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Introduction

0.1 Structures in Mathematics

The focus of various sectors of Mathematics has shifted, in the last century,
from equations to structures. The reader has likely encountered some of
them, in Mathematics or related sciences.

Algebra denotes now the study of algebraic structures, like groups and
fields, vector spaces, lattices and Boolean algebras: all these are sets equip-
ped with some operations, satisfying some conditions.

Topology deals with the study of continuity, based on metric spaces, topo-
logical spaces, uniform spaces, etc. Algebro-topological structures, from
topological groups to Banach and Hilbert spaces, are at the roots of Func-
tional Analysis.

Furthermore, each of these structures has transformations that preserve
the structure, like the homomorphisms of an algebraic structure or the
continuous mappings of topological spaces. Collecting all the structures
of a given type, with the appropriate transformations, we form a higher
structure called a ‘category’; for instance, the category Gp of all groups
and their homomorphisms (with their composition law), or the category
Top of all topological spaces and their continuous mappings.

Categories can now be investigated, along the same lines used for alge-
braic or topological structures; we arrive thus at a theory of mathematical
structures.

0.2 A structural perspective

We want to present a general, elementary overview of these frameworks:
the main algebraic structures in the first two chapters, then the main topo-
logical ones in Chapters 3 and 4, all of them organised in categories in
Chapters 5 and 6.



2 Introduction

In all these structures, the basic facts are governed by universal properties
that follow and repeat the same pattern. Listing a few examples of the
many cases dealt with, we have:

- the cartesian product of structures of the same kind (in 1.2.3, 1.3.4, 1.4.8,
etc.),

- the free group on a set, or the free ring, or the free structure of a certain
kind (in 1.6.3, 5.4.2, etc.)

- the field of fractions of an integral ring (in 2.2.4),

- the completion of a metric space (in 4.5.6),

- the Hausdorff space associated to a general topological space (in 6.5.1),
- the universal compactification of a topological space (in 6.6.5).

Loosely speaking, in each case we want to find the ‘best solution’ of a
problem, with respect to the structures that we are considering and their
transformations; this solution is determined up to ‘isomorphism’, i.e. an
invertible transformation in the theory we are considering. Highlighting
this fact should help the reader to have a better understanding of these
constructions, and hopefully a deeper one.

A general formalisation of a universal property will be given within Cat-
egory Theory, in Section 5.4, but the various instances we are interested in
can be made precise from the start, as the reader can see in the examples
listed above.

This perspective involves Category Theory itself: for instance, the carte-
sian product of categories (in 5.2.5) is governed by the same universal
property as all cartesian products.

0.3 An inductive approach

This book draws on the author’s experience, while teaching courses of Al-
gebra, or Topology, or Category Theory, or Calculus.

Notions are presented in a concrete, ‘inductive’ way, starting from ele-
mentary examples. Then their theory is developed, with new examples and
many exercises. Rich structures are often presented before the more general
ones, formally simpler but didactically more abstract — in the same way as,
in the historical construction of mathematics, the former often preceded
the latter.

Whenever possible, the reader is guided to build the theory, through a
series of exercises. The unfolding — and beauty — of mathematics combines
and alternates ‘natural parts’, where everything seems to go on by itself,
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with sudden turns where new directions or unexpected results appear; the
reader should learn to work out the natural developments, and to realise
the power of real advances.

Each chapter and section has its own introduction; many references for
further reading or study are given.

0.4 Borders and links

This book is reasonably self contained. We assume, from the beginning,
the existence of the field R of real numbers, satisfying the axioms listed
in Section 1.1; this framework, the heritage of centuries of thinking and
research, is a source of inspiration and examples for our study of algebraic
and topological structures.

Some basic issues of Set Theory are reviewed in Section 1.2. Hints at
a foundational setting of Mathematics, where everything is constructed ab
ovo, can be found in Subsection 4.6.7.

Calculus is not studied here. The basic transcendental functions — expo-
nential and logarithm, sine and cosine — are only used in a marginal way,
e.g. for linear groups and complex numbers.

However, the properties of continuous real functions are explored in
Chapters 3 and 4. Limits of functions ‘at infinity’ are interpreted by com-
pactifications of euclidean spaces, in Section 4.3.

Some unusual links with Calculus and Physics also appear in the first
chapters on algebraic structures: for instance, the interpretation of a linear
differential equation with constant coefficients as a linear equation, in a
module of C'*-functions over a polynomial ring (in Subsection 2.6.8), or
the interpretation of physical dimensions as elements of a vector space over
the rational field, written in multiplicative notation (in Remark 2.3.6(b)).

0.5 Notation and conventions

Weak inclusion of sets is denoted by the symbol C, instead of the more
usual C, which is not used here. General notation for number sets and
other issues can be found at the beginning of Section 1.1.

A part marked with * is out of the main line of exposition. It may refer
to issues dealt with further down, or be addressed to readers with some
knowledge of the subject which is being analysed, or give references for
higher topics.

Most exercises have a solution or convenient hints. These are deferred
to the last chapter, or can be found below the exercise when they are
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important for the sequel. Easy exercises or exercises marked with * can be
left to the reader.

0.6 Acknowledgements
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I would also like to thank Dr Lim Swee Cheng, Ms Tan Rok Ting, and
Ms Soh Jing Wen, at World Scientific Publishing Co., for their kind, ef-
fective help in the publication of this book, together with Mr Loo Chuan
Min, the author of the cover.

Diagrams and figures are composed with ‘xy-pic’, by K.H. Rose and R.
Moore — a free package.
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Algebraic structures, I

An algebraic structure is a set equipped with some operations satisfying
some conditions — the axioms of the structure that we are considering.

A mapping f: X — Y between two structures of the same kind is called
a ‘homomorphism’ when it preserves the operations of the structure, and
an ‘isomorphism’ if — moreover — it is bijective. Then the inverse mapping
is also a homomorphism, and the objects X,Y have, essentially, the same
structure.

The algebraic properties of the set R of real numbers, with respect to the
main operations (addition and multiplication), are well known: properties
of associativity, commutativity, distributivity, etc. We begin by listing them
in Section 1.1, exploring their consequences, and how they can be extended
to other set of numbers, or other sets.

All the main algebraic structures get out of this analysis, from groups
to fields and vector spaces; they are explored in this chapter and the next.
Some elementary points of Set Theory are reviewed in Section 1.2; we also
need something about ordered sets, dealt with in Section 1.4.

Historically, group theory begins with Evariste Galois, in the 1830’s, and
Arthur Cayley in the 1850’s. Vector spaces on the real field were formally
introduced by Giuseppe Peano in 1888, as ‘linear systems’ [Pe].

The real development of the theory of groups and rings began in the first
decades of the last century, under the impulsion of Emmy Noether.

Van der Waerden's ‘Moderne Algebra’, in 1940, was a milestone in
this process: the book had many translations and augmented editions, as
‘Modern Algebra’, and later as ‘Algebra’ [Wal, in 1991. The dropping of
‘Modern’, in the title, reflects the fact that ‘Algebra’ denotes now — in
Mathematics — the study of all algebraic structures: algebraic equations,
the origins of this discipline, are just a part of it.
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Serge Lang’s [La2] is also a general textbook on this discipline. Books
on the main algebraic structures will be cited in the appropriate section.

1.1 Introducing fields and vector spaces

The set R of real numbers contains the set N of natural numbers 0, 1,2, ...,
1, ... used to count the elements of a finite set. It also contains the set Z
of all integers

e —2,-1,0,1, 2, ...

and the set @ of rational numbers, i.e. the quotients h/k of two integers,
with k £ 0.

We write as N*, Z*, Q*, R* the same sets without 0. The letter n usually
stands for a natural number; saying n > 1 we mean n € N*.

The elementary construction of the set C of complex numbers will be
dealt with in the first part of Section 2.7; it can also be read after the
present section.

We use as of now some basic notation for sets, that will be reviewed in Section
1.2. Writing A € X (or X D A) we mean that A is a subset of X, and X is a
superset of A: in other words, every element of A belongs to X; the sets can be
equal.

If A and B are subsets of X, A U B denotes their union and A N B denotes
their intersection, while A\ B is the set of elements of A which do not belong
to B. The complement X \ A is also written as Cx A.

The symbol {1, ..., zn} denotes the set formed by the elements of this list.
In particular, the set {x} has a unique element, and is called a singleton; we can
write {*} to avoid choosing a name for the element, when this is not relevant.

1.1.1 The real field and other fields

The set R of real numbers, also called the real line, comes with two main
operations, the addition, or sum, z + y and the multiplication, or product,
z.y (often written as xy), which are defined for all z,y € R.

Their main properties can be listed as follows.

(A1) (Associativity of the sum) For every x,y,z € R we have: x + (y +
z)=(z+y)+z
The result of both procedures can be written as x + y + z. Similarly, a finite
sum of real numbers x; + 22 + ... + ©, has a precise meaning.
(A.2) (Identity of the sum) There is a real number 0 such that, for all z € R:
O+z=xz=2+0.

This element is uniquely determined and called the identity of the sum. In



1.1 Introducing fields and vector spaces 7

fact, if 0" also satisfies the same relations, we deduce that: 0’ = 0+0 =0

(using first the fact that 0 is an identity, and then the fact that 0’ is also).
(A.3) (Opposite element) For every « € R there is some 2’ € R such that
z+2'=0=z2"+u=.

This element is determined by z and called the opposite, or additive inverse,
of x; it is written as —z. In fact, if 2" also satisfies the same relations, we
deduce that:

2=0+2"=@" +2)+2" =2" + (e +2)=2" +0=2",
using first the fact that 0 is an identity, then a property of 2", then associativity,
then a property of «’, then again a property of 0.
(A.4) (Commutativity of the sum) For every z, y € R we have: z +y =
Y+ x.

The reader will note that, taking this into account, one could write (A.2)
and (A.3) in a simplified form. We prefer to avoid this shortcut, for future
developments where commutativity is not assumed.

(A.5) (Associativity of the product) For every z.y, z € R we have: z(yz) =

(zy)z.
Again, this allows us to write iterated products, like xyz and z123 ... Zn,
without parentheses.
(A.6) (Distributivity of the product over the sum) For every z,y,z € R we
have:
z(y + z) = zy + 2z, (x+y)z =rxz+yz.

As usual, it is understood that zy + zz means (zy) + (zz): by default, a
product has priority over a sum.

(A7) (Identity of the product) There is a real number 1 such that, for all
zeR: lz=2r=ul.

This element is uniquely determined and called the identity of the product,
or also the unit of R. The proof is the same as in (A.2), changing notation from
sum to product: if 1’ satisfies the same relations, we deduce that: 1" = 1.1" = 1.

(A.8) (Commutativity of the product) For every x,y € R we have: zy = yz.

Also here we could simplify the other axioms using this property; but we do
not.

(A.9) (Inverse element) 1 # 0, and for every = # 0 there is some y such
that zy =1 = yx.

This element y is determined by z; it is written as 2~ and called the inverse
of z. The proof is the same as in (A.3), changing sum to product. The property
1 # 0 cannot be deduced from the others, as the ‘null ring’ will show, below.

More generally, a set K equipped with two operations satisfying the
previous properties is called a field. The properties (A.1-9) are called the
arioms of fields. The set of real numbers, equipped with its sum and
multiplication, is called the real field.
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The set @ of rational numbers is also a field, with the same operations
of real numbers (restricted to Q): see Exercise 1.1.3(i). It is called the
rational field.

*The field C of complex numbers is constructed in Section 2.7.*

1.1.2 The ring of integers and other rings

The set of integers Z, with its addition and multiplication, satisfies all the
axioms above, except (A.9); it is called the ring of integers.

More generally, a set R equipped with two operations that satisfy the
axioms (A.1-6) is called a ring. It is a unital ring if also (A.7) holds true,
and a commutative ring if (A.8) is satisfied.

7Z is thus a commutative unital ring, and is not a field. Rings of square
matrices will give examples of unital rings that are not commutative, in
Section 2.6. (Note that, in a ring, the addition is always assumed to be
commutative.)

The singleton {0}, with the operation 0 +0 = 0 = 0.0 (the only possible
one), is a commutative unital ring, called the trivial ring, or the null ring. Note
that the additive and multiplicative identities coincide — the only point of the
axioms of fields that is not satisfied here. (The name of the unique element is
of no relevance.)

In a unital ring R, an element z is said to be invertible if there is some
y € R such that xy = 1 = ya. Then y is determined by z, and written
as 1. These elements form the set Inv(R), analysed in Exercise 1.1.3(f)
below.

For instance, Inv(Z) = {—1,1}. In a ring, the set R\ {0} is often written
as R*; thus, a non-trivial commutative unital ring R is a field if and only
if Inv(R) = R*.

1.1.3 Ezxercises and complements
For a beginner, it is important to understand how the axioms (A.1-9) are
indeed the foundation of our use of the basic operations of real numbers.
This can be done with the following exercises, stated for a ring R, under
additional hypotheses when it is the case; all of them hold for a field.
Solutions can be found below.

(a) In a ring R we have:
—0=0, —(z)=z,  —(@+y=>x)+(y. (11

(b) (Cancellation law of the sum) In a ring R, from z 4y = x + z it follows
that y = z.
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(¢) For every « € R we have: .0 = 0 = 0.z. A unital ring where 0 = 1 is
trivial (a singleton). A unital ring where 0 is invertible is trivial.

(d) For every z,y € R we have:
rv(—y)=—zy=(-x)y,  (—x).(-y) ==y (1.2)

(e) One defines the difference © —y = x + (—y). Prove that the product
distributes over this ‘derived’ operation.

(f) If R is unital, the set Inv(R) of invertible elements contains the unit 1.
If z and y are invertible, also z~! and zy are, and

171 =1, (z=H™' =z, (xy) ' =y Ll (1.3)

Therefore the set Inv(R) inherits a multiplication from the ring; this opera-
tion is associative, has an identity (the unit of the ring), and every element has
an inverse. *(This will be expressed saying that Inv(R) is a group.)*

(g) (Cancellation laws of the product) If x € Inv(R), from zy = xz it follows
that y = z. Similarly, if yx = zx then y = z.

Thus, in a field, this multiplicative cancellation holds for the elements = # 0.

The same is true in any ring which is contained in a field, with the ‘same’

operations, like Z C Q. (But we will see rings where there exist elements
x,y # 0 with zy = 0.)
(h) In a field K one defines the quotient z/y = z.y~!
Prove that (z2)/(yz) = x/y, if y, 2z # 0.

(i) The set Q of rational numbers inherits from R the structure of a field.

, provided that y # 0.

(j) A field can be finite: for instance, one can form a field Fy = {0,1}
consisting of two distinct elements, which can be viewed as ‘even’ and
‘odd’.

Solutions. (a) Obviously 0 is the opposite of itself, = is the opposite of —z, and
(—x)+ (—y) is the opposite of # + y. Let us note that, without the commutativity
of the sum, in (A.4), we should compute the opposite of & +y as (—y) + (—z).

(b) Add —=z to each member of the equation.
(c) We have: 2.040 = 2.0 = 2.(0+ 0) = 2.0+ .0; cancelling z.0 we get 0 = x.0.

(d) We have: z.y + z.(—y) = z(y + (—y)) = .0 = 0, which means that z.(—y) is
the opposite of zy. The rest is an obvious consequence.

(e) Applying previous results, we have:
w(y —2) =a(y + (=2)) = vy + x(—2) = 2y + (—z2) = 2y — 22,
and symmetrically.
(f) As in (a); here the product is not assumed to be commutative.
(g) One multiplies by ™', at the left or the right.

h) In fact (zz 2)=ax.zy t.z7 =y h
( y y y
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(i) The rational numbers are ‘stable’ in R under sum, product and all the derived
items considered in properties (A.1-9), as shown by the following well-known
formulas of the ‘calculus of fractions’, for a,b,c,d € Z and b,d # 0

a/b+c/d = (ad + be)/(bd), 0=0/1, —(a/b) = (—a)/b,
(a/b).(c/d) = (ac)/(bd), 1=1/1, (b/d)~* =d/b.

(j) Following the interpretation of the elements 0,1 as ‘even’ and ‘odd’, we define
the operations in 2 as:

0+0=1+1=0, 0+1=140=1,
0.0=0.1=10=0, 1.1=1.
(Note that, here, 1 4+ 1 is not defined as in Z and R.)
These operations satisfy the axioms of fields. A direct proof, here, would be
tiresome and of little interest: the reader can wait until this result will follow

from a general construction, that will give a finite field having any prime number
p of elements (in 2.1.6(c)).

1.1.4 Subrings and subfields

A subring of a ring R is a subset R’ that satisfies the following conditions:

(i) ifz,ye R thenz+y € R,

(i) 0 e R,

(iii) if x € R’ then —x € R/,

(iv) if z,y € R then zy € R'.

Among them we always have the null subring {0} and the total subring
R. A subring of a ring is a ring, with the restricted operations.

For a unital ring, a unital subring is assumed to contain the unit of the
ring.

In a field K, a subfield K’ of K is a unital subring that also satisfies

(v)ifr € K and o # 0, then 27! € K'.

A subfield of a field is a field. @Q is a subfield of R, while Z is a unital
subring of both, but not a subfield.

A subring or subfield is said to be proper if it is not the total one.

Exercises and complements. The solutions can be found in Section 7.1.

(a) Prove that, in the definition of a subring, conditions (ii) and (iii) cannot be
left out.

(b) The set 2Z of all even integers forms a non-unital subring of Z. There are
infinitely many others. The only unital subring of Z is the total one.

(¢) The rational field @ has no proper subfields. Any subfield of R contains Q,
that is called the minimal subfield of R. (This topic will be developed in 2.2.1.)
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1.1.5 Homomorphisms of rings

Let R, S be rings. A mapping f: R — S is said to be a homomorphism
(of rings) if it preserves sum and multiplication, in the sense that, for all
z,ye R

(i) fle+y) =F=)+ fy),
(ii)  flzy) = f2).f ().

One can write

fle+ry)=f(z)+s fy),  flz.ry) = F(2).5 fy),

to distinguish the operations of our rings. This is only done when useful.

The homomorphism f also preserves the identity of the sum and all
opposites.

In fact f(Or) = Og, as follows from f(0) = f(0+0) = f(0)+ f(0), cancelling
f(0) in S. Moreover, for z € R, f(z) + f(—z) = f(z —x) = f(0) = 0.

The identity mapping R — R of a ring is a homomorphism, written as
id R. Given two consecutive homomorphisms f: R — S and g: S — T, the
composed mapping gf: R — T is a homomorphism: it takes any = € R to
the element g(f(z)) of T. It will also be written as g.f, when useful.

This partial composition law is associative (whenever legitimate): given
a third consecutive homomorphism h: T — U, we have

hgf) = (hg) f,

as both composites take any x € R to the element h(g(f(x))) of U. More-
over, an identity homomorphism acts as an identity, for every legitimate
composition: for a homomorphism f: R — S we have

f.(GdR) = f = (id S).f. (1.4)

If R’ is a subring of R, the inclusion R’ — R is a homomorphism. We
have already considered some of them

{0} 52Z—-Z—Q—R. (1.5)

An isomorphism f: R — S of rings is a homomorphism that has an
inverse: there is a homomorphism g: S — R such that gf =id R and fg =
id S. This is equivalent to saying that the homomorphism f is bijective,
i.e. injective and surjective, and g is the inverse mapping (see Exercise
1.1.6(c)).

When this is the case, we say that the rings R and S are isomorphic,
and write B = S. The inverse homomorphism is written as f=1.
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1.1.6 Exercises and complements
The following properties are important; their proof can be found below.

(a) For all rings R, S the constant mapping R — S at Og is a homomor-
phism, called the null homomorphism. If R,S are unital rings, a wunital
homomorphism f: R — S, or homomorphism of unital mngs, is a homo-
morphism that preserves the unit (and can only be null when S is the null
ring). If K is a field, there are no unital homomorphisms K — Z.

(b) Given two fields K and K', a homomorphism (of fields) f: K — K’
is defined as a homomorphism of unital rings. Prove that it preserves all
inverses, and that it is necessarily injective.

(¢) An isomorphism f: R — S is bijective. Conversely, if f: R — S is a
bijective homomorphism of rings, the inverse mapping is a homomorphism.
The same holds for homomorphisms of unital rings.

(d) Isomorphism is an equivalence relation between rings.

(e) An isomorphism f: R — S of rings, between unital rings, is necessarily
unital; more generally, this holds for every surjective homomorphism of
rings whose domain is a unital ring.

Solutions. (a) The first point is obvious. If f: K — Z is a unital homomorphism,
J(1x + 1x) = 2, therefore 1x + 1x # Ok, and 2 should be invertible in Z.

(b) First, if x # 0 in K, then f(z).f(z™") = f(z.z™") = f(1) = 1. Secondly,
suppose that z,y € K and f(z) = f(y). Therefore f(x —y) = 0 is not invertible
in K', and & — y = 0, which means that = = y.

(c) The inverse mapping g is also a homomorphism, as we can cancel f in the
following equalities

flg(z) +g(y) = f(g(=)) + fl9(y) = v +y = flg(x +y)),
Jlg(x)-9(y) = fg()).f(g(y) = z.y = [(g(z.y))-

In the unital case one cancels f in: f(g(ls)) = 1s = f(1r).

(d) Reflexivity comes from the identity mapping id R of any ring. Symmetry
follows from the definition, and transitivity from composing two consecutive iso-
morphisms.

In fact, the composite gf of two consecutive isomorphisms f: R — S and
g: S — T is an isomorphism, with inverse f~'.¢g"': T — R.

(e) Plainly. the element f(1g) is a unit for every element f(z) of S.

1.1.7 Vector spaces on a field

The reader likely knows that many physical quantities — like velocity, ac-
celeration, force — are expressed by a vector. Vectors can be added and
multiplied by real numbers, forming a ‘vector space’, an algebraic struc-
ture which appears everywhere in Mathematics and Physics.
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We begin by an important instance, likely known in some form to the
reader: the set F(T,R) of all functions f: T — R defined on a set T, with
values in the real field.

This set has two basic operations (for f,g € F(T,R) and X € R):

(f +9)(t) = £(t) + 9(t),
(Af)(E) = A f(1).

The first operation acts on two functions f,g: T — R, yielding their sum
f + g; this is computed pointwise, at each t € T, by a sum f(t) + g(t) of
real numbers. The second operation acts on a number A € R and a function
f: T — R, yielding their scalar multiplication Af (also written as \.f);
again, this is computed pointwise, by products A.f(f) in R.

In this context a function f € F(T,R) is called a vector, a number A € R
is called a scalar and the set F(T.R) is called a vector space, or a linear
space, on the real field.

(1.6)

More generally, we can replace the real field with any field K. A vector
space on the field K is a set X equipped with two operations: the sum
z +y (for z,y € X) and the scalar multiplication Az (for z € X and
A € K). In both cases the result is an element of X; these elements are
called wvectors, while the elements of K are called scalars. The following
axioms must be satisfied.

(VS.1) (Associativity of the sum) For every z,y,z € X we have: x +
(y+z2)=(x+y) +=

(VS.2) (Identity of the sum) There is a vector 0 € X such that, for all
zeX: 0+zx=x=2+0.

(VS.3) (Opposite element) For every x € X there is some =’ € X such that
r+a'=0=2"+uzx.

(VS.4) (Commutativity of the sum) For every xz,y € X we have: x +y =
Y+

(VS.5) (Distributive property, I) For every x,y € X and X € K we have:
Az +y) =+ \y.

(VS.6) (Distributive property, 1) For every x € X and A\, u € K we have:
(A p).x = Az + pa.

(VS.7) (Compatibility) For every z € X and A, € K we have: (\p).z =
A (px).

(VS.8) (Unitarity) For every x € X we have: 1.z = z.

The reader will note that the axioms (VS.1-4) coincide with the axioms
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(A.1-4), for the sum in a field. (In both cases, as we will see in Section
1.3, we are saying that our structure is a commutative group, with respect
to the sum.) Also here the null vector 0 is uniquely determined; the vector
opposite to a vector x is determined by the latter, and written as —x; the
cancellation law of the sum holds true.

The axioms (VS.5) and (VS.6) are distributive properties of the scalar
multiplication, with respect to the sum of vectors or scalars. Usually the
context is sufficient to distinguish the null vector from the null scalar;
otherwise, the null vector can be written as 0, or Ox.

(In Physics and Mathematical Physics, vectors are often distinguished by
special characters, either underlined, or boldface, or marked with an arrow.)

The structure of vector spaces will be studied in Section 2.3, but a reader
can find attractive (and certainly useful) to explore as of now their notions
of homomorphism, isomorphism and substructure, with respect to a fixed
field of scalars.

Erercises and complements. (a) For every set T, the set F(T,R) equipped with
the operations defined above is indeed a real vector space. More generally, any
field K gives a vector space F'(T, K) of functions f: 7" — K. *(There is also a
pointwise product of functions (fg)(t) = f(t).g(t), which makes F(T,R) into a
K-algebra, see 2.5.1.)*

(b) A singleton {x} has a unique structure of vector space on K, with z+z =«
and Az = x. We have thus the trivial, or null, vector space on the field K, often
written as {0}.

The vector space F(T, K) is trivial when T' = 0: it has one element, the unique
mapping ) = K (see 1.2.1).

(c) For a positive integer n, the set K™ = K x...x K of n-tuples & = (x1, ..., 2n)
of elements of K is a vector space on the field K, with the following operations
(1, s @n) + (Y15 Un) = (1 + Y1y oes Tn + Yn),

AE1y ey ) = (A1, ey M) (1.7)

For n = 1 we get the set K as a vector space on itself.

In particular, R" is a vector space on the real field R, formed of all the n-tuples
x = (21, ...,%n) of real numbers. We assume that the reader is familiar with the
representation of R as a line, of R? as a plane and R? as the three-dimensional
space (after a system of cartesian coordinates is fixed in each of these geometrical
structures).

(d) For the finite set T = {1,...,n}, the vector space F(T, K) can be identified
with K™.

(e) For every vector z in a vector space X we have: 0.z =0 and (—1).z = —z.

(f) (Cancellation law of the scalar multiplication) If X # 0, from Az = Ay it
follows that o = y.

() An expression Az + py is called a linear combination of the vectors x,y with
scalar coefficients A, u. More generally we have linear combinations

Zi ANiZi = AZ1+ oo + AnTn ()\i (S K, €T € X) (1.8)
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1.1.8 The natural order of the real field

We come back to examining the set R of real numbers. After addition and
sum, governed by the axioms (A.1-9), in 1.1.1, the set R is equipped with
a binary relation x < y, called the natural order of real numbers.

The main new properties are listed below, as (A.10-16).

(A.10) (Reflezivity) For every z € R we have: z < .

(A.11) (Transitivity) For every z,y,z € R, if z < y and y < z then = < z.

< <

(A.12) (Anti-symmetry) For every z,y € R, if zx < y and y < = then x = y.
<
~N

(A.13) (Totality) For every x,y € R we have x < y or y < z.

This group of axioms only deals with the order relation; it says that R,
equipped with the relation z < y, is a folally ordered sel. The relation x < y is
also written as y > z, while z < y (and y > z) means that < y and = # y.

One can rewrite the axioms (A.10-15) using the relation x < y (see Exercise
1.1.9(a)), but this is not convenient in the general theory of ordered sets.
(A.14) (Addition and order) For every x,y,z € R, if 2 < y then 2z + z <
Y+ z.

(A.15) (Multiplication and order) For every z,y,z € R, ifz <y and 2 2 0
then zz < yz.

These two axioms state the compatibility of the order relation with the main
operations. Globally, the axioms (A.1-15) say that R, equipped with addition,
multiplication and order, is a totally ordered field. Note that we have written
the compatibility conditions (A.14-15) in a form that takes advantage of the
commutativity of both operations.

The rational field @, with the natural order, is also a totally ordered field.
(A.16) (Completeness) Every subset A of R which is non-empty and upper
bounded has a least upper bound, written as sup A.

Now, the axioms (A.1-16) say that R is a complete totally ordered field. We
will see that this list of axioms determines the real field, up to isomorphism, i.e.
up to a bijection that preserves addition, multiplication and order (see 2.2.7).

To make sense of the last axiom, we examine now various notions for a
subset A of R, related to the ordering. We take advantage of the reversion
symmetry r(z) = —z, which reverses the order of R (by Exercise 1.1.9(b));
the image of A under this symmetry is written as:

—A={-x|zeA}={zeR| —ze A}. (1.9)

The subset A is said to be upper bounded if it has an upper bound in R,
i.e. there is some k € R such that z < k, for all x € A. Symmetrically, A
is said to be lower bounded if there is some lower bound h € R, with h < =
for all z € A; it is said to be bounded if it satisfies both conditions. Plainly,
A is lower bounded if and only if —A is upper bounded.
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We write as max A the greatest element, or mazximum, of A, if it exists:
it is a real number a such that:

a€ A, forevery z € A, z < a. (1.10)

It is uniquely determined, because of the anti-symmetry property of the
order. Symmetrically, min A denotes the least element, or minimum, of A,
if it exists; then —min A = max (—A).

We write as sup A the least upper bound of A, if it exists

sup A =min{k € R | for every z € A, x < k}. (1.11)

It is characterised as the real number « such that:

(1) for every z € A, z < «,
(ii) if £ € R and for every z € A, z < k, then o < k.

Plainly, A has a maximum if and only if the supremum of A exists and
belongs to A; then max A = sup A.

Symmetrically, we write as inf A the greatest lower bound of A, if it
exists; then —inf A = sup(—A). The completeness axiom is equivalent to
saying that every subset of R which is non-empty and lower bounded has
a greatest lower bound.

1.1.9 Exercises and complements

(a) Write a set of axioms for the relation = < y, equivalent to the previous
(A.10-15).
(b) Consider the reversion symmetry r: R — R defined by r(z) = —x, and
note that this mapping is involutive, i.e. inverse to itself: rr = idR (and
therefore bijective).

Prove that r reverses the order relation: if < y then —x = —y. Prove
also that z < y and z < 0 imply zz > yz.

(c) Prove that 22 > 0, for every = € R; this implies that 0 < 1 (an ‘obvious’
fact, but also a consequence of the axioms) and z < x + 1, for every z.

(d) (Modulus) The modulus, or absolute value, of the real number z is
defined as:

|z| =z, for z =0, |z| = —z, for 2 <0, (1.12)

so that, for every € R, |z| = 0, aud |z| = 0 if and only if = 0. Note that
x £ |z|, | — x| = |x| and |x|? = 2. There are other important properties,
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for z,y,z € R
|z +y| < |z + |yl (subadditive property),
lzy| = ||y (multiplicative property), (1.13)
|z —y|+ |y —z| =2 |z — 2| (triangle inequality).

(e) For the empty subset, every real number is (trivially) a lower and upper
bound; there is no inf nor sup. The total subset has no lower nor upper
bound in R. The subset A = {z € R| 2 > 0} of all positive real numbers
has inf A = 0, no minimum and no upper bound.

(f) (The integral part) Every x € R has an integral part in Z
] =max{k € Z | k £ z}, (1.14)
that satisfies the following inequalities
[] Lo < [z] + 1. (1.15)

In particular, for every x € R, there is an integer > z.

1.2 Sets and algebraic structures

Mathematics is built with some primitive items: these are not defined but
their use has to respect some rules. At an informal level, these primitive
terms have a concrete meaning, which guides our use.

The foundation commonly used is Set Theory. Here we only give a
brief, informal review of some basic notions about sets, that will be used
throughout the book. This approach will necessarily leave some points
undefined, without affecting our use.

Formal Set Theory is a complex subject, outside of our scopes. An
interested reader is referred to [Ha, Kap, Je, Fk]; the first two books are
more elementary.

1.2.0 Sets and elements

We think of a set X as a ‘collection of elements’. The expression z € X is
read as x is an element of X, or x belongs to X, or x is in X.

The sets X, Y are equal (written as X =Y) if and only if they have the
same elements.

The relation X C Y, read as X s contained in' Y, or X is a subset of Y,
means that every element of X also belongs to Y. Equivalently we write
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Y D X, read as Y contains X, or Y is a superset of X. Thus X =Y is
equivalent to the conjunction: X CY and ¥ C X.
X is a proper subset of Y it X C Y and X # Y, a derived notion of marginal
importance.

The empty set () is defined by having no elements, and is contained in
any set. A singleton {z} is defined by having a unique element, namely .
One writes as {x1,22,...,2,} the set whose elements are specified in the
list (and nothing else).

Curly brackets are also used to denote the subset of a set formed by the
elements satisfying a certain property, as in the following examples:

{reN|2® =z} ={0,1}, {z € N |z is even}. (1.16)

Remarks. (a) Different letters or symbols can denote the same thing. Thus, if
n =z 1, the set {x1,22,...,2n} has at least one element and at most n; it has
precisely n elements if and only if all x; are different. Even when we speak of
“two elements z,y”, the common use in mathematics does not assume that they
are different: this should be explicitly said, if needed.

(b) The expression “x is an element of X” is a relation between sets, and does
not mean that = has a different status. This relation is subject to various axioms,
which imply that 2 € x cannot happen. It is also well known that one cannot
form ‘the set of all sets’.

(¢) The procedure exemplified in (1.16) describes a subset of a given set. The
reader probably knows that an illegitimate use, like S = {z | z ¢ =} leads to a
contradiction, Russell’s paradoz: S € S implies S ¢ S, and conversely.

An expression {z | p(x)}, where p(z) is some property in the variable x, is only
acceptable when we are leaving understood that z is required to belong to some
set, specified by the context.

1.2.1 Mappings and cardinals

A mapping f: X =Y from the set X to the set Y is defined by a formula
f(z) that transforms every element x of the set X into a unique element
f(z) of the set Y, read as “f of 7. The notation = — f(x) denotes the
action of f on an element of X.

The mapping f is said to be defined on X = Dom f, the domain of f,
and to take values in Y = Cod f, the codomain of f. All the mappings
X — Y are elements of a set, written as Map(X,Y), or also as Y ¥ (a
‘cartesian power’: see (1.30)).

We also speak of a function f: X — Y; this term is commonly used when
the codomain Y is the real field, as in 1.1.7, where the set Map(T', R) is written
as F(T,R).

Given two consecutive mappings f: X — Y and g: Y — Z (where the
codomain of f coincides with the domain of g), the composed mapping is
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written as gf, or g.f, and defined as:

gf: X =2, (9f)(x) =g(f(x)) (for z € X). (1.17)

Composition is associative (when legitimate): given a third mapping
h: Z — T we have: h(gf) = (hg)f. Moreover, every set X has an identity
mapping, written as id X or 1x

dX: X — X, ([dX)(z) == (for z € X) (1.18)

which acts as an identity for legitimate compositions: f.(id X) = f and
(dY).f=f,for f: X =Y.

A mapping f: X — Y is injective if, for all z,2’" € X, the relation
f(x) = f(2) implies & = a'. Tt is surjectwve if, for every y € X, there exists
some z € X such that f(z) =y.

The mapping f: X — Y is bijective, or a bijection, or a bijective corre-
spondence, if it is injective and surjective; equivalently, this means that for
every y € X there exists a unique = € X such that f(xz) =y. We can then
construct a mapping g: Y — X, backwards, letting

g(y) =z ifand only if f(z)=1y (foryeY, z € X), (1.19)

and we say that the sets X, Y are equipotent.

A mapping f: X — Y is invertible if there is a mapping ¢: Y — X such
that gf =id X and fg = idY. Plainly, this is the case if and only if f is
bijective. The inverse function g, constructed as in (1.19), is determined
by f, and can be written as f~'.

An indezed family x = (;);c; of elements of X is a mapping z: [ — X,
written in index notation; the domain I is then called the set of indices of
the family.

For each set X there is a unique mapping ) — X, and therefore a unique
empty family (x;);cp of elements of X.

For a finite set, X will denote the (natural) number of its elements.
More generally, each set X has an equipotent cardinal set §X, and two sets
X, Y have the same cardinal if and only if there exists a bijection X — Y.
The smallest infinite cardinal is Ry = N, read as ‘aleph-zero’. (Something
more on cardinals will be said in Subsection 1.7.8.)

Plainly, a subset of a finite set X with the same cardinal must be the
total one. The reader may know that this fact is no longer true for an
infinite set X: see Exercise (e) below.

Ezercises and complements. (a) (Commutative diagrams) Mappings between sets
(or structured sets) can be represented by vertices and arrows in a diagram, as in
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the examples below, to make evident their relationship and which compositions
are legitimate

NE

B
lk X ==Y (1.20)
C D

C

As an important property, we say that such a diagram is commutative if:

- whenever we have two ‘paths’ of consecutive arrows, from a certain object to
another, the two composed mappings are the same,

- whenever we have a ‘loop’ of consecutive arrows, from an object to itself, then
the composed mapping is the identity of that object.

Thus, the first diagram above is commutative if and only if gf = h. For the
second, commutativity means that £f = d = gh. For the third, it means that
vu =1d X and wv =idY (so that these mappings are inverse to each other).

(b) If X and Y are finite sets, with m and n elements, then the set Y* =
Map(X,Y) has n™ elements.

(¢) In particular, for X = 0, the set Y? = Map(),Y) is a singleton (also when
Y =), and n® = 1. In the context of natural numbers, 0° is defined and equal to
1. (The reader likely knows that, in the context of real numbers, the expression
0° is preferably left undefined.)

(d) For consecutive mappings f: X Y and g: Y —- 7

- if f and g are injective (resp. surjective, bijective), so is the composed mapping
g/,

- if gf is injective, then f is also; if gf is surjective, then g is also.

(e) The set 2N of even natural numbers has the same cardinal as N, as the
mapping f: N — 2N defined by the formula f(n) = 2n is bijective.

(f) Let us note that the mapping N — N defined by the same formula is not
surjective. Injectivity and surjectivity of a mapping f: X — Y only make sense
with respect to assigned sets, as a domain and a codomain.

*(g) As another example, the mapping f: R — R, f(z) = 22, is neither injective

nor surjective, as f(—1) = f(1) and we have seen that f(x) > 0, for all = € R.
But the reader likely knows (and will also find in 1.7.4) that, taking restrictions
to the interval J = {z € R | z = 0}:

- the mapping g: J — R defined by the same formula is injective, not surjective,
- the mapping h: R — J defined by the same formula is surjective, not injective,

- the mapping k: J — J defined by the same formula is bijective, and its inverse
is the main square root /—: J — J.

We also note that an expression like ‘the square roots of the number z’ (or the
formula ++/z) does not define a mapping J — R, as it takes two values on each
positive number. (Multi-valued relations can be considered, with due care, but
are not mappings.)
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1.2.2 The power set
Every set X has a power set PX, whose eclements are the subsets of X:

AePX & ACXK, (1.21)

where the symbol < stays for ‘if and only if’ (also written as ‘iff’).
The relation of (weak) inclusion A C B in PX is an order relation (see
Section 1.4). In other words, for all A, B,C' € PX we have

ACA (reflexivity),
ACBcCcC = AcCC (transitivity), (1.22)
ACBCA= A=B8B (anti-symmetry),

where the symbol = stays for ‘implies’.
The least element of PX is the empty subset ; the greatest element is
the total subset X.

The set PX has two main operations, called union and intersection

AUB={ze X |z € Aorxec B},

(1.23)
ANB={re X |z € Aand z € B}.

Let us note that ‘or’ is (always) meant in the inclusive sense, which admits
that both conditions can hold: AN B C AU B. The algebraic properties of
these operations will be examined in Section 1.4. Two subsets A, B are said to
be disjoint when AN B = (); otherwise, we say that A meets B. The set AN B
is also called the trace of A on B, or the trace of B on A.

More generally, we can start from a family (A;);cr of subsets of X,
indexed by a set I (possibly infinite), and consider their union and inter-

section:
U; A; = {x € X | there exists ¢ € I such that x € A;}, (1.24)
NiAi={zeX| foralliecl, zc A} '

The empty family of subsets has union () and intersection X. We also
recall that A\ B is the set of elements of A which do not belong to B.
A mapping f: X — Y induces two mappings
fe: PX = PY, i PY - PX, (1.25)

where f, takes a subset A C X to its image f(A) C Y, while f* takes a

subset B C X to its preimage f~'(B) C X
f(A) ={y €Y | there exists z € A such that y = f(z)}, (1.26)
J7HB) ={z e X | [(x) € B} '

In particular, the subset Im f = f(X) C Y is said to be the image of the
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mapping f; the latter is surjective if and only if Im f = Y. One often writes
f(A) in the shortened form {f(x) | x € A}. Note also that, for a bijective
mapping f, the preimage f~!(B) is the same as the image of B with respect
to the inverse mapping f~!, and there is no conflict of notation.

This topic, the transfer of subsets along a mapping, will be further ex-
amined in 6.4.3.
Ezercises and complements. (a) Given a mapping of sets f: X — Y, the mapping

f«: PX — PY of direct images preserves the unions, but need not preserve
intersections, including the empty one.

On the other hand, the preimage-mapping f*: PY — PX preserves all unions
and intersections.

(b) If I is a set, and for each i € I we have a set A; (defined by some ‘well-formed
formula’), one assumes the existence of a set X that contains all A;. Thus all A;
belong to PX, and form an indexed family (A;):c; in the latter.

The formulas (1.24), for union and intersection, make sense also in this case, as
their result does not depend on the superset X we are using, with one exception:
the intersection of the empty family is only defined for a specified superset X.

(c¢) For each set X, there is a canonical bijection
x: PX — Map(X, {0,1}), (1.27)
that takes a subset A C X to its characteristic function xa: X — {0,1}.
The latter is defined on each z € X as
xalz)=1, if z€ A, xa(z) =0, otherwise. (1.28)
Loosely speaking, the term ‘canonical” highlights the fact that x is defined by
an explicit formula, not depending on choice.

(d) Therefore, if X is finite, with n > 0 elements, the power set PX has 2"
elements. From combinatorics, we know that X has (:) subsets of k elements,
for 0 < k < n; this gives again §(PX) = 2".

(e) For every set X, X < #PX. (Set theory proves that §X < §PX, see 1.7.8.)

1.2.3 Cartesian products and their universal property

Let (A4;);cr be a family of sets, indexed by a set I. As we have seen (in
1.2.2(b)), there is some set X such that A; C X for all indices ¢, and we
can take X = U; A;. The cartesian product A = Il;c; A; is defined as a
subset of the set Map(I, X)

A={z: I — X |z(i) € A, forall i € I'}. (1.29)

An element x is generally written as an indexed family (z;);cr, or simply
In particular, if all the factors A; are the same set X, we have a cartesian
power

X" =Tlie; X = Map(I, X). (1.30)
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Coming back to the general case, the cartesian product comes with a
family of cartesian projections

pi: A— A;, pi((xi)icr) = x4, (1.31)

which allows us to formalise our construction, in a way that can be adapted
to any kind of structured sets we will consider — a unifying approach already
stressed in the general Introduction, in Section 0.2.

The cartesian product of a family of sets (A;);cr can be viewed as a set
A provided with a family of mappings p;: A — A; (for i € I), satisfying
the following universal property of the product (of sets):

(i) for every similar pair (B,(fi: B — A;)icr) formed of set B and a
family of mappings f;: B — A;, there exists precisely one mapping f: B —
A such that

B—fe—A

fi\A l"” pif = fi (foriel). (1.32)

A

In fact, all these triangles commute (as defined in 1.2.1(a)) if and only if
the mapping f: B — A is defined as f(y) = (fi(¥))ier, for all y € B.

It is crucial to note that the universal property determines its solution
up to a unique bijection. In fact, if the pair (A’, (g;)ics) is also a solution
of (i), we have two (well determined) mappings

f: A — A, pif = q; (for i € 1),

1.33
g: A— A, @9 = pi (for i € 1), ( )

and they are inverse to each other. This comes out of the fact that
qi-(9f) = pif = qi = ¢ id A,
for all indices 7, so that gf = id A’; similarly, fg = id A.

A binary product is written as X; x X5, and an element is written as
an (ordered) pair (z1,x2), with 1 € X; and 23 € X5. This is an indexed
family (on the set I = {1,2} C N), and determines its first term x; and
its second term xo; therefore (x1,x2) = (y1,y2) if and only if ;7 = y; and
To = Y2.

Similarly, in a finite product X; x X3 x...x X, an element is written as
an (ordered) n-tuple (x1,x2, ..., z,), with z; € X.

Ezercises and complements. (a) If in formula (1.29) we replace the set X = U 4;

with any set X’ which contains all the sets A;, we get a set A" C Map(/, X')
related to A by a canonical bijection.
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(b) The reader is warned that the cartesian projections p;: A — A; of a product
are not always surjective. This fails whenever some factor A; is empty (so that
the product is empty) and some other factor is not. Outside of this situation,
the axiom of choice allows us to conclude that all projections are surjective (see
1.7.6).

(¢) A unary product, of a family (A) consisting of a single term, is the set A with
its identity projection. The product of the empty family (A;);cp of sets has one
element, the empty mapping ) — X (however we choose the superset X), with
no projection.

(d) (Disjoint unions) Given a family (A;);er of sets, we construct their ‘disjoint
union’, namely the set

A= UiAiX{i}, (1.34)
where we have replaced the original A; with a set B; = A; x{i} in obvious
bijection with the former, so that the new sets are pairwise disjoint: if 7 # j then
Bin Bj =0.

This set comes equipped with a family of mappings
ui: Ai = A, ui(x) = (x,1), (1.35)
which satisfies the following universal property of the sum (of sets):

(ii) for every similar pair (B, (fi: A; — B)ier) formed of set B and a family of
mappings f; : A; — B, there exists precisely one mapping f: A — B such that

A s B
ui_T / fui = f; (foriel). (1.36)
A;

Also here the solution of the universal property is ‘essentially unique’, up to a
unique bijection. Note also that this property is ‘dual’ to the universal property
of the product, in the sense that any of them is turned into the other ‘by reversing
the arrow of each mapping’; all this will be made precise within category theory,
in Chapter 5.

(e) If, in the previous point, all A; coincide with a set X, their disjoint union
(1.34) is the cartesian product X x /.

1.2.4 FEquivalence relations and quotient sets

A relation R in a set X is a subset R C X xX. When (z,y) € R, we say
that x is R-related to y; this is often written as x Ry.

The relation R is said to be:

(i) reflexive if, for all z € X, we have x Rz,

(ii) symmetric if, for all z,y € X, z Ry implies y Rz,

(iii) transitive if, for all x,y,z € X, x Ry and y Rz imply = R z.

We say that R is an equivalence relation when these three properties are
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satisfied. Then, for each x € X, the equivalence class of x (with respect to
R) is the subset
o] = {«' € X | s Ra'} € X. (1.37)

also written as [z]g or Z. The element x is said to be a representative of
the class [z]; the element 2’ is also if and only if x Rz’

The quotient of the set X modulo R, written as X/R, is the set of all
equivalence classes of X.

Formally, X/R is a subset of PX; but we generally think of X/R in a
more intuitive way, as if we had ‘identified’ all the elements of X which
lie in the same equivalence class. Thus, the equivalence relation x = £’
(more formally: = 2’ or © = —z') in the real line can be described as:
‘the relation that identifies each number with the opposite one’.

The canonical projection

p: X = X/R, p(x) =[z] (forz € X), (1.38)

is always surjective.

The equivalence relations of a set X are ordered by inclusion R C R’ (as
subsets of X x X). The finest, or smallest, is the equality relation z = y in
X, determined by the diagonal of the product X x X

Ax ={(z,y) e XxX |z =y} (1.39)
The coarsest, or largest, is the relation z,y € X, determined by the total

subset X x X.
A mapping f: X — Y has an associated equivalence relation Ry on X:

xRz’ if and only if f(z) = f(2'). (1.40)
There is a unique mapping g: X/Ry — Y such that

X#Y

Pi P - ;‘f f = gp. (141)
X/R

In fact, we can (and must) define g([z]) = f(x), for all z € X. The
mapping f is injective if and only if Ry is the equality relation.

Ezercises and complements. (a) The quotient of the set X modulo the finest
equivalence relation A x is in canonical bijection with X itself. The quotient of
the set X modulo the coarsest equivalence relation is a singleton if X ## (), and
is empty otherwise.

(b) In the set of all straight lines of the euclidean plane (or the euclidean 3-
dimensional space), parallelism is an equivalence relation. The quotient set can
be interpreted as the set of directions of the plane (or the space).
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(¢) (Partitions) A partition of a set X is a family of disjoint subsets (A;)ier that
cover X

X =Uier As, AinAj =0 (fori#jinl). (1.42)

This amounts to giving an equivalence relation R in the set X.

(d) Every binary relation R on the set X generates an equivalence relation E,
the least equivalence relation of X containing R.

1.2.5 The canonical factorisation

A mapping f: X — Y between sets has a canonical factorisation

f

X —Y

pl Tm F=mgp, (1.43)
X/Ry — Im f

where:

- the (surjective) mapping p is the canonical projection of the domain X
onto its quotient modulo the associated equivalence relation Ry,

- the (injective) mapping m is the inclusion of the image Im f into the
codomain Y,

- the (bijective) mapping g: X/R; — Im f is defined by g([z]) = f(z) (for
z € X), and is the only mapping such that f = mgp.

From (1.43), we can deduce a factorisation of f formed of a surjective
and an injective mapping

J=(mg).p, (1.44)

which is ‘essentially unique’, as made precise in the exercise below.
(Strictly speaking, there are infinitely many such factorisations, including

f=m.gp).)

Ezercises and complements. (a) Prove the following property of ‘essential unique-
ness’, up to a determined bijection.

Given two factorisations f = mp = m'p’, where the mappings p,p’ are sur-
jective and m,m’ are injective, there is precisely one bijection 4 such that the
following diagram commutes

X Pooa "oy
| . .
R
m

14



1.2 Sets and algebraic structures 27

1.2.6 Induction
Let A C N. If the following conditions are satisfied

(i) 0€A (initial step),
(i) foreveryne A, n+leA (inductive step),

we conclude that A = N. (A well-known procedure, called a proof by
imduction.)

In fact, if there is some natural number that is not in A, we can let m
be the least of them. But m > 0, by (i), and therefore m — 1 must be in
A. Applying (ii) we get m € A, a contradiction.

If we replace the initial step with nyg € A, the conclusion says that A
contains all the natural numbers > ng.

Ezercises and complements. (d) Prove by induction that the sum s, =0+ 1+
2 + ... + n (of integers) can be expressed as n(n + 1)/2, for all n € N.

(b) (Complete induction) Replacing the inductive step (ii) by the following (ap-
parently) weaker assumption:

(ii") for every n € N*,if {0,1,....,n — 1} C A then n € A,

the conclusion still holds: A = N. The procedure is now called a proof by complete
induction.

(c) (Prime factor decomposition) Let us recall that a natural number p > 1 is
said to be prime if it has no proper divisor in N: if p = ab then a = 1 or a = p.
Prove that any natural number n > 1 is a product of prime numbers. (One can
add 1, as the product of the empty family of prime numbers.)

1.2.7 Structures and categories

A set can carry structures of various kinds. We have seen various examples
in Section 1.1:

- algebraic structures, defined by operations, like fields, rings, and so on,
- order structures, defined by a relation, like ordered and preordered sets,
- ordered algebraic structures, like ordered fields,

and will see other kinds later, like the topological and the algebro-topological
structures.

In each of these kinds, there are ‘privileged mappings’, or morphisms,
that preserve the structure in a specified sense, like homomorphisms of
fields, or order preserving mappings between ordered sets, or order preserv-
ing homomorphisms between ordered fields. In each kind, the morphisms
are closed under composition, and include the identity of each object. This
partial composition law is associative (whenever legitimate), and any iden-
tity morphism acts as an identity for every legitimate composition.
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These objects and morphisms form thus a category of structured sets.
This topic will be investigated in Chapter 5, but it will be useful to present
now — informally — its basic elements.

In each category, a morphism f: X — Y is said to be an isomorphism if
it admits an inverse, i.e. a backward morphism g : Y — X (of the category
that we are considering) such that gf =id X and fg =idY. By the usual
proof (as in Section 1.1), the morphism g is determined by f, and can be
written as f~!. The isomorphism relation X = Y, meaning that there
exists an isomorphism X — Y (in the category that we are considering) is
an equivalence relation.

A morphism X — X is called an endomorphism of X, and an automor-
phism if it is invertible.

In any category of structured sets, an isomorphism is necessarily a bi-
jective mapping. The converse need not be true. For instance the identity
mapping id R gives an order-preserving mapping

(R, =)= (R,), (1.46)

from the set R equipped with the discrete order, to the same set equipped
with the natural order; this is not an isomorphism of ordered sets, because
the inverse mapping (of sets) is not order-preserving, and does not belong
to the category that we are considering. The same example works in the
category of ordered fields, and similar ones will be given for topological
spaces.

However, it is important to remark once for all that in a ‘category of
(pure) algebraic structures’ every bijective morphism is an isomorphism:
in each case this can be proved as in Exercise 1.1.6(c), for rings.

The transport of a structure, along a bijection, is also a useful tool. For
instance, suppose that K is an ordered field, A is a set and f: K — A is a
bijective mapping. Then there is one and only one structure of ordered field on
A that makes f into an isomorphism (of ordered fields): in fact each element

of A can be written in a unique way as f(z) (with z € K), and we can (and
must) let, for all z,y € K:

f@)+ fly) = f(z+y), F().fly) = flzy),

1.47
fl@)<fly) & =<y (1.47)

We have already seen some instance of a universal property. It is an impor-
tant issue, that will be developed in various forms, in all the structures we
will consider: either algebraic, or order-like, or topological, or some com-
bination of the previous kinds. A general definition can be given within
category theory, as we will see in Section 5.4 and exploit thereafter.
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1.2.8 Algebraic structures and equational algebras

Let us reconsider, more formally, the algebraic structure of rings.
A ring R is usually presented as a set equipped with two binary opera-
tions (in additive and multiplicative notation, respectively)

or: R? = R, orlz,y) =+,

1.48
KR R2 — R, #R(Evy) =Ty, ( )

satisfying the axioms (A.1-6).
It can also be presented as a set R equipped with four operations, adding
to the previous ones a unary operation and a constant, or zero-ary operation

wr: R — R, wr(z) = —=,

(r: R’ = R, Cr(*) =0, 4

defined, respectively, on R! = R and the singleton R” = {x}.

The second presentation, if more complex, has a crucial advantage: now
the axioms of the structure can be written in equational form, only depend-
ing on the universal quantifier for all, applied to all the elements of R. In
the present case, we require that, for all z,y,2 € R

r+(y+2)=(x+y) + 2, r+0=2x=0+uz,
z+ (—x)=0=(—2)+ =z, T+y=y+z,
x(yz) = (xy)z,
x(y+2) =axy +xz, (z+y)z=xz+yz.

An algebraic structure which can be presented in such a form will be
called an equational algebraic structure, or an equational algebra, and their
complex will be called a variety of algebras; the homomorphisms are always
defined as the mappings that preserve all the operations. (The study of
varieties of algebras is the subject of Universal Algebra [Grl, Coh]. A brief
presentation of this discipline can be found in [G4].)

Other equational algebraic structures, to be studied later, include: semi-
groups, monoids, groups, commutative groups, unital rings, modules on a
ring, vector spaces on a field, lattices, boolean algebras, etc.

Automatically, a variety of algebras )V has important properties: let us
simply mention here that the cartesian product A x B of two algebras in
V, equipped with the componentwise extension of all the operations of the
structure, is again an algebra in V.

Fields are an important example of an algebraic structure which is not
equational, as readily detected by the fact that the cartesian product
K x K' of two fields is a unital ring, but not a field: the element (1,0)
cannot have an inverse, as (1,0).(z,y) = (z,0) # (1,1).
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seen in Exercise 1.1.3(f). Of course this group is still written in multiplicative
notation. For a field K, the group Inv(K) = K" is formed of all non-zero elements
of K.

(d) The sets Z, , R are abelian groups, with respect to their (usual) addition.
The sets Q*, R™ are commutative groups, with respect to multiplication. The
set Inv(Z) = {—1, 1} is also a commutative group.

(e) Prove that the power set PX of any set X is an abelian group with respect
to the symmetric difference

AAB = (AUB)\(ANB) = (A\B)U(B\ A). (1.53)

In this abelian group each element is opposite to itself.

(f) Adding binary intersection, (PX,A,N) is a commutative unital ring.

If X =0, PX is the null ring. If X is a singleton, the ring PX has two
elements, ) and X, and is isomorphic to the two-element field F2 of Exercise
1.1.3(j)-

(g) In an abelian group, the sum >_;er z; of a finite family of elements makes sense
without any ordering on the set of indices I, because the operation is associative
and commutative. The sum of the empty family is defined to be 0.

It will be useful to extend this notation to an essentially finite sum > icr i,
where the set of indices [ is arbitrary but the family (x;) is quasi null: this
means that its support J = {i € I | z; # 0} is a finite subset of I. Then we let
Eie[ Ti = Zie.] L.

(h) Abelian groups from a variety of algebras, in the sense of 1.2.8.

1.3.1 Homomorphisms, subgroups and kernels

A homomorphism f: A — B of abelian groups is a mapping that preserves
the operation:

fle+y)=flx)+ fly)  (forz,y € A). (1.54)

(One can write f(z +4 y) = f(z) +5 f(y), when useful to distinguish
the operations.) It follows that f preserves the identity of the sum, all
opposites and all differences, as we have verified in 1.1.5.

As examined in 1.2.7 for any algebraic structure, two consecutive homo-
morphisms of abelian groups, f: A — B and g: B — C, give a composed
homomorphism gf: A — C. This partial composition law is associative
(whenever legitimate), and any identity homomorphism id A: A — A acts
as a unit for every legitimate composition.

An isomorphism f: A — B of abelian groups is a homomorphism that
has an inverse homomorphism: there is a homomorphism g: B — A such
that gf = id A and fg = id B. This happens if and only if the homomor-
phism f is a bijective mapping, and g = f~! is the inverse homomorphism.
Then the abelian groups A and B are said to be isomorphic, and we write
A = B, an equivalence relation between abelian groups.
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Hom(A, B) of all homomorphisms from A to B is an abelian group, when
equipped with the pointwise sum of f,g € Hom(A, B)

(f +9)(x) = f(z) + g(z) (for z € A). (1.57)
The identity of this operation is the zero homomorphism from A to B
OapB: A%B, OAB(;Y.'):OB, (1.58)

and the opposite of f € Hom(A, B) is the opposite homomorphism, also
computed pointwise:

(=) = = f(z). (1.59)
(f) For any abelian group A, the group Hom(Z, A) is canonically isomor-
phic to A.

(g) (The ring of endomorphisms) For an abelian group A, the set End(A) =
Hom(A, A) of all endomorphisms of A is a unital ring, when equipped
with the previous sum and the composition law (f,g) — ¢f. This ring
is not commutative, generally. It is a multiplicative subsemigroup of the
semigroup End(|A|) of all endomappings of the underlying set |A|, and of
course we should not confuse these items.

1.3.3 Multiples and linear combinations

In an abelian group A we can write any finite sum =y + 2 + ... + x,, of
elements without parentheses. In particular, for every x € A and every
integer n > 0 we have the multiple element nx = z +x + ... + = (a sum of
n terms), inductively defined by:

0.z =04, (n+1)z=nzx+z (n >0). (1.60)
Moreover, for a negative integer k = —n < 0, we let
kxr = n(—zx). (1.61)

Multiples have the following properties, for z,y € A and h,k € Z
() hx+kx=(h+k)x, 0z.z =04, (=h)x = —(hx),
(i1) h(kz) = (hk)z, lz.z ==,
(#41) hx + hy = h(z + y), h04=0a, h(—z) = —(hz).
This will be proved in Section 1.5, working in multiplicative notation,
where the multiple kz becomes the power z*. More precisely, we will see in

Exercises 1.5.1(d) and 1.5.2(c) that these properties hold in a commutative
semigroup for positive integers h, k; in a commutative unital semigroup for
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which is obviously associative, has identity [0] and opposites —[z] = [—x].

A/E becomes thus an abelian group, called the gquetient of the abel-
ian group A modulo the congruence E. The canonical projection on the
quotient set

p: A— A/E, p(z) = [x], (1.74)

is a homomorphism, and the structure we have put on A/F is the only one
having this outcome.

For a fixed abelian group A, there is a natural bijection between congru-
ences and subgroups

Ew— {reA|zE04} =Kerp,

_ _ . (1.75)
H — =g, r=g1r & x—12 e€H.

The reader can easily prove this fact (or see the solution of Exercise
1.3.9(a)).

The quotient of A modulo the associated congruence =g is denoted as
A/H and read as X modulo H. In this quotient, the equivalence class of
an element z is determined as

[z]=z+H={x+h|heH}, (1.76)

and called a coset of H (with respect to the element x).

The null subgroup {0} determines the discrete congruence x = y, so that
A/{0} can (and will) be identified with A. The total subgroup A determines
the indiscrete congruence z,y € A, so that A/A is a null group, and can be
written as {0}.

Since a subgroup is more elementary notion than a congruence, the quo-
tient of abelian groups are often presented in the form A/H. Yet, the
notion of congruence in an object A makes sense for any equational alge-
braic structure, and in various cases cannot be expressed by means of a
substructure of A (see 1.5.7).

Exercises and complements. (a) For a homomorphism f: A — B, the equivalence

relation Ry coincides with the congruence of A associated to the subgroup Ker f,
defined (for z,y € A) by

f@)=fy) & fla—y) =0 & (—y)eKerf. (1.77)

(b) A congruence E of A is always a subgroup of Ax A.

1.3.6 Ezercises and complements (Modular arithmetic)

Everyone is familiar with adding integers modulo 7, when we want to know
the day of the week in (say) 15 days; or modulo 12, when we want to know



