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Preface in Questions and Answers

WHAT IS THIS BOOK ABOUT?

This book is a collection of algorithmic puzzles—puzzles that
involve, explicitly or implicitly, clearly defined procedures for
solving problems. It is a unique collection of such puzzles. The
book includes some old classics, which have become a part of
mathematics and computer science folklore. It also contains newer
examples, some of which have been asked during job interviews at
major companies.

The book has two main goals:

* To entertain a wide range of readers interested in puzzles

* To promote development of high-level algorithmic thinking
(with no computer programming), supported by a carefully
developed list of general algorithm design strategies and
analysis techniques

Although algorithms do constitute the cornerstone of computer
science and no sensible computer programming is possible without
them, it is a common misconception to equate the two. Some
algorithmic puzzles predate computers by more than a thousand
years. It is true, however, that the proliferation of computers has
made algorithmic problem solving important in many areas of
modern life, from hard and soft sciences to art and entertainment.
Solving algorithmic puzzles is the most productive and definitely
most enjoyable way to develop and strengthen one’s algorithmic
thinking skills.

WHOM IS THIS BOOK FOR?

There are three large categories of readers who should be
interested in this book:



* Puzzle lovers

* People interested in developing algorithmic thinking,
including teachers and students

* People preparing for interviews with companies giving
puzzles as well as people conducting such interviews

All we have to say to puzzle lovers 1s to reassure them that they
could enjoy this collection as they would a collection not dedicated
to any particular theme or type of puzzle. They will encounter a
few all-time favorites, but, hopefully, will also find a number of
little-known puzzle gems. No computing background or even an
interest in it is assumed; such a reader can simply ignore
references to specific algorithm design strategies and analysis
techniques in the solutions given.

Algorithmic thinking has recently become somewhat of a buzz
word among computer science educators, and with some justice:
ubiquity of computers in today’s world does make algorithmic
thinking a very important skill for almost any student. Puzzles are
an ideal vehicle for mastering this important skill for two reasons.
First, puzzles are fun, and a person is normally willing to put more
effort into solving them than in doing routine exercises. Second,
algorithmic puzzles force a solver to think on a more abstract level.
Even computer science students have a tendency to think about
algorithmic problems in terms of a computer language they know
instead of applying general design and analysis strategies. Puzzles
can rectify this important deficiency.

The puzzles in this book can certainly be used for individual
study. Together with the tutorials, they provide, in our view, a
good introduction to main algorithmic ideas. They can also be used
by teachers of computing courses—both at the college and
secondary school level—as supplemental exercises and project
topics. The book might also be of interest for problem-solving
courses, especially those based on puzzles.

As to people preparing for interviews, they should find the book
helpful in two ways. First, it contains many examples of puzzles



they may encounter, with complete solutions and comments.
Second, the book also provides concise tutorials on algorithm
design strategies and analysis techniques. After all, managers
offering puzzles during interviews claim that they are more
interested in the way an interviewee approaches a puzzle than in an
actual solution to it. Showing an expertise in applying general
design strategies and analysis techniques should then be a highly
attractive way to impress the potential employer.

WHAT PUZZLES ARE INCLUDED IN THE
BOOK?

Algorithmic puzzles constitute a small fraction among thousands
of mathematical puzzles invented over the years. In selecting
puzzles for the book, we have sought puzzles that satisfy the
following criteria.

First, we wanted puzzles that illustrate some general principle
in design or analysis of algorithms.

Second, we were looking for beauty and elegance, the
subjectivity of those qualities notwithstanding.

Third, we wanted the puzzles to run a wide range of difficulty
levels. Puzzle difficulty is hard to pinpoint; math professors have
been occasionally stumped by puzzles easily solved by middle
school students. Still, we have divided the book’s puzzles into
three sections—Easier Puzzles, Puzzles of Medium Difficulty, and
Harder Puzzles—to give readers some help in gauging the puzzles’
difficulty. Within each of these three sections, we have tried to
order the puzzles in increasing level of difficulty as well. The
puzzles in the Easier Puzzles section require only middle school
mathematics. Although solutions to a few problems in the other
two sections do use proofs by induction, high school mathematics
should, in general, suffice for solving all the book’s puzzles. In
addition, topics such as binary numbers and simple recurrence
relations are briefly reviewed in the second tutorial. This does not
mean, of course, that all the puzzles in the book are easy. Some of
them—especially those at the end of the last section—are truly



hard. But their difficulty does not lie in some sophisticated
mathematics, and the reader should not be intimidated by them.

Fourth, we have felt compelled to include a few puzzles
because of their historical importance. Finally, we only included
puzzles with clear statements and solutions devoid of any tricks
such as intentional ambiguity, word play, and so on.

One more important comment needs to be made here. Many
puzzles in this book can be solved by exhaustive search or
backtracking. (These strategies are explained in the book’s first
tutorial ) It is not the approach the reader is expected to employ to
solve the puzzles, unless explicitly stated otherwise. Therefore, we
have excluded categories of puzzles such as Sudoku and
cryptarithms, which have to be solved either by exhaustive search/
backtracking or by some ingenious insight in the specific data
given in the puzzle. We have also decided against inclusion of
puzzles based on some physical objects that are not very easy to
describe, such as the Chinese Rings and Rubik’s Cube.

HINTS, SOLUTIONS, AND COMMENTS

The book contains hints, solutions, and comments for every
puzzle. Puzzle books rarely include hints, but we see them as a
valuable addition. Hints may provide a small push in a right
direction, still leaving the reader with a chance to solve the puzzle.
All the hints are collected at the end of the book in a separate
section.

Solutions are provided to every puzzle. As a rule, they start with
a short answer. This is done to provide the reader with the last
opportunity to solve the puzzle on his or her own: if the reader’s
answer disagrees with the one in the book, the reader can stop
reading the complete solution and try to solve the puzzle again.

Algorithms are described in free-style English, with no special
formatting or pseudocode notations. The emphasis is on the ideas
rather than insignificant details. Rewriting the solutions in a more
formal manner may, in fact, provide useful exercises in their own
right.



Most comments point out a general algorithmic idea that the
puzzle and its solution illustrate. Occasionally, they also include
references to similar puzzles in the book and elsewhere.

Many puzzle books do not indicate the puzzle sources. The
reason usually given is that trying to find an author of a puzzle is
akin to trying to find an author of a joke. While there is a lot of
truth to this observation, we have decided to mention the earliest
sources of the puzzles known to us. The reader should keep in
mind, however, that we have not conducted anything close to an
extensive search for the puzzles’ origin; doing that would have
resulted in a very different book.

WHAT ARE THE TWO TUTORIALS ABOUT?

The book includes two tutorials, with puzzle examples, on general
strategies for algorithm design and techniques for algorithm
analysis. Although almost all puzzles in the book can be solved
without any knowledge of the topics discussed in these tutorials,
there is no question that they can make solving the puzzles much
easier and, importantly, more useful. Besides, solutions,

comments, and a few hints use some special terminology explained
in the tutorials.

The tutorials are written on the most elementary level possible
to make them comprehensible for a wide variety of readers. A
reader with a computer science degree will hardly find there
anything new, except, possibly, for puzzle examples. At the same
time, such a reader might use them as a concise refresher of the
fundamental ideas in the design and analysis of algorithms.

WHY ARE THERE TWO INDICES IN THE BOOK?

In addition to a standard index, the book contains an index
indicating puzzles based on a particular design strategy or a type of
analysis. This index should help the reader to locate problems on a
specific strategy or technique and can also serve as a list of
additional hints.



We conclude with a hope that the readers will find the book
both enjoyable and useful. We also hope they will share our
delight in beauty of and amazing feats of human ingenuity behind
many of the book’s puzzles.

Anany Levitin

Maria Levitin

May 2011
algorithmicpuzzles.book@gmail com
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THE EPIGRAPH PUZZLE: WHO SAID WHAT?

Match the following quotations with the authors listed below:

The man with a hammer sees every problem as a nail. Our age’s
great hammer is the algorithm.

Solving problems is a practical skill like, let us say, swimming. We
acqutire any practical skill by imitation and practice.

There is no better way to relieve the tedium than by injecting
recreational topics into a course, topics strongly tinged with
elements of play, humor, beauty, and surprise.

It is not knowledge, but the act of learning, not possession but the
act of getting there, which grants the greatest enjoyment.

If I have perchance omitted anything more or less proper or
necessary, I beg indulgence, since there is no one who is blameless
and utterly provident in all things.

William Poundstone, the author of How Would You Move
Mount Fuji? Microsoft’s Cult of the Puzzle: How the World’s
Smartest Companies Select the Most Creative Thinkers

George Polya (1887-1985), a prominent Hungarian
mathematician, the author of How To Solve It, the classic book on
problem solving

Martin Gardner (1914-2010), an American writer, best known
for his “Mathematical Games” column in Scientific American and
books on recreational mathematics



Carl Friedrich Gauss (1777-1855), a great German
mathematician

Leonardo of Pisa a k.a. Fibonacci (1170—c1250), a remarkable
Italian mathematician, the author of Liber Abaci (“The Book of
Calculation™), one of the most consequential mathematical book in
history



1 Tutorials

GENERAL STRATEGIES FOR ALGORITHM
DESIGN

The purpose of this tutorial is to briefly review a few general
strategies for designing algorithms. While these strategies are not
all applicable to every puzzle, taken collectively they provide a
powerful tool kit. Not surprisingly, these strategies are also used
for solving many problems in computer science. Therefore,
learning to apply these strategies to puzzles can serve as an
excellent introduction to this important field.

But before we embark on reviewing major algorithm design
strategies, we need to make an important comment on two types of
algorithmic puzzles. Every algorithmic puzzle has an input. An
input defines an instance of the puzzle. The instance can be either
specific (e.g., find a false coin among eight coins with a balance)
or general (e.g., find a false coin among » coins with a balance).
When dealing with a specific instance of a puzzle, the solver has
no obligations beyond solving the instance given. In fact, it might
be the case that other instances of the puzzle do not have the same
solution or even do not have solutions at all. On the other hand,
specific numbers in a puzzle’s statement may be of no significance
whatsoever. Then solving the general instance of the puzzle could
be not only more satisfying but, on occasion, even easier. But
whether a puzzle is presented by a specific instance or given in its
most general form, it is almost always a good idea to solve a few
small instances of it anyway. On rare occasions the solver might be
misled by such investigation, but much more often it can provide
useful insights into the puzzle given.

Exhaustive Search

Theoretically, many puzzles can be solved by exhaustive
search—a problem-solving strategy that simply tries all possible



candidate solutions until a solution to the problem is found. Little
ingenuity is typically required in applying exhaustive search.
Therefore, puzzles are rarely offered to a person (as opposed to a
computer) in the expectation that a solution will be found by
applying this strategy. The most important limitation of exhaustive
search is its inefficiency: as a rule, the number of solution
candidates that need to be processed grows at least exponentially
with the problem size, making the approach inappropriate not only
for a human but often for a computer as well. As an example,
consider the problem of constructing a magic square of order 3.

Magic Square Fill the 3 x 3 table with nine distinct integers from 1
to 9 so that the sum of the numbers in each row, column, and
corner-to-corner diagonal is the same (Figure 1.1).

? ? ?
? ? ?
? ? ?

FIGURE 1.1 3 x 3 table to be filled with integers 1 through 9 to form
a magic square.

How many ways are there to fill such a table? Let us think of
the table as filled with one number at a time, starting with placing
the 1 somewhere and ending with placing the 9. There are nine
ways to place 1, followed by eight ways to place 2, and so on until
the last number 9 is placed in the only unoccupied cell of the table.
Hence, there are 91 =9 -8 - . . .- 1 = 362,880 ways to arrange the



nine numbers in the cells of the 3 x 3 table. (We just used the
standard notation, »!, called » factorial, for the product of
consecutive integers from 1 to n.) Therefore, solving this problem
by exhaustive search would imply generating all 362,880 possible
arrangements of distinct integers from 1 to 9 in the table and
checking, for each of the arrangements, whether all its row,
column, and diagonal sums are the same. This amount of work is
clearly impossible to do by hand.

Actually, it is not difficult to solve this puzzle by proving first
that the value of the common sum is equal to 15 and that 5 must be
put at the center cell (see the Magic Square Revisited puzzle (#29)
in the main section of the book). Alternatively, one can take
advantage of several known algorithms for constructing magic
squares of an arbitrary order n> 3, which are especially efficient
for odd n’s (e.g., [Pic02]). Of course, these algorithms are not
based on exhaustive search: the number of candidate solutions the
exhaustive search algorithm would have to consider becomes
prohibitively large even for a computer for » as small as 5. Indeed,

(52)! ~15- 1025, and hence it would take a computer making 10
trillion operations per second about 49,000 years to finish the job.

Backtracking

There are two major difficulties in applying exhaustive search. The
first one lies in the mechanics of generating all possible solution
candidates. For some problems, such candidates compose a well-
structured set. For example, candidate arrangements of the first
nine positive integers in the cells of the 3 x 3 table (see the Magic
Square example above) can be obtained as permutations of these
numbers, for which several algorithms are known. There are many
problems, however, where solution candidates do not form a set
with such a regular structure. The second, and more fundamental,
difficulty lies in the number of solution candidates that need to be
generated and processed. Typically, the size of this set grows at
least exponentially with the problem size. Therefore, exhaustive
search is practical only for very small instances of such problems.



Backtracking is an important improvement over the brute-force
approach of exhaustive search. It provides a convenient method for
generating candidate solutions while making it possible to avoid
generating unnecessary candidates. The main idea is to construct
solutions one component at a time and evaluate such partially
constructed candidates as follows: If a partially constructed
solution can be developed further without violating the problem’s
constraints, it is done by taking the first remaining legitimate
option for the next component. If there is no legitimate option for
the next component, no alternatives for any remaining component
need to be considered. In this case, the algorithm backtracks to
replace the last component of the partially constructed solution
with the next option for that component.

Typically, backtracking involves undoing a number of wrong
choices—the smaller this number, the faster the algorithm finds a
solution. Although in the worst-case scenario a backtracking
algorithm may end up generating all the same candidate solutions
as an exhaustive search, this rarely happens.

It is convenient to interpret a backtracking algorithm as a
process of constructing a tree that mirrors decisions being made.
Computer scientists use the term #ree to describe hierarchical
structures such as family trees and organizational charts. A tree is
usually shown with its root (the only node without a parent) on the
top and its /eaves (nodes without children) on or closer to the
bottom of the diagram. This is nothing but a convenient
typographical convention, however. For a backtracking algorithm,
such a tree is called a state-space tree. The root of a state-space
tree corresponds to the start of a solution construction process; we
consider the root to be on the zero level of the tree. The root’s
children—on the first level of the tree—correspond to possible
choices of the first component of a solution (e.g., the cell to
contain 1 in the magic square construction). Their children—the
nodes on the second level—correspond to possible choices of the
second component of a solution, and so on. Leaves can be of two
kinds. The first kind—called nonpromising nodes or dead
ends—correspond to partially constructed candidates that cannot



lead to a solution. After establishing that a particular node is
nonpromising, a backtracking algorithm terminates the node (the
tree is said to be pruned), undoes the decision regarding the last
component of the candidate solution by backtracking to the parent
of the nonpromising node, and considers another choice for that
component. The second kind of a leaf provides a solution to the
problem. If a single solution suffices, the algorithm stops; if other
solutions need to be searched for, the algorithm continues
searching for them by backtracking to the leaf’s parent.

The following example is a perennial favorite for showing an
application of backtracking to a particular problem.

The n-Queens Problem Place n queens on an n x n chessboard so
that no two queens attack each other by being in the same column,
row, or diagonal.

For n =1, the problem has a trivial solution, and it is easy to see
that there is no solution for » = 2 and n = 3. So let us consider the
4-queens problem and solve it by backtracking. Since each of the
four queens has to be placed in its own column, all we need to do
1s to assign a row for each queen on the board shown in Figure 1.2.



H--— 0
N --— 1O
W--— 10
D --— 1O

4

FIGURE 1.2 Board for the 4-queens problem.

We start with the empty board and then place queen 1 in the
first possible position, which is in row 1 of column 1. Then we
place queen 2, after trying unsuccessfully rows 1 and 2 of the
second column, in the first acceptable position for it, which is
square (3, 2), the square in row 3 and column 2. This proves to be
a dead end because there is no acceptable position in the third
column for queen 3. Therefore, the algorithm backtracks and puts
queen 2 in the next possible position (4, 2). Then queen 3 is placed
at (2, 3), which proves to be another dead end. The algorithm then
backtracks all the way to queen 1 and moves itto (2, 1). Queen 2
then goes to (4, 2), queen 3 to (1, 3), and queen 4 to (3, 4), which
is a solution to the problem. The state-space tree of this search is
given in Figure 1.3.
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FIGURE 1.3 State-space tree of finding a solution to the 4-queens
problem by backtracking. X denotes an unsuccessful attempt to
place a queen in the indicated row. The letters above the nodes
show the order in which the nodes are generated.

If other solutions need to be found (there is just one other
solution to the 4-queens problem), the algorithm can simply
resume its operations at the leaf at which it stopped. Alternatively,
one can use the board’s symmetry for this purpose.

How much faster is this solution by backtracking compared to
exhaustive search? If we are to consider all possible placements of



four queens on four different squares of the 4 x 4 board, the
number of such placements is
16! 16-15-14-13

- = = 1820.
4!(16 — 4)! 4-3-2

(The general formula for the number of ways to choose k different
objects, the order of which is not of interest, from a given set of n
different objects, called by mathematicians combinations of n
n
objects taken k at a time and denoted by either (k or C(n, k), is
|
H.

N — LY . .
L-(" k)-.) If we consider only the placements with the queens
in different columns, the total number of solution candidates

decreases to 4% = 256. And if we add to the latter the constraint
that the queens must also be in different rows, the number of
choices drops to 4! = 24. While the last number is quite
manageable, it would not be the case for larger instances of the
problem. For example, for a regular 8 x 8 chessboard, the number
of such solution candidates is 8! = 40,320.

The reader might be interested to know that the total number of
different solutions to the 8-queens problem is 92, twelve of which
are qualitatively distinct, with the remaining 80 obtainable from
the basic twelve by rotations and reflections. As to the general »-
queens problem, it has a solution for every #> 4 but no convenient
formula for the number of solutions for an arbitrary 7 has been
discovered. It is known that this number grows very fast with the
value of n. For example, the number of solutions for » =10 is 724,
of which 92 are distinct, while for » = 12 the respective numbers
are 14,200 and 1787.

Many puzzles in this book can be solved by backtracking. For
each of them, however, there is a more efficient algorithm the
reader is expected to strive for. In particular, 7he n-Queens
Problem Revisited (#140) in the main section of the book asks the
reader to design a much faster algorithm for the #-queens problem.



Decrease-and-Conquer

The decrease-and-conquer strategy 1s based on finding a
relationship between a solution to a given problem and a solution
to its smaller instance. Once found, such a relationship leads
naturally to a recursive algorithm, which reduces the problem to a
sequence of its diminishing instances until it becomes small

enough to be solved directly.1 Here is an example.

Celebrity Problem A celebrity among a group of n people is a
person who knows nobody but is known by everybody else. The
task is to identify a celebrity by only asking questions to people of
the following form: “Do you know this person?”

Assuming for simplicity that a celebrity is known to exist
among a given group of 7 people, the problem can be solved by the
following decrease-by-one algorithm. If #n = 1, that one person is
vacuously a celebrity by the definition. If » > 1, select two people
from the group, say, A and B, and ask A whether he or she knows
B. If A knows B, remove A from the remaining people who can be
a celebrity; if A does not know B, remove B from this group. Then
solve the problem recursively (i.e., by the same method) for the
remaining group of # — 1 people who can be a celebrity.

As an easy exercise, the reader may want to solve the Ferrving
Soldiers puzzle (#4) in the main section of the book.

In general, a smaller instance in the decrease-and-conquer
paradigm need not necessarily be of size n — 1. Although decrease-
by-one is the most common case of size reduction, there are
examples of size reduction by a larger amount. We get a
particularly fast algorithm if we manage reducing an instance size
by a constant factor, for example, by half, on each iteration. A
well-known example of such an algorithm arises in the following
well-known game.

Number Guessing (1wenty Questions) Determine a selected integer
in the range from 1to n, inclusive, by asking questions with yes/no
answers.



The fastest algorithm for this problem asks a question that
reduces the size of the set containing the answer by about half on
each iteration. For example, the first question can be whether the
selected number is greater than anﬂ which is the standard

notation for »/2 rounded up to the nearest integ,er.2 If the answer is
“no,” the selected number is among the integers 1 to rn/ﬂ; if the
answer 1s “yes,” the selected number is among the integers [n21+
1 to n. In either case, the algorithm reduced the problem of size n
to an instance of the same problem of about half the size of the
original instance. Repeating this step until the instance size is
reduced to 1 solves the problem.

Since this algorithm reduces the size of an instance (the range
of the numbers that still can contain the selected number) by about
half on each iteration, it works amazingly fast. For example, for n
= 1,000,000, the algorithm requires no more than 20 questions! As
fast as it is, an algorithm would be even faster if it could reduce the
instance size by a larger factor, say, 3.

A Fake Among Eight Coins (#10) in the main section of the
book provides another illustration of the decrease-by-constant-
Jfactor variation of the decrease-and-conquer strategy and can serve
as a good exercise here.

It should be noted that sometimes it is easier to exploit a
relationship between larger and smaller instances bottom up. This
means solving first the puzzle for the smallest possible instance,
then for the next larger one, and so on. This method is sometimes
called the incremental approach. For a specific example, see the
first solution of the Rectangle Dissection puzzle (#3) in the book’s
main section.

Divide-and-Conquer

The divide-and-conquer strategy is to partition a problem into
several smaller subproblems (usually of the same or related type
and ideally of about the same size), solve each of them, and then, if
necessary, combine their solutions to get a solution to the original



problem. This strategy underlines many efficient algorithms for
important problems in computer science. Surprisingly, there are
not many puzzles solvable by divide-and-conquer algorithms. Here
is a well-known example, however, that perfectly illustrates this
strategy.

Tromino Puzzle Cover a 2" x 2" board missing one square with
right trominoes, which are L-shaped tiles formed by three adjacent
squares. The missing square can be any of the board squares.
Trominoes should cover all the squares except the missing one
exactly with no overlaps.

The problem can be solved by a recursive divide-and-conquer
algorithm that places a tromino at the center of the board in such a
way that the problem’s instance of size » is reduced to four
instances of the same problem, each of size n — 1 (Figure 1.4). The
algorithm stops after every 2 x 2 region with one missing square
generated by it is covered with a single tromino.

FIGURE 1.4 First step in tromino tiling of a 2" > 2" board without
one square by a divide-and-conquer algorithm.

The reader may want to finish the tiling of the 8 x 8 square in
Figure 1.4 by this algorithm as a quick but useful exercise.



Most divide-and-conquer algorithms solve smaller subproblems
recursively because, as in the above example, they represent
smaller instances of the same problem. This need not always be the
case, however. For some problems involving boards, in particular,
a board may need to be divided into subboards that are not
necessarily smaller versions of the board given. For such
examples, see 2n-Counters Problem (#37) and Straight Tromino
Tiling (#78) in the main section of the book.

One more comment needs to be made about the divide-and-
conquer strategy. Although some people consider decrease-and-
conquer (discussed above) as a special case of divide-and-conquer,
it is better to consider it as distinct design strategy. The crucial
difference between the two lies in the number of smaller
subproblems that need to be solved on each step: several in divide-
and-conquer algorithms, and just one in decrease-and-conquer
algorithms.

Transform-and-Conquer

The transform-and-conquer is a well-known approach to problem
solving that is based on the idea of transformation. A problem is
solved in two stages. First, in the transformation stage, it is
modified or transformed into another problem that, for one reason
or another, is more amenable to solution. Then, in the second,
conquering stage, it is solved. In our realm of algorithmic problem
solving, one can identify three varieties of this strategy. The first
variety—called instance simplification—solves a problem by first
transforming an instance given into another instance of the same
problem with some special property that makes the problem easier
to solve. The second variety—called representation change—is
based on the transformation of a problem’s input to a different
representation that is more conducive to an efficient algorithmic
solution. The third variety of the transformation strategy is
problem reduction, in which an instance of a given problem is
transformed into an instance of a different problem altogether.



As our first example, let us consider a puzzle-like problem from
Jon Bentley’s book Programming Pearls [Ben00, pp. 15-16].

Anagram Detection Anagrams are words that are composed of the
same letters; for example, the words “eat,” “ate,” and “tea” are
anagrams. Devise an algorithm to find all sets of anagrams in a
large file of English words.

An efficient algorithm for this problem works in two stages.
First, it assigns each word a “signature” obtained by sorting its
letters (representation change) and then sorts the file in
alphabetical order of the signatures (sorting data is a special case
of instance simplification) to put anagrams next to each other.

As an exercise, the reader is invited to solve the Number
Placement puzzle (#43), which exploits the same idea.

Another occasionally useful type of representation change is to
employ binary or ternary representation of the problem’s input.
Just in case the reader is unfamiliar with this important topic, here
is a one-paragraph introduction. In the decimal positional system,
which most of the world has been using for the last eight hundred
years, an integer is represented as a combination of powers of 10,
for example, 1069=1-10° +0-10% +6- 10" +9- 10" In the
binary and ternary systems, an integer is represented as a
combination of powers of 2 and 3, respectively. For example,

106910 = 100001011012 because 1069=1-210+0-27+0-2%0
2740204 1-2240- 2%+ 12841224021 +1-2° and
106910 = 11101215 because 1069=1-3°+1-3"+1-3*+0-33

+1-3%2-31+1-3" While a decimal number is composed of
some of 10 digits (0 through 9), there are only two possible digits
in a binary number (0 and 1), and there are three possible digits (0,
1, and 2) in a ternary number. Every decimal integer has a unique
representation in either of these systems, which can be found by
repeatedly dividing the integer by 2 and 3, respectively. The binary
system is particularly important because it has proved to be most
convenient for computer implementation.



As an example of a puzzle that takes advantage of the binary
system, consider an instance of the problem mentioned in W.
Poundstone’s book [Pou03, p. 84].

Cash Envelopes You have one thousand $1 bills. How can you
distribute them among 10 envelops so that any amount between $1
and $1000, inclusive, can be given as some combination of these
envelopes? No change is allowed, of course.

Let us put 1, 2, 22,... , 2% dollar bills in the first nine envelopes

and 1000 — (1 + 2 +--+ 2%) = 489 dollar bills in the tenth envelope.
Any amount 4 smaller than 489 can be obtained as a combination

of the powers of 2: bg - 284 b7-27 4 +by - 1, where the
coefficients bg, b7,..., bo are either 0 or 1. (These coefficients
compose A’s representation in the binary system. The largest

integer a nine digit binary number can represent is 22427 ot =

2 1= 511.) Any amount 4 between 489 and 1000, inclusive,
can be represented as 489 + 4" where 0 <4'< 511; hence, it can be
obtained as the contents of the tenth envelope and a combination
of the first nine, the latter given by the binary representation of 4".
Note that the solution to the puzzle is not unique for some amounts
A.

A good exercise for the reader would be to solve the two
versions of the Bachet’s Weighis puzzle (#115), which take
advantage of the binary and a variation of the ternary system,
respectively.

Finally, many problems can be solved by transforming them
into questions about graphs. A graph can be thought of as a finite
collection of points in the plane with lines connecting some of
them. The points and lines are called, respectively, vertices and
edges of the graph. Edges may have no directions on them or may
be directed from one vertex to another. In the former case, the
graph is said to be undirected; in the later case, it is called a
directed graph, or a digraph, for short. In applications to puzzles
and games, vertices of a graph typically represent possible states of



the problem in question, and edges indicate permitted transitions
between the states. One of the graph’s vertices represents an initial
state, while another represents a goal state of the problem. (There
might be several vertices of the latter kind.) Such a graph is called
a state-space graph. Thus, the transformation just described
reduces the problem to the question about a path from the initial-
state vertex to a goal-state vertex.

As a specific example, let us consider a smaller instance of a

very old and well-known puzzle.3

Two Jealous Husbands There are two married couples who need to
cross a river. They have a boat that can hold no more than two
people at a time. To complicate matters, both husbands are jealous
and require that no wife can be in the presence of the other man
without her husband being present. Can they cross the river under
such constraints?

A state-space graph for this puzzle is shown in Figure 1.5,
where H;, W; denote the husband and wife of couple i (i =1, 2),
respectively; the two bars || denote the river; the boat’s location,
which defines the direction of the next trip, is shown by the gray
oval. (For the sake of simplicity, the graph does not include
crossings that differ by obvious index substitutions such as starting
with the first couple H{W crossing the river instead of the second
couple H2 W2.) The vertices corresponding to the initial and final
states are shown in bold.
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FIGURE 1.5 State-space tree for the Two Jealous Husbands puzzle.

There are four shortest paths from the initial-state vertex to the
final-state vertex, each five edges long, in this graph. Specified by
their edges, they are as follows:

W,W, W, HH, H,
wW,w, wW; HH, W,
H,W, H, H;H, H,
H,W, H, HH, W,

H,W,
W, W,
H, W,
W|W3




Hence, there are four (to within obvious symmetric substitutions)
optimal solutions to this problem, each requiring five river
crossings.

The Missionaries and Cannibals puzzle (#49) can be used as
another exercise of this kind.

Two notes need to be made about solving puzzles via a graph
representation. First, the creation of a state-space graph for more
sophisticated puzzles can pose an algorithmic problem in its own
right. In fact, the task might be infeasible because of a very large
number of states and transformations. For example, the graph
representing the states of the Rubik’s Cube puzzle would have

more than 10'” vertices. Second, although a specific location of
points representing vertices of a graph has no theoretical
significance, a good selection of the way the vertices are placed in
the plane can provide an important insight into the puzzle in
question. For example, consider the following puzzle, which is
often attributed to Paolo Guarini (1512) but in fact was found in
Arab chess manuscripts dating from around 840.

Guarini’s Puzzle There are four knights on the 3 x 3 chessboard:
the two white knights are at the two bottom corners, and the two
black knights are at the two upper corners of the board (Figure
1.6). The goal is to switch the knights in the minimum number of
moves so that the white knights are at the upper corners and the
black knights are at the bottom corners.

2NRA a a

FIGURE 1.6Guarini’s Puzzle.




It is natural to represent the squares of the board (numbered for
simplicity by consecutive integers in Figure 1.7a) by vertices of a
graph in which an edge connects two vertices if a knight can make
a move between the squares represented by the vertices. Placing
the vertices in a way mimicking the positions of the squares on the
board, we obtain the graph shown in Figure 1.7b. (Since the square
number 5 at the center of the board cannot be reached by any of
the knights, it is omitted there.) The graph in Figure 1.7b does not
seem to help much in solving the problem. If, on the other hand,
we place the vertices along a circumference in the order they can
be reached from vertex 1 by knight moves—as shown in Figure

1.7c—we will obtain a much more revealing picture.4 It is clear
from Figure 1.7¢ that every legitimate move of a knight preserves
the knights’ relative ordering in the clockwise and
counterclockwise directions. Therefore, there are only two ways to
solve the puzzle in the minimum number of moves: move the
knights along the edges in either a clockwise or counterclockwise
direction until each of the knights reaches the diagonally opposite
corner for the first time. Either of these symmetric options requires
a total of 16 moves.

2 a
1 2 3 i 3 1) L
4 5 6 Uiy = , |
10 (@
7 8 g 7 ' 9 2) :";:-
8 &
{a) ib) ic)

FIGURE 1.7 (a) Numbering of the board’s squares for Guarini’s
Puzzle. (b) Straightforward representation of the puzzle’s graph. (c)
Better representation of the puzzle’s graph.

We recommend solving the C'oins on a Star puzzle (#34) as an
exercise in the graph unfolding method.

(3) a



There are also puzzles that can be solved by reducing them to a
mathematical problem such as solving an equation or finding the
maximum or minimum of a function. Here is an example of such a
puzzle.

Optimal Pie Cutting What 1s the maximum number of pieces one
can get by making » straight cuts in a rectangular pie, if each cut
has to be parallel to one of the pie’s sides, vertical or horizontal?

If the pie is cut by / horizontal and v vertical cuts, the total
number of pieces obtained will be (4 + 1) (v + 1). Since the total
number of cuts /# + v is equal to », the problem is reduced to
maximizing

(h+Dv+D)=hv+h+v)+t1=hv+tn+t1=hn—-h)+n+1

among all integer values of # between 0 and #, inclusive. Since /

(n —h) 1s a quadratic function of A, the maximum is obtained for A
=n/21f nis even and for 4= n/2 rounded down (denoted |.n/2J) or
up (denoted rn/ﬂ) if nis odd. Hence, the puzzle has a unique
solution #=v=n/2 if nis even and two solutions (which can be
considered symmetric) # = L2l v=[n2land h=[n2] v=In2lit
nis odd.

Greedy Approach

The greedy approach solves an optimization problem by a
sequence of steps, each expanding a partially constructed solution
until a complete solution is reached.

At each step—and this is the central point of this strategy—the
choice is to produce the largest immediate gain without violating
the problem’s constraints. Such a “greedy” grab of the best
alternative available at each step is made in the hope that a
sequence of locally optimal choices will yield a (globally) optimal
solution to the entire problem. This simple-minded approach
works in some cases and fails in others.



One should not expect a rich bounty from a hunt for puzzles
solvable by the greedy approach: good puzzles are usually too
“tricky” to be solvable in such a straightforward fashion. Still,
there are puzzles that can be solved by a greedy algorithm. Usually
in these cases it is not difficult to design a greedy algorithm itself;,
rather, a more difficult task is to prove that it indeed yields an
optimal solution. The following puzzle provides an example.

Non-Attacking Kings Place the greatest possible number of kings
on an 8 x 8 chessboard so that no two kings are placed on
adjacent—vertically, horizontally, or diagonally—squares.

Following the prescription of the greedy strategy, we can start
by placing the maximum number of nonadjacent kings (four) in the
first column of the board. Then, after skipping the next column
because each of its squares is adjacent to one of the placed kings in
the first column, we can place four kings in the third column, skip
the fourth, and so on, until we end up with the total of 16 kings on
the board (Figure 1.8a).

In order to show that it is impossible to place more than 16
nonadjacent kings on the board, we partition the board into 16
four-by-four squares, as shown in Figure 1.8b. Obviously, it is
impossible to place more than one king in each of these squares,
which implies that the total number of nonadjacent kings on the
board cannot exceed 16.
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FIGURE 1.8 (a) Placement of 16 non-attacking kings. (b) Partition of
the board proving impossibility of placing more than 16 non-
attacking kings.

As our second example, we consider a puzzle that has become
especially popular since it was reported to have been asked during
job interviews at Microsoft.

Bridge Crossing at Night A group of four people, who have one
flashlight, need to cross a rickety bridge at night. A maximum of
two people can cross the bridge at one time, and any party that
crosses (either one or two people) must have the flashlight with
them. The flashlight must be walked back and forth; it cannot be
thrown. Person A takes 1 minute to cross the bridge, person B
takes 2 minutes, person C takes 5 minutes, and person D takes 10
minutes. A pair must walk together at the rate of the slower
person’s pace. Find the fastest way they can accomplish this task.

The greedy algorithm, illustrated in Figure 1.9, would start by
sending to the other side the two fastest people, that is, persons A
and B (it will take 2 minutes) and then return the flashlight with
the fastest of the two, that is, with person A (1 more minute). Then
it will send to the other side the two fastest persons available, that
is, persons A and C (5 minutes) and return the flashlight with the



fastest person A (1 minute). Finally, the two persons remaining
will cross the river together (10 minutes). The total amount of time
this greedy-based schedule requiresis (2+ 1)+ (5+ 1)+ 10=19
minutes, but this is noft the fastest possible solution (see this puzzle
again later in the book (#7)).

2 min 2+1 min 3+5 min 8+ 1 min 9+ 10 min

t f t
1,2,5,10 5,10 5,10 10 1,10

FIGURE 1.9 Greedy solution to the Bridge Crossing at Night puzzle.

It would be instructive for the reader to revisit the Coins On a
Star puzzle (#34) and solve it by the greedy approach without
benefits of the graph’s unfolding.

Iterative Improvement

While a greedy algorithm constructs a solution piece by piece, an
iterative improvement algorithm starts with some easily obtainable
approximation to a solution and improves upon it by repeated
applications of some simple step. To validate such an algorithm,
one needs to make sure that the algorithm in question does stop
after a finite number of steps and that the final approximation
obtained indeed solves the problem. Consider the following
puzzle, which is a politically correct version of a problem
discussed by Martin Gardner in his remarkable book aha!lnsight
[Gar78, pp. 131-132].

Lemonade Stand Placement Five friends—Alex, Brenda, Cathy,
Dan, and Earl—want to set up a lemonade stand. They live at the
locations denoted by letters A, B, C, D, and E on the map in Figure
1.10a. At which street intersection should they place their stand to



minimize the distance to their homes? Assume that they measure
the distance by the total number of blocks—horizontally and
vertically—from their homes to the stand.

Initially, the friends decided to locate their stand at intersection
1 (Figure 1.10b), which is the middle point horizontally between
the leftmost and rightmost points A and B and the middle point
vertically between the highest and lowest points A and E. But then
somebody noticed that it is not the best location possible. So they
decided on the following iterative improvement algorithm: Starting
with their initial candidate, consider in turn the locations one block
from it in some order, say, up (north), right (east), down (south),
and left (west). As soon as a new location is closer to their homes,
replace the old location with the new candidate and repeat the
same verification operation; if none of the four neighboring
intersections turns out to be better, consider the current location
optimal and stop the algorithm. The algorithm’s operation is
shown in Figure 1.10b, with the computed distances given in
Figure 1.10c.
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FIGURE 1.10 (a) Instance of the Lemonade Stand Placement puzzle.
(b) The algorithm’s steps. (¢) Distances computed by the algorithm.

While the final location marked by number 3 in Figure 1.10b
certainly looks like a good choice, the algorithm does not provide a
proof of the location’s global optimality. In other words, how do
we know that not only the four intersections one block away from
it are inferior choices but also that it will be true for any other
intersection? Well, we need not worry about our young
entrepreneurs: this location is indeed the best, and the reader will
have a chance to see this by solving the Site Selection puzzle
(#74)—the general instance of this puzzle.

Here is another example of a puzzle that can be solved by
iterative improvement.

Positive Changes Given an m * n table of real numbers, is there an
algorithm to make all the row sums and column sums nonnegative
by changing the signs of all the numbers in any row or column as
the only operation allowed for the algorithm?



It would be natural to try finding an algorithm that increases the
number of lines (rows and columns) with nonnegative sums on
each of its iterations. However, changing the signs in a row
(column) with a negative sum may make the sums in some column
(row) negative! A neat way to overcome this difficulty is to pay
attention to the total sum of the numbers in the table. Since it can
be computed as the total of either all the row sums or all the
column sums, changing the signs in a line with a negative sum
definitely increases the total sum of the numbers in the table.
Therefore, we can simply repeatedly search for a line with a
negative sum. If we find such a line, we change the signs of all its
numbers; if we do not find such a line, we have achieved our goal
and can stop.

Is that all? Not quite. We also need to show that the algorithm’s
operation cannot continue indefinitely without stopping. This is
indeed the case, because repeated applications of the algorithm’s
operation can create only a finite number of different tables (each
of the mn elements can be in no more than two states). Therefore,
the number of all element sums is also finite. Since the algorithm
generates a sequence of tables with increasing sums, it must stop
after a finite number of steps.

In both examples considered above, we took advantage of some
quantity with the following characteristics:

+ It could change its value only in a desired direction
(decreasing in the first problem and increasing in the
second).

* It could attain only a finite number of values, which
guaranteed a stop after a finite number of steps.

» When it reached its final value, the problem was solved.

Such a quantity is called a monovariant. Finding an appropriate
monovariant can be a tricky task. This has made puzzles involving
monovariants a popular topic in mathematical competitions. For
example, the second example given above was used among
practice problems for the first All-Russian Mathematical Olympiad



in 1961 [Win04, p. 77]. It would be wrong, however, to dismiss
iterative improvement and monovariants as just mathematical toys.
Some of the most important algorithms in computer science, such
as the simplex method, are based on this approach. The interested
reader can find a few other puzzles involving monovariants in the
harder puzzle section of this book.

Dynamic Programming

Dynamic programming is interpreted by computer scientists as a
technique for solving problems with overlapping subproblems.
Rather than solving overlapping subproblems again and again, it
suggests solving each of the smaller subproblems only once and
recording the results in a table from which a solution to the
original problem can then be obtained. Dynamic programming was
invented by a prominent U.S. mathematician, Richard Bellman, in
the 1950s as a general method for optimizing multistage decision
processes. For an optimization problem to be solved by this
technique, the problem must have a so-called optimal substructure
so that its optimal solution can be constructed efficiently from
optimal solutions to its subproblems.

As an example, consider a problem of counting shortest paths.

Shortest Path Counting Find the number of the shortest paths from
intersection A to intersection B in a city with perfectly horizontal
streets and vertical avenues shown in Figure 1.11a.

Let P [7, j] be the number of shortest paths from intersection A
to the intersection of street 7 (1 <i<4) and avenue j (1 <j<5). Any
shortest path here is composed of horizontal segments going right
along the streets and vertical segments going down the avenues.
Therefore, the number of shortest paths from A to the intersection
of street 7 and avenue j can be found as the sum of the number of
shortest paths from A to the intersection of street 7 — 1 and avenue j
(P[i — 1, j] in our notation) and the number of shortest paths from



