst writing a textbook on complex analysis, acolleague
in the next room was engaged on a similar enterprise, yet the latter’s book had almost no
pictures at all. He only included a diagram illustrating the argument of a complex number
after a great deal of heart searching. To him a real number was an element of a complete
ordered field (satisfying specific axioms) and a complex number was an ordered pair of real
numbers. The argument ofa complex number (x,y) wasdefined asareal number a such that

- X : R
COS(“) - W 3 Sln(Ot) - W
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where sin and cos were defined by red power series. The theory did not require a
geometrical meaning. He took this hard line to make sure that his arguments were the
product of logical deduction and not dependent anywhere on geometric intuition. At the
time the author was sympathetic to this philosophical viewpoint, but considered it too
sophisticated for students. It was some considerable time later that the realization dawned
that not all students shared the geometric point of view. No one view holds universal sway.

1.2 META-THEORETICAL CONSIDERATIONS

The discussion of the preceding session is a salutary reminder that any theory of the
psychology of learning mathematics must take into account not only the growing
conceptions of the students, but the conceptions of mature mathematicians. Mathematics
is a shared culture and there are aspects which are context dependent. For example, an
analyst’s view of a differential may be very different ftom that of an applied mathematician,
and a given individual may strike up different attitudes to this concept depending on
whether it is considered in an analytic or applied context. We will see (chapter 11) that such
attitudes can cause conflicts in students too.

Ata far deeper psychological level we all have subtly different ways of viewing a given
mathematical concept, depending on our previous experiences. For example, the “com-
pleteness axiom” for thereal numbers is viewed by some as “filling in all the gaps between
the rational numbers to give all the points on the number line”. Such a view may imply that
there is “no room” to fit in any more numbers: the number line is now “complete”. The
“real” number line, in particular cannot contain “infinitesimals” which are smaller than any
positive rational yet not zero. But, for others, “completion” is only a technical axiom to
adjoin the limit points of cauchy sequences ofrational numbers. In this case it is perfectly
possible to embed the real numbers in a variety of larger number fields, which include
infiitesimals and infinite numbers. It is this view which leads to the modern infinitesimal
theory of “non-standard analysis”. The latter idea, however, is anathema to many
mathematicians, including Cantor, who denied the existence of infinitesimals on the
grounds that it was notpossible to calculate the reciprocal of an infiite number in his theory
of cardinal infinities. Even today many mathematicians are troubled by the infinitesimal
ideas of non-standard analysis; they may not deny its logic, but they sense a deep-seated
psychological unease as to its validity.

Thus any theory ofthe psychology of mathematical thinking must be seen in the wider
context of human mental and cultural activity. There is not one true, absolute way of
thinking about mathematics, but diverse culturally developed ways of thinking in which
various aspects are relative to the context.

1.3 CONCEPT IMAGE AND CONCEPT DEFINITION

In Tall & Vinner (1981). the distinction is made between the individual’s way of thinking
ofa concept and its formal definition, thus distinguishing between mathematics as a mental
activity and mathematics as a formal system. This theory applies to expert mathematicians
as well as developing students:
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The human brain is not a purely logical entity. The complex manner in which it functions is often
at variance with the logic of mathematics. It is not always pure logic that gives us insight, nor is it
chance that makes us make mistakes ... We shall use the term concept image to describe the total
cognitive structure that is associated with the concept, which includes all the mental pictures and
associated properties and processes. It is built up over the years through experiences of all kinds,
changing as the individual meets new stimuli and matures. ... As the concept image develops it need
not be coherent at all times. The brain does not work that way. Sensory input excites certain neuronal
pathways and inhibits others. In this way different stimuli can activate different parts of the concept
image, developing them in a way which need not make a coherent whole. (Tall & Vinner 1981)

In this way it is possible for conflicting views to be held in the mind ofa given individual
and to be evoked at different times without the individual being aware of the conflict until
they are evoked simultaneously.

The mature mathematician is not immune from internal conflicts, but he or she has been
able to link together large portions of knowledge into sequences of deductive argument. To
such a person it seems so much easier to categorize this knowledge in a logically structured
way. Thus a mature mathematician may consider it helpful to present material to students
in a way which highlights the logic of the subject. However, a student without the
experience of the teacher may find a formal approach initially difficult, a phenomenon
which may be viewed by the teacher as a lack of experience or intellect on the part of the
student. This is a comforting viewpoint to take, especially when the teacher is part of a
mathematical community who share the mathematical understanding. But it is not realistic
inthe wider context of the needs of the students. Whatis essential — for them — isanapproach
to mathematical knowledge that grows as they grow: a cognitive approach that takes
account of the development of their knowledge structure and thinking processes. To
become mature mathematicians at an advanced level, they must ultimately gain insight into
the ways of advanced mathematicians but, en route, they may find a stony path that will
require a fundamental transition in their thinking processes.

1.4 COGNITIVE DEVELOPMENT

There are many competing theories in psychology. Behaviourist theory, built on external
observation of stimulus and response, refuses to speculate about the internal workings of
the mind. It provides observable and repeatable evidence of the behaviour of animals,
including humans, under repeated stimuli, but it has limited application to mathematical
thinking beyond the mechanics of routine algorithms. Constructivist psychology, on the
other hand, attempts to discuss how mental ideas are created in the mind ofeach individual.
This may pose a dialectic problem for the mathematician with a Platonic ideal of
mathematics existing independently of the human mind, but it proves to give significant
insight into the creative processes of research mathematicians as well as the dfficulties
experienced by mathematics students,

The great Swiss psychologist Piaget saw the individual’s need to be in dynamic
equilibrium with his environment as an underlying theme in his work. This equilibrium
could be disturbed through the confrontation with new knowledge that conflicted with the
old, and so a transition period might occur in which the knowledge structure is re-
constructed to give a more mature level of equilibrium.
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Piaget saw the child grow into the adult through a series of stages of equilibrium, each
one richer than the one before. He identifed four main stages. The first is the sensori-motor
stage prior to the development of meaningful speech, followed by apre-operational stage
when the young child realizes the permanence of objects, which continue to exist even if
they are temporarily out of sight. The child then goes through a transition into the period
of concrete operations where he or she can stably consider concepts which are linked to
physical objects, thence passing into a period of formal operations in the early teens when
the kind of hypothetical “if-then” becomes possible.

Piagetian stage theory has been extended to higher levels to encompass advanced
mathematical thinking. For instance, Ellerton (1985) suggested that Piaget’s cycle of
sensori-motor, pre-operational and concrete is the first level of a spiral cognitive develop-
ment in which the formal stage is the beginning of another cycle of the same type at a higher
level of abstraction. Biggs & Collis (1982) suggested a repetition of formal operations at
successively higher levels, each repeating the learning cycle: unistructural, multistructural,
relational.

A difficulty of applying such theory to college mathematics teaching is that many —
probably most — college students are not able to perform at the abstract level of formal
operations, which Piaget reported occurring in children during their early teens. Ausubel
criticized the stage theory:

... because such a high percentage of American high school and college students fail to reach this

abstract level of cognitive logical operations. (Ausubel et al1968, p. 230)
Representative studies have indicated that only 15% of junior high school students ... 13.2% of

high school students ... and 22% of college students were at this level. (ibid, p. 238)

The concrete/formal distinction has proved to be a useful starting point in developing local
hierarchies of difficulty in extensive studies such as Hart (1981) in the 11 to 16 age range,
and the development of early calculus concepts by Orton (1980). But a significant failure
of Piaget’s stage theory for the design of new teaching strategies is his own assertion that
the movement from one stage to another cannot be greatly accelerated by the affects of
teaching. Difterences of cognitive demand have often been used in a negative sense to
describe students’ difficulties, but rarely to provide positive criteria for designing new
approaches to the subject. Papert (1980) asserted:

The Piaget of stage theory is essentially conservative, almost reactionary, in emphasizing what
children cannot do. I strive to uncover a more revolutionary Piaget,one who see pistemological ideas
might expand the known bounds of the human mind.

Advanced mathematics provides us with a useful metaphor which expands the vision of
stage theory to a theory more valuable in the development of advanced mathematical
thinking. Piaget used an analogy with group theory to underpin his sense of the dynamic
equilibrium of cognitive growth. He saw the identity element as representing the stable
state, and noted that stability couldbe maintained ifany transformation from this state could
be reversed, thus suggesting a group structure in which every element has an inverse. But
the maintenance of a dynamic state of equilibrium has a more obvious mathematical
metaphor in dynamical systems and catastrophe theory. Here a system controlled by
continuously varying parameters can suddenly leap from one position of equilibrium to
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another when the first becomes untenable. Depending on the history of the varying
parameters, the transition may be smooth, or it may be discontinuous. This analogy
suggests that stage theory may just be a linear trivialization of a far more complex system
of change, at least this may be so when the possible routes through a network of ideas
become more numerous, as happens in advanced mathematical thinking.

1.5 TRANSITION AND MENTAL RECONSTRUCTION

A far more valuable aspect of Piaget’s theory is the process of transition from one mental
state to another. During such a transition, unstable behaviour is possible, with the
expericnce of previous ideas conflicting with new eclements. Piaget uses the terms
assimilation to describe the process by which the individual takes in new data and
accommodation the process by which the individual’s cognitive structure must be
modified. He sees assimilation and accommodation as complementary. During a transition
much accommodation is required. Skemp (1979) puts similar ideas in a different way by
distinguishing between the case where the learning process causes a simple expansion of
the individual’s cognitive structure and the case where there is cognitive conflict, requiring
a mental reconstruction. It is this process of reconstruction which provokes the difficulties
that occur during a transition phase.

Such transitions occur often in advanced mathematics as the individual struggles with
new knowledge structure. Conflict is aphenomenon well-known to the mathematical mind.

1.6 OBSTACLES

The most serious problem occurs when the new ideas are not satisfactorily accommodated.
In this case it may be possible for conflicting ideas to be present in an individual at one and
the same time:

New knowledge often contradicts the old, and effective learning requires strategies to deal with such
conflict. Sometimes the conflicting pieces of knowledge can be reconciled, sometimes one or the
other must be abandoned, and sometimes the two can both be “kept around” if safely maintained
in separate compartments. (Papert, 1980, p. 121)

The thesis of Comu (1983) studies the conceptual development of the limit process from
school to university and underlines how the colloquial use of the term “limit” effects the
mathematical usage. He discusses the notion of an “obstacle”, introduced by Gaston
Bachelard (1938):

An obstacle is apiece of knowledge; it is part of the knowledge of the student. This knowledge was
at one time generally satisfactory in solving certain problems. It is precisely this satisfactory aspect
which has anchored the concept in the mind and made it an obstacle. The knowledge later proves
to be inadequate when faced with new problems and this inadequacy may not be obvious.
(Comu 1983, (original in French))

The obstacles found by Comu include the problems student face when they must calculate
limits using techniques more subtle than simple numerical and algebraic operations. He
discusses how the concept of infinity is introduced and is “surrounded in mystery”, yet the
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new techniques “work”™ without the students understanding why. He demonstrates how
students’ experiences can lead to belief in the infinitely large and the infinitely small, with
“nought point nine recurring” being a number “just less than one” and the symbol &
representing to many students a quantity that is smaller than any positive real number, but
not zero. There are implicit assumptions that the limiting process “goes on forever”, that
the limit “can never be attained”. (See chapter 10.)

Tall (1986a) suggests an explanation is given for these phenomena as the generic
extension principle:

If an individual works in a restricted context in which all the examples considered have a certain
property, then, in the absence of counter-examples, the mind assumes the known properties to be
implicit in other contexts.

For example, most convergent sequences described to beginning students are of a simple
kind givenby a formula such as 1/n, which tends to the limit( in this case zero), but the terms
never equal the limit. In the absence of any counter-examples students begin to believe that
this is always so. The rich experience of colloquial language supports this belief
(Schwarzenberger & Tall, 1978), with phraseslike “gets closeto” suggesting thatthe terms
of a sequence can never be coincident with the limit. Thus the implicit belief is slowly
formed that a sequence of terms converging to a limit gets closer and closer, but never
actually gets there.

Furthermore, ifall the terms ofa sequence have a certain property, it is natural to believe
that the limit has the same property. Thus the sequence 0.9, 0.99, ... has terms all less than
1, so the limit “nought point nine recurring” must also be less than one... This leads to the
mental image of a limiting object termed a generic limitin Tall (1986a). Ageneric limit need
not be a limit in the mathematical sense, but it is the concept of the limit that the individual
holds in his or her mind as a result of extrapolating the common properties of the terms of
the sequence.

This phenomenon happens not just with sequences of numbers, but sequences of
functions and other mathematical objects hat share a common property. Historically this
is enshrined in the “principle of continuity” of Leibniz:

In any supposed transition, ending in any terminus, it is permissible to institute a general reasoning,
in which the final terminus may also be included. (Leibniz in a letter to Bayle, January 1687.)

It arises even earlier in the work of Nicholas of Cusa (1401-1464) who regarded the circle
as a polygon with an infinite number of sides, and inspired Kepler (1571-1630) to formulate
a metaphysical “bridge of continuity” in which normal and limiting forms of a figure are
characterized under a single definition. Thus Kepler (Opera Omnia 1l page 595) saw no
essential difference between a polygon and a circle, between an ellipse and a circle, between
the finite and the infinite, and between an infinitesimal area and a line.

The generic extension principle arises time and again in history. For example, Cauchy’s
assertion that the limit of continuous functions is continuous and Peacock’s “Principle of
Algebraic Permanence”, in which the properties of extended number systems, such as the
real and complex numbers, were based on the principle that the any algebraic law which
held in the smaller system also held in the extension. The latter held sway for some time
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carries out what may be seen as a more general construct in particular cases and gives rise
to a generic abstraction of the function concept. Given the theory just described, this
suggests a further stage is necessary to pass from the generic example of programming,
where the general is seen in the particular instances of functions programmed by the
student, to the formal abstraction which requires a new level of abstract construction from
the definition. Dubinsky formulates this transition within a Piagetian framework of
reflective abstraction, in which processes are encapsulated as objects, so that the function
process leads to the function as @ mental object. This theory is further elaborated in chapters
7and 15.

1.8 INTUITION AND RIGOUR

Mathematicians often regard the terms “intuition” and “rigour” as being mutually exclusive
by suggesting that an “intuitive” explanation is one that necessarily lacks rigour. There is
a grain of truth in this, for usually an intuition arrives whole in the mind and it may be
difficult to separate its components into a logical deductive order. But the opposition
between the two concepts is a false dichotomy as we shall soon see.

In a sense we have not one, but two brains. In attempting to assist patients who had
serious epileptic fits, Sperry and his colleagues took the drastic action of partial or total
severance ofthe corpus callosum that links the two hemispheres ofthe brain and found that
each could essentially operate independently, though carrying out totally dfferent functions:

Though predominantly mute and generally inferior in all performances invelving language or
linguistic or mathematical reasoning, the minor hemisphere is nevertheless clearly the superior
cerebral member for certain types of tasks. If we remember that in the great majority of tests it is the
disconnected left hemisphere that is superior and dominant, we can review quickly now some of the
kinds of exceptional activities in which it is the minor hemisphere that excels. First, of course, as
one would predict, these are all non-linguistic non-mathematical functions, largely as they involve
the apprehension and processing of spatial patterns, relations and transformations. They seem to be
holistic and unitary rather than analytic and fragmentary, and orientational more than focal, and to
involve concrete perceptual insight rather than abstract, symbolic sequential reasoning.

(Sperry, 1974)

This evidence resonates strongly with the observation of the two different kinds of
mathematical mind suggest at the turn of the century by Poincaré. However, subsequent
research suggests that the brains of different individuals need not follow such a simplistic
division of functions. Gazzigna (1985) sees brain activity as a collection of different
modules functioning independently in parallel, with a control unit (usually in the left brain)
making decisions based on the information provided by the various modules. Thus it would
be incorrect to divide human activity simplistically into two different modes, just as it is
inappropriate to consider just two contrasting types of mathematical mind.In particular we
may envisage that the human mind immersed in logical thought may eventually develop
intuitions that are themselves logically based. Poincaré, speakmg of Hermite, said:

His eyes seem to shun contact with the world; it is not without, it is within he seeks the vision of truth.
... When one talked to M. Hermite, he never evoked a sensuous image, and yet you soon
perceived that the most abstract entities were for him like living beings. He did not see them, but
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he perceived that they are not an artificial assemblage and that they have some principle of internal
unity. (Poincaré, 1913, pp. 212, 220)

The conclusion is inescapable. Intuition is the product of the concept images of the
individual. The more educated the individual in logical thinking, the more likely the
individual’s concept imagery will resonate with a logical response. This is evident in the
growth of thinking of students, who pass from initial intuitions based on their pre-formal
mathematics, to more refined formal intuitions as their experience grows:

We then have many kinds of intuition; first the appeal to the senses and the imagination; next,
generalization by induction, copied, so to speak, from the procedures of the experimental sciences;
finally we have the intuition of pure number... (Poincaré, 1913, p. 215.)

From apsychological viewpoint, Fischbein (1978) comes to similar conclusions, citing two
different types of intuition:

Primary intuitions refer to those cognitive beliefs which develop themselves in human beings, in
a natural way, before and independently of systematic instruction.

Secondary intuitions are those which are developed as aresult of systematic intellectual training
... In the same meaning, Felix Klein (1898) used the term “refined intuition™: and F. Severi wrote
about “second degree intuition” (1951). (Fischbein, 1978, p. 161)

Thus aspects of logic too can be honed to become more “intuitive” to the mathematical
mind. The development of this refined logical intuition should be one of the major aims of
more advanced mathematical education.

2. THE GROWTH OF MATHEMATICAL KNOWLEDGE

As we have seen, the nature of mathematical thinking is inextricably interconnected with
the cognitive processes that give rise to mathematical knowledge. We now focus on the full
cycle of mathematical thinking to see mathematical proof as the final stage of this
developmental process rather than just the formal framework of the completed knowledge
structure.

2.1 THE FULL RANGE OF ADVANCED MATHEMATICAL THINKING

Mathematical proof, according to Hadamard (1945), is but the last, “precising” phase of
mathematical thinking. Before a theorem can be conjectured, let alone proved, there is
much work to be done in conceiving of what ideas will be fruitful and what relationships
will be useful. Hadamard considers Poincaé’s description of his own personal research
activities and notes:

.. the very observations of Poincar¢ show us three kinds of inventive work essentially different if
considered from our standpoint, viz.,
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a. fully conscious work
b. illumination preceded by incubation
c. the quite peculiar process of the sleepless night. (Hadamard, 1945, p. 35)

Here Poincaré reports the necessity of working hard at a new problem, then relaxing to
allow the ideas to incubate in his subconscious, during which time he had a sleepless night
thinking vigorously about new ideas until suddenly, some time later, a sudden illumination
bursts into his consciousness with a solution. After a further time had elapsed, at his leisure,
he was able to analyse what had happened and build up a formal justification of his theory
in the final “precising” phase when the results of the illuminative break-through are
subjected to the cold analysis of the light of day, refining the assumptions so that the
deductions will stand analytic scrutiny.

What becomes apparent is that the initial phases of the creative cycle may rely in part
on logic and deduction, but they also need flexible mental activity to produce mental
resonances between previously unconnected concepts. According to Gazzigna’s model of
brain activity, they may occur as juxtapositions from different modules in the brain
processing simultaneously. Part of the success of this phase of mathematical thinking
seems to be due to working sufficiently hard on the problem to stimulate mental activity,
and then relaxing to allow the processing to carry on subconsciously.

2.2BUILDING ANDTESTING THEORIES: SYNTHESIS AND ANALY SIS

Poincaré was at pains to show the complementary roles of synthesis and analysis in
mathematical thinking. Synthesis begins with the conscious act of the initial phase to begin
to put ideas together, followed by a more intuitive activity, in which subconscious interplay
between concept images takes place, until a powerful resonance forces the newly linked
concepts to erupt once more into consciousness. Analysis, on the other hand, is a much more
cool and logical conscious activity which organizes the new ideas into logical form and
refines them to give precise statements and deductions.

Teaching of younger children emphasizes the synthesis of knowledge, starting from
simple concepts, building up from experience and examples to more general concepts. The
emphasis at this level is now changing to include more problem solving and open-ended
investigations. Teaching at university often emphasizes the other side of the coin: analysis
of knowledge, beginning with general abstractions and forming chains of deduction from
them which may be applied in a wide variety of specific contexts.

Working with much younger children, Dienes (1960) proposed a theory for building
concepts from concrete examples, yet Dienes & Jeeves (1965) formulates a far more
general deep-end principle in which “there is a preference for extrapolation by leaps and
interpolation, rather than always by step-by-step”. They respond to their own question
“When is it possible to generalize from a simple case to a more general case and when is
it better for them to particularize from a more complex case to the simple case?” with the
remark that “this is not likely to be answered by a simple positive or negative statement”.
They suggest that it is more a question of “the optimum degree of complexity required to
start with” — a response which is just as valid for teaching and learning at more advanced
levels. Itis likely to require synthesis of knowledge to build up theories cognitively as well
as analysis of knowledge to give the total structure a logical coherence.
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2.3 MATHEMATICAL PROOF

Viewed as a problem-solving activity, we see that proof is actually the final stage of
activity in which ideas are made precise. Yet so much of the teaching in university level
mathematics begins with proof. In his preface to The Psychology of Learning Mathematics,
Skemp succinctly refers to this as showing the students the product of mathematical
thought, instead ofteaching them the process of mathematical thinking. The splendid tomes
of Bourbaki are a monument to the intellect of the mathematical mind, and may be used to
help the learner appreciate the formal structure of mathematics. But once again, Poincaré
has pertinent observations to make:

To understand the demonstration of a theorem, is that to examine successively each of the syllogisms
composing it and to ascertain its correctness, its conformity to the rules of the game? ... For some,
yes; when they have done this, they will say: lunderstand. For the majority, no. Almost all are much
more exacting they wish to know not merely whether all the syllogisms of a demonstrations are
correct, but why they link together in this order rather than another. In so far as to them they seem
engendered by caprice and not by an intelligence always conscious of the end to be attained, they
do not believe that they understand. (Poincaré¢,1913,p.431)
Perhaps you think [ use too many comparisons; yet pardon still another. You have doubtless seen
those delicate assemblages of silicious needles which form the skeleton of certain sponges. When
the organic matter has disappeared, there remains only a frail and elegant lace-work. True, nothing
is there except silica, but what is interesting is the form this silica has taken, and we could not
understand it if we did not know the living sponge which has given it precisely this form. Thus it
is that the old intuitiv enotions of our fathers, evenwhen we have abandoned them, still imprint their
form upon the logical constructions we have put in their place. (ibid, p. 219)

Thus it is that so many mathematicians demand that a proof should not only be logical, but
that there should be some over-riding principle that explains why the proof works. The
proof of the four colour theorem, by exhaustion of all possible configurations using a
computer search (Appel & Haken, 1976) seems logical, yet many professional mathema-
ticians, though keen to see the theorem proved once and for all, are nevertheless sceptical
that there may be some subtle flaw in the computer “proof”, because there seems to be no
rhyme or reason to illuminate why it works as it does.

Yet this principle is not always passed on to students. Sawyer (1987) reports how he tried
to teach theorems in functional analysis by referring back to theorems in real variables that
he expected his students to know, only to find that they had no recollection of them.

The reason for this was that in their university lectures they had been given formal lectures that had
not conveyed any intuitive meaning; they had passed their examinations by last-minute revision and
by rote.

Hetells how he was shockedtolearn ofalecturer who became stuck in the middle ofa proof,
turned his back on the class to draw a picture to aid him, then erased it and carried on with
the formal proof without enlightening the class how he had used his intuition to rebuild it.
He observes:

... to teach calculus well is a very demandmg task. Three things have to be done: first to show by
a drawing that some result is extremely plausible; second, to give counter-examples, which indicate
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