lporithmes from

BOOK

A
T

Copyright © 2020 by the Society for Industrial and Applied Mathematics
10987654321
All rights reserved. Printed in the United States of America. No part of this book may be

reproduced, stored, or transmitted in any manner without the written permission of the publisher.
For information, write to the Society for Industrial and Applied Mathematics, 3600 Market Street,
6th Floor, Philadelphia, PA 19104-2688 USA.

No warranties, express or implied, are made by the publisher, authors, and their employers that

the programs contained in this volume are free of error. They should not be relied on as the sole
basis to solve a problem whose incorrect solution could result in injury to person or property. If the
programs are employed in such a manner, it is at the user’s own risk and the publisher, authors, and
their employers disclaim all liability for such misuse.

Trademarked names may be used in this book without the inclusion of a trademark symbol. These
names are used in an editorial context only; no infringement of trademark is intended.

Julia is a trademark of Julial.ang.
'This book is typeset using the AMS-developed LaTeX style files.

Royalties from the sale of this book are placed in a fund to help students attend SIAM
meetings and other SIAM-related activities. This fund is administered by SIAM, and qualified
individuals are encouraged to write directly to SIAM for guidelines.

Publications Director Kivmars H. Bowling
Executive Editor Elizabeth Greenspan
Developmental Editor Mellisa Pascale
Managing Editor Kelly Thomas
Production Editor David Riegelhaupt
Copy Editor Claudine Dugan
Production Manager Donna Witzleben
Production Coordinator Cally A. Shrader
Compositor Cheryl Hufnagle
Graphic Designer Doug Smock

Library of Congress Cataloging-in-Publication Data

Names: Lange, Kenneth, author.

Title: Algorithms from THE BOOK / Kenneth Lange.

Description: Philadelphia : Society for Industrial and Applied Mathematics,
[2020] | Includes bibliographical references and index.

Identifiers: LCCN 2019059040 (print) | LCCN 2019059041 (ebook) | ISBN
9781611976168 (paperback) | ISBN 9781611976175 (ebook)

Subjects: LCSH: Algorithms. | Computer algorithms. | Computer
science--Mathematics.

Classification: LCC QA9.58 .L36 2020 (print) | LCC QA9.58 (ebook) | DDC
518.1--dc23

LC record available at Attps://lcen.loc. gow/2019059040

LC ebook record available at https://lecn. loc. gov/2019059041

ﬂam- is a registered trademark.

Contents

Preface

Chapter 1. Ancient Algorithms
Introduction

Peasant Multiplication
Babylonian Method

Quadratic Equations

Euclid’s Algorithm

Sieve of Eratosthenes
Archimedes’ Approximation of 7
Problems

RBERE

n

ey

Chapter 2. Sortin
Introduction
Quicksort
Quickselect
Heapsort
Bisecti

Priority Queues
Problems

SELERRE

Chapter 3. Graph Algorithms

3.1. Introduction
3.2. From Adjacency to Neighborhoods
3.3. Connected Components
3.4. Dijkstra’s Algorithm
3.5. Prim’s Algorithm
3.6. Problems
Chapter 4. Primality Testing
4.1. Introduction
4.2 Perfect Powers
4.3. Modular Arithmetic and Group Theory
4.4. Exponentiation in Modular Arithmetic
4.5. Fermat’s Little Theorem
4.6. Miller—Rabin Test
4.7. Problems

Chapter 5. Solution of Linear Equations
5.1. Introduction
5.2. LU Decomposition and Gaussian Elimination

v

=

RV S P S el ol

rREEEGEEE

RRRERp

RYY RikEREBRRER BR

vi CONTENTS

5.3. Cholesky Decomposition

54. QR Decomposition and Gram—Schmidt Orthogonalization
5.5. Conjugate Gradient Method

5.6. Problems

Chapter 6. Newton’s Method

6.1. Introduction

6.2. Root Finding by Newton’s Method
6.3. Newton’s Method and Optimization
6.4. Variations on Newton's Method
6.5. Problems

Chapter 7. Linear Programming

7.1. Introduction

7.2. Applications of Linear Programming
7.3. Revised Simplex Method

7.4. Revised Simplex Code

7.5. Kamarkar’s Algorithm

7.6. Problems

Chapter 8. Eigenvalues and Eigenvectors
Introduction

Applications of Eigen-decompositions

The Power Method and Markov Chains
Rayleigh Quotient Method

Householder Transformations

Divide and Congquer Spectral Decomposition
Jacobi’s Method

Extraction of the SVD

Problems

CRLRLEDDE

Chapter 9. MM Algorithms
9.1. Introduction
9.2. Majorization and Convexity
9.3. Sample MM Algorithms

CEEEEE EEREE BEgpszzzps RREEEEE 22RBRE B&EE

9.4. Problems
Chapter 10. Data Mining
10.1. Introduction
10.2. k-Means Clustering
10.3. EM Clustering
10.4. Naive Bayes
10.5. k-Nearest Neighbors
10.6. Matrix Completion 129
10.7. Nonnegative Matrix Factorization 133
10.8. Problems 137
Chapter 11. The Fast Fourier Transform 141
11.1. Introduction 141
11.2. Basic Properties 141

CONTENTS

11.3. Derivation of the Fast Fourier Transform
11.4. Approximation of Fourier Series Coefficients
11.5. Convolution

11.6. Fast Transforms and Matrix Factorization
11.7. Time Series

11.8. Problems

Chapter 12. Monte Carlo Methods

Introduction

Multiplicative Random Number Generators
G . N iform Random Deviates
Randomized Matrix Multiplication

Markov Chain Monte Carlo

Simulated Annealing

Problems

SEREEEE

Appendix A. Mathematical Review
A.l. Order Relations
A.2. Elementary Number Theory
A.3. Compactness in Mathematical Analysis
A.4. Convexity
A.5. Lagrange Multipliers
A.6. Linear Algebra
A.7. Banach’s Contraction Mapping Theorem

Bibliography
Index

Copyrighted material

Preface

My inspiration for writing a survey of the best algorithms can be summarized by quot-
ing Martin Aigner and Giinter Ziegler, whose splendid book Proofs from THE BOOK is
now in its fifth edition [2]. They write:

Paul Erdés liked to talk about THE BOOK, in which God maintains the
perfect proofs for mathematical theorems, following the dictum of G.
H. Hardy that there is no permanent place for ugly mathematics. Erdés
also said that you need not believe in God but, as a mathematician, you
should believe in THE BOOK.

Conversely, I would add that you need not believe in THE BOOK to believe in God. But I
digress.

My more humble purpose is to highlight some of the most famous and successful
algorithms and the lovely mathematics behind them. Algorithms are a dominant force in
modern culture. Every time we turn on our browsers and commence a search, there stands
an algorithm in the shadows. When we hop into our car, turn on the engine, and drive
away, the motor and brakes obey hidden algorithms. Our banks and our spies depend on
algorithms for encryption and decryption. The most important scientific instrument in any
laboratory is the computer. Every indication is that algorithms will become more pervasive,
not less. Thus, gaining an understanding of and a facility for designing algorithms is a
worthy objective.

There is considerable debate about the top algorithms. The numerical analysts Don-
garra and Sullivan [50] ignited the debate with their list:

(1) Metropolis algorithm for Monte Carlo

(2) Simplex method for linear programming

(3) Krylov subspace iteration methods

(4) The decompositional approach to matrix computations

(5) The Fortran optimizing compiler

(6) QR algorithm for computing eigenvalues

(7) Quicksort algorithm for sorting

(8) Fast Fourier transform

(9) Integer relation detection

(10) Fast multipole method

The applied mathematician Nicholas Higham updated this list in an influential blog post of
March 29, 2016. His list shows six algorithms in common:

(1) Newton and quasi-Newton methods

(2) Matrix factorizations (LU, Cholesky, QR)

(3) Singular value decomposition, QR and QZ algorithms

(4) Monte-Carlo methods

(5) Fast Fourier transform

X PREFACE

(6) Krylov subspace methods
(7) JPEG
(8) PageRank
(9) Simplex algorithm
(10) Kalman filter

In contrast, the computer scientist Marcos Otero in his blog entry of May 26, 2014,
suggests

(1) Merge Sort, Quick Sort, and Heap Sort
(2) Fourier Transform and Fast Fourier Transform
(3) Dijkstra’s algorithm
(4) RSA algorithm
(5) Secure Hash Algorithm
(6) Integer factorization
(7) Link Analysis
(8) Proportional Integral Derivative Algorithm
(9) Data compression algorithms
(10) Random Number Generation

Note the substantial divergence from the previous lists. In contrast, the data scientist James
Le in his blog post of January 20, 2018, recommends

(1) Linear regression
(2) Logistic regression
(3) Linear Discriminant Analysis
(4) Classification and Regression Trees
(5) Naive Bayes
(6) K-Nearest Neighbors
(7) Learning Vector Quantization
(8) Support Vector Machines
(9) Bagging and Random Forest
(10) Boosting and AdaBoost

One lesson to be learned by this limited comparison is that there is no consensus.
Our disciplinary backgrounds color our ranking of algorithms. Personally, I lean most
toward Higham’s list, with its heavy emphasis on linear algebra. However, it omits sorting
and graph algorithms dear to computer scientists and regression and maximum likelihood
algorithms dear to statisticians. The following pages adopt something from all four lists,
as well as a few of my own favorites. Lacking usage statistics to back me up, my choices
are personal and definitely subject to question.

Let me mention a few criteria guiding my exposition. I like a mathematical story. The
mathematics need not be deep, but it should combine elements of surprise, ingenuity, and
generality. Algorithms should be brief, easy to understand, and principled. Mere recipes
without a defined objective hardly rise to the level of a legitimate algorithm. Readers may
be offended by my glaring omissions. For example, I omit discussion of the QR algorithm
for extracting the spectral decomposition of a symmetric matrix. I also emphasize sequen-
tial algorithms and barely mention parallel processing. Finally, except for the traveling
salesman problem, I avoid NP hard problems altogether. This book represents my attempt
to introduce students in the mathematical sciences to algorithms. Although it is celebra-
tory, it is not intended as definitive or encyclopedic. In keeping with my desire to create a

PREFACE xi

textbook, each chapter ends with a problem section. Most problems are straightforward to
solve, but a few might challenge even experts.

This brings us to the question of prerequisites. I assume readers have familiarity with
linear algebra, advanced calculus, and probability. Prior exposure to numerical analysis
would help but is not required. The appendices briefly sketch some theory pertinent to
specific chapters. For instance, readers will definitely want to browse Appendix A.2 on
elementary number theory before they tackle Chapter 4 on primality testing. Most chapters
are isolated essays. A few, particularly Chapter 9 on data mining, rely on material from
previous chapters. There is enough material here for a semester course at the pace of one
chapter per week. UCLA, my home institution, operates on quarters, so I must pick and
choose.

All of the algorithms discussed here are programmed in Julia and can be accessed
at https://bookstore.siam.org/ot168/bonus. The advantage of actual code over flow charts
is that students can readily experiment. Virtually all of my classroom students are profi-
cient in higher-level languages such as R and MATLAB. Many are not adept with lower-
level languages. Julia is a bridge language that combines coding simplicity with execution
speed. I hope my code will be transparent to aficionados of C, Python, and other more pop-
ular languages. It is unfortunate that any language choice would disappoint many readers.
Finally, let me stress that my code is apt to be much less efficient than production code. Ju-
lia programmers will almost certainly want to use Julia’s base and library functions rather
than my own.

For the record, here are some notation conventions used throughout the book. All
vectors and matrices appear in boldface. The entries of the vectors 0 and 1 consist of 0’s
and 1’s, respectively. The vector e; has all entries 0 except a | in entry ¢. The 0/1 indicator
of a set S is denoted by 1g(x). The * superscript indicates a vector or matrix transpose.
The Euclidean norm of a vector x is denoted by ||z|| and the spectral and Frobenius norms
of a matrix M = (m;;) by

M
i = sup LD aa ne =[S,
2% Tl 2

respectively. All positive semidefinite matrices are symmetric by definition. When the
difference A — B of two symmetric matrices A and B is positive definite or positive
semidefinite, we will write A = B or A = B. For a smooth real-valued function f(x),
we write its gradient (column vector of partial derivatives) as V f(x), its first differential
(row vector of partial derivatives) as df (z) = V f(x)*, and its second differential (Hessian
matrix) as d? f(x). If g(z) is vector-valued with ith component g; (), then the differential
(Jacobi matrix) dg(x) has ith row dg; ().

I have many people to thank, not the least of all my wife, Genie, who graciously
indulges my mathematical habits. Many UCLA colleagues, particularly, Jan de Leeuw,
Robert Jennrich, Elliot Landaw, Stan Osher, Mary Sehl, Janet Sinsheimer, Eric Sobel,
Marc Suchard, and Hua Zhou, have contributed to my growth as a scholar and a lover
of algorithms. 1 conceived this book while on sabbatical at Stanford and owe a debt to
the many inspiring statisticians there. The UCLA Biomathematics students Samuel Chris-
tensen, Ben Chu, Gabriel Hassler, Alfonso Landeros, and Tim Stutz contributed mightily
to the fidelity and clarity of the text. Last of all, I would like thank my brothers, Eric, Fred,
and John Lange, for their friendship, tolerance, and compassion. This book is dedicated to
them.

Copyrighted material

CHAPTER 1

Ancient Algorithms

1.1. Introduction

We tend to think of ancient peoples as not quite as bright as we are. A more realistic
view is that they simply lacked our enormous cultural inheritance in science, our com-
plex technology, and our institutions of universal education. The examples covered in this
chapter display some of the bursts of creativity by ancient mathematicians, physicists, as-
tronomers, and philosophers. We are indebted to these past thinkers for constructing the
first algorithms and setting forth principles that continue to guide algorithm development.

1.2. Peasant Multiplication

The history of the peasant multiplication algorithm is murky. Although it is often
called the Russian peasant algorithm, the evidence suggests that it was known to the an-
cient Egyptians. The algorithm is recursive in nature and uses repeated doubling, halving,
and addition. The basic idea is that to multiply two positive integers a and b, we can in-
stead compute (a/2) - (2b) if a is even and [(a — 1)/2] - (2b) + b if @ is odd. In either case,
a is reduced by at least a factor of 2, at the cost of one halving, one doubling, and possi-
bly one addition. If we assume that halving, doubling, and addition are all constant-time
operations, then the total computational complexity of the algorithm is proportional to the
number of binary digits of a. In the following Julia code, the quantity ab + ¢ does not
change from one pass to the next of the algorithm loop. Since the loop starts with the value
ab, it also ends when @ = 1 with this value. The algorithm is appealing because modern
computers operate internally on binary numbers where doubling and halving reduce to bit
shifting.
function peasantproduct(a::T, b::T) where T <: Integer

c = zero(T)
while a > one(T)
if isodd(a)

c=c+b

end

a=a> 1 # divide a by 2

b=Db << 1 # multiply b by 2

end
return ¢ + b
end

c = peasantproduct(16, 33)

It is worth emphasizing that peasant multiplication terminates after a finite number of
steps with the correct answer. Other algorithms that we will meet later share this property,
provided we entertain the fiction that computers are capable of exact arithmetic with real

2 I. ANCIENT ALGORITHMS

numbers. The next algorithm is representative of the class of iterative algorithms. These
converge over an infinite number of steps to a correct answer. The rate of convergence of
an iterative algorithm is critically important in evaluating its performance. This must be
balanced against the computational complexity of each step.

1.3. Babylonian Method

The ancient Babylonians discovered a lovely algorithm for extracting the square root
of a nonnegative number ¢. Their algorithm turns out to be a special case of Newton’s
method. The Babylonian iterations are defined by the formula

1 c
Lpn4y1 = E Tn + .I:_
n

with a positive initial value xy. The choice xy = 1 is somewhat neutral but hardly optimal
on a computer with binary arithmetic. The Babylonian update can be motivated by solving
the approximation

c = (en+A)? = 22 +20,A4+A% =~ 22 422,A

for A and then calculating

1 2
In +A =~ mn+m(c—xn).
Let us show that regardless of the choice of xg, the iterates converge to \/c. Consider
the difference

2 Iy
22 +c¢—2y/ct,
2xy,

(;I:n - \/E)2

2r,

Tni1 —Ve = 1(:r.n+i)—\/5

(1.1) =

This representation makes it clear that x,, 41 > /¢ regardless of the value of z,,. Further-
more, ,+1 = /¢ if and only if z,, = \/c.
If we assume that z,, > \/c, then the difference formula (1.1) implies that

Tn+1 _\/E < -'-‘::“n._\/‘Z

if and only if z,, — \/¢ < 2z, a condition which is obvious. Thus, the iterates decrease
and possess a limit x .. This limit satisfies the equation

1 c
Tog = B $w+1‘_)
Lo

whose only solution is y/c. The rate of convergence of z,, to 4/c is quadratic because for
large n

_ 2
Tp41 — \/E ~ %'

In practice the number of significant digits in x,, doubles at each iteration.

1.4. QUADRATIC EQUATIONS

TABLE 1.1. The Babylonian Method Applied to 72

Iteration n T Ty — T

0 1.0 -2.141592653589793
1 5.434802200544679 | 2.293209546954886
2 3.625401431921964 | 0.483808778332171
3 3.173874724746142 | 0.032282071156349
4 3.141756827069927 | 0.000164173480134
5 3.141592657879262 | 4.289468336 x 10~
6 3.141592653589793 0.0

Here is Julia code implementing the Babylonian method:

function babylonian(c::T, tol::T) where T <: Real
x = one(T) # start x at 1
while abs(x*2 - ¢) > tol # convergence test
x=x+c/x)/2
end
return x
end

root = babylonian(pi*2, le-10)

Table 1.1 records the Babylonian method applied to 7. Six iterations suffice to achieve
convergence to machine precision. Once the iterates reach the vicinity of 7, the fast qua-
dratic rate of convergence kicks in.

1.4. Quadratic Equations

Most educated people are at least vaguely familiar with the solution

- =bx Vb2 —dac
r = —2(1.
to the quadratic equation az? + bz + ¢ = (. These two roots are an immediate consequence
of the identity
b ’ b —dac
(J- + E) = i

The ancient civilizations of Babylonia, Egypt, Greece, China, and India all made contribu-
tions in solving quadratics. The quadratic formula in the form we know today is credited
to René Descartes. Let us stress that the quadratic formula is a legitimate algorithm even
though it is not explicitly iterative. Implicitly it is iterative because extracting square roots
is usually iterative.

Here we would like to comment on the potential loss of numerical accuracy in applying
the classical quadratic formula. Roundoff error occurs when two numbers of the same sign
and approximately the same magnitude are subtracted. Assuming the two roots are real, the
smaller root in magnitude is the one liable to catastrophic cancellation. To avoid roundoff,
one should compute the larger root r in magnitude and exploit the fact that the product of
the two roots equals <. The following Julia code does exactly this. Note that roundoff is
not an issue when the roots are complex. This case is handled separately in the Julia code.

4 1. ANCIENT ALGORITHMS

function quadratic(a::T, b::T, c::T) where T <: Real
d = b*2 - 4a * ¢ # discriminant
if d > zero(T)
if b >= zero(T)
rl = (-b - sqrt(d)) / (2a)
else
rl = (-b + sqrt(d)) / (2a)
end
r2=c/ (rl * a)
return (rl, r2)
else
return (-b + sqrt(d + 0im)) / (2a), (-b - sqgrt(d + 0im)) / (2a)
end
end

(a, b, ¢ = (1.0, -2.0, 1.0)
(rl, r2) = quadratic(a, b, c)

For the sake of simplicity, this function ignores the admonition of many Julia experts that
returned values be type stable.

1.5. Euclid’s Algorithm

Euclid’s algorithm is an efficient method for computing the greatest common divisor
(ged) of two integers a > b > (. By definition ged(a, b) is the largest integer that divides
both ¢ and b without leaving a remainder. The algorithm appears in Euclid’s Elements
(circa 300 BC). It can be used to reduce fractions to their simplest forms and occurs in
many number-theoretic and cryptographic calculations.

Suppose a and b have greatest common divisor c. As Proposition A.2.1 of Appen-
dix A.2 demonstrates, there exists a unique pair of integers ¢ and r such that a = gb + r
and 0 < r < b. If by chance r = 0, then clearly ged(a, b) = b. Otherwise, note that since
¢ divides both a and b, it must divide r as well. Conversely, any integer d dividing both b
and 7 must divide a. It follows that ged(a, b) = ged(b, r), and we can replace a by b and
b by r. Because b < a and r < b, this replacement process must come to an end in a finite
number of steps with @ = bor a > b and r = (. At that point we can read off the greatest
common divisor ged(a, b) = b.
function euclid(m::T, n::T) where T <: Integer

(a, b) = (m, n)
while b != zero(T)

(a, b) = (b, rem(a, b))
end
return a
end

gcd = euclid(600, 220)

There is a matrix form of Euclid’s algorithm. Note that

() = Ga)C) -0

1.7. ARCHIMEDES" APPROXIMATION OF 5

— U J.
M ! =]

exists and possesses integer entries. If Euclid’s algorithm takes s steps and ends with

[ged(a, b), 0], then
a\ o ged(a, b)
(b) = M;---M, (0 .

ged(a, b)) -1 ag-1(@
(5400) = aaon
and in particular that

(1.2) ged(a,b) = ca+db

for integers ¢ and d. This result was first proved by Bézout.

and that

It follows that

1.6. Sieve of Eratosthenes

Eratosthenes’ algorithm finds all primes between | and a fixed integer n. Eratosthenes
of Cyrene (circa 276 BC to 195/194 BC) was a Greek mathematician and astronomer. He
served as director of the famous Library of Alexandria and is best known for calculating
the circumference of the earth. His sieve works by marking as composite (non-prime) all
of the multiples of each prime, starting with all multiples of 2, then all multiples of 3, and
so forth. The multiples of a given prime p are generated in the order p, 2p. 3p, ... until n
is reached. The sieve avoids testing each candidate number for divisibility by each prime.
It also relies on the simple fact that when a number is composite, one of its factors is less
than or equal to /n. Here is Julia code implementing the sieve.

function eratosthenes(n::Integer)
isprime = trues(n)
isprime[1] = false # 1 is composite
for i = 2:round(Int, sqrt(n))
if isprime[i]
for j = i22:i:n # all multiples of i < i*2 already composite
isprime[j] = false
end
end
end
return filter(x -> isprime[x], 1:n) # eliminate composite numbers
end

prime_list = eratosthenes(100)

1.7. Archimedes’ Approximation of 7

Around 250 BC, the Greek mathematician Archimedes derived an algorithm for ap-
proximating m, the ratio of a circle’s circumference to its diameter. He was able to show
that 3% <7< .‘3% by considering the length b,, of the perimeter of a regular polygon with
3-2" sides inscribed within a circle and the length a,, of the perimeter of a regular polygon
with 3 - 2" sides circumscribed outside a circle. For a circle with diameter 1, b,, < 7™ < a,,.

6 1. ANCIENT ALGORITHMS

Starting with the known values of @, and b; for circumscribing and inscribing hexagons,
he was able to construct a recurrence relation connecting a,,.1 and b, . to a,, and b,,.
By doubling the number of sides of the initial hexagons to 12-sided polygons, then to
24-sided polygons, and ultimately to 96-sided polygons, Archimedes was able to bring the
two perimeters ever closer in length to the circumference of the circle. He, like all Greek
mathematicians, relied heavily on geometric arguments.

Figure 1.1 depicts a circle with diameter 1 and corresponding inscribed and circum-
scribed squares. Squares are simpler initial figures than hexagons. The perimeter lengths
of the two squares are by = 4/v/2 = 2y/2 and ay = 4. We now explore how Archimedes
calculated perimeter lengths for inscribed and circumscribed polygons after doubling the
number of sides. Call the perimeter lengths b,, and a,, for regular polygons with 22" sides.
Archimedes’ argument depends on four facts: (a) at each point of a circle the tangent line
and the radial line from the center are perpendicular, (b) two regular polygons of the same
number of sides share interior angles, (c) two right triangles are similar if they share a mi-
nor angle, and (d) side lengths in similar triangles occur in a constant ratio. Thus, triangles
HDG and AFH are similar, as are triangles ACD and AFH and the isosceles triangles DFB
and DGF.

F G

FIGURE 1.1. Archimedes’ Polygons for Estimating 7

If we let m = 2 - 2" be the number of sides of the two regular polygons, then the
similarity of triangles HDG and AFH implies that

e DG AF
Lo fntl GH AH

Likewise, the similarity of triangles ACD and AFH implies that
= CD AD

w T AF AH'

1.7. ARCHIMEDES" APPROXIMATION OF 7

Since AF = AD = % is the radius of the circle,

Ant1 bn
4m _ 2im
ay _ Ontl - On
2m Am 2m
This equation is equivalent to the equation
2a’ﬂ b]’l
(]--3) An41 b .
a‘ﬂ + n

Finally, the similarity of the isosceles triangles DFB and DGF yields

by bt
m — 2m
bni1 An+1
m 4m

which is equivalent to

(1.4) b1 = Vangibn.

The two equations (1.3) and (1.4) constitute Archimedes’ recurrence scheme for approxi-
mating .
Here is Julia code implementing Archimedes’ algorithm.

function archimedes(tol::T) where T <: Real
(a, b) = (4 * one(T), 2 * sqrt(2 * one(T)))
while abs(a - b) > tol

a=2%a*b/ (a+h)
b = sqrt(a * b)
end
return (a, b)
end

(upper, lower) = archimedes(le-6)

Archimedes lacked most of the tools of calculus. Let us now show how these tools
provide insight into the rate of convergence of the sequences a,, and b,, to 7. If we assume
by induction that b,, < a,, then

" _ 2a,b, - 2a, by, .
i an + by 2b,, "
2anbp 2a,by,
a = > = by
n+1 an + b—n 2an n

These two inequalities in turn imply that

b'n.-l—] = A% an—l—lbn < Up41
b1 = Va*‘n+lbn > by.

I. ANCIENT ALGORITHMS

TABLE 1.2. Archimedes’ Approximation Scheme for 7

Iteration n a

b

0 4.0

3.3137085
3.1825979
3.1517249
3.1441184
3.1422236
3.1417504
3.1416321
3.1416025
3.1415951
3.1415933

s N =~ SRS = RV I LY I oS

—

2.8284271
3.0614675
3.1214452
3.1365485
3.1403312
3.1412773
3.1415138
3.1415729
3.1415877
3.1415914
3.1415923

Thus, as n tends to oo, the monotone sequence a,, decreases to a limit a, the monotone
sequence b,, increases to a limit b, and b < a. The gap a,, — b,, satisfies

Un+1 — bn-

- 2a,b, _b
= n
an, + by,

— b‘!l (a_
ap +bp "

1(aﬁ —by).

2

Up4+1 — bn+1 g

- b'n,)

IA

Thus, the gap is more than halved at each iteration. It follows that @ = b and that each
iteration yields roughly another binary digit of accuracy. Table 1.2 displays the linear rate
of convergence of Archimedes’ algorithm.

(1

2)

1.8. Problems

The Goldschmidt method of division reduces the evaluation of a fraction to
addition and multiplication. By bit shifting we may assume that b € (%, 1].
Replace b by 1 — = and write

a a(l + x)
-z

a(l+z)(1+ 2?)

To1—a2t

a(l+2z)(1+22)--(14+22"")
1— 22" '

Program this algorithm in Julia. How large should n be so that the denominator
is effectively 1?7 Note that the powers of = should be computed by repeated
squaring.

Use the significand and exponent functions of Julia and devise a better initial
value than xy = 1.0 for the Babylonian method. Explain your choice, and test it
on a few examples.

3)

“4)

(5)

(6)
(7

(8)

9)

(10)

(1n

(12)

1.8. PROBLEMS 9

For ¢ = 0 show that the iteration scheme
c+x,
I
n+1 1+ Tn

converges to /c starting from any x, > 0. Verify either theoretically or empir-
ically that the rate of convergence is much slower than that of the Babylonian
method.

Dedekind’s algorithm for extracting /¢ iterates according to

Tp (22 + 3c)
3z2 +c

Program Dedekind’s algorithm in Julia. Demonstrate cubic convergence by de-
riving the identity

Tn41

2 (3:121 - C)3

Thy1 —C = W
Finally, argue that Dedekind’s algorithm converges to /¢ regardless of the initial
value ¢y > 0.
Find coefficients (a, b, ¢) where the standard quadratic formula is grossly inac-
curate when implemented in single precision. You will have to look up how to
represent single precision numbers in Julia.
Why does the product of the two roots of a quadratic equal £?
Solving a cubic equation az® 4 bx? + cx +d = 0 is much more complicated than
solving a quadratic. Demonstrate that (a) the substitution z = y — % reduces
the cubic to 4 + ey + f = 0 for certain coefficients e and f, (b) the further
substitution y = z — 5~ reduces this equation to 264 f23 — % and (c) the final
substitution w = z* reduces the equation in z to a quadratic in w, which can be
explicitly solved. One can now reverse these substitutions and capture six roots,
which collapse in pairs to at most three unique roots. Program your algorithm in
Julia, and make sure that it captures complex as well as real roots.
Write a Julia program to find the integers ¢ and d in Bézout’s identity

ged(a,b) = ca + db.
The prime number theorem says that the number of primes 7(n) between 1 and

n is asymptotic to ==. Use the Sieve of Eratosthenes to check how quickly the

Inn

w(n)

ratio % tends to 1.

A Pythagorean triple (a, b, ¢) satisfies a® +b* = ¢. Given an array x of positive
integers, write a Julia program to find all Pythagorean triples in 2. (Hint: Replace
the entries of x by their squares and sort the result.)

Show that the perimeter lengths a,, and b,, in Archimedes’ algorithm satisfy
m . m
a, = mtan— and b, = msin—,
m m

where m = 2 - 2" is the number of sides of the two regular polygons. Use this
representation and appropriate trigonometric identities to prove the recurrence
relations (1.3) and (1.4).

Based on the trigonometric representations of the previous problem, show that
3@, + 2b, is a much better approximation to 7 than either a,, or b, [142].
Check your theoretical conclusions by writing a Julia program that tracks all
three approximations to .

(13)

(14)

I. ANCIENT ALGORITHMS

Consider evaluation of the polynomial
p(z) = apz" 4+ a1z '+ 4 a7 +a,
for a given value of x. If one proceeds naively, then it takes n — 1 multiplications
to form the powers 2* = x - %=1 for 2 < k < n, n multiplications to multiply
each power z* by its coefficient a,, _., and n additions to sum the resulting terms.
This amounts to 3n — 1 operations in all. A more efficient method exploits the
fact that p(x) can be expressed as
pz) = w(aor™ ' +ar e 24+ ap 1) +an
= zb,_1(2) + an.
Since the polynomial b, () of degree n — 1 can be similarly reduced, a com-
plete recursive scheme for evaluating p(x) is given by
bD(I) = Qp, bk(l') = Ibk—l(z) + ag, k=]_._.._.,ﬂ..

This scheme requires only n multiplications and n additions in order to compute
p(z) = by, (x). Program the scheme and extend it to the simultaneous evaluation
of the derivative p'(x) of p(x).

Consider a sequence x1, . . . , &, of n real numbers. After you have computed the
sample mean and variance
1 < 1
_ 2 2
U = - Zl r; and o, = - Zl(:c,; — [,
1= i=

suppose you are presented with a new observation ;. It is possible to adjust
the sample mean and variance without revisiting all of the previous observations.
Verify theoretically and then code the updates

1
Hn+1 = nt+l (nptn + Tpyr)
n 1

2 _ g 2 2
e e 1 n 1%n + E(-Tn+l = fnt1)”.

CHAPTER 2

Sorting

2.1. Introduction

Sorting lists of items such as numbers or words is one of the most thoroughly studied
tasks in computer science [100]. The number of sorting algorithms is large and growing.
We will focus on two of the most popular, quicksort and heapsort. Sorting algorithms can
be compared in at least five different ways [171]: (a) average computational complexity,
(b) worst case computational complexity, (c¢) required computer storage, (d) ability to take
advantage of existing order, and (e) ease and clarity of coding. Both quicksort and heapsort
sort an array in place. Both enjoy an average computational complexity of O(nInn) for n
items. Quicksort tends to be quicker in practice. Quicksort has worst case computational
complexity O(n?), while heapsort retains its O(n Inn) complexity. Both fail miserably in
recognizing existing order. Finally, both are straightforward to code.

2.2, Quicksort

Quicksort [85] is possibly the most elegant sorting algorithm. It operates by a divide
and conquer principle that picks a pivot entry of the underlying list and partitions the list
around the picked pivot. For the sake of simplicity, we will assume the list is a sequence
of n numbers. In the version of quicksort explained here, the choice of the pivot entry
is random. Randomness at this level plus the randomness of the sequence itself facilitate
calculation of the average number a,, of operations (comparisons and swaps) required to
sort the sequence. A recurrence relation for a,, lies at the heart of this calculation. Solution
of the recurrence relation shows that a,, = 2nInn to a good approximation.

Hoare’s quicksort algorithm is based on the idea of finding a splitting entry x; of a
sequence I, ..., T, of n distinct numbers in the sense that z; < x; for j < iand z; > x;
for j > i. In other words, a splitter z; is already correctly ordered relative to the rest of
the entries of the sequence. Finding a splitter reduces the computational complexity of
sorting because it is easier to sort both of the subsequences xy,...,z;_1 and 2;41,..., 2y
than it is to sort the original sequence. At this juncture, one can reasonably object that
no splitter need exist, and even if one does, it may be difficult to locate. The quicksort
algorithm avoids these difficulties by randomly selecting a splitting value and then slightly
rearranging the sequence so that this splitting value occupies the correct splitting location.

In the background of quicksort is the probabilistic assumption that all n! permutations
of the n values are equally likely. The algorithm begins by randomly selecting one of the n
values and moving it to the leftmost or first position of the sequence. Through a sequence
of exchanges, this value is then promoted to its correct location. In the probabilistic setting
adopted, the correct location of the splitter is uniformly distributed over the n positions of
the sequence.

The promotion process works by exchanging or swapping entries to the right of the
randomly chosen splitter x;, which is kept in position 1 until a final swap. Let j be our

11

12 2. SORTING

current position in the sequence as we examine it from left to right. In the sequence up
to position j, a candidate position i for the insertion of x; must satisfy the conditions
xp < xpforl < k <iandxzp > x; fori < k < j. At position j = 1, we are forced
to put i = 1. Now suppose we have successfully advanced to a general position j and
identified a corresponding candidate position i. To move from position j to position j + 1,
we examine xj1. If z;11 > xy, then we keep the current candidate position ¢. On the
other hand, if z,; < =y, then we swap x;4, and x4, and replace 7 by 7 + 1. In either
case, the two required conditions imposed on ¢ continue to hold in moving from position j
to position j + 1. It is now clear that we can inductively march from the left end to the right
end of the sequence, carrying out a few swaps in the process, so that when j = n, the value
i marks the correct position to insert x;. Once this insertion is made, the subsequences
*y1,..., 21 and x4, ..., 2, can be sorted separately by the same splitting procedure.

The following recursive Julia code implements quicksort on any sortable list of items.
We illustrate the algorithm on integers and letters.

function quicksort(x::Vector, left = 1, right = length(x))
i = rand(left:right) # select a random splitting value

split = x[i]
(x[left], x[i]) = (split, x[left])
i = left

for j = (left + 1):right # position the splitting value
if x[j] <= split

i=1+1
(x[i1, x[j1) = x[j1, x[iD
end

end

(x[1left], x[i]) = (x[i], split)

if i > left + 1 # sort to the left of the value
quicksort(x, left, i - 1)

end

if i + 1 < right # sort to the right of the value
quicksort(x, i + 1, right)

end

end

x =[5, 4, 3, 1, 2, 8, 7, 6, -1];

quicksort(x)

println(x)

x =["'a’, ’c¢’, ’d’, 'b’", ", ’e’, 'h', 'g’, 'y'];
quicksort(x)

println(x)

To explore the average behavior of quicksort, let a,, be the expected number of oper-
ations involved in quick sorting a sequence of n numbers. By convention ay = 0. If we
base our analysis only on how many positions 7 must be examined at each stage and not
on how many swaps are involved, then we can write the recurrence relation

1 n 2 m
(2.1) a, = n—1+ - ;(a-,;_l +an_;) = n—1+ - ga;_l

by conditioning on the correct position ¢ of the first splitter.

2.3. QUICKSELECT 13

The recurrence relation (2.1) looks formidable, but a few algebraic maneuvers render
it solvable. Multiplying equation (2.1) by n produces

n
na, = n(n—1)+ 2Zai_1.
i=1

If we subtract from this the corresponding expression for (n — 1)a,,_1, then we get
na, —(n—1)ap—1 = 2n—2+2a,-1,
which can be rearranged to give
n 2ln—1) ap-1
n+l n(n+1) n
Equation (2.2) can be iterated to yield

(2.2)

Oy
n+1

Because Y_,'_, + approximates [[" X dz = Inn, it follows that

. (p
lim =
n—oo 2nInn

Quicksort is, indeed, a very efficient algorithm on average.

2.3. Quickselect

Quickselect [84] is a variation of quicksort designed to find the kth smallest element
in an unordered list. For the sake of concreteness, consider the problem of finding an or-
der statistic x ;) from an unsorted array {z1,..., 2.} of n distinct numbers. This can be
accomplished in O(n) operations based on the quicksort strategy. After the initial parti-
tioning step, one can tell which of the two subarrays contains z ;) just by looking at their
sizes. If the left array has k — 1 entries, then the splitting value is (). If the left array has
k or more entries, then it contains (). Otherwise, the right array contains x(;). Here is
Julia code implementing quickselect.
function quickselect(x::Vector, k::Int, left = 1, right = length(x))

i = rand(left:right) # select a random splitting value

split = x[i]
(x[left], x[i]) = (split, x[left])
i = left

for j = (left + 1):right # position the splitting value
if x[j] <= split

i=1+1
x[i1, x[3]) = (x[31, x[iD)
end

end
(x[left], x[i]) = x[i], split)
j =1 - left + 1 # find the order statistic y

14 2. SORTING

if k == j
y = x[i]
elseif k < j
y = quickselect(x, k, left, i - 1)
else
y = quickselect(x, k - j, i + 1, right)
end
return y
end
k = 8;

x=1[5,4,3,1, 2, 8,7, 6];
xk = quickselect(x, k)
k =5;
x= [|a|’ ,c,’ ,d!’ !bl’ |fl’ ,e,’ !hl’ |gl];
xk = quickselect(x, k)
Again an average-case analysis is enlightening. Let b,, denote the expected number of
operations to find ;). We now prove that b,, < cn with ¢ = 4. In view of the fact that it
takes n — 1 comparisons to create the left and right subarrays, it is obvious that

lk'-—l 1 n
b, = ﬂ—l-f-;-zlbn_j—f—;zkbj_l‘
i= i=k

We now argue by induction that b,, < en. This is certainly true for n = 1. Suppose it is
true forall k <n — 1. Since Y. i = (”‘;1],it follows that

k0

k—1

[C
b, < n—1 -E —j -§ i—1
n < om +nj=1(n .?)+n (7—1)

i=k

oregbec- (1+4(0) ()

n.—1+2i(n2+2nk—2k2—3n+4k—2).
T

Elementary calculus indicates the last quantity is maximized as a function of k by taking
k = % + 1. Substituting this value for k in the bound for b, yields the new bound

¢ (3n?
< — —|— —n],
b, < n 1+2n(5 n),

which is less than cn whenever ¢ > 4.

2.4. Heapsort

Heapsort was invented by Williams [173] and Floyd [57] in 1964. Their construction
represents the birth of the heap, a useful data structure in its own right. In heapsort the
sequence * = (x1,...,T,) to be sorted is arranged in a binary tree. The left side of Figure
2.1 displays the binary tree generated by the sequence = = (1,6,30,20,7,9,4,12,8).
Note how the data is symmetrically placed along each row from top to bottom and left to
right. The jth row contains 27 items unless j is the last row. In total there are [log, n| + 1

2.4, HEAPSORT 15

FIGURE 2.1. Transformation of a Binary Sorting Tree into a Heap

rows starting with row 0 at the top. In heapsort the size of the tree gradually diminishes as
more items are correctly sorted. The largest item is peeled off first and placed at the end of
the sequence. The second largest item is peeled off next and placed adjacent to the largest
item, and so forth.

The first phase of heapsort rearranges the items into a heap in which the value of every
parent node exceeds the values of its daughter nodes. The left tree in Figure 2.1 shows two
violations 1 < max{6,30} and 6 < max{20, 7} of this precedence rule. The right tree
shows the heap created by systematic rearrangement. A parent node j has daughter nodes
2j and 2j + 1, provided 25 < n and 25 + 1 < n, respectively. Conversely, the daughters
have parent j = [% | = |21 |. Nodes at the bottom of the tree have no daughters. In
phase 2 of the heapsort algorithm, the heap is sorted into increasing order. The two phases
of heapsort are reflected in the first function of the following Julia code.

function heapsort(x::Vector)
n = length(x)
for parent = div(n, 2):-1:1 # form the heap
siftdown(x, parent, n)
end
for bottom = n:-1:2 # sort the heap
(x[1], x[bottom]) = (x[bottom], x[1])
siftdown(x, 1, bottom - 1)
end
end

function siftdown(x::Vector, parent::Int, bottom::Int)
parent_value = x[parent]
child = 2 * parent
while child <= bottom
if child < bottom && x[child] < x[child + 1]
child = child + 1
end
if x[child] <= parent_value
break
else
x[div(child, 2)] = x[child]
child = 2 * child
end

16 2. SORTING

end
x[div(child, 2)] = parent_value
end

X = [5| 4! 3! 1! 2! 8! 7! 6! _1];

heapsort (x)

println(x)

x: [Iai' lcl, ld!, !'b!‘ ‘f‘, lel, !h!’ ‘g" Iyl];
heapsort (x)

println(x)

The siftdown function of the heapsort code moves a parental value downward in the
binary tree until it satisfies the precedence rule. The function first identifies the child of
the given parent with the larger value. If this value falls below the parent’s value, then
the precedence rule is satisfied. Otherwise, the parent’s value and the child’s value are
exchanged, and the child assumes the role of the parent. Again the precedence rule must
be checked. The process of exchange and checking continues until the rule is satisfied or
the bottom of the tree is reached. When the bottom is reached, the rule is automatically
satisfied. In the initial tree of Figure 2.1, the values 1 and 30 are first exchanged. Since
1 < max{9, 4}, the values 1 and 9 must be exchanged. The algorithm then exchanges 6
and 20. Since 6 < max{12, 8}, 6 and 12 are exchanged. At this point the tree, correspond-
ing to the sequence (30,20,9,12,7,1,4,6,8), is a heap, and the value 30 at the top of the
tree is swapped with the value 8 at the bottom-right of the tree.

After 30 is peeled off, the tree is reconstituted with one less node. The new tree
corresponds to the reduced sequence (8,20,9,12,7,1,4, 6). Once the precedence violation
8 < 20 is resolved by a call to siftdown, the value 20 at the top of the new tree can be peeled
off. And so it goes until the entire sequence is sorted. The astute reader will notice that
resolving the precedence violation caused by a swap affects just a single branch of the tree
and restores the heap.

As was noted earlier, heapsort possesses a worst case computational complexity of
O(nlnn). Because the mean of a random variable cannot exceed its maximum value,
heapsort also possesses an average computational complexity of O(n1nn). To verify the
worst case behavior, recall that a binary search tree has |log, n| + 1 rows. Hence, the
computational complexity of a single call to siftdown is O(Inn). Since there are | % | calls
in building a heap, the computational complexity of phase 1 of heapsort is O(nInn). The
computational complexity of phase 2 is also O(n In n) because every time an item is peeled
off, siftdown must be called once to restore the heap.

2.5. Bisection

Once an array is ordered, it is easy to search for specific entry values. Fast search
depends on the principle of bisection, one of the earliest examples of the divide and conquer
strategy in applied mathematics and a dominant theme in search algorithms. In numerical
analysis, bisection is used to find the root of a scalar equation f(x) = 0. Consider an
interval [a, b] where f(a) < 0 < f(b) or f(a) > 0 > f(b). If f(z) is continuous,
then the intermediate value theorem guarantees the existence of a root on [a, b]. Now let
m = (a+ b)/2 be the midpoint of [a, b]. If f(m) = 0, then we are done. Otherwise, either
f(a) and f(m) are of opposite sign, or f(b) and f(m) are of opposite sign. In the former
case, the interval [a, m| brackets a root; in the latter case, the interval [, b] does. In either
case, we replace [a, b] by the corresponding bracketing interval and continue. If we bisect

2.5. BISECTION 17

[a, b] a total of n times, then the final bracketing interval has length 2" (b — a). For n
large enough, we can stop and approximate the bracketed root by the midpoint of the final
bracketing interval. The following Julia function implements this strategy.

function bisect(f::Function, a::T, b::T, tol::T) where T <: Real
(fa, fb) = (£(a), £(b))
@assert(a < b & & fa * fb <= zero(T)) # check for input error
for iteration = 1:100
m=_C+hb) /2
fm = £(m)
if abs(fm) < tol
return (m, iteration)
end
if fa * fm < zero(T)
(b, fb) = (m, fm)

else
(a, fa) = (m, fm)
end
end
return ((a + b) / 2, 100)
end

f(x) = x*3 - 5x + 1.0
(x, iteration) = bisect(f, 0.0, 2.0, le-14)

The process of bisection extends immediately to searching a discrete ordered list. The
only difference is that we have to allow for the possibility that the chosen value does not
appear in the list. The following Julia code returns the position of the value in the list. A
returned 0 indicates that the value is missing from the list.

function binary_search(x::Vector, value)
a=1
b = length(x)
while a <= b
m = div(a + b, 2)
if x[m] > value
b=m-1
elseif x[m] < value
a=m+1
else
return m
end
end
return 0
end

x=1["a", b, ’d’, £, 'g’l;
println(binary_search(x, 'f’))
x=[1, 2, 4, 7, 9];
println(binary_search(x, 3))

18 2. SORTING

2.6. Priority Queues

In computer science, a priority queue is an abstract data type consisting of keys and
priorities. Priority queues are typically based on heaps and binary searches. Each key
has an associated priority that lives on the heap. Items can be efficiently entered into the
queue and extracted according to their priorities. In this section we briefly describe Julia’s
implementation of priority queues without offering code. Later chapters on graph theory
(Dijkstra’s algorithm and Prim’s algorithm) and linear algebra (Jacobi’s algorithm) feature
some interesting applications. Julia’s priority queues offer three functions: enqueue for
inserting a new item, dequeue for deleting the lowest priority item, and peek for exposing
the lowest priority item. For example, the commands

using DataStructures

pq = PriorityQueue() # empty queue

pal’a’] = 10 # enqueue or push
pa[’'b’] =5

pal’c’] = 15

peek(pq)

dequeue! (pq) # dequeue or pop

set up a priority queue with the keys a’, ’b’, and ¢’ and the priorities 10, 5, and 15,
respectively. The peek command returns ('b’, 5). The dequeue! command deletes the pair
(’b’, 5) from the queue.

2.7. Problems

(1) Whatis the probability that a random permutation of n distinct numbers contains
at least one preexisting splitter? What are the mean and variance of the number
of preexisting splitters?

(2) Show that the worst case of quicksort takes on the order of n? operations.

(3) When an item is peeled off the top of the heap in heapsort, prove formally that at
most a single branch of the new tree must be subjected to siftdown to restore the
tree to a heap.

(4) Given a sorted array of numbers of length nn and a number ¢, write a Julia program
to find the pair of numbers in the array whose sum is closest to . An efficient
solution can find the pair in O(n) time.

(5) Suppose a and y are two sorted array of numbers of length m and n, respectively.
Design and implement a Julia program to merge & and ¥ into a single sorted
array of length m + n. Your algorithm should have computational complexity
O(m +n).

(6) Suppose you are given two ordered arrays = and y of integers. If these repre-
sent integer sets, write Julia functions to find their union, intersection, and set
difference. Do not use existing Julia functions for set operations.

(7) Two entries x; and x; of a numerical sequence & = (x;,...,x,) represent an
inversion if z; > x; and ¢ < j. Write an efficient Julia function to count the
number of inversions in .

(8) Write a bisection algorithm to find the quantiles of a gamma distributed random
variable.

(9) Write an efficient Julia function to extract the closest entry of a ordered numerical
sequence & to a given number ¢. (Hint: Use bisection.)

2.7. PROBLEMS 19

(10) Counting sort assumes that all items in a sequence belongs to a small list of k
existing items. Design and implement a Julia function for counting sort with
computational complexity O(n).

(11) Bucket sort assumes that the entries of a sequence & are drawn independently
and uniformly from the interval [0, 1]. Design and implement a Julia function for
bucket sort with computational complexity O(n) on average.

Copyrighted material

CHAPTER 3

Graph Algorithms

3.1. Introduction

Graph theory was initiated by Leonhard Euler in his 1736 study of the Seven Bridges
of Konigsberg problem [12]. In the intervening centuries, graph theory has blossomed into
one of the most fertile branches of discrete mathematics. The applications in computer sci-
ence, linguistics, physics, chemistry, the social sciences, biology, and various branches of
applied mathematics are simply too numerous to adequately summarize here. The modern
synonym network suggests some of the potential of graph theory.

Graphs are mathematical structures consisting of nodes and edges. An edge connects
two nodes. Sometimes nodes are referred to as vertices or points and edges as arcs or lines.
A graph may be undirected or directed; in the latter case each edge has an orientation and
points from its tail to its head. We will reserve the term graph for undirected graphs and
call directed graphs digraphs. In a weighted graph or digraph, each edge is assigned a
nonnegative weight. The adjacency matrix of the graph or digraph encodes these weights.
The absence of an edge is indicated by a zero entry of the matrix. This matrix is symmetric
for a graph and consists entirely of (/1 entries in the absence of weights. The neighbors of
a node are those immediately adjacent to it. The number of neighbors of node 7 in a graph
or digraph is called the degree of i.

The digraph of a discrete-time Markov chain has edge weights giving the probabilities
of moving from one state to the next [56]. The digraph of a chain is unusual in the sense
that the tail and head of an edge can coincide. This occurs when the chain can remain
in place for a random number of epochs (generations). The weighted adjacency matrix
P = (p;;) of a Markov chain is referred to as a probability transition matrix. Its row
sums » . p;; equal 1. Section 8.3 explores the power method for finding the equilibrium
distribution of a Markov chain.

This chapter focuses on four fundamental algorithms of graph theory, roughly in order
of subtlety [35]. The first shows how to pass from the adjacency matrix description of a
graph or digraph to its neighborhood description. The second collects the nodes of a graph
into connected components. The third, Dijkstra’s algorithm, finds the shortest path from
a source node to every other node of a weighted graph or digraph. The fourth, Prim’s
algorithm, finds a minimum spanning tree of a weighted graph. The latter two algorithms
operate in a greedy fashion. These successes are exceptions to the rule of thumb that most
greedy algorithms are undone by their shortsightedness.

3.2. From Adjacency to Neighborhoods
The graph depicted in Figure 3.1

22 3. GRAPH ALGORITHMS

FIGURE 3.1. A Graph with 7 Nodes and 3 Components

has the symmetric adjacency matrix

0
0
0

h

Il
coco o
cCcorOoOR
CCoCoC O M-
——ococoo
coo
cocococoo

11

01

10
000000
Here and in the sequel, we adopt the convention that the nodes of a graph or digraph with
n nodes are numbered 1 through n. The following Julia code converts A into a system of
neighborhoods and weights stored as two vectors of vectors.

function adjacency_to_neighborhood(A: :AbstractMatrix)
(nodes, T) = (size(A, 1), eltype(A))
neighbor = [Vector{Int}() for i = 1l:nodes]
weight = [Vector{T}() for i = l:nodes]
for i = l:nodes
for j = l:nodes
if A[i, j] !'= zero(T)
push! (neighbor[i], j)
push! (weight[i], A[i, j1)
end
end
end
return (neighbor, weight)
end

=[[0110000]; [10100006]; (1100600 06];
0 00110]; [0001010]; (0600110 0];
[0O 0O OO0 0]];

(neighbor, weight) = adjacency_to_neighborhood(A);

A
[

The code is more or less self-explanatory. On output the jth neighbor of node 7 is accessed
as neighbor[i][j]. If % is this neighbor, then the corresponding weight of the edge (i, k) is
stored in weight[i][j]. The command length(neighbor[i]) delivers the degree of node i. If
the matrix A enters the function with real entries, then the entries of weight are real-valued
rather than integer-valued.

3.3. CONNECTED COMPONENTS 23

Exactly the same code is applicable to digraphs. In this setting the command
length(neighbor(i]) delivers the number of nodes reachable from i in one step. This number
is called the out-degree of i. In-degrees of each node can be computed from the transpose
of the adjacency matrix.

3.3. Connected Components

In graph theory a path is a finite sequence of nodes « — b — ¢ — - -- connected by
consecutive edges. Some authors further stipulate that no node should be repeated. We
omit this extra requirement. In a graph two nodes are connected if there is a path between
them. The relation of pathwise connectedness splits the nodes of a graph into equivalence
classes. Recall that an equivalence relation = is characterized by the properties (a) a = a
(reflexive), (b) a = b = b = a (symmetry), and (c)a = bandb=c¢c = a =c¢
(transitive). In a graph a maximal equivalence class is called a component. For example,
the graph of Figure 3.1 has the 3 components {1, 2,3}, {4,5,6}, and {7}. A digraph splits
into strongly connected components. Within a component, each node is reachable from
every other node of the component. In a digraph a patha —+ b — ¢ — --- shows a con-
sistent orientation of consecutive edges. Furthermore, the existence of apatha — --- — b
does not necessarily imply the existence of a path b — --- — a in the reverse direction.
Reachability is by definition bidirectional.

Fortunately, there is a simple depth-first algorithm for finding the components of a
graph [83]. A depth-first search visits a node’s children before it visits the node’s siblings.
A breadth-first search operates in the opposite fashion. The following Julia code incorpo-
rates two functions, the second of which recursively performs the depth-first search. The
first function delivers the number of components and an assigned component for each node.

function connect(neighbor::Array{Array{Int, 1}, 1})
nodes = length(neighbor)
component = zeros(Int, nodes)
components = 0
for i = l:nodes
if component[i] > ® continue end
components = components + 1
component[i] = components
visit!(neighbor, component, i)
end
return (component, components)
end

function visit!(neighbor::Array{Array{Int,1},1},
component: :Vector{Int}, i::Int)
#
for j in neighbor[i]
if component[j] > ® continue end
component[j] = component[i]
visit!(neighbor, component, j)
end
end

A=[[0110000]; [1010000]; (110000 0];

24 3. GRAPH ALGORITHMS

[0000110]; [6001010]; (600110 0];
[0OOOOO00]];

(neighbor, weight) = adjacency_to_neighborhood(A);
(component, components) = connect(neighbor)

There exist similar but more complicated algorithms for finding the strongly connected
components of a digraph [155, 163].

3.4. Dijkstra’s Algorithm

Dijkstra’s algorithm is designed to find the shortest paths from a source node s in a
weighted graph to all other nodes 7 in the graph [48]. As noted earlier, the algorithm is
greedy and also applies to weighted digraphs. Remarkably, it is about as simple to find
all shortest paths as it is to find a single shortest path. The following two results are of
independent interest and used implicitly in proving the correctness of Dijkstra’s algorithm.

PROPOSITION 3.4.1. A subpath of any shortest path beginning at the source is itself
a shortest path. If d(i, j) denotes the shortest weighted path length between two nodes i
and j of a graph or digraph, then d(i, j) obeys the triangle inequality

d(i,k) < d(i,j)+d(j, k).
Proof: This task is relegated to problem (2). O

Dijkstra’s algorithm is an example of dynamic programming. It solves a sequence of
successively larger subproblems that converges after a finite number of steps to the full
problem. Dijkstra’s algorithm adds one node at a time to a growing subgraph G,,. In the
process it updates a vector d,, of provisional shortest distances from the source s. By a
clever construction, the components d,,; of d,, for i € G, turn out to be true shortest
distances. For a node i neighboring the subgraph G,,, dy; is the shortest distance from s
to i through G,,. For all other nodes d,,; = co. The provisional distances are stored in a
priority queue [58]. As just described, d,,; decreases as n increases and is fixed at its true
value d; when i is visited. At that point d; is removed from the priority queue. As the
algorithm proceeds, a predecessor node is recorded for each node popped off the queue.
The predecessors permit reconstruction of the shortest paths. If a node is beyond the reach
of the source, its distance is returned as co. With this outline in mind, here is Julia code
implementing Dijkstra’s algorithm.

using DataStructures

function dijkstra(neighbor::Array{Array{Int, 1}, 1},

weight: :Array{Array{T, 1}, 1}, source::Int) where T <: Number
#

nodes = length(neighbor)

node = collect(l:nodes) # the nodes are numbered 1, 2,

predecessor = zeros(Int, nodes)

visited = falses(nodes)

distance = zeros(nodes)

fill!(distance, Inf)

distance[source] = 0.0

pq = PriorityQueue(zip(node, distance)) # priority queue

while !isempty(pq)

(i, d) = peek(pg) # retrieve the minimum remaining distance

3.4. DUKSTRA'S ALGORITHM 25

distance[i] = d
visited[i] = true
dequeue! (pq) # pop the current node
for k = 1:1length(neighbor[i])
j = neighbor[i][k]
if !visited[j]
dij = d + weight[i][k]
if pql[jl > dij
predecessor[j] = i
pqlj] = dij # adjust the provisional distance to j
end
end
end
end
return (distance, predecessor)
end

A=[[0790014]; [70 10 150 0]; [9 10 0 11 0 2];
[01511060]; (00 0609]; [140209 0]];
(neighbor, weight) = adjacency_to_neighborhood(A);
(distance, predecessor) = dijkstra(neighbor, weight, 1)

The displayed Dijkstra code is applied to the graph with adjacency matrix

0o 7 9 0 0 14
7 0 10 15 0 0O
9 10 0 11 0 2
0 15 11 0 6
o 0 0 6 0 9

4 0 2 0 9 0

The shortest paths identified from 1 as source are 1 — 2, 1 — 3,1 — 3 — 4,

1 —+3 —=6 — 5 and1 — 3 — 6. The next proposition proves the correctness of
Dijkstra’s algorithm.

=7}
o

PROPOSITION 3.4.2. For a graph or digraph with m nodes, Dijkstra’s algorithm ter-
minates after m steps with the minimal distances.

Proof: The correctness of Dijkstra’s algorithm can be verified by induction on the
number n of visited nodes. For brevity, denote the edge weights by w;;. Let G, denote the
subgraph defined by the visited nodes at stage n. The induction hypothesis states that for
every i € Gy, dy; equals the length of a shortest path from the source s to i. This shortest
distance may be co. Because d; is initialized as 0, the induction starts correctly. Assume
the hypothesis is true for n — 1 visited nodes. The algorithm now chooses an unvisited
node ¢ whose distance d,,_, ; is least. At this junction, 7 is declared visited, and d,,; is
set equal to d,,_; ;. Furthermore, the distance d,,_; ; to each unvisited neighbor j of 7 is
checked to see whether it should be revised by taking a path passing through 7. This is
required when d,, 1 ; + w;; < d,—1,;. To complete the inductive argument, we show that
the distance d,,; = d,,—1; 1s minimal. Our argument compares a shortest path to i with
the shortest path through G, to i. The second path has length d,,_; ;. The first path
initially passes through G',,_; and exits it to some some node j outside G,,—1. It must then
traverse an additional subpath from j to i. The total distance of the two paths are d,,_; ;

26 3. GRAPH ALGORITHMS
3 7
2 8 9

FIGURE 3.2. Minimum Spanning Tree of a Connected Graph

and d,, 1 ; +c;i, where ¢;; is the length of the subpath from j to i. The inequalities ¢j; > 0
and d,,_1,; < dy_1,; now prove our assertion and complete the induction. O

3.5. Prim’s Algorithm

Prim [144], Jarnik [89], and Dijkstra [48] share the credit for this basic graph algo-
rithm. It is invoked by a network router to minimize the routes to other components in a
network. A tree is a connected graph with no superfluous edges. In other words, delet-
ing any edge disconnects the tree. Because of the assigned edge weights, trees may vary
widely in their edge weight sums. Fortunately, a greedy algorithm discovers the minimum
spanning tree (MST). Figure 3.2 depicts the MST of its weighted graph by thick edges.

The overall algorithm bears a strong resemblance to Dijkstra’s shortest path algorithm.
Each node is tracked as visited or not yet visited. At stage n of the algorithm, an edge of
minimum weight is added to the current subtree 7}, to produce an enlarged subtree T,
with one more node. One node of the edge is attached to T},_;, and one node falls outside
T,,—1. Deleting this edge or any previously added edge disconnects T,.

A priority queue again plays a critical role. However, the keys of the priority queue
are now edges rather than nodes, and priorities are weights rather than distances. Edges
are popped off the queue as they are added to the minimum spanning tree or connect two
already visited nodes. The tree grows from its tip, which is updated as the algorithm
progresses. The edges neighboring an unvisited tip are pushed onto the queue. The tree
itself is recorded as a sequence of edges. The code for Prim’s algorithm follows.

using DataStructures

function prim(neighbor::Array{Array{Int, 1}, 1},
weight: :Array{Array{T, 1}, 1}) where T <: Number
#
nodes = length(neighbor)
visited = falses(nodes)
(mst_nodes, i) = (1, 1) # initialize MST with node 1 as tip
key = Array{Tuple{Int, Int}, 1}(undef, 0) # define keys
priority = Array{Float64, 1}(undef, 0) # define priorities
pq = PriorityQueue(zip(key, priority)) # initialize queue
mst = Array{Tuple{Int, Int}, 1}(undef, 0) # minimum spanning tree

3.5. PRIM'S ALGORITHM 27

while mst_nodes < nodes
if l!visited[i] # checked if the node has been visited
visited[i] = true # mark the node as visited
for k = 1:length(neighbor[i]) # add new edges to the queue
j = neighbor[i][k]
pal(i, j)] = weight[i][k]
end
end
((k, 1), val) = peek(pq) # choose lightest edge
dequeue! (pq) # pop edge off queue
if !visited[k] # if not part of tree, push the edge onto tree
push! (mst, (k, 1))
mst_nodes = mst_nodes + 1
i =k # k is the new tip
elseif !visited[1l]
push! (mst, (k, 1))
mst_nodes = mst_nodes + 1
i=1#1is the new tip
end
end
return mst
end

A=[02060; 20385;03007;680009; 05729 0];
(neighbor, weight) = adjacency_to_neighborhood(A);
mst = prim(neighbor, weight)

The correctness of Prim’s algorithm stems from a simple property of spanning trees
and cycles. Recall that a cycle is a path that starts and ends with the same node.

PROPOSITION 3.5.1. Suppose we take a spanning tree T and add any edge not in T
to it. This action creates a cycle. If we remove any edge from the cycle, then we are left
with a possibly new spanning tree.

Proof: This proof is relegated to problem (5). O

PROPOSITION 3.5.2. For a weighted connected graph, Prim's algorithm terminates
after a finite number of steps with a minimal spanning tree.

Proof: We first prove that Prim’s algorithm constructs a spanning tree. It starts with a
tree 77 with a single node. Suppose at stage n—1 it produces a tree T;,_;. At stage n it adds
an edge e that has one node in T}, _; and one node outside T}, ;. Hence, T}, = T;,_1 U {e}
also is a tree. When it exhausts all nodes, Prim’s algorithm therefore yields a spanning tree
T'. If the tree 7" is not minimal, let n be the first stage at which T}, _; can be embedded in
a minimal spanning tree S, but T}, cannot. Hence, the edge ¢ added in going from T},
to 7,, falls outside S. Proposition 3.5.1 implies that S U e contains a cycle. Because e
has one endpoint in 7}, and one endpoint outside 7},_;, there must be another edge f
along the cycle with exactly one endpoint in 7}, ;. The assumption w, < wy is dictated
by Prim’s algorithm. Thus, we can delete f from S and add e and still wind up with
a minimal spanning tree. This contradicts our assumption that 7}, is inconsistent with a
minimal spanning tree. O

28

3. GRAPH ALGORITHMS

3.6. Problems

(1) Prove that if = is a node of a graph having odd degree, then there exists a path
from x to another node y of the graph having odd degree.

(2) Prove Proposition 3.4.1.

(3) Consider a connected graph with n nodes. Demonstrate that it is a tree if and
only if it has n — 1 edges.

(4) Prove that between any two nodes of a tree, there is one and only one connecting
path.

(5) Prove Proposition 3.5.1.

(6) If all of the edge weights of a connected graph are unique, then prove that the
graph has exactly one minimum spanning tree.

(7) Let A be the adjacency matrix of a graph. Let the nth power have entries an;;.
Show that a,,;; equals the number of paths from ¢ to j with exactly n steps. Verify
your result empirically for a simple graph.

(8) Prove that Dijkstra’s algorithm has running time O(E'log N'), where E is the
number of edges and IV is the number of nodes.

(9) Prove that Prim’s algorithm has running time O(E log N), where E is the num-
ber of edges and NV is the number of nodes.

(10) Program either Kosaraju’s algorithm [155] or Tarjan’s algorithm [163] for finding
the strongly connected components of a digraph.

(11) Program Kruskal’s algorithm [104] for finding the minimum spanning tree of a
weighted graph.

CHAPTER 4
Primality Testing

4.1. Introduction

Two generations ago number theory was considered one of the purest branches of pure
mathematics. It has now been sullied by applications to high-speed arithmetic on comput-
ers, numerical analysis in general, cryptography, and especially secure communication.
Prime numbers have been the obsession of number theorists since Euclid. These mysteri-
ous entities are seemingly scattered at random throughout the natural numbers. Yet primes
show some surprising regularities. For instance, the prime number theorem says the num-
ber of primes less than or equal to n is asymptotic to {--. There are many unresolved
questions about primes. The twin prime conjecture deals with primes n and n + 2. Is there
an infinite sequence of such primes? The empirical evidence overwhelmingly supports the
conjecture, but no one has proved it.

In this chapter we take up the simpler problem of determining whether a number n is
prime. The Sieve of Eratosthenes solves the problem when n is small. However, the sieve
is far too cumbersome for the large primes of current interest. The Miller—Rabin algorithm
[130, 145] studied here is fast, straightforward to implement, and inherently probabilistic.
There are deterministic algorithms for the same purpose, but they are more complicated
to understand and much slower in practice [1, 149]. Unfortunately, the Miller—Rabin does
not deliver the prime factorization of a composite number. This is a much harder problem.
Readers who master the material in this chapter will be in a good position to tackle the
RSA (Rivest—-Shamir-Adleman) algorithm [151] for data encryption. The RSA algorithm
works because factoring composite numbers is so challenging.

Appendix A.2 is intended to bring readers up to speed on elementary number theory.
Readers will also benefit from the enormous array of books on number theory. We espe-
cially recommend the classics [5, 72, 135]. These are bound to stimulate your appetite for
this beautiful and arcane branch of mathematics.

4.2. Perfect Powers

We begin our exposition of primality testing by tackling a much simpler problem. A
positive integer n is a perfect power if it can be expressed as k7 for integers j > 1 and
k > 1. One can design a fast algorithm for testing this property by relying on two crucial
insights. First, j < log, n owing to the inequality 2/ < k7 < n for all relevant j and k.
Second, the exponent j can be further restricted to the set of prime numbers. Indeed, if
n =k’ and j = pq with p prime, then (k9)? = n. To isolate the pertinent primes, we can
call on the Sieve of Eratosthenes discussed earlier. For a given prime j, the only possible
k is ¢/n. Here is Julia code implementing the perfect power algorithm.
function perfectpower(n::Integer)

m = Int(floor(log(2, n))) # integer part of log base 2 of n
prime_list = eratosthenes(m)

30 4. PRIMALITY TESTING

for j in prime_list
k = Int(round(m*(1 / 3)))
if isequal(k*j, n)

return true

end

end

return false

end

perfectpower (1000)

Linn

In the code ¢/n is calculated as es ™", Example 6.2 sketches a better algorithm for ex-
tracting roots based on Newton’s method. The Babylonian method for extracting square
roots is a special case.

4.3. Modular Arithmetic and Group Theory

Readers unfamiliar with elementary number theory should review Appendix A.2 at
this juncture. Here one finds the definition of the algebraic structure Z,,. This object is
just the set of integers {0,1,...,n — 1} equipped with modular addition and modular
multiplication. If @ and b belong to Z,,, then a + b mod n and ab mod n are defined as the
remainders of a 4 b and ab on division by n. Note that Z,, inherits the usual commutative
and associative laws of arithmetic. As expected, the additive and multiplicative identities
of Z,, are 0 and 1, respectively. Division is not always possible. If ged(a,n) = 1, then
there exists a reciprocal a~! such that a~'a = 1 mod n. In the special case where n is
prime, a~! exists for all @ # 0 mod n, and Z,, is algebraically a field.

The set of integers u € 7Z,, with ged(u,n) = 1 is denoted U,,. The integers in U,
are sometimes referred to as units; U, is closed under multiplication and contains 1 and
—1 = n — 1 mod n. Indeed, if u; and us share no nontrivial divisors with n, then their
product w1, also shares no nontrivial divisors with n. The reciprocal of every unit u is
also a unit. This fact is proved in Proposition A.2.7. One can summarize our findings by
noting that U,, constitutes a finite commutative group.

We will need to dip briefly into the theory of finite groups. A group G is a set
such as U,, equipped with multiplication and possessing an identity element 1 satisfying
al = la = a for all @ € G. Furthermore, every group element a € G has a left inverse
b satisfying ba = 1. Regardless of whether GG is commutative, one can show that a left
inverse is also a right inverse. The order of a finite group G is just its cardinality |G|. A
subgroup H of a group ' is a nonempty subset of &G closed under multiplication and the
formation of reciprocals (inverses). A subgroup automatically contains the identity ele-
ment 1 of the group. We will need the following two properties of a subgroup, the second
of which is known as Lagrange’s theorem.

PROPOSITION 4.3.1. If a nonempty subset H of a finite group G contains 1 and is
closed under multiplication, then H is a subgroup. The order |H| of a subgroup H divides
the order |G| of the group.

Proof: To prove the first assertion, we must show that the inverse a ! of @ € H
belongs to H. Consider the map H — H defined by b + ab. This map is one-to-one
because if ab = ac, then b = ¢. Since H is finite, the map is also onto. Hence, there
exists b € H with ab = 1. For the second assertion, we introduce the notion of a left coset.
Consider the map b — ab for a not necessarily in H. It maps H into a set e H. Regardless

ABO algorithm, 117
acceptance function, 176
acceptance-rejection method, 163-166
active constraint, 189
adjacency matrix, 21-23
algorithm
ABO, 117
ANOVA, 111-113
Archimedes, 5-8
Babylonian, 2-3
bisection, 16-17
Cholesky decomposition, 4144
conjugate gradient, 47-50
convolution, 148
cosine minimization, 109
Dedekind’s, 9
Dijkstra’s, 24-26
Dirichlet distribution, 110-111
discrete deviate, 162
EM clustering, 123-126
Euclid’s, 4-5
fast Fourier transform, 143-145
Fisher scoring, 67
gamma deviate, 164
gamma-Poisson, 118
Gaussian deviate, 163
Gaussian elimination, 37-41
Gibbs sampling, 172
Goldschmidt’s, 8
Gram—Schmidt orthogonalization, 44—47
graph components, 23-24
graph neighborhoods, 21
Halley’s, 68
hardcore model, 168
heapsort, 14-16
Hestenes and Karush, 103
Jacobi’s, 96-100
Karmarkar, 78-81
Lloyd’s, 121-123
LU decomposition, 3741
matrix square root, 69
median, 117
Miller—Rabin, 32-34
modular exponentiation, 31

Index

209

naive Bayes, 126-128
MNash’s, 100

negative binomial, 109-110
Newton's, 53-70

nonnegative matrix factorization, 133-137

PageRank, 88
peasant multiplication, 1
perfect power, 30
Poisson deviate, 170
positron tomography, 113-116
power series distribution, 118
Prim’s, 26-27
QR decomposition, 44-47, 93
quadratic formula, 34
quickselect, 13-14
quicksort, 11-13
random number generation, 159-160
Rayleigh quotient, 89
revised simplex, 74-76
Sieve of Eratosthenes, 5
singular value decomposition, 100
traveling salesman, 173
Weibull distribution, 119
Zipf deviate, 165
analytic function, 146-148
ANOVA, 111-113
Archimedes” approximation of m, 5-9
arcsine distribution, 175
Armijo—Goldstein test, 63
asymptotic functions, 179
autocovariance, 153
average-case analysis, 12, 14, 1

Babylonian method, 2-3, 8, 55
backward substitution, 40, 43
Banachiewicz, Tadeusz, 37
banded matrix, 51

Bayes’ rule, 123, 126
Bezout’s identity, 5, 9, 35

big oh, 179

binary tree, 15

binomial theorem, 69
bisection, 16-17

bit reversal, 153

210

bit shifting, |

BLAS, 37

branching process, 146
bucket sort, 19

cache memory, 42
casting out nines, 34
Cauchy—Schwarz inequality, 187, 188, 193, 195
Cayley transform, 102
central limit theorem, 164
change point problem, 171
Chinese remainder theorem, 33, 34, 182
Cholesky decomposition, 41-44, 51
banded matrix, 51
circulant matrix, 151
classification
k-nearest neighbors, 128-129
matrix completion, 130-133
naive Bayes, 126-128
cluster analysis
EM, 123-126
k-means, 121-123
clustering
EM algorithm, 137
coin-tossing, waiting time, 156
complexity levels, 179
conjugate gradient algorithm, 47-50
conjugate vectors, 48, 52
contraction mapping theorem, 87, 201
convex function
closure properties, 187
epigraph test, 106
Jensen’s test, 106
minimum, 188
second derivative test, 106, 186
strong convexity, 188-189
supporting hyperplane, 106, 186
convex programming, 190
convex set, 82, 185
convolution
data smoothing, 149
finite differencing, 149
integer multiplication, 150
periodic sequences, 142, 148-151
coordinate descent, 47
coprime numbers, 182
cosine minimization, 108
cubic equation, 9

Dantzig, George, 71

data compression, 133

data mining, 121-140

data smoothing, 149
Davidon’s rank-one update, 67
Dedekind’s algorithm, 9
depth-first search, 23
Descartes, René, 3

descent direction, 63

descent property, 105

INDEX

determinant, 41, 42, 193
diet problem, 71
differential, xi
differentiation
analytic functions, 146-148
digraph, 21
path, 23
Dijkstra’s algorithm, 24-26, 28
Dinkelbach maneuver, 79
Dirichlet distribution, 110-111
discrete Fourier transform, 141-158
calculation rules, 142
convolution, 148-151
definition, 141
examples, 154—155
fast Fourier transform, 143-145
Fourier series approximation, 145-148
inversion, 141
periodic sequence, 142-143
renewal equations, 150
time series, 153—154
discriminant analysis, 130-133, 138
dominated convergence theorem, 154

Eckart—Young theorem, 139, 199
eigenvalues and eigenvectors, 85
dominant, 103
examples, 102
symmetric matrix, 194
eigenvector, 194
EM algorithm, 106
EM clustering, 123-126, 137
equality constraint, 189
equivalence relation, 23
Erdds. Paul, ix
ergodic theorem, 168, 176
Euclid’s algorithm, 4-5
Euclidean division, 180
Euclidean norm, xi
Euclidean projection, 4445, 80, 135, 140
Euler’s theorem, 32
Euler’s totient, 32, 35
extreme point, 82

fast Fourier transform, 143-145
code, 144-145
computational complexity, 144
feasible point, 189
Fermat’s little theorem, 31, 32, 35, 160, 183
finite differencing, 149
finite field, 182
Fisher’s iris data, 132
Floyd, Robert, 14
forward substitution, 40, 43
Fourier coefficients
approximation, 145-148
Frobenius inner product, 140
Frobenius norm, xi, 69, 129, 134, 139, 140, 195,
196

function
convex, 186-189
differentials, xi
digamma, 110
objective, 189
quadratic, 47
Rosenbrock’s, 117
fundamental theorem
arithmetic, 181
calculus, 62
linear algebra, 80, 193
linear programming, 74-75

gamma distribution, 171
gamma-Poisson distribution, 118
Gauss—Newton algorithm, 65-66
Gaussian distribution, 44, 123-125, 175
Gaussian elimination, 3741
generalized linear model, 67
generating function
branching process, 146
coin-toss wait time, 156
multiplication, 149
Gibbs sampling, 171-173
Goldschmidt’s algorithm, §
gradient, xi

Gram-Schmidt orthogonalization, 44-47, 51

graph, 21
connected components, 23-24
cycle, 27
path, 23
sl.rongl_y connected components, 28
tree, 26, 28
graph bisection, 177
greatest common divisor, 4, 9, 30, 181
greedy algorithm, 21, 98
group
additive, 180
Lagrange’s theorem, 30
subgroup, 30
Gumbel distribution, 175

Hadamard transform, 157

Halley's method, 68

Hankel matrix, 152

heap, 15

heapsort, 14-16

Hessian, xi

Hestenes and Karush algorithm, 103
Hestenes, Magnus, 47

Hoare, Anthony, 11, 13

Horner’s method, 10

Householder transformation, 90-93
hyperbolic trigonometric functions, 156

inactive constraint, 189
indicator of a set, xi
induced matrix norm, 195
inequality

INDEX

Cauchy-Schwarz, 187, 188, 193, 195
Jensen’s, 106, 114, 186, 189
supporting hyperplane, 186
triangle, 24, 195

inequality constraint, 189

instrumental density, 163

intermediate value theorem, 16

inverse method, 160-161, 175

inverse Wishart distribution, 137

inversion, combinatorial, 18

Jacobi’s method, 96-100
Jensen’s inequality, 106, 114, 186, 189

k-means clustering, 121-123, 137
k-nearest neighbors, 128-129, 137
Kantorovich, Leonid, 71
Karmarkar's algorithm, 78-81
Karush-Kuhn-Tucker theorem, 189
Koopmans, Tjalling, 71

Lagrange multipliers, 189-193
Lagrange's theorem, 30, 34
Lagrangian
linear programming, 74
multinomial probabilities, 191
quadratic program, 192
Lambert’s equation, 67
LAPACK, 37
large integer multiplication, 150
law of large numbers, 168
least squares
convexity, 188
linear, 43
Moore-Penrose inverse, 199
Newton's method, 61
nonlinear, 65-66
weighted, 69
Levenberg—Marquardt method, 63
linear equations, 37
linear fractional programming, 73
linear logistic regression, 63-65
linear programming, 71-81
applications, 71-74, 81
Bland’s rules, 75
canonical form, 71
complementary slackness, 75
dual program, 82
homogeneous form, 78
initialization, 76
optimal basic feasible point, 74
revised simplex method, 74-76
linear regression, 43-45
little oh, 179
Lloyd’s algorithm, 121-123
logistic distribution
sampling, 174
lower triangular matrix, 38
LU decomposition, 37-41

211

212

majorization
definition, 105
Jensen’s, 107
log splitting, 107
negative logarithm, 117
product, 116
quadratic bound, 107
Markov chain, 21, 86-89
equilibrium distribution, 87
reversible, 167
matrix
banded, 51

Cholesky decomposition, 41, 124

circulant, 151
completion, 129-130
computation of powers, 31
determinant, 41, 42
diagonalizable, 87
factorization, 152

fast multiplication, 50
Hankel, 152

inversion, 41, 51, 57
lower triangular, 38, 124
norm, 195

INDEX

definition, 105

Dirichlet, 110-111
gamma-Poisson, 118
median, 117

negative binomial, 109-110

nonnegative matrix factorization, 133

positron tomography, 113-116
power series distribution, 118
problems, 116-120
quantile, 117
Weibull, 119
modified Gram—Schmidt, 46
modular arithmetic
exponentiation, 31
Gauss's theorem on order, 184
order of a unit, 183
rules, 30, 181
square roots, 32
units, 30, 32, 183184
Monte Carlo, 159-174
random deviates, 160-166

randomized matrix multiplication, 166-167

Moore—Penrose inverse, 198
multinomial distribution, 191

orthogonal, 51, 152, 196

permutation, 39, 51

positive definite, 103-104

QR decomposition, 44-47, 52

randomized multiplication, 166-167

reflection, 196

rotation, 196

skew-symmetric, 102

sparse, 47, 76, 131

spectral decomposition, 194

square root, 69

Toeplitz, 152

tridiagonal, 51

upper triangular, 38, 51
matrix inversion

Moore—Penrose inverse, 198
maximum likelihood

Dirichlet distribution, 110-111
MCMC, 167-173, 176
mean shift algorithm, 138
median finding, 13, 117
Miller—Rabin test, 32-34
minimax estimation, 72
minimum spanning tree, 26-28
minorization

definition, 105

multiplicative random number generator, 159-160

naive Bayes, 126-128, 138
Nash’s method, 100
negative binomial distribution, 109-110
Newton’s method, 53-70, 108
convergence, 54, 62, 68
cosine minimization, 109
division, 55
Lambert’s equation, 67
least squares, 61
logarithms, 56
matrix inversion, 57
nonlinear least squares, 65-66
one-dimensional code, 54
optimization, 60
quadratic function, 61
quasi-Newton, 67
random multigraph, 61
root extraction, 55, 69
step-halving, 63
nonnegative matrix factorization, 133-137
Kullback-Leibler divergence, 139
MM algorithm, 133
projected gradient algorithm, 135-137
shrinkage, 139

Minty and Klee example, 78 norm
MM algorithms, 105 £1.87, 195
ABO, 117 foo. 195

Euclidean, xi, 195
Frobenius, xi, 69, 129, 134, 139, 140, 195, 196
induced matrix, 195
spectral, xi, 196
number theory primer, 180-184

advantages, 105
ANOVA, 111-113
approximate, 110-111
closure properties, 105
cosine minimization, 109

objective function, 189

online means and variances, 10
order relations, 179-180

ordinary differential equations, 85
orthogonal matrix, 51, 102, 196

PageRank algorithm, 88
Pareto distribution, 175
partial pivoting, 39
path-following, 83
peasant multiplication, 1
penalty

ridge, 129

roughness, 115
perfect power, 29

algorithm, 30
periodogram, 153-154
permutation matrix, 39, 51
Poisson distribution, 61, 171
polar method, 162
polynomial

multiplication, 150

number of roots, 183
positive definite matrix, 103-104
positron tomography, 113-116
power means, 186
power method, 86-89
power series distribution algorithm, 118
preconditioning, 49
Prim’s algorithm, 26-28
prime number, 181
prime number theorem, 9, 29, 180
principal components, 86
priority queue, 18, 24, 26, 98
progeny generating function, 146
projected gradient algorithm, 135-137
projective transformation, 78
Pythagorean triple, 9

QR decomposition, 44-47, 52, 93
quadratic bound principle, 107, 116
quadratic formula, 3-4
quadratic programming, 192
quantile

MM algorithm, 117
quantum mechanics, 85
quasi-Newton method, 67
quickselect, 13-14
quicksort, 11-13

average-case performance, 12

median finding, 13

promotion process, 11

random deviates, generating
arcsine, 175
discrete, 162
gamma, 164
Gaussian, 162
Gumbel, 175

INDEX

213

logistic, 174

Pareto, 175

Poisson, 170

slash, 175

Weibull, 175

Zipf, 165
random multigraph, 61
random number generation, 159-160
randomized matrix multiplication, 166-167
Raphson, Joseph, 53
Rasch model, 120
Rayleigh quotient method, 89
recurrence relations

average-case quicksort, 12
reflection matrix, 102, 196
regression

.72

foe. 73

linear, 43-45, 52

logistic, 63

negative binomial, 66

nonlinear, 65-66

weighted, 69
renewal equation, 150-151
revised simplex method

code, 76-78

computational complexity, 78

convergence, 76

derivation, 74-76
ridge penalty, 129
root extraction, 55
Rosenbrock’s function, 117
rotation matrix, 96-98, 102, 196
row reduction, 37

second differential, xi

secular equation, 57
segmental function, 156-158
set indicator, xi
Sherman—Morrison formula, 62, 69, 193
Sieve of Eratosthenes, 5
siftdown, 16

Simpson, Thomas, 53
simulated annealing, 173-177
sine transform, 156

singular value decomposition, 86, 100, 197-201
skew-symmetric matrix, 102
slash distribution, 175
smoothing, 154

sparse array, 76

spectral clustering, 86
spectral decomposition, 194
spectral density, 153

spectral norm, xi, 196
splitting entry, 11

steepest descent, 78
step-halving, 63

Stiefel, Eduard, 47

214 INDEX

strong pseudoprime, 33
Sudoku puzzle, 177
supporting hyperplane inequality, 186

theorem
binomial, 69
central limit, 164
Chinese remainder, 33, 34, 182
contraction mapping, 87, 201
dominated convergence, 154
Eckart—Young, 139, 199
ergodic, 168, 176
Euler’s, 32
Fermat's little, 31, 32, 35, 160, 183
intermediate value, 16
Karush-Kuhn-Tucker, 189
Lagrange’s, 30, 34
prime number, 9, 29, 180
time series, 153-154
spectral density, 153
Toeplitz matrix, 152
transportation problem, 72
traveling salesman problem, 173-174
triangle inequality, 24, 195
tridiagonal matrix, 51
twin prime conjecture, 29, 35

unit simplex, 80
upper triangular matrix, 38, 51, 102

vertex cover problem, 74

Walsh—Hadamard transform, 153
wavelet transform, 153

Weibull distribution, 119, 175
weighted graph, 21

Williams, John, 14

Woodbury's formula, 69

worst case analysis, 16, 18

