AL e

ANISEG ORI BT MRS
T (© L | W = B

THE COMPUTER SCIENCE OF HUMAN DECISIONS
BRIAN CHRISTIAN

‘Practical and highly enjoyable’
& TOM GRIFFITHS

POPULAR SCIENCE



Copyright

William Collins

An imprint of HarperCollinsPublishers
1 London Bridge Street

London SE1 9GF
www.WilliamCollinsBooks.com

This eBook first published in Great Britain by William Collins in 2016
First published in the United States by Henry Holt and Company, LLC in 2016

Copyright © 2016 by Brian Christian and Tom Griffiths

Brian Christian and Tom Griffiths assert the moral right to be identified as the
authors of this work

A catalogue record for this book is available from the British Library
Cover design by Jonathan Pelham

All rights reserved under International and Pan-American Copyright Conventions.
By payment of the required fees, you have been granted the non-exclusive, non-
transferable right to access and read the text of this e-book on screen. No part of
this text may be reproduced, transmitted, down-loaded, decompiled, reverse
engineered, or stored in or introduced into any information storage and retrieval
system, in any form or by any means, whether electronic or mechanical, now
known or hereinafter invented, without the express written permission of
HarperCollins.

Source ISBN: 9780007547999
Ebook Edition © April 2016 ISBN: 9780007547982
Version: 2018-09-27



Contents

Cover

Title Page

Copyright
Dedicati
Introduction
Algorithms to Live By

1 Optimal Stopping
When to Stop Looking

2_Explore/Exploit

The Latest vs. the Greatest

3 Sorting
Making Order

4 Caching
Forget About It

5 Scheduling
First Things First




Introduction

Algorithms to Live By

Imagine you're searching for an apartment in San Francisco—
arguably the most harrowing American city in which to do so. The
booming tech sector and tight zoning laws limiting new
construction have conspired to make the city just as expensive as
New York, and by many accounts more competitive. New listings
go up and come down within minutes, open houses are mobbed,
and often the keys end up in the hands of whoever can physically
foist a deposit check on the landlord first.

Such a savage market leaves little room for the kind of fact-
finding and deliberation that is theoretically supposed to
characterize the doings of the rational consumer. Unlike, say, a
mall patron or an online shopper, who can compare options
before making a decision, the would-be San Franciscan has to
decide instantly either way: you can take the apartment you are
currently looking at, forsaking all others, or you can walk away,
never to return,

Let’s assume for a moment, for the sake of simplicity, that you
care only about maximizing your chance of getting the very best
apartment available. Your goal is reducing the twin, Scylla-and-



Charybdis regrets of the “one that got away” and the “stone left
unturned” to the absolute minimum. You run into a dilemma
right off the bat: How are you to know that an apartment is
indeed the best unless you have a baseline to judge it by? And
how are you to establish that baseline unless you look at (and lose)
a number of apartments? The more information you gather, the
better you'll know the right opportunity when you see it—but the
more likely you are to have already passed it by.

So what do you do? How do you make an informed decision
when the very act of informing it jeopardizes the outcome? It’s a
cruel situation, bordering on paradox.

When presented with this kind of problem, most people will
intuitively say something to the effect that it requires some sort
of balance between looking and leaping—that you must look at
enough apartments to establish a standard, then take whatever
satisfies the standard you've established. This notion of balance
is, in fact, precisely correct. What most people don’t say with any
certainty is what that balance is. Fortunately, there’s an answer.

Thirty-seven percent.

If you want the best odds of getting the best apartment, spend
37% of your apartment hunt (eleven days, if you've given yourself
a month for the search) noncommittally exploring options. Leave
the checkbook at home; you're just calibrating. But after that
point, be prepared to immediately commit—deposit and all—to
the very first place you see that beats whatever you’ve already
seen. This is not merely an intuitively satisfying compromise
between looking and leaping. It is the provably optimal solution.

We know this because finding an apartment belongs to a class
of mathematical problems known as “optimal stopping”
problems. The 37% rule defines a simple series of steps—what
computer scientists call an “algorithm”—for solving these
problems. And as it turns out, apartment hunting is just one of



the ways that optimal stopping rears its head in daily life.
Committing to or forgoing a succession of options is a structure
that appears in life again and again, in slightly different
incarnations. How many times to circle the block before pulling
into a parking space? How far to push your luck with a risky
business venture before cashing out? How long to hold out for a
better offer on that house or car?

The same challenge also appears in an even more fraught
setting: dating. Optimal stopping is the science of serial
monogamy.

Simple algorithms offer solutions not only to an apartment
hunt but to all such situations in life where we confront the
question of optimal stopping. People grapple with these issues
every day—although surely poets have spilled more ink on the
tribulations of courtship than of parking—and they do so with, in
some cases, considerable anguish. But the anguish is unnecessary.
Mathematically, at least, these are solved problems.

Every harried renter, driver, and suitor you see around you as
you go through a typical week is essentially reinventing the
wheel. They don’t need a therapist; they need an algorithm. The
therapist tells them to find the right, comfortable balance
between impulsivity and overthinking.

The algorithm tells them the balance is thirty-seven percent.

* 3k ok

There is a particular set of problems that all people face,
problems that are a direct result of the fact that our lives are
carried out in finite space and time. What should we do, and leave
undone, in a day or in a decade? What degree of mess should we
embrace—and how much order is excessive? What balance

between new experiences and favored ones makes for the most
fulfilling life?



These might seem like problems unique to humans; they’re
not. For more than half a century, computer scientists have been
grappling with, and in many cases solving, the equivalents of
these everyday dilemmas. How should a processor allocate its
“attention” to perform all that the user asks of it, with the
minimum overhead and in the least amount of time? When
should it switch between different tasks, and how many tasks
should it take on in the first place? What is the best way for it to
use its limited memory resources? Should it collect more data, or
take an action based on the data it already has? Seizing the day
might be a challenge for humans, but computers all around us are
seizing milliseconds with ease. And there’s much we can learn
from how they do it.

Talking about algorithms for human lives might seem like an
odd juxtaposition. For many people, the word “algorithm” evokes
the arcane and inscrutable machinations of big data, big
government, and big business: increasingly part of the
infrastructure of the modern world, but hardly a source of
practical wisdom or guidance for human affairs. But an algorithm
is just a finite sequence of steps used to solve a problem, and
algorithms are much broader—and older by far—than the
computer. Long before algorithms were ever used by machines,
they were used by people.

The word “algorithm” comes from the name of Persian
mathematician al-Khwarizmi, author of a ninth-century book of
techniques for doing mathematics by hand. (His book was called
al-Jabr wa’l-Mugabala—and the “al-jabr” of the title in turn
provides the source of our word “algebra.”) The earliest known
mathematical algorithms, however, predate even al-Khwarizm1’s
work: a four-thousand-year-old Sumerian clay tablet found near
Baghdad describes a scheme for long division.

But algorithms are not confined to mathematics alone. When



you cook bread from a recipe, you're following an algorithm.
When you knit a sweater from a pattern, you're following an
algorithm. When you put a sharp edge on a piece of flint by
executing a precise sequence of strikes with the end of an antler—
a key step in making fine stone tools—you're following an
algorithm. Algorithms have been a part of human technology
ever since the Stone Age.

EE S

In this book, we explore the idea of human algorithm design—
searching for better solutions to the challenges people encounter
every day. Applying the lens of computer science to everyday life
has consequences at many scales. Most immediately, it offers us
practical, concrete suggestions for how to solve specific problems.
Optimal stopping tells us when to look and when to leap. The
explore/exploit tradeoff tells us how to find the balance between
trying new things and enjoying our favorites. Sorting theory tells
us how (and whether) to arrange our offices. Caching theory tells
us how to fill our closets. Scheduling theory tells us how to fill our
time.

At the next level, computer science gives us a vocabulary for
understanding the deeper principles at play in each of these
domains. As Carl Sagan put it, “Science is a way of thinking much
more than it is a body of knowledge.” Even in cases where life is
too messy for us to expect a strict numerical analysis or a ready
answer, using intuitions and concepts honed on the simpler forms
of these problems offers us a way to understand the key issues
and make progress.

Most broadly, looking through the lens of computer science
can teach us about the nature of the human mind, the meaning of
rationality, and the oldest question of all: how to live. Examining
cognition as a means of solving the fundamentally computational



problems posed by our environment can utterly change the way
we think about human rationality.

The notion that studying the inner workings of computers
might reveal how to think and decide, what to believe and how to
behave, might strike many people as not only wildly reductive,
but in fact misguided. Even if computer science did have things to
say about how to think and how to act, would we want to listen?
We look at the Als and robots of science fiction, and it seems like
theirs is not a life any of us would want to live.

In part, that’s because when we think about computers, we
think about coldly mechanical, deterministic systems: machines
applying rigid deductive logic, making decisions by exhaustively
enumerating the options, and grinding out the exact right answer
no matter how long and hard they have to think. Indeed, the
person who first imagined computers had something essentially
like this in mind. Alan Turing defined the very notion of
computation by an analogy to a human mathematician who
carefully works through the steps of a lengthy calculation,
yielding an unmistakably right answer.

So it might come as a surprise that this is not what modern
computers are actually doing when they face a difficult problem.
Straightforward arithmetic, of course, isn’t particularly
challenging for a modern computer. Rather, it’s tasks like
conversing with people, fixing a corrupted file, or winning a game
of Go—problems where the rules aren’t clear, some of the
required information is missing, or finding exactly the right
answer would require considering an astronomical number of
possibilities—that now pose the biggest challenges in computer
science. And the algorithms that researchers have developed to
solve the hardest classes of problems have moved computers
away from an extreme reliance on exhaustive calculation.
Instead, tackling real-world tasks requires being comfortable with



chance, trading off time with accuracy, and using
approximations.

As computers become better tuned to real-world problems,
they provide not only algorithms that people can borrow for their
own lives, but a better standard against which to compare human
cognition itself. Over the past decade or two, behavioral
economics has told a very particular story about human beings:
that we are irrational and error-prone, owing in large part to the
buggy, idiosyncratic hardware of the brain. This self-deprecating
story has become increasingly familiar, but certain questions
remain vexing. Why are four-year-olds, for instance, still better
than million-dollar supercomputers at a host of cognitive tasks,
including vision, language, and causal reasoning?

The solutions to everyday problems that come from computer
science tell a different story about the human mind. Life is full of
problems that are, quite simply, hard. And the mistakes made by
people often say more about the intrinsic difficulties of the
problem than about the fallibility of human brains. Thinking
algorithmically about the world, learning about the fundamental
structures of the problems we face and about the properties of
their solutions, can help us see how good we actually are, and
better understand the errors that we make.

In fact, human beings turn out to consistently confront some
of the hardest cases of the problems studied by computer
scientists. Often, people need to make decisions while dealing
with uncertainty, time constraints, partial information, and a
rapidly changing world. In some of those cases, even cutting-edge
computer science has not yet come up with efficient, always-right
algorithms. For certain situations it appears that such algorithms
might not exist at all.

Even where perfect algorithms haven’t been found, however,
the battle between generations of computer scientists and the



most intractable real-world problems has yielded a series of
insights. These hard-won precepts are at odds with our intuitions
about rationality, and they don’t sound anything like the narrow
prescriptions of a mathematician trying to force the world into
clean, formal lines. They say: Don’t always consider all your
options. Don’t necessarily go for the outcome that seems best
every time. Make a mess on occasion. Travel light. Let things wait.
Trust your instincts and don’t think too long. Relax. Toss a coin.
Forgive, but don’t forget. To thine own self be true.

Living by the wisdom of computer science doesn’t sound so
bad after all. And unlike most advice, it’s backed up by proofs.

L R

Just as designing algorithms for computers was originally a
subject that fell into the cracks between disciplines—an odd
hybrid of mathematics and engineering—so, too, designing
algorithms for humans is a topic that doesn’t have a natural
disciplinary home. Today, algorithm design draws not only on
computer science, math, and engineering but on kindred fields
like statistics and operations research. And as we consider how
algorithms designed for machines might relate to human minds,
we also need to look to cognitive science, psychology, economics,
and beyond.

We, your authors, are familiar with this interdisciplinary
territory. Brian studied computer science and philosophy before
going on to graduate work in English and a career at the
intersection of the three. Tom studied psychology and statistics
before becoming a professor at UC Berkeley, where he spends
most of his time thinking about the relationship between human
cognition and computation. But nobody can be an expert in all of
the fields that are relevant to designing better algorithms for
humans. So as part of our quest for algorithms to live by, we



talked to the people who came up with some of the most famous
algorithms of the last fifty years. And we asked them, some of the
smartest people in the world, how their research influenced the
way they approached their own lives—from finding their spouses
to sorting their socks.

The next pages begin our journey through some of the biggest
challenges faced by computers and human minds alike: how to
manage finite space, finite time, limited attention, unknown
unknowns, incomplete information, and an unforeseeable future;
how to do so with grace and confidence; and how to do soin a
community with others who are all simultaneously trying to do
the same. We will learn about the fundamental mathematical
structure of these challenges and about how computers are
engineered—sometimes counter to what we imagine—to make the
most of them. And we will learn about how the mind works, about
its distinct but deeply related ways of tackling the same set of
issues and coping with the same constraints. Ultimately, what we
can gain is not only a set of concrete takeaways for the problems
around us, not only a new way to see the elegant structures
behind even the hairiest human dilemmas, not only a recognition
of the travails of humans and computers as deeply conjoined, but
something even more profound: a new vocabulary for the world
around us, and a chance to learn something truly new about
ourselves.



1 Optimal Stopping

-~

When to Stop Looking

Though all Christians start a wedding invitation by solemnly declaring
their marriage is due to special Divine arrangement, I, as a philosopher,
would like to talk in greater detail about this ...

—JOHANNES KEPLER

If you prefer Mr. Martin to every other person; if you think him the most
agreeable man you have ever been in company with, why should you
hesitate?

—JANE AUSTEN, EMMA

It’s such a common phenomenon that college guidance counselors
even have a slang term for it: the “turkey drop.” High-school
sweethearts come home for Thanksgiving of their freshman year
of college and, four days later, return to campus single.

An angst-ridden Brian went to his own college guidance
counselor his freshman year. His high-school girlfriend had gone
to a different college several states away, and they struggled with
the distance. They also struggled with a stranger and more
philosophical question: how good a relationship did they have?
They had no real benchmark of other relationships by which to
judge it. Brian’s counselor recognized theirs as a classic



freshman-year dilemma, and was surprisingly nonchalant in her
advice: “Gather data.”

The nature of serial monogamy, writ large, is that its
practitioners are confronted with a fundamental, unavoidable
problem. When have you met enough people to know who your
best match is? And what if acquiring the data costs you that very
match? It seems the ultimate Catch-22 of the heart.

As we have seen, this Catch-22, this angsty freshman cri de
coeur, is what mathematicians call an “optimal stopping”
problem, and it may actually have an answer: 37%.

Of course, it all depends on the assumptions you're willing to
make about love.

The Secretary Problem

In any optimal stopping problem, the crucial dilemma is not
which option to pick, but how many options to even consider.
These problems turn out to have implications not only for lovers
and renters, but also for drivers, homeowners, burglars, and
beyond.

The 37% Rule* derives from optimal stopping’s most famous
puzzle, which has come to be known as the “secretary problem.”
Its setup is much like the apartment hunter’s dilemma that we
considered earlier. Imagine you're interviewing a set of
applicants for a position as a secretary, and your goal is to
maximize the chance of hiring the single best applicant in the
pool. While you have no idea how to assign scores to individual
applicants, you can easily judge which one you prefer. (A
mathematician might say you have access only to the ordinal
numbers—the relative ranks of the applicants compared to each
other—but not to the cardinal numbers, their ratings on some
kind of general scale.) You interview the applicants in random



order, one at a time. You can decide to offer the job to an
applicant at any point and they are guaranteed to accept,
terminating the search. But if you pass over an applicant,
deciding not to hire them, they are gone forever.

The secretary problem is widely considered to have made its
first appearance in print—sans explicit mention of secretaries—in
the February 1960 issue of Scientific American, as one of several
puzzles posed in Martin Gardner’s beloved column on
recreational mathematics. But the origins of the problem are
surprisingly mysterious. Our own initial search yielded little but
speculation, before turning into unexpectedly physical detective
work: a road trip down to the archive of Gardner’s papers at
Stanford, to haul out boxes of his midcentury correspondence.
Reading paper correspondence is a bit like eavesdropping on
someone who’s on the phone: you’re only hearing one side of the
exchange, and must infer the other. In our case, we only had the
replies to what was apparently Gardner’s own search for the
problem’s origins fiftysome years ago. The more we read, the
more tangled and unclear the story became.

Harvard mathematician Frederick Mosteller recalled hearing
about the problem in 1955 from his colleague Andrew Gleason,
who had heard about it from somebody else. Leo Moser wrote
from the University of Alberta to say that he read about the
problem in “some notes” by R. E. Gaskell of Boeing, who himself
credited a colleague. Roger Pinkham of Rutgers wrote that he first
heard of the problem in 1955 from Duke University
mathematician J. Shoenfield, “and I believe he said that he had
heard the problem from someone at Michigan.”

“Someone at Michigan” was almost certainly someone named
Merrill Flood. Though he is largely unheard of outside
mathematics, Flood’s influence on computer science is almost
impossible to avoid. He’s credited with popularizing the traveling



salesman problem (which we discuss in more detail in chapter 8),
devising the prisoner’s dilemma (which we discuss in chapter 11),
and even with possibly coining the term “software.” It’s Flood
who made the first known discovery of the 37% Rule, in 1958, and
he claims to have been considering the problem since 1949—but
he himself points back to several other mathematicians.

Suffice it to say that wherever it came from, the secretary
problem proved to be a near-perfect mathematical puzzle: simple
to explain, devilish to solve, succinct in its answer, and intriguing
in its implications. As a result, it moved like wildfire through the
mathematical circles of the 1950s, spreading by word of mouth,
and thanks to Gardner’s column in 1960 came to grip the
imagination of the public at large. By the 1980s the problem and
its variations had produced so much analysis that it had come to
be discussed in papers as a subfield unto itself.

As for secretaries—it’s charming to watch each culture put its
own anthropological spin on formal systems. We think of chess,
for instance, as medieval European in its imagery, but in fact its
origins are in eighth-century India; it was heavy-handedly
“Europeanized” in the fifteenth century, as its shahs became
kings, its viziers turned to queens, and its elephants became
bishops. Likewise, optimal stopping problems have had a number
of incarnations, each reflecting the predominating concerns of its
time. In the nineteenth century such problems were typified by
baroque lotteries and by women choosing male suitors; in the
early twentieth century by holidaying motorists searching for
hotels and by male suitors choosing women; and in the paper-
pushing, male-dominated mid-twentieth century, by male bosses
choosing female assistants. The first explicit mention of it by
name as the “secretary problem” appears to be in a 1964 paper,
and somewhere along the way the name stuck.



Whence 37%7?

In your search for a secretary, there are two ways you can fail:
stopping early and stopping late. When you stop too early, you
leave the best applicant undiscovered. When you stop too late,
you hold out for a better applicant who doesn’t exist. The optimal
strategy will clearly require finding the right balance between the
two, walking the tightrope between looking too much and not
enough.

If your aim is finding the very best applicant, settling for
nothing less, it’s clear that as you go through the interview
process you shouldn’t even consider hiring somebody who isn’t
the best you've seen so far. However, simply being the best yet
isn't enough for an offer; the very first applicant, for example,
will of course be the best yet by definition. More generally, it
stands to reason that the rate at which we encounter “best yet”
applicants will go down as we proceed in our interviews. For
instance, the second applicant has a 50/50 chance of being the
best we've yet seen, but the fifth applicant only has a 1-in-5
chance of being the best so far, the sixth has a 1-in-6 chance, and
so on. As a result, best-yet applicants will become steadily more
impressive as the search continues (by definition, again, they’re
better than all those who came before)—but they will also become
more and more infrequent.

Okay, so we know that taking the first best-yet applicant we
encounter (a.k.a. the first applicant, period) is rash. If there are a
hundred applicants, it also seems hasty to make an offer to the
next one who's best-yet, just because she was better than the first.
So how do we proceed?

Intuitively, there are a few potential strategies. For instance,
making an offer the third time an applicant trumps everyone seen
so far—or maybe the fourth time. Or perhaps taking the next



best-yet applicant to come along after a long “drought”—a long
streak of poor ones.

But as it happens, neither of these relatively sensible strategies
comes out on top. Instead, the optimal solution takes the form of
what we’ll call the Look-Then-Leap Rule: You set a
predetermined amount of time for “looking”—that is, exploring
your options, gathering data—in which you categorically don’t
choose anyone, no matter how impressive. After that point, you
enter the “leap” phase, prepared to instantly commit to anyone
who outshines the best applicant you saw in the look phase.

We can see how the Look-Then-Leap Rule emerges by
considering how the secretary problem plays out in the smallest
applicant pools. With just one applicant the problem is easy to
solve—hire her! With two applicants, you have a 50/50 chance of
success no matter what you do. You can hire the first applicant
(who'll turn out to be the best half the time), or dismiss the first
and by default hire the second (who is also best half the time).

Add a third applicant, and all of a sudden things get
interesting. The odds if we hire at random are one-third, or 33%.
With two applicants we could do no better than chance; with
three, can we? It turns out we can, and it all comes down to what
we do with the second interviewee. When we see the first
applicant, we have no information—she’ll always appear to be the
best yet. When we see the third applicant, we have no agency—we
have to make an offer to the final applicant, since we’ve dismissed
the others. But when we see the second applicant, we have a little
bit of both: we know whether she’s better or worse than the first,
and we have the freedom to either hire or dismiss her. What
happens when we just hire her if she’s better than the first
applicant, and dismiss her if she’s not? This turns out to be the
best possible strategy when facing three applicants; using this
approach it’s possible, surprisingly, to do just as well in the three-



applicant problem as with two, choosing the best applicant
exactly half the time.*

Enumerating these scenarios for four applicants tells us that
we should still begin to leap as soon as the second applicant; with
five applicants in the pool, we shouldn’t leap before the third.

As the applicant pool grows, the exact place to draw the line
between looking and leaping settles to 37% of the pool, yielding
the 37% Rule: look at the first 37% of the applicants,* choosing
none, then be ready to leap for anyone better than all those
you've seen so far.



How to optimally choose a secretary.

As it turns out, following this optimal strategy ultimately gives
us a 37% chance of hiring the best applicant; it’s one of the
problem’s curious mathematical symmetries that the strategy
itself and its chance of success work out to the very same number.
The table above shows the optimal strategy for the secretary
problem with different numbers of applicants, demonstrating
how the chance of success—like the point to switch from looking



to leaping—converges on 37% as the number of applicants
increases.

A 63% failure rate, when following the best possible strategy, is
a sobering fact. Even when we act optimally in the secretary
problem, we will still fail most of the time—that is, we won’t end
up with the single best applicant in the pool. This is bad news for
those of us who would frame romance as a search for “the one.”
But here’s the silver lining. Intuition would suggest that our
chances of picking the single best applicant should steadily
decrease as the applicant pool grows. If we were hiring at
random, for instance, then in a pool of a hundred applicants we’'d
have a 1% chance of success, and in a pool of a million applicants
we’d have a 0.0001% chance. Yet remarkably, the math of the
secretary problem doesn’t change. If you're stopping optimally,
your chance of finding the single best applicant in a pool of a
hundred is 37%. And in a pool of a million, believe it or not, your
chance is still 37%. Thus the bigger the applicant pool gets, the
more valuable knowing the optimal algorithm becomes. It’s true
that you're unlikely to find the needle the majority of the time,
but optimal stopping is your best defense against the haystack, no
matter how large.

Lover’s Leap

The passion between the sexes has appeared in every age to be so nearly
the same that it may always be considered, in algebraic language, as a
given quantity.

—THOMAS MALTHUS

I married the first man I ever kissed. When I tell this to my children they
just about throw up.
—BARBARA BUSH



Before he became a professor of operations research at Carnegie
Mellon, Michael Trick was a graduate student, looking for love. “It
hit me that the problem has been studied: it is the Secretary
Problem! I had a position to fill [and] a series of applicants, and
my goal was to pick the best applicant for the position.” So he ran
the numbers. He didn’t know how many women he could expect
to meet in his lifetime, but there’s a certain flexibility in the 37%
Rule: it can be applied to either the number of applicants or the
time over which one is searching. Assuming that his search would
run from ages eighteen to forty, the 37% Rule gave age 26.1 years
as the point at which to switch from looking to leaping. A number
that, as it happened, was exactly Trick’s age at the time. So when
he found a woman who was a better match than all those he had
dated so far, he knew exactly what to do. He leapt. “I didn’t know
if she was Perfect (the assumptions of the model don’t allow me to
determine that), but there was no doubt that she met the
qualifications for this step of the algorithm. So I proposed,” he
writes.

“And she turned me down.”

Mathematicians have been having trouble with love since at
least the seventeenth century. The legendary astronomer
Johannes Kepler is today perhaps best remembered for
discovering that planetary orbits are elliptical and for being a
crucial part of the “Copernican Revolution” that included Galileo
and Newton and upended humanity’s sense of its place in the
heavens. But Kepler had terrestrial concerns, too. After the death
of his first wife in 1611, Kepler embarked on a long and arduous
quest to remarry, ultimately courting a total of eleven women. Of
the first four, Kepler liked the fourth the best (“because of her tall
build and athletic body”) but did not cease his search. “It would
have been settled,” Kepler wrote, “had not both love and reason
forced a fifth woman on me. This one won me over with love,



humble loyalty, economy of household, diligence, and the love
she gave the stepchildren.”

“However,” he wrote, “I continued.”

Kepler’s friends and relations went on making introductions
for him, and he kept on looking, but halfheartedly. His thoughts
remained with number five. After eleven courtships in total, he
decided he would search no further. “While preparing to travel to
Regensburg, I returned to the fifth woman, declared myself, and
was accepted.” Kepler and Susanna Reuttinger were wed and had
six children together, along with the children from Kepler’s first
marriage. Biographies describe the rest of Kepler’s domestic life
as a particularly peaceful and joyous time.

Both Kepler and Trick—in opposite ways—experienced
firsthand some of the ways that the secretary problem
oversimplifies the search for love. In the classical secretary
problem, applicants always accept the position, preventing the
rejection experienced by Trick. And they cannot be “recalled”
once passed over, contrary to the strategy followed by Kepler.

In the decades since the secretary problem was first
introduced, a wide range of variants on the scenario have been
studied, with strategies for optimal stopping worked out under a
number of different conditions. The possibility of rejection, for
instance, has a straightforward mathematical solution: propose
early and often. If you have, say, a 50/50 chance of being rejected,
then the same kind of mathematical analysis that yielded the 37%
Rule says you should start making offers after just a quarter of
your search. If turned down, keep making offers to every best-yet
person you see until somebody accepts. With such a strategy,
your chance of overall success—that is, proposing and being
accepted by the best applicant in the pool—will also be 25%. Not
such terrible odds, perhaps, for a scenario that combines the
obstacle of rejection with the general difficulty of establishing



one’s standards in the first place.

Kepler, for his part, decried the “restlessness and
doubtfulness” that pushed him to keep on searching. “Was there
no other way for my uneasy heart to be content with its fate,” he
bemoaned in a letter to a confidante, “than by realizing the
impossibility of the fulfillment of so many other desires?” Here,
again, optimal stopping theory provides some measure of
consolation. Rather than being signs of moral or psychological
degeneracy, restlessness and doubtfulness actually turn out to be
part of the best strategy for scenarios where second chances are
possible. If you can recall previous applicants, the optimal
algorithm puts a twist on the familiar Look-Then-Leap Rule: a
longer noncommittal period, and a fallback plan.

For example, assume an immediate proposal is a sure thing but
belated proposals are rejected half the time. Then the math says
you should keep looking noncommittally until you've seen 61% of
applicants, and then only leap if someone in the remaining 39% of
the pool proves to be the best yet. If you're still single after
considering all the possibilities—as Kepler was—then go back to
the best one that got away. The symmetry between strategy and
outcome holds in this case once again, with your chances of
ending up with the best applicant under this second-chances-
allowed scenario also being 61%.

For Kepler, the difference between reality and the classical
secretary problem brought with it a happy ending. In fact, the
twist on the classical problem worked out well for Trick, too.
After the rejection, he completed his degree and took a job in
Germany. There, he “walked into a bar, fell in love with a
beautiful woman, moved in together three weeks later, [and]
invited her to live in the United States ‘for a while.”” She agreed—
and six years later, they were wed.



Knowing a Good Thing When You See It: Full
Information

The first set of variants we considered—rejection and recall—
altered the classical secretary problem’s assumptions that timely
proposals are always accepted, and tardy proposals, never. For
these variants, the best approach remained the same as in the
original: look noncommittally for a time, then be ready to leap.

But there’s an even more fundamental assumption of the
secretary problem that we might call into question. Namely, in
the secretary problem we know nothing about the applicants
other than how they compare to one another. We don’t have an
objective or preexisting sense of what makes for a good or a bad
applicant; moreover, when we compare two of them, we know
which of the two is better, but not by how much. It’s this fact that
gives rise to the unavoidable “look” phase, in which we risk
passing up a superb early applicant while we calibrate our
expectations and standards. Mathematicians refer to this genre of
optimal stopping problems as “no-information games.”

This setup is arguably a far cry from most searches for an
apartment, a partner, or even a secretary. Imagine instead that
we had some kind of objective criterion—if every secretary, for
instance, had taken a typing exam scored by percentile, in the
fashion of the SAT or GRE or LSAT. That is, every applicant’s score
will tell us where they fall among all the typists who took the test:
a 51st-percentile typist is just above average, a 75th-percentile
typist is better than three test takers out of four, and so on.

Suppose that our applicant pool is representative of the
population at large and isn’t skewed or self-selected in any way.
Furthermore, suppose we decide that typing speed is the only
thing that matters about our applicants. Then we have what
mathematicians call “full information,” and everything changes.



