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Probability



1
Probability

1.1 Introduction

Probability is a mathematical language for quantifying uncertainty. In this
chapter we introduce the basic concepts underlying probability theory. We
begin with the sample space, which is the set of possible outcomes.

1.2 Sample Spaces and Events

The sample space §2 is the set of possible outcomes of an experiment. Points
w in §2 are called sample outcomes, realizations, or elements. Subsets of
2 are called Events.

1.1 Example. If we toss a coin twice then Q2 = {HH, HT,TH,TT}. The event
that the first toss is heads is A = {HH,HT}. n

1.2 Example. Let w be the outcome of a measurement of some physical quan-
tity, for example, temperature. Then {2 = R = (—o0, o00). One could argue that
taking 2 = R is not accurate since temperature has a lower bound. But there
is usually no harm in taking the sample space to be larger than needed. The
event that the measurement is larger than 10 but less than or equal to 23 is

A=(10,23]. m
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1.3 Example. If we toss a coin forever, then the sample space is the infinite
set
Q= {w = (wl,wz,wg,‘ - ,) D w; € {H,T}}

Let E be the event that the first head appears on the third toss. Then
E= {(wuwz»ws,m.) t wy =T ,wp=T,ws=H, w; € {H,T} fori> 3}. .

Given an event A, let A° = {w € Q: w ¢ A} denote the complement of
A. Informally, A° can be read as “not A.” The complement of (2 is the empty
set (). The union of events A and B is defined

AUB:{WEQ: w € Aorwe Borw € both}

which can be thought of as “A or B.” If A, A,,... is a sequence of sets then

GAiz{wGQ: weA,-foratleastonei}A

i=1

The intersection of A and B is
AnB:{wEQ: we Aandw € B}

read “A and B.” Sometimes we write A(|B as AB or (A, B). If A}, As,...is
a sequence of sets then

oo

ﬂA,»: {uEQ: w € A; foralli}.

i=1
The set difference is defined by A— B = {w: w € A,w ¢ B}. If every element
of A is also contained in B we write A C B or, equivalently, B D A. If Ais a
finite set, let |A| denote the number of elements in A. See the following table
for a summary.

Summary of Terminology
Q sample space
w outcome (point or element)
A event (subset of )
A¢ complement of A (not A)
AUB union (A or B)
AN Bor AB intersection (A and B)
A-B set difference (w in A but not in B)
AcCB set inclusion
0 null event (always false)
Q true event (always true)
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We say that A;, Az, ... are disjoint or are mutually exclusive if A; () A; =
@ whenever i # j. For example, A; = [0,1), A2 = [1,2), A3 = [2,3),... are
disjoint. A partition of Q is a sequence of disjoint sets A;, As,... such that
Uiz, Ai = Q. Given an event A, define the indicator function of A by

1 ifwe A
IA(“’):I(‘”EA):{O 1lff¢A.

A sequence of sets Aj, Az,... is monotone increasing if A, C Ay C

- and we define lim, o A, = [JIo; A;. A sequence of sets Ay, Ag,... is
monotone decreasing if A; O A; O --- and then we define lim,, ;. A, =
Moz, A;. In either case, we will write A, — A.

1.4 Example. Let 2 = Randlet A; = [0,1/i) fori=1,2,.... Then|J;2, 4; =
[0,1) and 2, A; = {0}. If instead we define A; = (0,1/i) then |J;-, 4; =
(0,1)and N2, A; =0. m

1.3 Probability

We will assign a real number P(A) to every event A, called the probability of
A. ' We also call P a probability distribution or a probability measure.
To qualify as a probability, P must satisfy three axioms:

1.5 Definition. A function P that assigns a real number P(A) to each
event A is a probability distribution or a probability measure if it
satisfies the following three axioms:

Axiom 1: P(A) > 0 for every A

Axiom 2: P(Q) =1

Axiom 38: If Ay, Az, ... are disjoint then

P (G A,-) - i]l’(A,-).
i=1 i=1

LIt is not always possible to assign a probability to every event A if the sample space is large,
such as the whole real line. Instead, we assign probabilities to a limited class of set called a
o-field. See the appendix for details.



6 1. Probability

There are many interpretations of P(A). The two common interpretations
are frequencies and degrees of beliefs. In the frequency interpretation, P(A)
is the long run proportion of times that A is true in repetitions. For example,
if we say that the probability of heads is 1/2, we mean that if we flip the
coin many times then the proportion of times we get heads tends to 1/2 as
the number of tosses increases. An infinitely long, unpredictable sequence of
tosses whose limiting proportion tends to a constant is an idealization, much
like the idea of a straight line in geometry. The degree-of-belief interpretation
is that P(A) measures an observer’s strength of belief that A is true. In either
interpretation, we require that Axioms 1 to 3 hold. The difference in inter-
pretation will not matter much until we deal with statistical inference. There,
the differing interpretations lead to two schools of inference: the frequentist
and the Bayesian schools. We defer discussion until Chapter 11.

One can derive many properties of P from the axioms, such as:

PO = 0
AcB = P(A)<P(B)
0< P4) <1
P(A°) = 1-P(A)
ANB=0 = P(AUB):]P(A)+IP(B). (1.1)

A less obvious property is given in the following Lemma.
1.6 Lemma. For any events A and B,
P (AUB) = P(A) + P(B) — P(AB).

ProOF. Write A|JB = (AB°)|J(AB) |J(A°B) and note that these events
are disjoint. Hence, making repeated use of the fact that P is additive for
disjoint events, we see that

P (AUB) P ((ABC) Us) U(ACB))
P(AB°) + P(AB) + P(A°B)
= P(AB°) +P(AB) + P(A°B) + P(AB) — P(AB)
- P ((AB”) U(AB)) +P ((ACB) U(AB)) — P(AB)
= P(A)+P(B)-P(AB). u

1

1.7 Example. Two coin tosses. Let H; be the event that heads occurs on
toss 1 and let Hy be the event that heads occurs on toss 2. If all outcomes are
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these objects is n! = n(n —1)(n —2)---3-2- 1. For convenience, we define

0! = 1. We also define !
n n!
(k) T kl(n—k) sty

read “n choose k”, which is the number of distinct ways of choosing k objects
from n. For example, if we have a class of 20 people and we want to select a
committee of 3 students, then there are

|
(20) 20! 20 x 19 x 18 — 1140

3)7371 T 3x2x1

possible committees. We note the following properties:
n n n n
o= le)= = (= 12e)
1.5 Independent Events

If we flip a fair coin twice, then the probability of two heads is % . % We
multiply the probabilities because we regard the two tosses as independent.

The formal definition of independence is as follows:

1.9 Definition. Two events A and B are independent if
P(AB) = P(A)P(B) (1.3)
and we write AT1 B. A set of events {A; : i € I} is independent if
P (ﬂ Ai> =[P
i€J i€J
for every finite subset J of I. If A and B are not independent, we write

A T B

Independence can arise in two distinct ways. Sometimes, we explicitly as-
sume that two events are independent. For example, in tossing a coin twice,
we usually assume the tosses are independent which reflects the fact that the
coin has no memory of the first toss. In other instances, we derive indepen-
dence by verifying that P(AB) = P(A)P(B) holds. For example, in tossing
a fair die, let A = {2,4,6} and let B = {1,2,3,4}. Then, A B = {2,4},
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Summary of Independence
1. A and B are independent if and only if P(AB) = P(A)P(B).
2. Independence is sometimes assumed and sometimes derived.

3. Disjoint events with positive probability are not independent.

1.6 Conditional Probability

Assuming that P(B) > 0, we define the conditional probability of A given
that B has occurred as follows:

1.12 Definition. If P(B) > 0 then the conditional probability of A

gwen B is
P(A|B) = %FT) (1.4)

Think of P(A|B) as the fraction of times A occurs among those in which
B occurs. For any fixed B such that P(B) > 0, P(-|B) is a probability (i.e., it
satisfies the three axioms of probability). In particular, P(A|B) > 0, P(Q2|B) =
1 and if Ay, As,... are disjoint then P(|J;2, 4i|B) = Efil]P’(A.-lB). But it
is in general not true that P(A|B|JC) = P(A|B) + P(A|C). The rules of
probability apply to events on the left of the bar. In general it is not the case
that P(A|B) = P(B|A). People get this confused all the time. For example,
the probability of spots given you have measles is 1 but the probability that
you have measles given that you have spots is not 1. In this case, the difference
between P(A|B) and P(B|A) is obvious but there are cases where it is less
obvious. This mistake is made often enough in legal cases that it is sometimes
called the prosecutor’s fallacy.

1.13 Example. A medical test for a disease D has outcomes + and —. The
probabilities are:
D D¢

+ | .009 .099
—|.001 .891
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From the definition of conditional probability,
P(+ND) _ 009 9
P(D) =~ .009+.001 °

P(+|D) =

g ~ _ P(—ND°) .891
B F(D9)  ~ 8l+.099

Apparently, the test is fairly accurate. Sick people yield a positive 90 percent

of the time and healthy people yield a negative about 90 percent of the time.

Suppose you go for a test and get a positive. What is the probability you have
the disease? Most people answer .90. The correct answer is

P(+N D) 009

P(+)  .009+.099

The lesson here is that you need to compute the answer numerically. Don’t

P(D|+) = 08.

trust your intuition. m

The results in the next lemma follow directly from the definition of condi-
tional probability.

1.14 Lemma. If A and B are independent events then P(A|B) = P(A). Also,
for any pair of events A and B,

P(AB) = P(A|B)P(B) = P(B|A)P(A).

From the last lemma, we see that another interpretation of independence is
that knowing B doesn’t change the probability of A. The formula P(AB) =
P(A)P(B|A) is sometimes helpful for calculating probabilities.

1.15 Example. Draw two cards from a deck, without replacement. Let A be
the event that the first draw is the Ace of Clubs and let B be the event that
the second draw is the Queen of Diamonds. Then P(AB) = P(A)P(B|A) =
(1/52) x (1/51). m

Summary of Conditional Probability

1. If P(B) > 0, then
P(AB)

P(41B) = pr5y

2. P(-|B) satisfies the axioms of probability, for fixed B. In general,
P(A|-) does not satisfy the axioms of probability, for fixed A.

3. In general, P(A|B) # P(B|A).
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4. A and B are independent if and only if P(A|B) = P(A).

1.7 Bayes’ Theorem

Bayes’ theorem is the basis of “expert systems” and “Bayes’ nets,” which are
discussed in Chapter 17. First, we need a preliminary result.

1.16 Theorem (The Law of Total Probability). Let Ai,..., Ay be a partition
of Q. Then, for any event B,

k
P(B) = ) P(B|Ai)P(A).

=1

PROOF. Define C; = BA; and note that C1,...,Cy are disjoint and that
B =}, C;. Hence,

P(B) =Y P(C;) =Y P(BA;) =) P(B|A;)P(4;)
4 3 J

since P(BA;) = P(B|A;)P(A;) from the definition of conditional probability.
.

1.17 Theorem (Bayes' Theorem). Let Ay, ..., Ay be a partition of Q such
that P(A;) > 0 for each i. If P(B) > 0 then, for eachi=1,...,k,

P(B|A:)P(A;)

P(AIB) = s~ B(BI4,)P(4;)"

(1.5)

1.18 Remark. We call P(A;) the prior probability of A and P(A;|B) the
posterior probability of A.

PROOF. We apply the definition of conditional probability twice, followed
by the law of total probability:

_ P(A:B) _ P(B|A:)P(A:) P(B|A:)P(A:)

PAB)="5@) =~ BB)  T,PBl4)PA4,) "

1.19 Example. I divide my email into three categories: A; = “spam,” Ay =
“low priority” and Az = “high priority.” From previous experience I find that
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P(A,) =.7, P(A2) = .2 and P(A3) = .1. Of course, .7+ .2+ .1 = 1. Let B be
the event that the email contains the word “free.” From previous experience,
P(B|A;) = .9, P(B|As) = .01, P(B|A3) = .01. (Note: .9+ .01+ .01 # 1.) I
receive an email with the word “free.” What is the probability that it is spam?
Bayes’ theorem yields,

9 x.7
— = .995,
P(A,]B) (.9 x.7) + (.01 x.2) + (.01 x 1) 0.

1.8 Bibliographic Remarks

The material in this chapter is standard. Details can be found in any number
of books. At the introductory level, there is DeGroot and Schervish (2002);
at the intermediate level, Grimmett and Stirzaker (1982) and Karr (1993); at
the advanced level there are Billingsley (1979) and Breiman (1992). I adapted
many examples and exercises from DeGroot and Schervish (2002) and Grim-
mett and Stirzaker (1982).

1.9 Appendix

Generally, it is not feasible to assign probabilities to all subsets of a sample
space (). Instead, one restricts attention to a set of events called a o-algebra
or a o-field which is a class A that satisfies:

(i) 0 € A,

(ii) if Ay, Ag,...,€ A then |-, A; € A and

(iii) A € A implies that A° € A.
The sets in A are said to be measurable. We call ({2, A) a measurable
space. If P is a probability measure defined on A, then ({2, A, P) is called a
probability space. When () is the real line, we take A to be the smallest
o-field that contains all the open subsets, which is called the Borel o-field.

1.10 Exercises

1. Fill in the details of the proof of Theorem 1.8. Also, prove the monotone
decreasing case.

2. Prove the statements in equation (1.1).
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14.

15.

16.

17.
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behind one of three doors. You pick a door. To be concrete, let’s suppose
you always pick door 1. Now Monty Hall chooses one of the other two
doors, opens it and shows you that it is empty. He then gives you the
opportunity to keep your door or switch to the other unopened door.
Should you stay or switch? Intuition suggests it doesn’t matter. The
correct answer is that you should switch. Prove it. It will help to specify
the sample space and the relevant events carefully. Thus write {2 =
{(w1,w2) : w; € {1,2,3}} where w; is where the prize is and w; is the
door Monty opens.

Suppose that A and B are independent events. Show that A¢ and B®
are independent events.

There are three cards. The first is green on both sides, the second is red
on both sides and the third is green on one side and red on the other. We
choose a card at random and we see one side (also chosen at random).
If the side we see is green, what is the probability that the other side is
also green? Many people intuitively answer 1/2. Show that the correct
answer is 2/3.

Suppose that a fair coin is tossed repeatedly until both a head and tail
have appeared at least once.

(a) Describe the sample space €2.

(b) What is the probability that three tosses will be required?

Show that if P(A) = 0 or P(A) = 1 then A is independent of every other
event. Show that if A is independent of itself then P(A) is either 0 or 1.

The probability that a child has blue eyes is 1/4. Assume independence
between children. Consider a family with 3 children.

(a) If it is known that at least one child has blue eyes, what is the
probability that at least two children have blue eyes?

(b) If it is known that the youngest child has blue eyes, what is the
probability that at least two children have blue eyes?

Prove Lemma 1.14.

Show that
P(ABC) = P(A|BC)P(B|C)P(C).
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out a simulation and compare the average of the X's to np. Try this for
p=.3 and n = 10, n = 100, and n = 1, 000.

(Computer Experiment.) Here we will get some experience simulating
conditional probabilities. Consider tossing a fair die. Let A = {2,4,6}
and B = {1,2,3,4}. Then, P(A) = 1/2, P(B) = 2/3 and P(AB) = 1/3.
Since P(AB) = P(A)P(B), the events A and B are independent. Simu-
late draws from the sample space and verify that P(AB) = P(A)P(B)
where @(A) is the proportion of times A occurred in the simulation and
similarly for P(AB) and ]P(B) Now find two events A and B that are not
independent. Compute IP’ A), ]P’(B) and ]P’(AB) Compare the calculated
values to their theoretical values. Report your results and interpret.
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Random Variables

2.1 Introduction

Statistics and data mining are concerned with data. How do we link sample
spaces and events to data? The link is provided by the concept of a random
variable.

2.1 Definition. A random variable is a mapping*

X:Q2—-R

that assigns a real number X (w) to each outcome w.

At a certain point in most probability courses, the sample space is rarely
mentioned anymore and we work directly with random variables. But you

should keep in mind that the sample space is really there, lurking in the
background.

2.2 Example. Flip a coin ten times. Let X (w) be the number of heads in the
sequence w. For example, if w = HHTHHTHHTT, then X(w) =6. =

1 Technically, a random variable must be measurable. See the appendix for details.
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2.3 Example. Let Q = {(I, y); 2+ y* < 1} be the unit disk. Consider

drawing a point at random from Q. (We will make this idea more precise
later.) A typical outcome is of the form w = (z,y). Some examples of random
variables are X (w) =z, Y(w) =y, Z(w) =z +y, and W(w) = /22 +y%. n

Given a random variable X and a subset A of the real line, define X ~'(A) =
{weQ: X(w) € A} and let

Pa
)
m
=
I

P(X'(A) =P{w € Q; X(w) € A})
PX=z) = P(XYz)) =P({w e X(w)=rx}).

Notice that X denotes the random variable and z denotes a particular value
of X.

2.4 Example. Flip a coin twice and let X be the number of heads. Then,
P(X = 0) = P{TT}) = 1/4, (X = 1) = P({HT,TH}) = 1/2 and
P(X = 2) = P({HH}) = 1/4. The random variable and its distribution
can be summarized as follows:

w  P{w}) | X(w)
TT 1/4 0
TH 1/4 1
HT 1/4 1
HH 1/4 2

Try generalizing this to n flips. m A

2.2 Distribution Functions and Probability Functions

Given a random variable X, we define the cumulative distribution function
(or distribution function) as follows.

2.5 Definition. The cumulative distribution function, or CDF, is the
function Fx : R — [0,1] defined by

Fx(z) =P(X < 2). 1)
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Fx(z)
Pe——
M
} -
0 1 2 T

FIGURE 2.1. cpF for flipping a coin twice (Example 2.6.)

We will see later that the CDF effectively contains all the information about
the random variable. Sometimes we write the CDF as F' instead of F'y.

2.6 Example. Flip a fair coin twice and let X be the number of heads. Then
P(X =0)=P(X =2)=1/4 and P(X = 1) = 1/2. The distribution function

1S

0 r <0
) 1/4 0<z <1
Fx(@) =19 3/4 122<2
1 r > 2.

The CDF is shown in Figure 2.1. Although this example is simple, study it
carefully. CDF’s can be very confusing. Notice that the function is right contin-
uous, non-decreasing, and that it is defined for all z, even though the random
variable only takes values 0,1, and 2. Do you see why Fx(1.4) =.757 =

The following result shows that the CDF completely determines the distri-
bution of a random variable.

2.7 Theorem. Let X have CDF F and let Y have CDF G. If F(z) = G(z) for
all z, then P(X € A) =P(Y € A) for all A. ?

2.8 Theorem. A function F' mapping the real line to |0, 1] is a CDF for some
probability P if and only if F' satisfies the following three conditions:
(i) F is non-decreasing: x1 < xo implies that F(x,) < F(x3).
(i11) F' 1s normalized:
lim F(z)=0

I—+— 00

“Technically, we only have that P(X € A) = P(Y € A) for every measurable event A.
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and
lim F(x)=1.

I—00

(i1i) F' s right-continuous: F(x) = F(x™) for all x, where

F(z™) = lim F(y).

y—+x

(T

PROOF. Suppose that F' is a CDF. Let us show that (iii) holds. Let = be
a real number and let yy,y2,... be a sequence of real numbers such that
y1 > y2 > --- and lim; y; = z. Let A; = (—o00,y;] and let A = (—o0, z]. Note
that A = ﬂzl A; and also note that A; O A, O ---. Because the events are
monotone, lim; P(A;) = P([), 4;). Thus,

Flz)=P (ﬂA) —hmlP (A;) = lim F(y;) = F(z™).

Showing (i) and (ii) is similar. Proving the other direction — namely, that if
F satisfies (i), (ii), and (iii) then it is a CDF for some random variable — uses

some deep tools in analysis. m

2.9 Definition. X is discrete if it takes countably® many values

{z1,29,...}. We define the probability function or probability mass
function for X by fx(z) = P(X = x).

Thus, fx(z) > 0 for all z € R and ), fx(z;) = 1. Sometimes we write f
instead of fx. The CDF of X is related to fx by

FX() X{:H: fo:ri

T;<T

2.10 Example. The probability function for Example 2.6 is

1/4 =0

1/2 z=1
fx(z) = 1/4 z =2

0 otherwise.

See Figure 2.2. =

JA set is countable if it is finite or it can be put in a one-to-one correspondence with the
integers. The even numbers, the odd numbers, and the rationals are countable; the set of real
numbers between 0 and 1 is not countable.
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Fx (x)

1 +

0 1 z
FIGURE 2.3. cpF for Uniform (0,1).

2.13 Example. Suppose that X has PDF

f(:L'):{O forz <0

ﬁ; otherwise.
Since [ f(z)dz = 1, this is a well-defined PDF. m

‘Warning! Continuous random variables can lead to confusion. First, note
that if X is continuous then P(X = z) = 0 for every z. Don’t try to think
of f(x) as P(X = x). This only holds for discrete randorh variables. We get
probabilities from a PDF by integrating. A PDF can be bigger than 1 (unlike
a mass function). For example, if f(z) = 5 for z € [0,1/5] and 0 otherwise,
then f(z) > 0 and [ f(z)dz = 1 so this is a well-defined PDF even though
f(z) = 5 in some places. In fact, a PDF can be unbounded. For example, if
f(z) = (2/3)z=1/3 for 0 < z < 1 and f(z) = 0 otherwise, then [ f(z)dx =1
even though f is not bounded.

2.14 Example. Let

fi 0
f(x):{[) or r <

(1Tlx) otherwise.

This is not a PDF since [ f(z)dz = [;° dz/(14+z) = [~ du/u = log(co) = c0.
n

2.15 Lemma. Let F be the CDF for a random variable X. Then:

1. P(X =) = F(z) — F(z~) where F(z™) = limy, F(y);
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THE POINT MAsSs DISTRIBUTION. X has a point mass distribution at a,
written X ~ d,, if P(X = a) =1 in which case

0 <a
F(I):{ 1 ;c:>a,.

The probability mass function is f(z) =1 for z = a and 0 otherwise.

THE DISCRETE UNIFORM DISTRIBUTION. Let k > 1 be a given integer.
Suppose that X has probability mass function given by

[ 1/k forz=1,...,k
) = { 0 otherwise.

We say that X has a uniform distribution on {1,...,k}.

THE BERNOULLI DISTRIBUTION. Let X represent a binary coin flip. Then
P(X =1) =p and P(X = 0) =1 — p for some p € [0,1]. We say that X has a
Bernoulli distribution written X ~ Bernoulli(p). The probability function is
f(z) =p*(1 —p)t~= for z € {0,1}.

THE BINOMIAL DISTRIBUTION. Suppose we have a coin which falls heads
up with probability p for some 0 < p < 1. Flip the coin n times and let
X be the number of heads. Assume that the tosses are independent. Let
f(z) =P(X = z) be the mass function. It can be shown that

e { O - forz=0,...,n

0 otherwise.

A random variable with this mass function is called a Binomial random
variable and we write X ~ Binomial(n,p). If X; ~ Binomial(n;,p) and
X, ~ Binomial(ns, p) are independent then X; + X, ~ Binomial(n; + nz,p).

Warning! Let us take this opportunity to prevent some confusion. X is a
random variable; z denotes a particular value of the random variable; n and p
are parameters, that is, fixed real numbers. The parameter p is usually un-
known and must be estimated from data; that’s what statistical inference is all
about. In most statistical models, there are random variables and parameters:
don’t confuse them.

THE GEOMETRIC DISTRIBUTION. X has a geometric distribution with
parameter p € (0,1), written X ~ Geom(p), if

P(X=k)=p(1-p)* !, k=1,23,...
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We have that

[s <] o0 p

D PX=k=p) (1-pf=1—r——=1

k=1 k=1 1-(1-p)
Think of X as the number of flips needed until the first head when flipping a
coin.

THE P01sSON DISTRIBUTION. X has a Poisson distribution with parameter
A, written X ~ Poisson(A) if
T

flz) = e_’\% z > 0.

Note that
o0 o0 /\I! \a
Zf(x)=e_"zg =e et =1
z=0 z=0

The Poisson is often used as a model for counts of rare events like radioactive
decay and traffic accidents. If X; ~ Poisson();) and X ~ Poisson(Az) are
independent then X; + X5 ~ Poisson(A; + Az).

Warning! We defined random variables to be mappings from a sample
space {2 to R but we did not mention the sample space in any of the distri-
butions above. As I mentioned earlier, the sample space often “disappears”
but it is really there in the background. Let’s construct a sample space ex-
plicitly for a Bernoulli random variable. Let £ = [0,1] and define P to satisfy
P([a,b]) =b—afor 0 <a <b< 1. Fix p € [0,1] and define

_J 1 w<p

X(w)= { 0 w>p.
Then P(X = 1) = P(w < p) = P([0,p]) = p and P(X = 0) = 1 — p. Thus,
X ~ Bernoulli(p). We could do this for all the distributions defined above. In

practice, we think of a random variable like a random number but formally it
is a mapping defined on some sample space.

2.4 Some Important Continuous Random Variables
THE UNIFORM DISTRIBUTION. X has a Uniform(a,b) distribution, written
X ~ Uniform(a, b), if

= for z € [a,}]
— b—a )
f@)= { 0 otherwise
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where a < b. The distribution function is

0 & <a
F(z)=4 £2 z€lab
1 &> b

NORMAL (GAUSSIAN). X has a Normal (or Gaussian) distribution with
parameters p and o, denoted by X ~ N(u,o?), if

1 1
f(r)=mexrw{—272(z—u)2}, zeR (23)

where p € R and ¢ > 0. The parameter p is the “center” (or mean) of the
distribution and o is the “spread” (or standard deviation) of the distribu-
tion. (The mean and standard deviation will be formally defined in the next
chapter.) The Normal plays an important role in probability and statistics.
Many phenomena in nature have approximately Normal distributions. Later,
we shall study the Central Limit Theorem which says that the distribution of
a sum of random variables can be approximated by a Normal distribution.

We say that X has a standard Normal distribution if 4 = 0 and o0 = 1.
Tradition dictates that a standard Normal random variable is denoted by Z.
The PDF and CDF of a standard Normal are denoted by ¢(z) and ®(z). The
PDF is plotted in Figure 2.4. There is no closed-form expression for ®. Here
are some useful facts:

(i) If X ~ N(u,0?), then Z = (X — p)/o ~ N(0,1).
(ii) If Z ~ N(0,1), then X = u+0Z ~ N(u,0?).

(iii) If X; ~ N(pi,0?), i =1,...,n are independent, then
ZX.- ~ N(Z’“’ZU?)'
=1 =1 =1

It follows from (i) that if X ~ N(u,0?), then

Pla<X<b) = P(“‘“<Z<b—_—’-‘)
o o

= afbt=r) _g(o-k

o o '

Thus we can compute any probabilities we want as long as we can compute
the CDF ®(z) of a standard Normal. All statistical computing packages will
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I +—e
-2 -1 0 1 2

FIGURE 2.4. Density of a standard Normal.

compute ®(2) and & !(g). Older statistics texts (not this one) have a table
of values of ®(2).

2.17 Example. Suppose that X ~ N(3,5). Find P(X > 1). The solution is

PX>1)=1-PX <1)= I—P(Z < 1—\;;) =1 — &(—0.8944) = 0.81.

Now find ¢ = ®71(0.2). This means we have to find ¢ such that P(X < ¢) =
0.2. We solve this by writing

0.2:P(X<q)=1p(z<:q_“) =¢>(q_“).

ag o

From the Normal table, ®(—0.8416) = 0.2. Therefore,

qg—p q—3
~0.8416 = =
o V5

and hence ¢ = 3 — 0.8416v/5 = 1.1181. =

EXPONENTIAL DISTRIBUTION. X has an Exponential distribution with
parameter 3, denoted by X ~ Exp(f), if

1
flx)==e %P >0

p

where 3 > 0. The exponential distribution is used to model the lifetimes of
electronic components and the waiting times between rare events.

GAMMA DISTRIBUTION. For a > 0, the Gamma function is defined by
[Na) = Um y*~le~Ydy. X has a Gamma distribution with parameters o and
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2.5 Bivariate Distributions

Given a pair of discrete random variables X and Y, define the joint mass
function by f(z,y) = P(X =z and Y = y). From now on, we write P(X =
rand Y =y) as P(X =z,Y = y). We write f as fx y when we want to be
more explicit.

2.18 Example. Here is a bivariate distribution for two random variables X

and Y each taking values 0 or 1:

Y=0 Y=1
0(1/9 2/9 1/3
11{2/9 4/9 2/3
1/3 2/3 1

Thus, f(1,1) =P(X =1,Y =1)=4/9. m

X
X

2.19 Definition. In the continuous case, we call a function f(x,y) a PDF
for the random variables (X,Y) if

() f(z,y) 20 for all (z,y),

(it) [*._ [~ f(z,y)dzdy =1 and,

(i) for any set ACR xR, P(X,Y) € A) = [ [, f(z,y)dzdy.

In the discrete or continuous case we define the joint CDF as Fx y(z,y) =
P(X <z,Y <y).

2.20 Example. Let (X, Y ) be uniform on the unit square. Then,

1 f0<z<1,0<y<1
0 otherwise.

flz,y) :{

Find P(X <1/2,Y < 1/2). The event A = {X < 1/2,Y < 1/2} corresponds
to a subset of the unit square. Integrating f over this subset corresponds, in
this case, to computing the area of the set A whichis 1/4. So, P(X < 1/2,Y <
1/2) =1/4. =
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z

FIGURE 2.5. The light shaded region is 22 < y < 1. The density is positive over
this region. The hatched region is the event X > Y intersected with z* <y < 1.

2.6 Marginal Distributions

2.23 Definition. If (X,Y) have joint distribution with mass function
fx,v, then the marginal mass function for X is defined by

fx(@)=P(X=2)=) P(X=g,Y=y)=) f(z,9) (2.4)
Yy Yy

and the marginal mass function for Y is defined by

fr)=PY =y)=) PX=2Y=y)=) f(z,y) (2.5)

2.24 Example. Suppose that fxy is given in the table that follows. The
marginal distribution for X corresponds to the row totals and the marginal
distribution for Y corresponds to the columns totals.

Y=0 Y=1
X=0| 1/10  2/10 | 3/10
X=1|3/10 4/10 | 7/10
4/10 6/10 |1

For example, fx(0) =3/10 and fx(1) =7/10. m
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2.25 Definition. For continuous random variables, the marginal densities
are

ff:ﬂydy, and  fy(y /fiby (2.6)

The corresponding marginal distribution functions are denoted by Fx and
Fy.

2.26 Example. Suppose that

fxy(z,y) =e "tV
for z,y > 0. Then fx(z)=e* [Te Vdy=e". m

2.27 Example. Suppose that

x4y f0<2<1,0<y<1
f(z,y) *{ 0 otherwise.

Then , , :
1
fy(y)=/ (.r+y)dﬂ:=/ :r:d:tr+/ yder = —-+y. =
0 0 0 2

2.28 Example. Let (X, Y) have density

21 .2

B 2 LY if :1?2 < Yy <1
flz,y) = { 0 otherwise.

Thus,

1
21
/f:ry _ 2 2/ ydy—-a—irz(l—iﬂ)

for -1 <z <1 and fx(z)=0 otherwise. m

2.7 Independent Random Variables

2.29 Definition. Two random wvariables X and Y are independent if,
for every A and B,

P(XeAY eB)=P(X € A)P(Y € B) (2.7)

and we write X 1Y . Otherwise we say that X and Y are dependent
and we write X 35 Y .
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In principle, to check whether X and Y are independent we need to check
equation (2.7) for all subsets A and B. Fortunately, we have the following
result which we state for continuous random variables though it is true for

discrete random variables too.

2.30 Theorem. Let X and Y have joint PDF fxy. Then X 1Y if and only
if fx.v(z,y) = fx(z)fy(y) for all values x and y. ®

2.31 Example. Let X and Y have the following distribution:

Y=0 Y=1
X=0|1/4 1/4 |1)2
X=1|1/4 1/4 |1/2

12 1/2 |1

Then, fx(0) = fx(1) = 1/2 and fy(0) = fy(1) = 1/2. X and Y are inde-
pendent because fx(0)fy(0) = f(0,0), fx(0)fy(1) = £(0,1), fx(1)fy(0) =
f(1,0), fx(1)fy(1) = f(1,1). Suppose instead that X and Y have the follow-
ing distribution:

Y=0 Y=1

X=0]1/2 0 1/2

X=1]0 12 | 1/2
12 1/2 |1

These are not independent because fx(0)fy(1) = (1/2)(1/2) =

1/4 yet

f(0,1)=0.m

2.32 Example. Suppose that X and Y are independent and both have the
same density

f(z) = 2z if0<z<l1
| 0 otherwise.

Let us find P(X + Y < 1). Using independence, the joint density is

ifo<z<1, 0<y<1
otherwise.

f@) = @) = { o™

5The statement is not rigorous because the density is defined only up to sets of
measure 0.
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Now,

P(X+Y <1)

'//1+y$1 f(z,y)dydz
4/01 ‘ [/ol_zydy] dx

1 2
1-2) 1
= 4 —dz = <.
/Uz 3 = ™

The following result is helpful for verifying independence.

2.33 Theorem. Suppose that the range of X and Y is a (possibly infinite)
rectangle. If f(x,y) = g(z)h(y) for some functions g and h (not necessarily
probability density functions) then X and Y are independent.

2.34 Example. Let X and Y have density

2~ (@) if g > 0andy >0
fla,y) = { 0 otherwise.

The range of X and Y is the rectangle (0, 00) x (0, 00). We can write f(z,y) =
g(z)h(y) where g(z) = 2¢* and h(y) = e~%. Thus, X 1Y. m

2.8 Conditional Distributions

If X and Y are discrete, then we can compute the conditional distribution of
X given that we have observed Y = y. Specifically, P(X = z|Y =y) =P(X =
z,Y = y)/P(Y = y). This leads us to define the conditional probability mass
function as follows.

2.35 Definition. The conditional probability mass function is

fxiy(zly) =P(X =z|Y =y) = P(X]P(z}’r’:yy): 9 _ fxf;((;y)

if fr(y) > 0.

For continuous distributions we use the same definitions. ¢ The interpre-
tation differs: in the discrete case, fx|y(z|y) is P(X = z|Y = y), but in the
continuous case, we must integrate to get a probability.

SWe are treading in deep water here. When we compute P(X € A|Y = y) in the
continuous case we are conditioning on the event {Y = y} which has probability 0. We
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of Y7 First note that,

1 if0<z<1
fx(z) = { 0 otherwise
and 1
[ i ifo<a<y<l
fyix(ylz) = { 0 otherwise.
So,

f0<z<y<l1
otherwise.

1
Fxy (@,9) = frix(yl2) fx (@) = { 0"

The marginal for Y is

y t 1-y
1w = [ txyie= [ 12— [T S = —tog1 )

1-2z

for0<y<l. m

2.40 Example. Consider the density in Example 2.28. Let’s find fyx(y|z).
When X = z, y must satisfy 22 < y < 1. Earlier, we saw that fx(z) =
(21/8)x2(1 — z*). Hence, for 22 <y < 1,

_f@y) _ %Yy Zy
frix(ylz) = Tx@) _8_1124(1 —z4) 1-z%

Now let us compute P(Y > 3/4|X = 1/2). This can be done by first noting
that fy|x(y[1/2) = 32y/15. Thus,

7

1 1 39y
PO 234X =12 = [ fol/ddy= [ Pay-. «
3/4 3/4

2.9 Multivariate Distributions and 11D Samples

Let X = (Xi,...,X,) where X;,...,X,, are random variables. We call X a
random vector. Let f(zi,...,z,) denote the PDF. It is possible to define
their marginals, conditionals etc. much the same way as in the bivariate case.
We say that X;,..., X, are independent if, for every Ay,..., Ap,

P(X € A1,...,Xn € An) = [[ P(Xi € 4i). (2.8)

=1

It suffices to check that f(z1,...,zn) = [T, fx. (i)
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where Zy,...,Zx ~ N(0,1) are independent. The density of Z is 7

k

1
Hf( k/2exP 52 2

1 17
(2—ﬂ_)k—/2exp 5% %(-

We say that Z has a standard multivariate Normal distribution written Z ~
N(0,I) where it is understood that 0 represents a vector of k zeroes and I is
the k x k identity matrix.

f(z)

More generally, a vector X has a multivariate Normal distribution, denoted
by X ~ N(u,X), if it has density ®

119 = g er {3 TE -0} 210)

where |3| denotes the determinant of ¥, p is a vector of length k and ¥ is a
k x k symmetric, positive definite matrix. ? Setting 4 = 0 and £ = I gives
back the standard Normal.

Since ¥ is symmetric and positive definite, it can be shown that there exists
a matrix £/2 — called the square root of ¥ — with the following properties:
(i) /2 is symmetric, (i) £ = £/251/2 and (iii) £Y/25" 12 = 212512 = |
where ¥71/2 = (x1/2)~1

2.43 Theorem. If Z ~ N(0,I) and X = p+ £Y/2Z then X ~ N(u,X).
Conversely, if X ~ N(u, %), then £~Y2(X — p) ~ N(0,1).

Suppose we partition a random Normal vector X as X = (X,, X3). We can
similarly partition g = (gq, 1) and

Lo Zap
2 — aa al -
( Zba Ty )
2.44 Theorem. Let X ~ N(u,X). Then:
(1) The marginal distribution of Xo is Xq ~ N(pta; Laa)-
(2) The conditional distribution of X; given X, = x, is
Xb’Xa =z, ~N ( Mo + Ebaz;al(za — la), Zbb — Z:lm):.:nl):ab ) .

(3) If a is a vector then aTX ~ N(ap,a”Ta).
A)V=X-p"= X - p)~xi

7If @ and b are vectors then aTb = Y% | aibi.
8571 is the inverse of the matrix 2.
9A matrix ¥ is positive definite if, for all nonzero vectors z, TSz > 0.
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2.11 Transtormations of Random Variables

Suppose that X is a random variable with PDF fx and CDF Fx. Let Y = r(X)
be a function of X, for example, Y = X2 or Y = e*. Wecall Y = r(X) a
transformation of X. How do we compute the PDF and CDF of Y7 In the
discrete case, the answer is easy. The mass function of Y is given by

[
hac
H(:
[
<
[
2
23

fy ()

|

%

P

o,

=

=

&~

T

|

=

— 3

L —

ﬁ

—

o~
o

P

=

s

™

2.45 Example. Suppose that P(X = -1)=P(X =1)=1/4and P(X =0) =
1/2. Let Y = X?. Then, P(Y =0)=P(X =0)=1/2and P(Y =1) =P(X =
1)+ P(X = —1) = 1/2. Summarizing:

z _ fx(x)
T i
L 1/4 1 1/2

Y takes fewer values than X because the transtormation is not one-to-one. m

The continuous case is harder. There are three steps for finding fy:

Three Steps for Transformations

1. For each y, find the set A, = {z: r(z) < y}.

2. Find the CDF

Fy(y) P(Y <y) =P(r(X) <y)
P({z; r(z) < y})
fx

3. The PDF is fy(y) = Fy (y).

2.46 Example. Let fx(z) = e™* for z > 0. Hence, Fx(z) = [, fx(s
l—e . Let Y =r(X)=1logX. Then, A, = {z: = < e} and

Fy(y) = P(Y <y)=P(logX <y)
= P(X<e¥)=Fx(e¥)=1—¢"°".

Therefore, fy(y) = eve c fory € R. m
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2.47 Example. Let X ~ Uniform(—1,3). Find the PDF of Y = X2. The
density of X is

_J1/4 if —1<z<3
Fx(@) = { 0  otherwise.

Y can only take va.lues in (0,9). Consider two cases: (i) 0 < y < 1 and (ii) 1 <

y < 9. For case (i), Ay, = [-/¥,/¥] and Fy(y) fAfx dz—l/2\/_
For case (ii), A [ 1,,/y] and Fy(y) = fAv fx(z 1/4)(vy +1
Differentiating F we get
ﬁ ifo<y<l1
fry)=1 55 f1<y<9
0 otherwise. m

When 7 is strictly monotone increasing or strictly monotone decreasing then

r has an inverse s = r~! and in this case one can show that

(2.12)

2.12 Transformations of Several Random Variables

In some cases we are interested in transformations of several random variables.
For example, if X and Y are given random variables, we might want to know
the distribution of X/Y, X +Y, max{X,Y} or min{X,Y}. Let Z = r(X,Y)
be the function of interest. The steps for finding fz are the same as before:

Three Steps for Transformations
1. For each z, find the set A, = {(z,y) : r(z,y) < z}.

2. Find the cpF

Fz(2)

P(Z < 2) = P(r(X,Y) < 2)
P ) ra) <) = [ /A fxoy(@y) dzdy.

3. Then fz(z) = F5(2).
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2.48 Example. Let X, Xy ~ Uniform(0, 1) be independent. Find the density
of Y = X; 4+ X5. The joint density of (X, X5) is

1 O0<xz1 <1, 0<29 <1
0 otherwise.

flara) = {

Let r(zy,x2) = 1 + 2. Now,
Fy(y) = PY <y)=P(r(Xy,X2) <y)

P({(z1,22): r(z1,22) Sy}) = f_/Ay f(z1,z2)dz1ds.

I

Now comes the hard part: finding A,. First suppose that 0 <y < 1. Then A4,
is the triangle with vertices (0,0), (y,0) and (0, y). See Figure 2.6. In this case,
J Ja, f(@1,32)dz1dz is the area of this triangle which is y? /2. If1 <y < 2,
then A, 1s everything in the unit square except the triangle with vertices

(1,5 —1),(1,1),(y — 1,1). This set has area 1 — (2 — y)?/2. Therefore,

0 y <0
2

¥ 0<y<l1

1 - 1<y<?2

1 y > 2.

By differentiation, the PDF is

Y 0<y<l1
friy) =9 2-y 1<y<2

0 otherwise. =

2.13 Appendix

Recall that a probability measure P is defined on a o-field A of a sample
space (). A random variable X is a measurable map X : 2 — R. Measurable

means that, for every z, {w: X(w) <z} € A.

2.14 Exercises

1. Show that



10.

11.

12.

13.

14.

15.

16.
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. Let X and Y be independent and suppose that each has a Uniform(0, 1)

distribution. Let Z = min{X,Y}. Find the density fz(z) for Z. Hint:
It might be easier to first find P(Z > z).

. Let X have cDF F. Find the cDF of X* = max{0, X}.

. Let X ~ Exp(8). Find F(z) and F~(q).

Let X and ¥ be independent. Show that g(X) is independent of h(Y')
where g and h are functions.

Suppose we toss a coin once and let p be the probability of heads. Let
X denote the number of heads and let Y denote the number of tails.

(a) Prove that X and Y are dependent.

(b) Let N ~ Poisson(A) and suppose we toss a coin N times. Let X and
Y be the number of heads and tails. Show that X and Y are independent.

Prove Theorem 2.33.

Let X ~ N(0,1) and let Y = e*.
(a) Find the pPDF for Y. Plot it.

(b) (Computer Experiment.) Generate a vector = (z1,...,Z10,000) CON-
sisting of 10,000 random standard Normals. Let ¥y = (y1,...,%10,000)
where y; = e®. Draw a histogram of y and compare it to the PDF you
found in part (a).

Let (X,Y) be uniformly distributed on the unit disk {(z,y) : z?+3* <
1}. Let R = v/ X? + Y2. Find the cDF and PDF of R.

(A universal random number generator.) Let X have a continuous, strictly
increasing cDF F. Let Y = F(X). Find the density of Y. This is called
the probability integral transform. Now let U ~ Uniform(0, 1) and let
X = F~YU). Show that X ~ F. Now write a program that takes
Uniform (0,1) random variables and generates random variables from
an Exponential (3) distribution.

Let X ~ Poisson()) and Y ~ Poisson(u) and assume that X and Y are
independent. Show that the distribution of X given that X +Y =nis
Binomial(n,7) where 7 = A/(A + p).
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Expectation

3.1 Expectation of a Random Variable

The mean, or expectation, of a random variable X is the average value of X.

3.1 Definition. The expected value, or mean, or first moment, of
X is defined to be

(X) = f:r:dF( ) { > .xf(x) if X is discrete (3.1)

[zf(z)dz if X is continuous

assuming that the sum (or integral) is well defined. We use the following
notation to denote the expected value of X :

E(X)=EX :/:I:dF(;I:) = U= lux. (3.2)

The expectation is a one-number summary of the distribution. Think of
E(X) as the average Y ., X;/n of a large number of 11D draws X,..., X,,.
The fact that E(X) ~ Y__, X;/n is actually more than a heuristic; it is a
theorem called the law of large numbers that we will discuss in Chapter 5.

The notation [z dF(xz) deserves some comment. We use it merely as a
convenient unifying notation so we don’t have to write ) __z f(z) for discrete
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random variables and [ zf(z)dz for continuous random variables, but you
should be aware that [z dF(z) has a precise meaning that is discussed in real
analysis courses.

To ensure that E(X) is well defined, we say that E(X) exists if [, |z|dFx (z) <
0. Otherwise we say that the expectation does not exist.

3.2 Example. Let X ~ Bernoulli(p). Then E(X) = Y} zf(z) = (0 x (1 —
p)+(Qxp)=p =

33 Example. Flip a fair coin two times. Let X be the number of heads. Then,
E(X) = [zdFx(z) = ¥, zfx(x) = (0 x f(0)) + (1 x f(1)) + (2 x f(2)) =
(0><(1/4) (Ix(1/2)+(2x%x(1/4)=1.m

3.4 Example. Let X ~ Uniform(—1,3). Then, E(X) = [zd Fx(z) = [zfx(z)dz =
%ffl zdr=1.m

3.5 Example. Recall that a random variable has a Cauchy distribution if it
has density fx(z) = {m(1 + 2?)}~'. Using integration by parts, (set u = z
and v = tan™ 1‘),

00
/IIldF( 2/ 6 = [z tan_l(.r)]gc—/ tan~!zdx = oo
0

1+ 22

so the mean does not exist. If you simulate a Cauchy distribution many times
and take the average, you will see that the average never settles down. This
is because the Cauchy has thick tails and hence extreme observations are
common. m

From now on, whenever we discuss expectations, we implicitly assume that
they exist.

Let Y = r(X). How do we compute E(Y)? One way is to find fy(y) and
then compute E(Y) = [ yfy (y)dy. But there is an easier way.

3.6 Theorem (The Rule of the Lazy Statistician). Let Y = r(X). Then

E(Y) =E(r(X) = [ r(@)dFx(z) (3.3)

This result makes intuitive sense. Think of playing a game where we draw
X at random and then I pay you Y = r(X). Your average income is r(z) times
the chance that X = x, summed (or integrated) over all values of z. Here is
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a special case. Let A be an event and let r(z) = Is(z) where I4(z) = 1 if
z € Aand Ix(z) =0if z ¢ A. Then

B(IA(X) = [ 1a@fx(@)s = [ fx@)iz=B(X € 4).
In other words, probability is a special case of expectation.

3.7 Example. Let X ~ Unif(0,1). Let Y = 7(X) = eX. Then,

E(Y) = /01 e’ f(x)dz = /0l e“dr =e— 1.

Alternatively, you could find fy(y) which turns out to be fy(y) = 1/y for
l1<y<e Then, E(Y)= [[yf(y)dy=e—1.m

3.8 Example. Take a stick of unit length and break it at random. Let Y be
the length of the longer piece. What is the mean of Y'? If X is the break point
then X ~ Unif(0,1) and Y = 7(X) = max{X,1 — X}. Thus, r(z) =1 -z
when 0 < z < 1/2 and r(z) = z when 1/2 < 2 < 1. Hence,

1/2 1
]E(Y)=/1'(:t)dF(:l:)=/0 (l—z)dz+//2zd:t=%. .

Functions of several variables are handled in a similar way. If Z = r(X,Y)
then

E(Z) =E(r(X,Y)) = //r(z,y)dF(z, y). (3.4)

3.9 Example. Let (X,Y) have a jointly uniform distribution on the unit
square. Let Z =7(X,Y) = X2 + Y2, Then,

//r(zde(zy //(z +4?) dzdy
/ozdz+/ydy—§ [ ]

The k** moment of X is defined to be E(X*) assuming that E(|X|¥) < oc.

E(Z)

3.10 Theorem. If the k" moment exists and if j < k then the j*" moment
exists.

PROOF. We have

BXP = [ lebix(aas
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= / lz) fx (z)dx + / |z fx (z)dz
lz|<1

|z|>1

IA

/ fx(z)dz + / |z|¥ fx (z)da
lz|<1

|z|>1

IA

1+E(X/*) <o0. m

The k" central moment is defined to be E((X — u)*).

3.2 Properties of Expectations

3.11 Theorem. If Xi,...,X,, are random variables and ay,...,a, are con-

E (Z a.-x,) =Y aE(X). (3.5)

3.12 Example. Let X ~ Binomial(n,p). What is the mean of X? We could
try to appeal to the definition:

E(X) = /Ide(z) =Y 2fx(z) = iz(z)pz(l g

T =0

stants, then

but this is not an easy sum to evaluate. Instead, note that X = Y1 | X;
where X; = 1 if the i** toss is heads and X; = 0 otherwise. Then E(X;) =
(px 1)+ ((1 - p) x 0) = p and E(X) = E(¥, X;) = ¥, E(X;) = np. m

3.13 Theorem. Let Xi,...,X, be independent random variables. Then,

E (ﬁ X,) =[] Ex). (3.6)
i=1 i

Notice that the summation rule does not require independence but the
multiplication rule does.

3.3 Variance and Covariance

The variance measures the “spread” of a distribution. !

1We can't use E(X — p) as a measure of spread since E(X — ) = E(X) —p=p—p=0.
We can and sometimes do use E|X — pu| as a measure of spread but more often we use the
variance.




52 3. Expectation

3.17 Theorem. Let X1,..., X, be ID and let p = E(X;), 0% = V(X;). Then

2
EX,) =, ‘V(Y,,):% and E(S2) = o2

If X and Y are random variables, then the covariance and correlation be-
tween X and Y measure how strong the linear relationship is between X and
Y.

3.18 Definition. Let X and Y be random variables with means px and
py and standard deviations ox and oy . Define the covariance between
X andY by

Cov(x, ) = E((X — i)Y - w)) (3.11)
and the correlation by
Cov(X,Y
p=pxy =pXY)= g. (3.12)
oOxoy

3.19 Theorem. The covariance satisfies:
Cov(X,Y) = E(XY) — E(X)E(Y).
The correlation satisfies:
-1<p(X,Y) <1

If Y = aX + b for some constants a and b then p(X,Y) =1 if a > 0 and
p(X,Y)=-1ifa<0.IfX andY are independent, then Cov(X,Y) = p=0.
The converse is not true in general.

3.20 Theorem. V(X +Y) = V(X) + V(Y) + 2Cov(X,Y) and V(X - Y) =
V(X)+V(Y)—2Cov(X,Y). More generally, for random variables X, ..., X,

\Y% (Z a,-x,-) =Y a?V(Xi)+2Y Y aia;Cov(X;, X;).

i<j

3.4 Expectation and Variance of Important Random
Variables

Here we record the expectation of some important random variables:
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To see this, note that the marginal distribution of any one component of the
vector X; ~ Binomial(n,p;). Thus, E(X;) = np; and V(X;) = np;(1 — p;).
Note also that X; + X; ~ Binomial(n, p; + p;). Thus, V(X; + X;) = n(p; +
p;)(1 = [pi + p;]). On the other hand, using the formula for the variance
of a sum, we have that V(X; + X;) = V(X;) + V(X;) + 2Cov(X;, X;) =
npi(1 — pi) + np;(1 — p;) + 2Cov(X;, X;). If we equate this formula with
n(pi +p;)(1 — [pi + p;]) and solve, we get Cov(X;, X;) = —np;p;.

Finally, here is a lemma that can be useful for finding means and variances
of linear combinations of multivariate random vectors.

3.21 Lemma. If a is a vector and X is a random vector with mean p and
variance ¥, then E(aTX) = aTp and V(aT X) = aTSa. If A is a matriz then
E(AX) = Ap and V(AX) = ASAT.

3.5 Conditional Expectation
Suppose that X and Y are random variables. What is the mean of X among

those times when Y = y? The answer is that we compute the mean of X as
before but we substitute fx|y (z|y) for fx () in the definition of expectation.

3.22 Definition. The conditional ezpectation of X givenY =y is

| X fxy(aly)  discrete case
e == { J @ fx)y(z|y)dz  continuous case. (3.13)
If r(z,y) is a function of x and y then
. oab | Yor(z,y) fxy(zly)  discrete case
SRREIR=EE { Jr(x,y) fxiy(z|y)dx continuous case. (3.14)

Warning! Here is a subtle point. Whereas E(X) is a number, E(X|Y = y)
is a function of y. Before we observe Y, we don’t know the value of E(X|Y = y)
so it is a random variable which we denote E(X|Y). In other words, E(X|Y)
is the random variable whose value is E(X|Y = y) when Y = y. Similarly,
E(r(X,Y)|Y) is the random variable whose value is E(r(X,Y)|Y = y) when
Y =y. This is a very confusing point so let us look at an example.

3.23 Example. Suppose we draw X ~ Unif(0,1). After we observe X = z,
we draw Y|X = z ~ Unif(z,1). Intuitively, we expect that E(Y|X = z) =
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(1+x)/2. In fact, fy)x(y|lz) =1/(1 —z) forz <y <1 and

1 : 1+

1
E(Y|X = x) =/ y fyix(yle)dy = 7—— [ ydy = —

as expected. Thus, E(Y|X) = (14 X)/2. Notice that E(Y|X)
a random variable whose value is the number E(Y | X = z) =

= (1+X)/2is
(1 4+ x)/2 once
X = x i1s observed. =

3.24 Theorem (The Rule of Iterated Expectations). For random wvariables X
and Y , assuming the expectations exist, we have that

E[E(Y|X) =E(Y) and E[E(X[Y)]=E(X). (3.15)

More generally, for any function r(x,y) we have
E [E(r(X,Y)|X)] = E(r(X,Y)). (3.16)

PROOF. We'll prove the first equation. Using the definition of conditional
expectation and the fact that f(z,y) = f(z)f(y|x),

BEYVIX)] = [EVIX =o)fx@de= [ [uflo)dysa)de

//yf (ylz) f(z)dzdy = //yf(ﬂw)dﬂrdy =E(Y). =

3.25 Example. Consider example 3.23. How can we compute E(Y)? One
method is to find the joint density f(z,y) and then compute E(Y') = [ [y f(z,y)dzdy.

An easier way is to do this in two steps. First, we already know that E(Y|X) =
(1+ X)/2. Thus,

B B (1+X)
E(Y) = EE(Y|X) _IE( . )
- (I+EX))  (1+(1/2)

3.26 Definition. The conditional variance is defined as

V(Y|X = 2) = f (v — u(@))*f (ylz)dy (3.17)
where p(z) = E(Y|X = z).

3.27 Theorem. For random variables X and Y,

V(Y) = EV(Y|X) + VE(Y|X).
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3.28 Example. Draw a county at random from the United States. Then draw
n people at random from the county. Let X be the number of those people
who have a certain disease. If @ denotes the proportion of people in that
county with the disease, then @ is also a random variable since it varies from
county to county. Given @ = ¢, we have that X ~ Binomial(n,q). Thus,
E(X|Q = ¢q) = ng and V(X|Q = q) = ng(1 — q). Suppose that the random
variable @ has a Uniform (0,1) distribution. A distribution that is constructed
in stages like this is called a hierarchical model and can be written as

@ ~ Uniform(0,1)
X|Q =q ~ Binomial(n,q).

Now, E(X) = EE(X|Q) = E(nQ) = nE(Q) = n/2. Let us compute the
variance of X. Now, V(X) = EV(X|Q) + VE(X|Q). Let’s compute these
two terms. First, EV(X|Q) = E[nQ(1 — Q)] = nE(Q(1 — Q)) = n [q(1 -
9)f(g)dg = n [y q(1 — g)dg = n/6. Next, VE(X|Q) = V(nQ) = n?V(Q) =
n? [(g — (1/2))%dq = n?/12. Hence, V(X) = (n/6) + (n?/12). m

3.6 Moment Generating Functions
Now we will define the moment generating function which is used for finding

moments, for finding the distribution of sums of random variables and which
is also used in the proofs of some theorems.

3.29 Definition. The moment generating function MGF, or Laplace
transform, of X is defined by

x(t) = E(eX) = / e dF(z)

where t varies over the real numbers.

In what follows, we assume that the MGF is well defined for all ¢ in some
open interval around ¢ = 0. ?

When the MGF is well defined, it can be shown that we can interchange the
operations of differentiation and “taking expectation.” This leads to

, d d
v'(0) = [;t-Ee”‘] = [ae‘x] _ “EXe¥]p =E(X).

2A related function is the characteristic function, defined by E(e?*X) where i = /—1. This
function is always well defined for all t.
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