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Preface

Alan M. Turing, after his great result in 1936 discovering a universal model of
computation and proving his incompleteness theorem, came to Princeton in
1936-38 and earned a PhD in mathematics. Before 1936 there were no univer-
sal computers. By 1955 there was not only a theory of computation, but there
were real universal (“von Neumann”) computers in Philadelphia, Cambridge
(Massachusetts), Princeton, Cambridge (England), and Manchester. The new
field of computer science had a remarkably short gestation.

The great engineers who built the first computers are well known: Kon-
rad Zuse (Z3, Berlin, 1941); Tommy Flowers (Colossus, Bletchley Park, 1943);
Howard Aiken (Mark I, Harvard, 1944); Prosper Eckert and John Mauchley
(ENIAC, University of Pennsylvania, 1946).

But computer science is not just the construction of hardware. Who were
the creators of the intellectual revolution underlying the theory of computers
and computation?

Turing is very well known as a founder and pioneer of this discipline. In
1936 at the age of twenty-four he discovered the universal model of computa-
tion now known as the Turing machine; in 1938 he developed the notion of
“oracle relativization”; in 1939-45 he was a principal figure in breaking the
German Enigma ciphers using computational devices (though not “Turing
machines”); in 1948 he invented the LU-decomposition method in numerical
computation; in 1950 he foresaw the field of artificial intelligence and made



X PREFACE

remarkably accurate predictions about the future of computing and comput-
ers. And, of course, he famously committed suicide in 1954 after prosecution
and persecution for practicing homosexuality in England.

But as significant as Turing is for the foundation of computer science, he
was not the only scholar whose work in the 1930s led to the birth of this field.

In Fine Hall," home in the 1930s of the Princeton Mathematics Department
and the newly established Institute for Advanced Study, were mathematicians
whose students would form a significant part of the new fields of computer
science and operations research.

This volume presents the manuscript of Alan Turing’s PhD thesis. It is ac-
companied by two introductory essays that explore both the work and the
context of Turing’s stay in Princeton. My essay elucidates the significance of
Turing’s work (and that of his adviser, Alonzo Church) for the field of comput-
er science; Solomon Feferman'’s essay describes its significance for mathemat-
ics. Feferman also explains how to relate some of Turing’s 1938 terminology to
more current usage in the field. But on the whole, the notation and terminol-
ogy in this field have been fairly stable: “Systems of Logic Based on Ordinals”
is still readable as a mathematical and philosophical work.

Andrew W. Appel
Princeton, New Jersey

1 Fine Hall was built in 1930, named for the mathematician Henry Burchard Fine. During the
1930s it housed the Mathematics Department of Princeton University and the mathematicians
(e.g., Godel and von Neumann) and physicists (e.g., Einstein) of the Institute for Advanced
Study. In 1939, the Institute moved to its own campus about a mile away from Princeton Uni-
versity’s central campus. In 1969, the University’s Mathematics Department moved to the new
Fine Hall on the other side of Washington Road. The old building was renamed Jones Hall, in
honor of its original donors, and now houses the departments of East Asian Studies and Near
Eastern Studies.



PREFACE XI

OSWALD VEBLEN, chairman of the Princeton University Mathematics
Department and first professor at the Institute for Advanced Study. His stu-
dents include Alonzo Church (PhD 1927), and his PhD descendants through
Philip Franklin (Princeton PhD 1921) via Alan Perlis (Turing Award 1966)
include David Parnas, Zohar Manna, Kai Li, Jeannette Wing, and 500 other
computer scientists. Veblen has more than 8000 PhD descendants overall.

He helped oversee the development of the pioneering ENIAC digital com-

puter in the 1940s.
(Photographer unknown, from the Shelby White and Leon Levy Archives Center, Insti-
tute for Advanced Study, Princeton, NJ, USA.)
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ALONZO CHURCH, professor of mathematics, whose students include Alan
Turing, Leon Henkin, Stephen Kleene, Martin Davis, Michael Rabin (Turing
Award 1976), Dana Scott (Turing Award 1976), and Barkley Rosser, and whose
PhD descendants include 3000 other mathematicians and computer scientists,
among them Robert Constable, Edmund Clarke (Turing Award 2007), Allen

Emerson (Turing Award 2007), and Les Valiant (Turing Award 2010).
(Photo from the Alonzo Church Papers. Department of Rare Books and Special Collec-
tion. Princeton University Library.)



PREFACE XV

JOHN VON NEUMANN, at Princeton University from 1930 and professor at
the Institute for Advanced Study from 1933, had only a few students (includ-
ing the pioneer in parallel computer architecture Donald Gillies), but also had
an enormous influence on the development of physics, mathematics, logic,
economics, and computer science. In 1931 he was the first to recognize the
significance of Godel’s work, and toward 1950 he brought Turing’s ideas of
program-as-data to the engineering of the first stored-program computers.
Stored-program computers are called “von Neumann machines,” and essen-

tially all computers today are von Neumann machines.
(Photographer unknown, from the Shelby White and Leon Levy Archives Center, Insti-
tute for Advanced Study, Princeton, NJ, USA.)
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The Birth of Computer Science
at Princeton in the 1930s

ANDREW W. APPEL

The “Turing machine” is the standard model for a simple yet universal com-
puting device, and Alan Turing’s 1936 paper “On computable numbers . . .”
(written while he was a fellow at Cambridge University) is the standard cita-
tion for the proof that some functions are not computable. But earlier in the
same decade, Kurt Godel at the Institute for Advanced Study in Princeton had
developed the theory of recursive functions; Alonzo Church at Princeton Uni-
versity had developed the lambda-calculus as a model of computation; Church
(1936) had just published his result that some functions are not expressible as
recursive functions; and he had stated what we know as Church’s Thesis: that
the recursive functions characterize exactly the effectively calculable functions.
In hindsight, the first demonstration that some functions are not computable
was Churchss.

It was only natural that the mathematician M. H. A. Newman (whose
lectures on logic Turing had attended) should suggest that Turing come to
Princeton to work with Church. Some of the greatest logicians in the world,
thinking about the issues that in later decades became the foundation of com-
puter science, were in Princeton’s (old) Fine Hall in the 1930s: Gédel, Church,
Stephen Kleene, Barkley Rosser, John von Neumann, and others. In fact, it is
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hard to imagine a more appropriate place for Turing to have pursued gradu-
ate study. After publishing his great result on computability, Turing spent two
years (1938-38) at Princeton, writing his PhD thesis on “ordinal logics” with
Church as his adviser.

If Turing was not the first to define a universal model of computable func-
tions, why is the Turing machine the standard model? These three models—
Godel’s recursive functions, Church’s A-calculus, and Turing’s machine—were
all proved equivalent in expressive power by Kleene (1936) and Turing (1937).
But Turing’s model is, most clearly of the three, a machine, with simple enough
parts that one could imagine building it. As Solomon Feferman explains in
his introduction to Turing’s PhD thesis later in this volume, even Gédel was
not convinced that either A-calculus or his own model (recursive functions)
was a sufficiently general representation of “computation” until he saw Tur-
ing’s proof that unified recursive functions with Turing machines. That is,
Church proved, and Turing independently re-proved, that some functions are
not computable, but Turing’s result was much more convincing about the defi-
nition of “computable”

Turing’s “On computable numbers” convinced Gdédel, and the rest of the
world, in part because of the philosophical effort he put into that paper, as
well as the mathematical effort. Turing described a process of computation
as a human endeavor, or as a mechanical endeavor, in such a way that no
matter which of these endeavors was dearest to the reader’s heart, the result
would come out the same: the Turing machine would express it. In contrast,
it was not at all obvious that the Herbrand-Godel recursive functions or the
A-calculus really constitutes the essence of “computation” We know that they
do only because of the proof of equivalence with Turing machines.

The real computers of the 1940s and 1950s, like those of today, were never
actually Turing machines with a finite control and an unbounded tape. But the
electronic computers that were built, on both sides of the Atlantic, by von Neu-
mann and others, were heavily (and explicitly) influenced by Turing’s ideas, so
that from the very beginning the field of computer science has often referred
to computers in general as Turing machines—especially when considering
their expressive power as universal computation devices.
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What became of the other two models—recursive functions and A-calculus?
Most mathematicians working in computability theory use the theory of re-
cursive functions; computer scientists working in computational complexity
theory use both Turing machines and recursive functions. Turing himself used
A-calculus in his own PhD thesis, but, as Feferman explains,

One reason that the reception of Turing’s [PhD thesis] may have been
so limited is that (no doubt at Churchs behest) it was formulated in
terms of the A-calculus, which makes expressions for the ordinals and
formal systems very hard to understand. He could instead have followed
Kleene, who wrote in his retrospective history: “I myself, perhaps unduly
influenced by rather chilly receptions from audiences around 1933-35
to disquisitions on A-definability, chose, after general recursiveness had
appeared, to put my work in that format. I cannot complain about my
audiences after 1935.”

For Feferman and Kleene, and for other mathematicians working in the field
known as “recursive function theory,” the particular implementations of func-
tions (as described in A-calculus) are rarely useful, and it is usually sufficient
(and simpler) to talk more abstractly about the existence of implementations,
that is, about definability and about enumerations of computable functions.
Soare (1996) points out that the very name of the field (in mathematics) “re-
cursive function theory” was invented by Kleene; Soare suggested “comput-
ability theory” as a more descriptive name for the field, and pointed out that
Turing and Godel used “computable” in preference to “recursive” Of course,
Soare is both a mathematician and a computer scientist, and it is my impres-
sion that many of the latter used the term “computable” more frequently than
“recursive” for decades before 1996, influenced (for example) by Martin Davis
(PhD 1950 under Church).

So there were several models of computation, all known (by the end of the
1930s) to be equivalent: recursive functions, A-calculus, Turing machines, and
in fact others; for a few decades, mathematicians studied what can be repre-
sented as recursive functions, while the computer scientists studied what can
be calculated by Turing machines.
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unions of logical systems at limit ordinal notations. His main result was that
one can thereby overcome incompleteness for an important class of arithmeti-
cal statements (though not for all).

It is clear that Turing regards the formalization of mathematics as a desir-
able goal. He excuses himself at one point (on pp. 9-10 of the manuscript):

There is another point to be made clear in connection with the point of
view we are adopting. It is intended that all proofs that are given [in this
thesis] should be regarded no more critically than proofs in classical anal-
ysis. The subject matter, roughly speaking, is constructive systems of logic,
but as the purpose is directed towards choosing a particular constructive
system of logic for practical use; an attempt at this stage to put our theo-
rems into constructive form would be putting the cart before the horse.

Here it is clear that Turing is a logician and not just a great mathemati-
cian; few mathematicians believe that it would be a useful purpose to choose a
constructive system of logic for practical use, and no ordinary mathematician
would excuse himself for being no more rigorous than a mathematician.

Just as one of the strengths of Turing’s great 1936 paper was its philosophi-
cal component—in which he explains the motivation for the Turing machine
as a model of computation—here in the PhD thesis he is also motivated by

philosophical concerns, as in section 9 (p. 60 of the manuscript):

We might hope to obtain some intellectually satisfying system of logical
inference (for the proof of number theoretic theorems) with some ordinal
logic. Godel’s theorem shows that such a system cannot be wholly me-
chanical, but with a complete ordinal logic we should be able to confine
the non-mechanical steps entirely to verifications that particular formu-
lae are ordinal formulae.

Turing greatly expands on these philosophical motivations in section 11
of the thesis. His program, then, is this: We wish to reason in some logic, so
that our proofs can be mechanically checked (for example, by a Turing ma-
chine). Thus we don’t need to trust our students and journal-referees to check
our proofs. But no (sufficiently expressive) logic can be complete, as Godel
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showed. If we are using a given logic, sometimes we may want to reason about
statements unprovable in that logic. Turing’s proposal is to use an ordinal logic
sufficiently high in the hierarchy; checking proofs in that logic will be com-
pletely mechanical, but the one “intuitive” step remains of verifying ordinal
formulas.

Unfortunately, it is not at all clear that verifying ordinal formulas is in any
way “intuitive” Feferman (1988, sec. 6) estimates that “the demand on ‘intu-
ition’ in recognizing ‘which formulae are ordinal formulae’ is somewhat greater
than Turing suggests.” Feferman concludes his essay included in this volume
with a mention of his and Kreisel’s subsequent approaches to this problem,
between 1958 and 1970.

Turing, in the thesis, recognizes significant problems with his ordinal log-
ics, which can be summarized by his statement (manuscript, p. 73) that “with
almost any reasonable notation for ordinals, completeness is incompatible
with invariance” (and see also Feferman's essay).

But the PhD thesis contains, almost as an aside, an enormously influen-
tial mathematical insight. Turing invented the notion of oracles, in which one
kind of computer consults from time to time, in an explicitly axiomatized way,
a more powerful kind. Oracle computations are now an important part of the
tool kit of both mathematicians and computer scientists working in comput-
ability theory and computational complexity theory (see Feferman 1992; Soare
2009). This method may actually be the most significant result in Turing’s PhD
thesis.

So the thesis exhibits Turing as logician. Alonzo Church also continued to
be a logician, as in 1940 he published “A Formulation of the Simple Theory of
Types,” setting out the system now known as higher-order logic. As a practical
means of actually doing mechanized reasoning, Turing’s 1938 result was not
nearly as influential as Church’s higher-order logic.

In many other fields of engineering, such as the construction of bridges,
chemical processes, or photonic circuits, the applicable mathematics is from
analysis or quantum mechanics (see Wigner 1960, “The Unreasonable Ef-
fectiveness of Mathematics in the Natural Sciences”). But software does not
(principally) rely on continuous or quantum artifacts of the natural world,
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where that kind of math works so well. Instead, software follows the discrete
logic of bits, and it obeys axioms specified by the engineers who designed the
instruction-set architecture of the computer, and by those who specified the
semantics of the programming languages. Thus the applicable mathematics is,
in fact, logic (see Halpern et al. 2001, “On the Unusual Effectiveness of Logic
in Computer Science”).

It might seem that the Boolean algebra of bits is simpler than real analy-
sis, but the problem is that software systems are so complex that the reason-
ing is difficult. Thus in the twenty-first century many computer scientists do
mechanized formal reasoning, and the most significant application domain
for mechanized proof is in the verification of computer software itself. Soft-
ware is large and complex, and for at least some software it is very desirable
that it conform to a given formal specification. The theorems and proofs are
too large for us to reliably build and maintain by hand, so we mechanize.

Mechanized proof comes in two flavors; the first flavor is fully automated.
Automated theorem proving is the use of computer programs to find proofs
automatically. Automatic static analysis is the use of computer programs to cal-
culate behavioral properties of other computer programs, sometimes by call-
ing upon automated theorem provers as subroutines to decide the validity of
logical propositions. Do not be frightened by Turing’s result that this problem
is uncomputable; his result is simply that no automated procedure can decide
the provability of every mathematical proposition, and no automated proce-
dure can test nontrivial properties of every other program.’ We do not need to
prove every theorem or analyze every program; it will suffice to automatically
prove many useful theorems, or analyze useful programs. Some automated
provers work in undecidable logics, and (therefore) sometimes fail to find the
proof. In those cases, the user is expected to simplify or reformulate the theo-
rem as necessary, or provide hints. We would not ask Fermat to reformulate
his Last Theorem for the convenience of Wiles; but when the theorem is “This
horrible program meets its specification,” we might well rewrite the program
to make it more easily reasoned about. Other automated provers work in de-
cidable logics—for example, Presburger arithmetic or Boolean satisfiability.

3 Actually, this generalization of Turings 1936 result about halting is known as Rice’s theorem
(1953).
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Do not be frightened by Cook’s result (1971) that satisfiability is NP-complete;
that result is simply that no (known) automated procedure can solve every
instance in polynomial time. In practice, SAT-solvers are now a big industry;
they are quite effective in solving the actual cases that come up in theorem-
proving applications. (Of course, SAT-solvers are not so effective in solving
problems that arise from deliberately intractable problems, such as cryptog-
raphy.) The extension of SAT-solvers to SMT (satisfiability modulo theories)
is also now a big academic and commercial industry. Many of these solvers
use variants of the Davis-Putnam algorithm for resolution theorem proving,
discovered in 1960 by Martin Davis (PhD 1950 under Church) and Hilary
Putnam (PhD UCLA 1951; in 1960 a colleague of Church’s at Princeton).

The other flavor of mechanized proof is the use of computer programs to
check proofs automatically, and to assist in the bureaucratic details of their
construction. These are the proof assistants. One of the earliest of these was
Robin Milner’s LCF (Logic for Computable Functions) system (Gordon et al.
1979). Milner was influenced by the work of Church and by that of Dana Scott
(PhD 1958 under Church), Christopher Strachey (a fellow student of Turing’s
at Cambridge, and one of the first to program the ACE computer in 1951), and
Peter Landin (a student of Strachey’s). Strachey, Landin, and Milner, all British
computer scientists, were important figures in the application of Church’s A-
calculus and logic to the design of programming languages and formal meth-
ods for reasoning about them.

Although some proof assistants use first-order logics (i.e., logics where each
quantifier ranges over elements of a particular fixed type), for the expression
of mathematical ideas it is much more convenient to use higher-order logics
(i.e., where the type of a quantifier can itself be a variable bound in an outer
scope). One of the earliest higher-order logics is Church’s “simple theory of
types” (1940), but even more expressive (and, to my taste, more useful) logics
have dependent types, where the type of one variable may depend on the val-
ue of another. Such logics include LF (the Logical Framework) and CoC (the
Calculus of Constructions). Proof assistants such as HOL (using the simple
theory of types), Twelf (using LF), and Coq (using CoC) are now routinely
used to specify and prove substantial theorems about computers and com-
puter programs.
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Not only theorems about software; sometimes these proof assistants are
even used to prove theorems in mathematics. Georges Gonthier (2008) used
Coq to implement a proof of the four-color theorem end-to-end in “Church/
Turing-style” fully formal logic. Gonthier’s implementation improved on the
1976 proof by Kenneth Appel and Wolfgang Haken that relied in part on “von
Neumann-style” Fortran programs to calculate reducibility and in part on
“Pythagoras-style” traditional mathematics. (In 1976 the reaction of some
mathematicians was to distrust those parts of Appel and Haken’s proof that
were calculated by computer, whereas the reaction of some computer scientists
was to distrust the parts that were checked only “by hand.”) In the twenty-first
century, computer programs that prove mathematical theorems are expected
themselves to be formalized within a mechanically checked logical system.
Thomas Hales (2005) proved the Kepler conjecture about sphere packing, us-
ing computer programs written in Mathematica and C++, about which the
referees were “99% certain” In order to reach 100%, Hales’s current project
(nearly complete) is to formalize this proof in the HOL Light proof assistant.

In Cambridge, Turing (1936) had brilliant, unprecedented ideas about the
nature of computation. He was certainly not the first to build an actual com-
puter; there was already work in progress at (for example) the University of
Iowa. But when Turing came to Princeton to work with Church, in the orbit of
Godel, Kleene, and von Neumann,* among them they founded a field of com-
puter science that is firmly grounded in logic. In some of Turing’s other work
(1950) he foresees the field (now within computer science) of artificial intel-
ligence. But in his PhD thesis he makes it clear that he looks to a day when,
in proving mathematical theorems, “the strain put on the intuition should be
a minimum” (manuscript, page 83). That is, to the extent possible, every step
in a proof should be mechanically checkable. We all know the Church-Turing
thesis: that no realizable computer will be able to compute more functions
than A-calculus or a Turing machine. But in reading Turing’s “Systems of Logic

»

. we can see quite clearly another kind of Church-Turing thesis, that came

4 Godel was away from Princeton during Turing’s time here, and Kleene had already finished
his PhD and left; but clearly they had an enormous influence on Turing’s PhD thesis. Turing
worked with von Neumann during his time at Princeton, but on other kinds of mathematics
than logic and computation.



Turing’s Thesis

SOLOMON FEFERMAN

In the sole extended break from his life and varied career in England, Alan
Turing spent the years 1936-1938 doing graduate work at Princeton Univer-
sity under the direction of Alonzo Church, the doyen of American logicians.
Those two years sufficed for him to complete a thesis and obtain the Ph.D.
The results of the thesis were published in 1939 under the title “Systems of
logic based on ordinals” [23]. That was the first systematic attempt to deal
with the natural idea of overcoming the Gédelian incompleteness of formal
systems by iterating the adjunction of statements—such as the consistency of
the system—that “ought to” have been accepted but were not derivable; in fact
these kinds of iterations can be extended into the transfinite. As Turing put it

beautifully in his introduction to [23]:

The well-known theorem of Godel (1931) shows that every system of
logic is in a certain sense incomplete, but at the same time it indicates
means whereby from a system L of logic a more complete system L’ may
be obtained. By repeating the process we get a sequence L, L = L', L, =
L’ ... each more complete than the preceding. A logic L may then be
constructed in which the provable theorems are the totality of theorems
provable with the help of the logics L, Ll , L2 , ... Proceeding in this way

we can associate a system of logic with any constructive ordinal. It may



