AN INTRODUCTION TO

AGENT-BASED MO

MODELING NATURAL, SOCIAL,

AND ENGINEERED COMPLEX SYSTEMS
WITH NETLOGO

lr
f r 4
‘

DELING

URI WILENSKY ano WILLIAM RAND

Copyrighted material

An Introduction to Agent-Based Modeling

Modeling Natural, Social, and Engineered Complex Systems with NetLogo

Uri Wilensky and William Rand

The MIT Press
Cambridge, Massachusetts
London, England

© 2015 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means
{including photocopying, recording, or information storage and retricval) without permission in writing from the
publisher.

MIT Press books may be purchased at special quantity discounts for business or sales promotional use. For
information, please email special_sales @ mitpress. mit.edu,

This book was set in Times LT Std 10/13pt by Toppan Best-set Premedia Limited, Hong Kong. Printed and
bound in the United Suites of America.

Library of Congress Cataloging-in-Publication Data
Wilensky, Uri, 1955
An introduction to agent-based modeling @ modeling natural, social, and engineered complex systems with
NetLogo / Uri Wilensky and William Rand.

Piges cm
Includes bibliographical references and index.
ISBN 978-0-262-T3189-8 (pbk. : alk. paper) 1. System analysis—Data processing. 2. Computer simulation.

3. Multiagent systems. 4. NetLogo (Computer program language) 1. Rand, William, 1976~ 11, Title.
TS7.62.W54 2015
003" 3—dc23
2014023747

109 8 7 6 5 4 3

Copyrighted material

Contents

Preface xi

0 Why Agent-Based Modeling? 1

A Thought Experiment 3

Complex Systems and Emergence 5

Understanding Complex Systems and Emergence 7
Example 1: Integrative Understanding 7
Example 2: Differential Understanding 8

Agent-Based Modeling as Representational Infrastructure for Restructurations 13
Example: Predator-Prey Interactions 15
Example: Forest Fires I8

1 What Is Agent-Based Modeling? 21
Ants 21
Creating the Ant Foraging Model 22
Results and Observations from the Ant Model 27
What Good Is an Ant Model? 28
What Is Agent-Based Modeling? 32
Agent-Based Models vs. Other Modeling Forms 32
Randomness vs. Determinism 34
When Is ABM Most Beneficial? 35
Trade-offs of ABM 36
What Is Needed to Understand ABM? 38
Conclusion 39
Explorations 40
Beginner NetLogo Explorations 40
Ants and Other Model Explorations 41
Concept Explorations 41
NetlLogo Explorations 42

Lopyrighted material

Contents

Creating Simple Agent-Based Models 45

Life 45

Heroes and Cowards 68

Simple Economy 87

Summary 96

Explorations 97
Chapter Model Explorations 97
NetLogo Explorations 99

Exploring and Extending Agent-Based Models 101

The Fire Model 103
Description of the Fire Model 104
First Extension: Probabilistic Transitions 110
Second Extension: Adding Wind 112
Third Extension: Allow Long-Distance Transmission 115
Summary of the Fire Model 116
Advanced Modeling Applications 117

The Diffusion-Limited Aggregation (DLA) Model 118
Description of Diffusion-Limited Aggregation 119
First Extension: Probabilistic Sticking 121
Second Extension: Neighbor Influence 122
Third Extension: Different Aggregates 125
Summary of the DLA Model 127
Advanced Modeling Applications 127

The Segregation Model 128
Description of the Segregation Model 131
First Extension: Adding Multiple Ethnicities 134
Second Extension: Allowing Diverse Thresholds 136
Third Extension: Adding Diversity-Seeking Individuals 137
Summary of the Segregation Model 140
Advanced Urban Modeling Applications 140

The El Farol Model 141
Description of the El Farol Model 141
First Extension: Color Agents That Are More Successful Predictors 143
Second Extension: Average, Min, and Max Rewards 145
Third Extension: Histogram Reward Values 146
Summary of the El Farol Model 149
Advanced Modeling Applications 150

Conclusion 152

Explorations 152

Copyrighted material

Contents

Creating Agent-Based Models 157
Designing Your Model |58
Choosing Your Questions 161
A Concrete Example 163
Choosing Your Agents 164
Choosing Agent Properties 165
Choosing Agent Behavior 166
Choosing Parameters of the Model 168
Summary of the Wolf Sheep Simple Model Design 169
Examining a Model 189
Multiple Runs 191
Predator-Prey Models: Additional Context 193
Advanced Modeling Applications 195
Conclusion 196
Explorations 197

The Components of Agent-Based Modeling 203
Overview 203
Agents 205
Properties 205
Behaviors (Actions) 209
Collections of Agents 211
The Granularity of an Agent 222
Agent Cognition 224
Other Kinds of Agents 232
Environments 234
Spatial Environments 235
Network-Based Environments 241
Special Environments 247
Interactions 257
Observer/User Interface 262
Schedule 268
Wrapping It All Up 271
Summary 275
Explorations 276

Analyzing Agent-Based Models 283
Types of Measurements 283
Modeling the Spread of Disease 283
Statistical Analysis of ABM: Moving beyond Raw Data 287

vii

Lopyrighted material

viii Contents

The Necessity of Multiple Runs within ABM 288
Using Graphs to Examine Results in ABM 291
Analyzing Networks within ABM 296
Environmental Data and ABM 301

Summarizing Analysis of ABMs 305

Explorations 307

7 Verification, Validation, and Replication 311
Correctness of a Model 311
Verification 312
Communication 313
Describing Conceptual Models 314
Verification Testing 315
Bevond Verification 317
Sensitivity Analysis and Robustness 321
Verification Benefits and Issues 324
Validation 325
Macrovalidation vs. Microvalidation 329
Face Validation vs. Empirical Validation 331
Validation Benefits and Questions 335
Replication 336
Replication of Computational Models: Dimensions and Standards 337
Benefits of Replication 340
Recommendations for Model Replicators 34|
Recommendations for Model Authors 344
Summary 346
Explorations 347

8 Advanced Topics and Applications 351
Advanced Topics in ABM 351
Model Design Guidelines 353
Rule Extraction 356
Using ABM for Communication, Persuasion, and Education 369
Human, Embedded, and Virtual Agents through Mediation 372
Hybrid Computational Methods 383
Some Advanced Computational Methods in NetLogo 391
Extensions to ABM 40|
Integration of Advanced Data Sources and Output 402
Speed 418

Copyrighted material

Contents

Applications of ABM 419

Revisiting the Trade-offs of ABM 423
The Future of ABM 424
Explorations 425

Appendix: The Computational Roots of Agent-Based Modeling 431
The Vignettes 433
Cellular Automata and Agent-Based Modeling 433
Genetic Algorithms, John Holland, and Complex Adaptive Systems 435
Seymour Papert, Logo, and the Turtle 439
Object-Oriented Programming and the Actor Model 440
Data Parallelism 442
Computer Graphics, Particle Systems, and Boids 443
Conclusion 445

References 447
Software and Models 459
index 463

Copyrighted material

agent-based modeling (ABM) will play a central role in that toolkit." Through this book,
we will provide an introduction to ABM for anyone interested in answering questions
about the complex systems that are embedded in natural, social, and engineered contexts.

Our book will draw on applications in a wide variety of fields to help illustrate the power
of ABM methodology. Along the way, we will guide you through a series of hands-on
examples that will help you to understand how you can use this tool in your own work.
The guiding principle we used while writing this textbook (and also for NetLogo, the
language we will be using) is, “Low Threshold, No Ceiling.™ By that. we mean that there
1s very little prerequisite knowledge to start using the material, but at the same time there
18 no limit to what can be accomplished once it is mastered.

ABM is a powerful tool in helping us to understand complex systems. Our textbook,
though titled “An Introduction,” provides the tools necessary to enable you to build and
use agent-based models to investigate your own guestions.

Who We Wrote This For

Because the field of ABM is applicable to so many domains, this textbook can be used in a
wide variety of contexts. It can serve as a main text for an interdisciplinary undergraduate
course on complex systems or a computer-science class on agent-based modeling. It can be
used as a supplementary text in a very wide range ol undergraduate classes, including any
class where agent-based modeling can be profitably applied. This can be quite a broad list
of content areas, The material described in this textbook has been used in natural science
classes such as physics, chemistry, and biology: social science classes such as psychology,
sociology, and linguistics; and engineering classes such as materials science, industrial
engineering, and civil engineering. We have strived to balance the examples across content
areas, in order for at least one example to hit squarely on the content area of a given course.
Naturally, to achieve this goal, we must sacrifice depth in any one content area. As the field
of ABM progresses, we expect that in-depth domain-specific textbooks will appear.
Though we have targeted a high-level undergraduate or entry-level graduate audience,
we expect that the book will be useful to other audiences as well. The prerequisite knowl-
edge is not great; a motivated individual learner in a wide range of academic settings could
use this text. Similarly. since ABM methods may be new to many graduate students, we
expect that our book could be quite useful as a supplementary text to graduate classes in
a wide range of subject domains. ABM methods are increasingly used in research labs, in
the business community, and in policy circles. We anticipate that professionals in these
areas can benefit from the methods and examples herein. The material for this textbook

I. If ABM is used in a plural sense (ABMs) or with an article (an ABM) then ABM stands for agent-based
model and not agent-based modeling.

2. Inthe appendix, we discuss the history of the Logo programming language from which this slogan originated.
It can also be rendered as “Low Threshold, High Ceiling.”

Copyrighted material

xiii

has arisen from and has been tested for over two decades of both undergraduate and gradu-
ate classes taught in Computer Science and in Learning Sciences by Uri Wilensky and
additional classes taught by William Rand, as well as hundreds of workshops. seminars,
and summer school courses conducted by both authors.

In the utle, we specifically highlight “natural, social, and engineered complex systems.”
Natural systems are studied in fields such as biology and physics: complex systems that
are naturally occurring. Social systems consist of individuals interacting with each other.
Social systems can be natural and/or engineered. Engineered systems are those that have
been designed by humans to achieve a particular goal.

There are few prerequisites for this book. We do not assume any mathematical knowl-
edge beyond basic algebra, and we do not assume any prior programming knowledge. For
chapters 6, 7, and 8, we do assume that you have a very basic knowledge of statistics—for
example, that you understand what a normal distribution is. Moreover, as we discuss later,
we expect you to start with a rudimentary familiarity with NetLogo, and we suggest that
you work through the first three tutorials included in the NetLogo user manual of
the NetLogo software. The NetLogo software can be downloaded from ccl.northwestern
.edu/netlogo/.’

Working through this book will require reading and writing of computer code. This may
be quite unfamihiar to some readers. Though many people believe that computer program-
ming 1s 100 hard for them to learn, research by Constructiomst educators and decades of
experience has shown the authors that virtually all students can learn to program in
NetLogo. We hope that you won’t be scared off by all the code in the textbook, and that
you will take the tme to learn to read and write the code. We are very conhident that you
can do it and that taking the time to learn it will pay rich dividends,

NetlLogo and the Textbook

Many different agent-based modeling languages exist. As of this writing, NetLogo remains
the most widely used. Of the others currently in use, Swarm, developed at the Santa Fe
Institute, Repast, developed at Argonne National Laboratory, and MASON, developed at
George Mason University, are the next most pervasive among scientists and researchers.
Most ABM toolkits (including NetLogo) are open source and freely available. AnyLogic is
a commercial package that has also been successful. Other software packages for building
ABMs in current use include Ascape, Breve, Cormas, MASS, PS-1, and SeSam. It is also
possible to write an agent-based model in any language. When building your own model in
a standard non-agent-based programming language, the time to run the model may be faster,
but often the time for the lifecycle of development will be considerably slower.

3. This textbook uses the desktop application version of the NetLogo software. At the time of publication of this
book, a browser-based version of NetLogo will also be available. Most examples used in the book will work in
the browser-based version. though some will require adaptation for that version.

Copyrighted material

xiv

We make use of NetLogo examples throughout this textbook, both to provide hands-on
illustrations of the principles being discussed and also as a form of “pseudo-code.™
However, this textbook is not a NetLogo manual. Before reading much farther, we suggest
you download the NetLogo software, open source and available for free from hittp://
ccl.northwestern.edu/netlogo, and work through the introductory material in the NetLogo
manual (available through the Help menu of the NetLogo software), including the three
tutorials that introduce the user to basic model development and syntax. This 1s a necessary
prerequisite 1o comprehending the material in the book beyond chapter 1. The NetLogo
user manual (found under the NetLogo Help menu) is the authoritauve reference for
NetLogo and it is regularly updated and improved. It will often be advisable 1o consult
the manual, the interface and programming guides, the dictionary and FAQ throughout
this textbook. NetLogo comes with an extensive library of models from which you can
learn common code patterns. The “Code Examples™ models are meant to be simple models
intended to show you common code patterns. There are many online resources for help
with NetLogo (see http://ccl.northwestern.edu/netlogo/resources.shtml). The Netl.ogo
users group (reachable through the NetLogo HELP menu) is a forum where people post
NetLogo questions. The community is quite responsive, and if you post a question there
you will hikely receive a prompt response. It is a good idea to subscribe to this group
early on in working through this textbook. Another resource for asking and answering
NetLogo programming questions 1s Stack Overtlow (http://stackoverflow.com/questions/
tagged/netlogo), where you will find many questions and answers about NetLogo
programming.

We use the NetLogo examples in order to concretize the concepts of agent-based model-
ing that we present. By presenting computer code side-by-side with conceptual discus-
sions, we hope to provide both a larger picture of the use of agent-based models as well
as a specific illustration.

We have selected NetLogo as our ABM language for this text for several reasons, Before
explaining the specifics, 1t is important to say that we believe our book will be just as
useful for those using other ABM languages. Even if we had written a completely lan-
guage-agnostic book, we would still have needed to include pseudo-code to illustrate our
points. Since NetLogo was designed to be easily readable, we believe that NetLogo code
is about as easy to read as any pseudo-code we could have used. NetLogo also has the big
advantage over pseudo-code of being executable, so the user can run and test the examples.
Moreover, there are a large number of agent-based models written in NetLogo in a wide
variety of domains, so a literate agent-based modeler requires at least a passing understand-
ing of NetlLogo.

4. Pseudo-code is an intermediate form between text and computer code that is often used to describe compu-
tational algorithms,

Copyrighted material

We have several other significant reasons for choosing Netl.ogo as the language for our
book. Uri Wilensky, the first author of this textbook, is also the author and developer of
NetLogo and has conducted agent-based modeling research, development and teaching
with NetLogo (and its precursors) for over two decades. He has taught NetLogo in his
classes and in workshops for that same period. The second author has years of experience
teaching NetLogo workshops and conducting agent-based modeling research with NetLogo.
As such, we are imtimately familiar with the language nuances and details. More important,
NetLogo was designed with great attention to learnability. As we said, its core design
principle is “low threshold, no ceiling.”

Achieving both of these goals completely is not possible and 1o some degree, they
trade-off against each other, but NetLogo has gone a considerable distance in achieving
both. No other extant ABM language is close to NetLogo’s low threshold., As such, it
is an ideal language for learning ABM and is used widely in classrooms all over the
world. Yet, NetLogo also achieves a high ceiling. NetLogo is in use by a large number
of scientists and professionals and is regularly employed in cutting edge research (see
http://ccl.northwestern.edu/netlogo/references.shtml for a partial list of research papers
employing NetlLogo). So after completing this text, you should be well prepared to use
NetLogo in your research, teaching, and/or professional life. Learming NetLogo will
make you a better ABM modeler/researcher regardless of the language that you may
eventually use.

Learning Objectives

There are ten main objectives of our textbook, which roughly parallel the nine chapters
and the appendix of the textbook. We will phrase these objectives in terms of questions a
reader should be able to answer at the end of our textbook:

0. Why does agent-based modeling provide us with a unique and powerful insight into
complex systems?

What is agent-based modeling and how is it used?

What are some simple agent-based models that we can create?

How do | extend an agent-based model that was created by someone else?

How do | create my own agent-based model?

What are the basic components of agent-based modeling?

How can | analyze the results of an agent-based model?

. How can | tell if the implemented agent-based model corresponds to the concept of the
model that I developed in words? How can [tell if the results of my agent-based model
tell me anything about the real world? How can I make sure that someone else can repeat
my results?

w1

=@ e

Copyrighted materia

8. What are some advanced ways of including data and using output from agent-based
models? What are some of the open research questions in agent-based modeling?
9. From what computational scientific roots did agent-based modeling arise?

Features

There are four main features that are present in nearly every chapter of the book: in-line
development, textboxes, explorations, and relerences. In-line development is what we call the
approach of developing a model or an extension to a model in the main text of the book instead
of asking the reader to do it later offline. It 1s expected for some of these chapters (2, 3. 4, 5,
6, and 7 especially) that the reader will read the textbook while sitting at their computer,
entering the code from the textbook and manipulating the models as they read along. All
models developed in the texthook can be found in their entirety in the IABM Texthook
folder of the NetLogo models library. This folder is organized by chapters of the textbook.
These completed models are provided as a resource, but we encourage students to follow
along with the textbook, developing the models themselves before opening the models in
the IABM Textbook folder. Most other models referred to in the textbook reside in the
NetLogo models library, which can be accessed through the “models library™ menu item from
NetLogo's “file” menu. The models library 1s itself comprised of subfolders. The principal
subfolder 1s “sample models,” which 1s organized by subject, such as biology, mathematics,
social science, and others. All models used in the book and supplementary materials can
be found on the website for the book, www.intro-to-abm.com, updated regularly.

The textboxes serve to provide additional information and concepts. There are three
kinds of textboxes: (1) definitional, (2) exploration, and (3) advanced concept. Definitional
textboxes (set in blue) define words and terms critical to the discussion. Exploration text-
boxes (set in green) provide additional explorations that are relevant to the material being
discussed at that point. Advanced concept textboxes (set in orange) highlight concepts that
are beyond the scope of the book but that might be of interest to the reader.

At the end of every chapter (except chapter 0), there are explorations. An instructor
may want to draw on these explorations for student homework. These explorations are
roughly in order of difficulty, Some of them are quite open-ended, while others are more
constrained.

At the end of the book there is a references section, the text references organized
alphabetically, and the software/model references organized by chapter. To distinguish the
text from the software references, the software references are italicized in the text,

Organization

We will present the basics of ABM in nine chapters and an appendix. The nine chapters
and the appendix can be thought of as three sections: (1) What ABMs are, (2) How to

Lopyrighted material

xix

complex patterns can “self-organize”™ without a central leader, and (4) the same phe-
nomenon can be modeled in many different ways, depending on which aspect of it you
want to emphasize.

Chapter 4 takes us to the next step of starting to develop models from scratch, We
develop a model, named Wolf Sheep Simple, in five distinct stages. The model that we
develop illustrates many of the basic concepts that go into ABM creation and design, and
it includes many core features of ABMs, such as different agent types, environmental and
agent interactions, and competition for resources. Central to this chapter is the delineation
and elaboration of the key design principle of ABM.

In chapter 5, we zoom out to take a look at the broader picture, cataloguing and describ-
ing the constituent parts of an ABM. Alter classifying these components into the five
categories of Agents, Environments, Interactions, User Interface/Observer, and Schedule,
we examine each of these component classes in tum. Within each of these classes, we
discuss common issues that should be considered before and while building an agent-based
maodel. For example, what kind of topology should the environment have? Or what proper-
ties and actions do the agents in the model have? It can be quite useful to make a plan for
each component class and their interactions at an early point in the design plan, and to
revisit that plan throughout the design process.

Together, these four chapters provide an in-depth treatment of how to construct agent-
based models and provide the basic tools needed to design, construct, and select the
components that will go into a model. After reading these four chapters, you should have
sufficient knowledge to design and construct basic agent-based models.

Chapters 6, 7, and 8: How to Analyze and Use ABMs

One feature of many ABMs is that they create large amounts of data. Chapter 6 discusses
how to examine these data to find meaningful relationships and conduct analyses that are
useful for understanding the behavior of the model. We discuss how to explore and describe
model results using statistics, graphs, and geographic and network methods. We also
discuss the importance of multiple model runs and how to sweep a parameter space to
determine the range of behaviors exhibited by a model.

In chapter 7, we examine three key concepts in modeling: verification. validation, and
replication. Verification 1s the process of comparing an implemented model to its associ-
ated conceptual model and investigating whether the implemented model is faithful to the
conceptual model. By verifying a model, we show that the model implementer has com-
prehended the intended micro-level rules and mechamsms and has correctly implemented
them in the model code. This is true even if the model author may have intended different
emergent behavior or predicted different emergent results from those that arise in the
implemented model. Validation is a comparison of an implemented model to the real world,
to see if the results of the implemented model give us insight into the corresponding real
world phenomenon. Validation enables us to use the model to make statements about the

Copyrighted material

real world. Replication is the reproduction of a model result published by one scientist or
model developer by another scientist or model developer. Replication is a central process
in the creation of scientific knowledge. and replication procedures for agent-based models
are explained. Overall, this chapter discusses how implemented ABMs relate to both other
models and the real world.

In chapter 8, we address advanced topics with regard to agent-based modeling and how
the methods that we have described in the first eight chapters can be further refined. We
focus on ways to incorporate data into ABMs from advanced sources such as social
network analysis, geographic information systems, and real-time sensors. We also discuss
how to make ABMs more powerful, by incorporating techniques such as machine learming,
system dynamics modeling, and participatory simulation. We conclude this chapter with
a discussion of future challenges for ABM,

In these last three chapters we discuss how to analyze ABMs, how to verify and validate
the results of ABMs, and how to use advanced techniques in ABM. These are the important
practices of ABM after creating your model and for examining models authored by
others.

Acknowledgments

Many people have contributed greatly to this book. Wilensky would hike to first and
foremost thank Seymour Papert, his dissertation advisor and colleague, who, in many
ways, invented the idea of an “agent,” who first created a Logo turtle, and who was
inspirational regarding the power of computation to transform science and leaming.
Wilensky is also deeply grateful to Seth Tisue, lead developer of NetLogo for over a
decade., Seth’s dedication to high quality and elegant code, and his passion and dedica-
tion to parsimony, have made NetLogo a much better product. Isaac Asimov, a neighbor
of Wilensky's in childhood, was inspirational in describing psychohistory and in cata-
lyzing early notions of emergence. Walter Stroup was an invaluable colleague and joint
developer of the HubNet participatory simulation module. Stroup and Corey Brady were
influential in advocating for the importance of combining ABM with networked
participation.

Rand would like to acknowledge his dissertation chairs, Rick Riolo and John Holland,
who encouraged him to pursue his interests in agent-based modeling and helped him to
develop many of his formative thoughts on complex systems and ABM. Rand would also
like to thank Scott Page, who was not only a member of his dissertation committee but
also a continual support to his work in ABM, not the least of which was providing him
with a chance to try out the textbook with a sophomore level class at the University of
Michigan. In addition, the graduate workshop hosted by Scott Page and John Miller at the
Santa Fe Institute was instrumental in helping Rand discover how to teach ABM. Roland
Rust had the critical insight to realize that ABM would become increasingly useful for

Copyrighted material

xxi

business and worked with Rand to found the Center for Complexity in Business. Finally,
and most important, Rand would also like to thank his coauthor for his wonderful support
and for having the courage to allow a postdoctoral fellow to embark on such an unusual
project as writing a textbook.

In additon, we received valuable feedback from a number of internal and external
reviewers over the course of the writing of this textbook. Chief among them are the teach-
ing assistants for Wilensky's agent-based modeling class at Northwestern University, in
which these materials were tested over several years: Forrest Stonedahl, Josh Unterman,
David Weintrop, Aleata Hubbard, Bryan Head, Arthur Hjorth, and Winston Chang care-
fully reviewed the matenals, observed the students using the materials, and gave extensive
helpful comments for improving the text, the model code, and the explorations. Many
other members of the Northwestern Center for Connected Learning and Computer-Based
Modeling also gave very helpful feedback, including Seth Tisue, Corey Brady, Spiro
Maroulis, Sharona Levy, and Nicolas Payette. Dor Abrahamson, Paulo Blikstein, Damon
Centola, Paul Deeds, Rob Froemke, Ed Hazzard, Eamon Mckenzie, Melanie Mitchell,
Michael Novak, Ken Reisman, Eric Russell, Pratim Sengupta, Michael Stieff, Forrest
Stonedahl, Stacey Vahey, Aditi Wagh, Michelle Wilkerson-Jerde, and Christine Yang con-
tributed illuminating examples. Forrest Stonedahl, Corev Brady, Bryan Head, David Wein-
trop, Nicolas Payette, and Arthur Hjorth suggested useful explorations for the chapters that
have enniched student experience. Wilensky's students at Tufts University, Ken Reisman,
Ed Hazzard, Rob Froemke, Eamon McKenzie, Stacey Vahey. and Damon Centola, shared
their abundant enthusiasm, generated interesting applications, and furthered the educa-
tional uses. Northwestern’s dean of engineering, Julio Ottino, was always supportive and
encouraging, and confident in the importance of an ABM textbook.

Many colleagues engaged us in many stimulating conversation that influenced our think-
ing and writing. Danny Hillis provided the context for the nascent beginnings of massively
parallel simulations at Thinking Machines Corporation. Luis Amaral, Aaron Brandes, Dirk
Brockman, Joanna Bryson, Dan Dennett, Gary Drescher, Michael Eisenberg, Rob Gold-
stone, Ken Kahn, John Miller, Marvin Minsky, Josh Mitteldorf, Richard Noss, Scott Page,
Rick Riolo, Roland Rust, Anamaria Berea, and Bruce Sherin are colleagues with whom
we have had ongoing stimulating conversations that helped further the ideas in this book.
Mitchel Resnick was an important colleague and collaborator in developing the idea
of ABM for education, antecedent software development, and the role of levels and
emergence.

The development of NetLogo was supported by more than fifteen years of funding from
the National Science Foundation. Additional support came from the Spencer Foundation,
Texas Instruments, the Brady Fund, the Murphy Society, the Johns Hopkins Center for
Advanced Modeling in the Social, Behavioral and Health Sciences, and the Northwestern
Institute on Complex Systems. We are especially grateful to NSF program officers Nora
Sabelli and Janet Kolodner for their years of advice and support. We are greatly indebted

Copyrighted material

to the NetLogo development team at the CCL led by Seth Tisue, who worked meticulously
to guarantee the quality of the NetLogo software. Spiro Maroulis and Nicolas Payette
contributed greatly to expanding NetLogo's network capabilities. Ben Shargel and Seth
Tisue led the design of BehaviorSpace, and James Newell led design of NetLogo 3D,
assisted by Esther Verreau and Seth Tisue. Paulo Blikstein, Corey Brady, and Bob Tinker
were influential in advocating for combining ABM with physical computing devices.
Many members of the CCL made significant contributions to the NetL.ogo models hibrary.

Many of the materials in this textbook had previously been used in Wilensky's agent-
based modeling class in the Computer Science Department at Northwestern University.
Early versions of the textbook were used as the basis for a summer workshop taught by
Rand as part of the Summer CommuniCy (under the leadership of Klaus Liepelt) at Mitt-
weida University in Germany, and in various classes at the University of Michigan and
University of Maryland. We have also piloted these materials in hundreds of NetLogo
workshops in the United States and abroad. We would like to thank the students who have
been involved in these classes over the years for their feedback and support.

We are indebted to several undergraduate students for proofreading the manuscript,
including Ziwe Fumodoh, Nickolas Kaplan, Claire Maby, Elisa Sutherland, Cristina
Polenica, and Kendall Speer. For the second printing, we are grateful to Nicolas Payette
and Ken Kahn for finding and fixing mistakes in the first printing. We thank them for
their many corrections. Of course, all mistakes that remain in the manuscript are our
responsibility.

We are deeply grateful to our spouses, Donna Woods and Margaret Rand, for their
patience and support during the many days and nights that we were busy writing and were
away from family. Wilensky also thanks his children, Daniel and Ethan, for their patience
when their dad was too busy writing to play, Rand also thanks his children, Beatrice and
Eleanor, who were born during the writing of this book.

We would like to acknowledge the support of the Northwestern Institute on Complex
Systems (NICO), which encouraged this project and supported William Rand during the
early writing of this textbook. The University of Maryland Robert H. Smith School of
Business Center for Complexity in Business supported William Rand during the second
half of the writing of this textbook.

Copyrighted material

0 Why Agent-Based Modeling?

Some look at things that are, and ask why? | dream of things that never were and ask why not?”

— John K. Kennedy (paraphrasing George Bernard Shaw)

[think the next century will be the century of complexity.

~—Stephen Hawking

We shape our tools and then our tools shape us.

—Muarshall MclLuhan

This book 1s an introduction to the methodology of agent-based modeling (ABM) and
how it can help us more deeply understand the natural and social worlds and engineer
solutions to societal problems. Before we discuss why agent-based modeling is impor-
tant, we briefly describe what agent-based modeling is. An agent is an autonomous
computational individual or object with particular properties and actions. Agent-based
modeling 1s a form of computational modeling whereby a phenomenon is modeled in
terms of agents and their interactions. We will describe ABM more comprehensively
in chapter 1. As vou will see in this textbook, ABM is a methodology that can be
promiscuously applied—there are few, if any, content areas where ABM is not appli-
cable. It can enable us to explore, make sense of, and analyze phenomena and sce-
narios across a wide variety of contexts and content domains. In the past two decades,
scientists have increasingly used agent-based modeling methods to conduct their
research.

The main argument of this introductory chapter is that ABM is a transformative repre-
sentational technology that enables us to better understand familiar topics, and at younger
ages; make sense of and analyze hitherto unexplored topics: and enable a democratization
of access to computational tools for making sense of complexity and change. As such,
we believe that developing ABM literacy is a powerful professional and life skill for
students, and we should strive for universal ABM literacy for all, from young students to
professionals.

Copyrighted material

Chapter 0

in this simple case, things fundamentally change. The algorithms that are taught after this
transformation are different. People’s mental representation will alter, as will their sense
of systematicity in the field. Psychologically important landmark values (i.e., V vs. 0) will
be different. Even social embedding, such as “who can do what,” changes (e.g.. scribes or
special human calculators for the emperor vs. modern carpenters or business people doing
their own calculations). In our terminology, we will say that we have a new structuration
of a discipline (Wilensky & Papert, 2010; Wilensky et al., 2005). We will proceed to flesh
out this term through concrete examples. But, for now, we introduce a preliminary formal
definition: By structuration we mean the encoding of the knowledge in a domain as a
function of the representational infrastructure used to express the knowledge. A change
from one structuration of a domain to another resulting from such a change in represen-
tational infrastructure we call a restructurarion,

There have been many examples of restructurations in human history. Of course, our
thought experiment is based on a historical reality, Before the transition from the use of
Roman to Hindu Arabic numerals in Europe around the turn of the first millennium, most
Europeans were able to use Roman numerals fluently. However, because Roman numerals
were not very well suited to large numbers and to multiplication and division of such
numbers, people went to special “experts” to perform multiplication and division for them.
European mathematicians first started employing Hindu-Arabic numerals at the end of the
tenth century, quickly realizing its advantages in working with large numbers. In 1202,
the mathematician Fibonacci wrote a text outlining the Hindu-Arabic system that resulted
in gradual adoption by scientists. Still, “universal™ adoption of Hindu-Arabic numerals in
Europe was not achieved until the sixteenth century—a restructuration that took more than
half a millennium! Why did it take so long for a representational infrastructure quickly
recognized as superior to gain widespread adoption? The case of Italian shopkeepers may
help explain this quandary. Medieval Italian shopkeepers kept two sets of books for their
accounting: one set, in which they did their real calculations, was kept in Hindu-Arabic;
the other set, which was presented to the inspecting authorities, was kept in Roman, since
a Roman representation was required by the government. The shopkeepers had to labori-
ously translate the first set into the second. That they deemed such translation worthwhile
is a testimony to the value of the restructuration. The fact that the authorities did not
officially recognize the Hindu-Arabic books was a major obstacle to the structuration’s
more rapid spread. We call this resistance to the spread of structurations “structurational
inertia” (Wilensky & Papert, 2010). Just as an object’s inertia keeps it from changing its
motion, so structurational inertia keeps structurations from changing, impeding the spread
of restructuration.

Our Roman-to-Arabic numeracy example is just one of many that we could have chosen,
In his book Changing Minds (2001), DiSessa describes the historical restructuration of
simple kinematics from a text-based to an algebraic representation. He illustrates this
restructuration through a story of the seventeenth-century scientist Galileo. In his book

Copyrighted material

Why Agent-Based Modeling? 5

Dialogues Concerning Two New Sciences (1638), Galileo struggles to handle a problem
involving the relationship between distance, time and velocity. He laboriously describes
four theorems relating these three quantities. The reader is invited to peruse and decipher
these theorems. The surprising realization is that all four of these theorems are in fact
variations of the single equation D=VT, or distance equals velocity imes time. How could
it be that Galileo, inventor of the telescope, and one of the great “fathers of modern
science,” struggled so mightly with an equation with which most middle-schoolers are
facile? The explanation 1s both simple and profound: Galileo did not have algebraic rep-
resentation. He had to write these theorems in Italian, and natural language is not a well-
suited medium for conveying these Kinds of mathematical relationships. Thus, the
restructuration of Kinematics from the representational system of natural language to that
of algebra transformed what was a complex and difficult idea for as powerful an intellect
as Galileo's into a form that is within the intellectual grasp of every competent secondary
student.

The development of Arabic numerals and the transformation of kinematics via algebra
were empowering and democratizing, enabling significant progress in science and widen-
ing the range of people who could make sense of previously formidable topics and skills.
The vista opened to the imagination is dramatic: If the problems with which we struggle
today could be so transformed. think of the new domains we could enter and conquer. If
algebra could make accessible to students what was hard for Galileo, what domains that
are hard for us today to understand could we restructurate to make more accessible?

Complex Systems and Emergence

What might be the analogy today? What areas are widely thought to be difficult for people
to comprehend and potentially ripe for restructuration? One such area is complex systems.
Its very name suggests that it is a difficult area for comprehension.

What we perceive as difficult has cognitive dimensions, but difficulty is also greatly
affected by our current needs. As commerce developed in the Middle Ages, there arose an
increasing need for arithmetic with large numbers, so the difficulty of doing it with Roman
numerals became more salient. As science developed the need to account more precisely
for heavenly bodies, the difficulty of describing their motions became more transparent.
In the current day, the world we live in has become increasingly complex, in part because,
in earlier periods of history, we did not have to pay as much attention to complex interac-
tions; we could get by with understanding simple systems and local effects. Yet, as tech-
nology and science have advanced, we have become more affected by complex interactions.
We are now aware that changes to the rain forest in Brazil can have dramatic effects on
the climate of faraway countries; that unwise financial decisions in one country can have
significant economic impact on the rest of the world; that a single case of a new disease
in China can spread around the globe in short order; or that a four-minute video uploaded

Copyrighted material

Chapter 0

by a Korean pop star can turn him into a worldwide sensation in a matter of days. As such,
the difficulty of making sense of complex systems has become more salient.

However, even if the level of complexity in our life remained constant over the ages,
our continual quest for knowledge would ultimately lead us to study complex systems. As
we gain facility and more complete understanding of simple systems., we naturally progress
to trying to make sense of increasingly complex systems. Simple population dynamics
maodels, for example, make the implicit assumption that all members of a species are the
same, but later, it becomes important to explore the manifold complexity of the food web
and how each individual interacts with every other individual. Thus, our need to understand
more complex systems is also a natural result of the growth of human knowledge.

As we gain knowledge, we create more sophisticated tools and these tools enable us to
ask and answer new questions. As described earlier, the advent of powerful computation
enables us to model, simulate, and more deeply probe complex systems.

For the reasons stated, the field of complex systems has arisen and grown. Complex
systems theory develops principles and tools for making sense of the world’s complexity
and defines complex systems as systems that are composed of multiple individual elements
that interact with each other yet whose aggregate properties or behavior is not predictable
from the elements themselves. Through the interaction of the multiple distributed elements
an “emergent phenomenon” arises. The phenomenon of emergence 1s characteristic of
complex systems. The term “emergent” was comed by the Brnitush philosopher and psy-
chologist G. H. Lewes, who wrote:

Every resultant is either a sum or a difference of the co-operant forces: their sum, when their direc-
tions are the same—their difference. when their directions are contrary. Further, every resultant is
clearly traceable in its components, because these are homogeneous and commensurable, It is oth-
erwise with emergents, when, instead of adding measurable motion to measurable motion, or things
of one kind to other individuals of their kind, there is a co-operation of things of unlike kinds. The
emergent is unlike its components insofar as these are incommensurable, and it cannot be reduced
to their sum or their difference. (Lewes 1875)

Since Lewes’s time, scholars have struggled with how to best define emergence—some
definitions succinct, others more involved. For our purposes, we define emergence as rhe
arising of novel and coherent structures, patterns, and properties through the interactions
of multiple distributed elements. Emergent structures cannot be deduced solely from the
properties of the elements, but rather, also arise from interactions of the elements. Such
emergent structures are system properties yet they often feedback to the very individual
elements of which they are composed.

Important features of emergence include the global pattern’s spontaneous arising from
the interaction of elements, and the absence of an orchestrator or centralized coordinator—
the system “self-organizes.” Structure (or rules) at the micro-level leads to ordered
pattern at the macro-level. Because the macrostructures are emergent, composed of many

Copyrighted material

Why Agent-Based Modeling? 7

elements, they are dynamic, and perturbing them often results in them dynamically reform-
ing. Another way of thinking about such structures is to view them not as entities, but
rather, as processes holding the structure in place, which are often invisible until the
structure i1s disturbed. However, a reformed structure, while recognizably the same struc-
ture, will not be identical, since for most emergent structures, randomness plays a role in
each reformation. From a micro-level perspective, this suggests that the formation rules
need not be deterministic. Indeed, in many complex systems, probabilistic and random
processes contribute to, and are even essential to, the creation of order.

In complex systems, order can emerge without any design or designer. The idea of order
without design has been controversial throughout the history of science and religion. In
modemn times, the supposed impossibility of order without design has been a linchpin of
the intelligent design movement against naturalistic evolution, as supporters argue that
life’s manifold and irreducible complexity could not arise “by chance™ without a designer.
Yet, complex systems theory is ever finding more complex systems that may at first seem
irreducible but are found to be self-organized or evolved rather than intelligently designed
by a designer.

Understanding Complex Systems and Emergence

We have said that understanding complex systems and emergence 1s hard for people.
Emergence, in particular, presents two fundamental and distinct challenges. The first dif-
ficulty lies in trying to figure out the aggregate pattern when one knows how individual
elements behave. We sometimes call this integrative understanding, as it parallels the
cumulative integration of small differences in calculus. A second difficulty arises when
the aggregate pattern is known and one is trying to find the behavior of the elements that
could generate the pattern. We sometimes call this differential understanding (aka compo-
sitional understanding), as it parallels the search in calculus for the small elements that
produce an aggregate graph when accumulated. Let’s now consider two examples that
tllustrate these conceplts.

Example 1: Integrative Understanding
Figure 0.1 presents a system composed of a few identical elements following one rule.
Each element is a small arrow. We imagine a clock ticking and at each tick of the clock
the arrows follow their rule. We initialize the system so that each individual arrow starts
on a circle (of radius 20 units). We start them all facing clockwise on the circle. Now, we
give them one movement behavior (or rule). At every tick of the clock, they move forward
(0.35 units then turn right one degree. As the clock ticks, they continue to move and turn,
move and turm, moving clockwise along the circle,

Now suppose that we slightly alter these rules, Instead of moving forward 0.35 units,
we have them move (1.5 units while still tuming one degree. What will be the aggregate

Lopyrighted materia
o i

Chapter 0

Copyrighted image

Some amows moving clockwise around a circle of radius 20,

pattern that we see? Before reading further, take a moment to imagine what the pattern
will be.

Most people do not predict the resulting pattern. We have heard people predict that the
arrows will move onto a larger circle, a smaller circle, a flower shape, and many others.
In fact, the pattern that emerges is a pulsating circle. All the arrows stay in a circle, but
the circle changes its radius, first expanding, then contracting and repeating this cycle
forever.

Example 2: Differential Understanding
Now let’s consider the flip side of these difficulties. There are many coherent, powerful,
and beautiful patterns we observe in the world. What accounts for their prevalence? How
do they onginate?

The secret to understanding the formation of these patterns 1s to understand that they
are emergent, arising from the interactions of distributed individual elements.

One such prevalent (and often beautiful) pattern is the flocking of birds. Birds fly
together in many different formations, from the classic V formation of goose flocks to the

Copyrighted material

Why Agent-Based Modeling? 1

Copyrighted image

FIOCKS OF STRrnngs (inousandas of oiras) actng as a swarm.”

2. For beautiful video of massive starling swarms, called murmurations, see: htp:/fwww. huffingtonpost.com/
201 3/02/0 1/starling-murmuration-bird-ballet-video_n_2593001 . html, http//www.youtube.com/watch ?v=Pnywh
C36UVY. hupfwww.youtube.com/watch?v=XH-groCeKbE, or hup:/www.youtube.com/watch?v=iRNghiZka%%k.

Copyrighted material

12

Chapter 0

C-opyrignted image

FFUfIC Jam Oy USYRIOUD Uago, LR,

by a pecking order; the jam occurs at a specific place because the accident or radar trap
was there, rather than at random locations along the road,

To be sure, accidents and radar traps cause some traffic jams. Most, however, arise from
the random entry of cars into, say, a highway and the resultant statistical distribution of
cars and speeds.’ Similarly, science has established that bird flocks are not centrally orga-
nized: rather than the same bird staying at the apex of the V formation, different birds
occupy that spot. The composition of the formation, hence, is not deterministic, but rather,
emergent from birds’ independent movements as they head in a particular direction, trying
to avoid other birds and yet not get too far from their neighbor birds.* We will further
explore models of flocking in chapter 7.

In further analyses of the interviews, Wilensky and Resnick (1999) identified a key
component of the DC mindset and an obstacle to thinking about emergent phenomena:
the problem of “thinking in levels.” Emergent phenomena can be described as existing on
at least two levels: the level of the individual elements (cars, birds, people, etc.); and the
level of system or aggregate patterns (flocks, traffic jams, housing patterns, etc.). Most

3. For a video of a fascinating experiment to create traffic jams, see hitp://www.newscientist.com/article/
dn 1 3402-shockwave-traffic- jam-recreated-for-first-time, htmil,

4. For a NetLogo model of birds flocking, see Wilensky (1995).

Copyrighted material

Why Agent-Based Modeling? 13

people fail to distinguish between these levels, instead “slipping™ between levels to attri-
bute the properties of one level to the other. Consider a V- flock, which appears to be stable
and to have a consistent shape. The appearance of stability often leads people to conclude
that the individual elements of the flock (the birds) are stable and have a consistent place
in the flock. As we have seen, however, this is a misunderstanding based on a slippage
between levels, and 1s an example of a failure in differential understanding. In this example,
the shape of the flock is salient; the birds™ behavior is less so. The natural direction of
levels shippage i1s from aggregate to individual. We are seduced into transferring a property
of the aggregate to the individual elements. With the case of traffic, we are much more
familiar with the ways individual cars move then we are of aggregate traffic patterns, When
we typically think about traffic, we are scated inside a car, very aware of its movements
and how it responds to the movements of other cars. When we encounter a jam, we are
likely to think of it as behaving like a car; we imagine it as responding to the stopping of
a car in an accident and moving forward like a car, rather than moving backward as jams
actually do. Here, the direction of levels slippage is opposite to that of bird flocks: the
properties of the individual elements, the cars are transferred ro the aggregate pattern, the
jam. This i1s an example of a failure of integrative understanding.

Wilensky and Resnick also showed a host of examples where this levels slippage inter-
fered with both integrative and differential understanding of complex phenomena in the
natural and human social worlds. Furthermore, this mindset 1s not just a problem of the
scientifically naive. Trained scientists also fall prey to the DC mindset.” Wilensky and
Resnick presented a host of examples across an array of content and contexts (e.g., eco-
nomic markets, predator-prey relations, slime-mold behavior, human housing patterns,
growth of crystals, insect foraging) where levels slippage interfered with understanding.
Many of these examples (and a host of new ones) will appear in this book. Indeed, in the
past two decades, researchers have found that emergent phenomena are endemic to the
natural and social worlds and that using an emergent lens to make sense of complex pat-
terns is a vital need in a twenty-first-century world.

Agent-Based Modeling as Representational Infrastructure for
Restructurations

Returning to Roman-to-Arabic numerical restructuration analogy, we suggest that new
computer-based representations can help restructurate our knowledge in many domains.
With the aid of new computer-based modeling environments, we can simulate complex
patterns and better understand how they arise in nature and society. Whereas in many areas

5. Keller and Segal (1985) descnibed the scientific study of slime molds and how it was shaped by the DC
Mindset. At centain stages of thewr hife cycle, slime molds gather into clusters, Early in the study of shime molds
it was assumed that there was a “founder” or “pacemaker” that controlled the aggregation process, but later it
was discovered that there was no need for a specialized coordinator, Yet the centralized view was embraced and
vehemently defended for more than a decade. despite strong evidence to the contrary.

Copyrighted material

14

Chapter 0

of science we have relied on simplified descriptions of complexity—often using advanced
mathematical techniques that are tractable and allow us to calculate answers—we can now
use computation to simulate thousands of individual system elements, called “agents.” This
allows new, more accessible and flexible ways to study complex phenomena—we simulate
o understand.

Agent-based modeling 1s a computational methodology that enables one to model
complex systems. As the name suggests, agent-based models are composed of agenits:
computational entities that have properties, or state variables and values (e.g., position,
velocity, age, wealth, etc.). Agents usually also have a graphical component so you can
see them on the computer screen. An agent can represent any element of a system. A gas
molecule agent, for instance, might have properties such as “mass™ with value 30 atomic
mass units, “speed” with value 10 meters per second, and “heading™ with a value of the
angle it is facing. A sheep agent, by contrast, might have properties such as “speed™ with
value 3 mph, weight with value 30 Ibs., and fleece with a value of “full” (a discrete-textual
rather than numerical value). In addition to their properties, agents also have rules of
behavior. A gas molecule agent might have a rule to collide with another molecule: a sheep
agent might have a rule to eat grass if there is grass available nearby. In an agent-based
model, we imagine a universal clock. When the clock ticks, all agents invoke their rules.
If the conditions of the rules are satsfied, (e.g., they are at the edge of a box, or grass is
nearby), they enact the behavior (1.e., bounce or eat grass). The goal of agent-based model-
ing 1s to create agents and rules that will generate a target behavior. Sometimes the rules
are not well known, or you just want to explore the system’s behavior. In that case, ABM
can be used to help you better understand a phenomenon through experimentation with
rules and properties.

A working hypothesis of representational theorists is that anything that is perceived as
difficult to understand can be made more understandable by a suitable representation. We
contend that ABM’s enable restructurations of complex systems so that the (a) understand-
ing of complex systems can be democratized and (b) the science of complex systems can
be advanced. This hypothesis begets a design challenge: Can we design a suitable repre-
sentational language that supports both parts of the claim, enabling scientists to author
scientific models in this language while simultaneously enabling a wider audience to gain
access to (and understand) complex systems?

The computer language used in this text, NetLogo (Wilensky, 1999), was developed by
Uri Wilensky for these express purposes.” It is a general-purpose agent-based modeling
language designed to be “low-threshold”—that is, novices can quickly employ it to do
meaningful and useful things—but also “high-ceiling”—meaning that scientists and
researchers can use it to design cutting-edge scientific models. The language borrows much
of its syntax from the Logo language, which was designed to be accessible to children.

6. NetLogo is freely available from colnorthwestern.edunetiogo.

Copyrighted material

Why Agent-Based Modeling? 15

Like Logo, NetLogo calls its prototypical agent a “turtle.” However, while in Logo, the
user directs the turtle to draw geometric figures, in NetLogo, this is generalized to thou-
sands of turtles. Instead of drawing with pens, they typically draw with their bodies,
moving according to rules, and the configuration of their bodies presents a visualization
of the modeled phenomenon, NetLogo was first developed in the late 1990s, and it is now
in use by hundreds of thousands of users worldwide. Thousands of scientific papers have
utilized NetLogo to construct and explore models in a wide variety of disciplines. It has
also been employed by policymakers to model policy choices, business practitioners 1o
maodel business decisions, and students to model subject matter in their coursework across
virtually the entire curniculum. Many NetLogo-based courses have sprung up in both
universities and in secondary schools.

As of yet, no textbook has been written that gives a general and systematic introduction
to NetLogo in all of its features and shows how to use it to model phenomena across many
different domains. It is our hope that this textbook will serve to enhance and further
democratize ABM literacy. We envision it being used as a primary textbook in an agent-
based modeling course, but it can also serve as a supplementary textbook in virtually any
university course whose subject matter is amenable to agent-based modeling.

We further maintain that virtually every university subject can benefit from a basic
familiarity with agent-based modeling. Some subject domains have embraced agent-based
modeling from the start, such as chemistry, biology, and matenals science. Others embraced
it in a second wave. such as psychology. sociology, physics. business, and medicine.
Recently, we have seen the growth of agent-based modeling in economics, anthropology,
philosophy, history, and law. While different fields have different degrees of structurational
inertia, there is no end to the domains of application for ABM. However, differences in
structurational inertia render some fields more easily adaptable to ABM restructurations
than others. To illustrate the potential power of widespread agent-based modeling literacy
and restructuration, we will look briefly at two examples derived from different content
domains: predator-prey interactions and the spread of forest fires,

Example: Predator-Prey Interactions

Let us start with the study of predator-prey interactions. This domain is often first intro-
duced qualitatively in high school, then quantitatively at the umiversity level. In its quan-
titative form, the population dynamics of a single predator and prey are introduced by the
classic Lotka-Volterra differential equations, a pair of coupled differential equations that
proceed as follows:

dPred
dr

=K, * Pred* Prev—=M * Pred

dPrey
di

= B* Prev— K, * Pred™ Prey

Copyrighted material

18

Chapter 0

is the more valid. But the equational model is not more valid; it, too, is a model, and a
highly simplified one at that. In fact, we now know from the works of biologists such as
Gause (1936) that the equational model is less accurate than an ABM in the isolated
predator-prey situation for which it was intended. In particular, the equational model
underrepresents extinctions, since the model uses real numbers to represent the population
densities. This means that the prey population, for example, can dip to 0.5, or 0.1, or 0.01]
and yet stull come back. In the real world, however, populations are discrete. When the
maodel goes below one prey (or a pair), it reaches a functional point of no return.

Example: Forest Fires

Our second example is about the spread of a forest fire. This domain is not usually present
in the K-12 or university curriculum, but when taught, it typically falls under the subject
matter of physics, described in terms of two classic partial differential equations. The first
is the classic heat equation, which describes the distribution of heat in a given region over
time, where theta represents the thermal diffusivity of the material through which the heat
is traveling.

dH (x.1) ﬂd!H{LI)
di dx’

The second equation physicists use to describe the spread of a forest fire treats the fire as
if it were a potentially turbulent fluid, thus using the Reynolds equation of fluid flow.

dU, dU, 1dP dU, d —;
dr dx; pdy, dydx; dx;

Needless to say, these equational representations are well beyond students in the K-12
years and, we would guess, the vast majority of undergraduate science majors. Understand-
ing what they mean and how to compute them requires significant knowledge of higher-
level physics as well as the machinery of partial differential equations.

Contrast this with the ABM approach to modeling forest fires (illustrated in figure 0.7),
which would typically model the environment as a gnd of cells with trees occupying
certain cells. Modeling the spread of fire consists simply of giving rules to the cells that
are on fire as to when to spread to neighboring tree cells. This representation is so simple,
we have seen elementary school students comprehend and explore it. They can expeniment
to see how different densities of trees in the forest affect the fire spread and they can
modify the basic model to ascertain the effects of wind, or wood type, or fire source. We
will explore an ABM of a forest fire in chapter 3 and consider such extensions. Of course,
a very simple ABM of forest fire spread would not correctly model a particular fire, but
it does give insight into the dynamics of any fire and once we know the details of a par-
ticular fire, we can add in whatever data or rules that apply to the situation. This enables

Copyrighted material

Why Agent-Based Modeling? 19

Lopyrighted image

AN AECHT-DAscU MRS O 3 TOTeEst TIre. 10 WIHCNSKY, 1yY/0)

even scientists to experiment much more fluidly with different models of spread, iteratively
refining their models. ABM methods are starting to be used to model and fight real forest
fires (see, e.g., www.ssimtable.com for a company that does agent-based modeling of
emergency management including wildfires).

The restructuration of these systems using ABM provides several representational ben-
efits. They make use of discrete rather than continuous representations, which are more
easily comprehensible, more closely match real-world situations and require much less
formal mathematics to employ. They are easier to explore and much easier to modify. They
present immediate feedback with visualizations that allow researchers and practitioners to
understand and critique them at two levels, the level of the overall aggregate pattern, such
as the fire spread or predator population levels, but also the level of the behavior of the
individual animals, and the fire spread to particular trees. Though these two examples
highlight some of the advantages of agent-based restructurations, the full potential of ABM
restructuration is not yet evident either in these examples, or in science as a whole.

The two examples we have given here come from the natural sciences. We believe the
potential of ABM restructurations may be even more important in the social sciences. This
is because the core representational infrastructure in the social sciences consists of words

Copyrighted material

20

Chapter 0

and texts. Words and texts do not as easily specify the precision of an idea and can thus
be interpreted in fundamentally different ways by different people. Moreover, words and
texts are not dynamic representations, so they cannot give you immediate feedback as to
the consequences of the assumptions embedded in them. By capturing social science theo-
ries in dynamic ABM representations, we make their assumptions exphicit, and they
become demonstrations of the consequences of their assumptions. If someone wants 1o
disagree with your model, he or she must show how either an assumption 18 incorrect or
missing or show how the logic of the interactions is flawed. The model serves as an object-
to-think-with and a test bed for alternate assumptions. This can be particularly powerful
when 1t comes to 1ssues of policy where one can rapidly test many different alternative
potential scenanos and examine their consequences. As such, ABMs serve as powerful
complements to text-based explanations,

Over the past twenty years, the authors of this textbook have been working on improving
the infrastructure, Netlogo, and also on restructurating domains. We have been involved
with agent-based restructurations at all levels of schooling, in a wide variety of domains
including most of the natural and social sciences and engineering. Restructurations have
been performed in a range of fields so diverse as to include cognitive and social psychol-
ogy, linguistics, biology, chemistry. physics, and many more. Agent-based models are now
used in the professions to do research in medicine and law and by policymakers to help
them explore effects of alternative policies.

There is still much work to do to establish the representational infrastructure and the
science of ABM. What is needed is widespread literacy in agent-based modeling, We are
hopeful that this textbook will move us forward and enable a large number of students to
learn about and master this new representational infrastructure. We envision a series of
textbooks that use agent-based modeling to restructurate many specific subjects, It is our
hope that this textbook will help to spread literacy in agent-based modeling, to catalyze
these restructurations, and that the widespread use of agent-based representations will take
considerably less than five hundred years.

Copyrighted material

1 What Is Agent-Based Modeling?

Go to the ami, O sluggard; consider her ways, and be wise.

—Proverbs 6:6

Ants

The ant opens her eyes and looks around. There are many of her siblings nearby, but there
is no food, The ant is hungry, so she heads out from the ant colony and starts to wander
around. She smiffs a little to the left and a hittle to the night, and still she cannot smell any
food. So she keeps wandering. She passes by several of her sisters, but they do not interest
her right now; she has food on her mind. She keeps wandering, Sniff! Sniff! Mmmm ...
good! She gets a whiff of some of that delightful pheromone stuff. She heads in the direc-
tion of the strongest pheromone scent; in the past there has been food at the end of that
trail. Sure enough, as the ant proceeds along the trail, she arrives at some delicious food.
She grabs some food and heads back to the colony, making sure to drop some pheromone
along the way. On the way back, she runs into many of her sisters, each sniffing her way
along pheromone trails, repeating the same process they will carry out all day.

What we have just fancifully described is an ant foraging for food. The opening para-
graph of this section is in itself a model of ant behavior. By a model, we mean an abstracted
description of a process, object, or event. Models can take many distinct forms. However,
certain forms of models are easier to manipulate than other forms, The textual description
in our first paragraph cannot easily be manipulated to answer questions about the ant
colony’s behavior—for example, what would we see if all the ants in the colony followed
the behavior we described? It is difficult to extrapolate from the textual description of one
ant to a description of an ant colony. The textual model is not sufficiently generative to
answer such questions. It is a fixed description—always “behaving™ the same, thus not
bestowing any insight into the range of variation in behaviors. And it is not combinato-
rial—we cannot use the description to understand the interaction of the ants with each
other or with the environment.

Copyrighted material

22

Chapter 1

One way 1o make the preceding model more generalizable and gain insight into the
behavior of an ant colony would be to implement the model in a computational form. A
computational model is a model that takes certain input values, manipulates those inputs
in an algorithmic way, and generates outputs. In computational form, it would be easy to
run the “Ants” model with large numbers of ants and to observe the model’s outputs given
many possible different inputs. We use the term model implementation to refer to this
process of transforming a textual model’ into a working computational simulation (written
in some form of computer “code™). Besides textual models, there are other forms of con-
ceptual models that describe processes, objects, or events but are not computational;
conceptual models can also be diagrammatic or pictorial.

This description lends itself particularly well 1o being implemented, since it results from
a particular standpoint, that of an individual ant, or ant agent. By the word agenr, we mean
an autonomous individual element of a computer simulation. These individual elements
have properties, states, and behaviors,

The ant is an agent. It has properties such as its appearance and its rate of movement.
It has characteristic behaviors such as moving, sniffing, picking up food, and dropping
pheromone. It has states such as whether or not it is carrying food (a binary state)
and whether it can sense how much pheromone is in the environment around it (a mult-
valued state).

Agent-based modeling (ABM) 18 a computational modeling paradigm that enables us
to describe how any agent will behave.” The methodology of ABM encodes the behavior
of individual agents in simple rules so that we can observe the results of these agents’
interactions. This technique can be used to model and describe a wide variety of processes,
phenomena, and situations, but it is most useful when describing these phenomena as
complex systems. Our aim in this textbook is to facilitate your creating, modifying, and
analyzing the outputs of agent-based models. We begin by describing the genesis of the
ant foraging conceptual model and how it was implemented as an agent-based model.

Creating the Ant Foraging Model

Many biologists and entomologists have observed ants in the wild (Hélldobler & Wilson,
1998; Wilson, 1974) and have described how ants seemed to form trails to and from food
sources and their nest. In the next few paragraphs we will describe some hypotheses about
how the ants accomplish this behavior and what mechanisms are at work that enable ants
to find food in this way." Perhaps the trails form as follows: After an ant finds food, it goes

1. Or, more generally, a conceptual model in any form,

2. We will use the acronym ABM in seéveral ways in this wextbook, Sometimes we will use it to refer to the
practice of agent-based modeling, Other times, we will use an ABM 1o refer to an agent-based model, or ABMs
o refer (o agent-based models. We rely on context to disambiguate our use of the term.

3. Our account of ant behavior is inspired by the actual history of the scientific study of ants. It has been simpli-
fied here for the sake of exposition. For a more detailed account, see Theraulaz and Bonabeau (1999).

Copyrighted material

What Is Agent-Based Modeling? 25

Now that we have a basic hypothesis (in the form of a textual model) that describes the
behavior of the ant, how do we implement the model so that we can test out this hypothesis
and see if our computational model adequately accounts for what we observe in nature?
The first step is to create a more algorithmic description of the preceding textual model.
This is just another model itself, but one that is more easily translated into an implemented
model. Here is one set of rules that an individual ant could follow in order to operate in
accordance with the model described earlier. We describe the rules from the point of view
of an individual ant.

. If I am not carrying food, | check if there is food where I am; if there is, 1 pick it up;
if there isn’t food right here, I try to sense a pheromone trail nearby; if | find one, then |
face “uphill” along the pheromone gradient toward its strongest source,

2. If I am carrying food, I turn back toward the nest and drop pheromone on the ground
below me.

3. 1 turn randomly a small amount and move forward a step.

These rules are easily implemented in a computer language. There are many computer
languages in use for many purposes, but only a few are especially tailored to work with
agent-based modeling. One of these is NetLogo (Wilensky, 1999a). Netlogo is both a
modeling language and an integrated environment designed to make agent-based models
easy to build. In fact, NetLogo is so easy to use that, rather than describe algorithms and
models in pseudo-code,’ throughout this textbook we will use NetLogo instead. Describing
the preceding rules in the NetLogo language is straightforward. Here, for example, is one
translation of rules 1-3 into NetLogo code:

if not carrying-food? [look-for-food] ;; if not carrying food, look for it
if carrying-food? [move-towards-nest] ;; if carrying food turn back towards the nest
wander ;3 turn a small random amount and move forward

This code snippet is not the complete implemented model but it does describe the core
components that go into the Ants model. To complete the model we need to describe each
of the subcomponents (such asmove - towards -nest, and look - for-food, and wander
and look-for-food will need to describe the ant’s sniffing for pheromone). Each of
which is a small amount of code. The result will be a fully implemented computational
model. (See figure 1.2.)

Let us quickly try to “read” the code snippet and understand what it is doing. The if
primitive takes as input a predicate (i.e., a statement that is either true or false) and takes

6. The process of comparing data from a computational model to real-world data s called validation. It will be
discussed in depth in chapter 7,

1. Pseudo-code is an intermediate form between text and computer code that is often used to describe compu-
tational algorithms,

Copyrighted material

Chapter 1

Lopyrignted image

INCLLOED AIS ITHOGCH OF TOTMEINE DCHy o,

one action if the predicate is true and another if it is false. The first “if’”" in the preceding
code asks if the ant is carrying food. If she is not carrying food, then she takes the first
action, that is, to look for food. She does this by checking to see if there is food where
she is standing, and if there is not she looks around to see if there is a pheromone trail
nearby that she can follow to find food (this is all described in the look-for-food
procedure). If she is carrying food, then she takes the second action, which is to turn back
toward the nest. To head back to the nest, she first determines if she is at the nest, if she
is, then she drops her food, otherwise she turns so as to follow the trail back to the nest,
dropping some pheromone along the way, since she just came from a food source. Regard-
less of whether she is looking for food or returning to her nest, the ant wanders a little bit
along the direction she is heading. This is to simulate that ants, as with almost all animals,
do not usually follow a straight line, but instead take small steps in other directions along
the way.

By the end of chapter 3, you will be able to make substantive modifications to this
model, and by chapter 4, you will be able to construct such a model on your own,

8. hup/feclnorthwestern.edu/netlogo/models/Ants (Wilensky, 1997).

Copyrighted material

What Is Agent-Based Modeling? 27

Box 1.2
Exploring the Ant Foraging Model

To explore this model in more depth, open the Ants model (Wilensky, 1997) (found in the
Biology section of the NetLogo models library). Once you open this model, you will see a
set of controls that you can manipulate to change the parameters of the model. Try varying
some of the parameters (e.g.. POPULATION, DIFFUSION-RATE, EVAPORATION-
RATE), and explore the accompanying material that discusses this model and the real-
world experiments it is based upon. As you manipulate the model, consider the following
questions:

I. How does the evaporation rate affect the ability of the ants to form trails to the food?
What happens if there is no evaporation?

2. How does the rate of diffusion affect the kind of trails the ants form?

3. How does the number of ants affect the colony’s ability to consume the food?

Results and Observations from the Ant Model

When running the Ants model, the results are initially surprising for someone who has
only seen the rules for the individual ants. The “aggregate™ or “macro™ behavior of the
model shows apparently systematic food gathering behavior. It is as if the ant colony has
a clear plan for how to gather the food. Yet, we have seen that the Ants model rules do
not contain any systematic foraging plan. If we look closely at the model running, we
observe that initially the ants wander around at random. Then some ants will wander into
a nearby food source. Once they find that food source, they will start to bring food back
to the nest, laying a pheromone trail beneath them. If just one lone ant finds the food
source, the pheromone trail will not be strong enough for other ants to follow it; but as
more and more ants find the food source, the trail will become stronger and stronger.
Eventually, the actions of many ants will create a strong pheromone trail from the nest to
the food source, and so any ant can easily find the trail to the food source.

The ants as a group appear to exploit food sources in an optimal manner. That is, they
first gather food from the nearest food source, then the second nearest, and so on. This
appears to be a conscious plan of the ant colony; but as we know from the ant rules, this
1s not the case. In fact, as you observe the model closely, you will note that sometimes
ants operate almost at cross-purposes with other ants, creating additional pheromone trails
to farther food sources and distracting some of the ants that are currently harvesting the
closer food source. The ants do not have a centralized controller; instead, the nearest food
sources are the most likely to be found first by the ants randomly wandering from the nest.
The nearest food sources also require the least amount of pheromone since the pheromone
only has to cover the shortest path from the nest to the food. Once a sufficient number of
ants have found a particular food source, the pheromone trail to it stabilizes and thus

Copyrighted material

28

Chapter 1

attracts more ants to it.” When the food source has been completely consumed, the ants
no longer lay pheromone; hence, the trail dissipates, and the ants are released to search
for other food sources.

This optimal exploitation of food sources could be placed within a larger context. In
many ways, the colony of ants seems to balance exploration and exploitation (Dubins &
Savage, 1976. In any situation in which an entity is operating in an unknown eénvironment,
the entity must spend some time exploring the environment to understand how 1ts actions
affect its rewards, and some time exploiting the environment, that 1s taking actions that it
knows have produced the best rewards in the past. By allocating a large number of ants
to exploit the current nearest food source while other ants continue to explore, the ant
colony as a whole successfully balances exploration and exploitation.

However, these “trails” that the ants build to the food source, the “optimal™ behavior
that they exhibit, and the “balance™ between exploration and exploitation are not coded
into any one ant. There is nothing that tells the ant to build a trail; there is nothing
that tells the ant to go to the nearest food source first; there is nothing that tells some
ants to explore while others exploit. The “trails,” “optimal,” and “balance”™ behavior of
the ants i1s not coded into any of the ants but is instead an emergent phenomenon of
the model (Holland, 1998: Anderson, 1972; Wilensky & Resnick, 1999). Having run
and used the model, it may seem obvious that these low-level rules can create these
rich and optimal global patterns. But the history of science is full of wrong turns in
which scientists believed that a complex phenomenon needed a complex organizational
structure and a leader (Resnick, 1994; Wilensky & Reisman, 2006; Wilensky & Resnick,
1999). In contrast, through ABM we understand that this complexity can self-organize
without a leader.

What Good Is an Ant Model?
The Ant model is our first example of an agent-based model. Now that we have gone
through the process of understanding how a model of ant foraging works, what knowledge
have we gained from that process and how can we profitably use the model? It may seem
at first that the only thing the model does is provide a visualization of one particular textual
model. We describe eight main uses for agent-based models: (1) description, (2) explana-
tion, (3) experimentation, (4) providing sources of analogy, (5) communication/education,
(6) providing focal objects or centerpieces for scientific dialogue, (7) as thought experi-
ments, and (8) prediction.

A model is descriptive of a real-world system. Granted, it 1s a simplification of the real
world and does not contain all of the details and inconsistencies that are present in the real

9. The increase in pheromone attracts an increasing number of ants to the vicimity of the pheromone, which in
tum increases the amount of pheromone. This process exhibits positive feedback, which will be discussed further

i chapter 7.

Copyrighted material

What Is Agent-Based Modeling? 29

Box 1.3

Copyrighted image

world. But all models are coarse-grained descriptions of reality; and, in fact, models that
are not coarse-grained descriptions are useless as descriptions because they are indistin-
guishable from the real world and therefore do not assist in our understanding of complex
systems'” (Korzybski, 1990). If your model includes all aspects of the real phenomenon,
it is more efficient to simply observe reality, since it saves you the time of building the
model. The function of a model is to help us to understand and examine phenomena that
exist in the real world in more tractable and efficient ways than by simply observing reality.
Even if you have never observed a real ant colony, the Ants model helps—it can help you
know what to look for and generate hypotheses that you can confirm or disconfirm by
observation.

Models are explanatory in that they point out the essential mechanisms underlying a
phenomenon. They can function as a proof that hypothesized mechanisms are sufficient
to account for an observation. Models provide us with a proof of concept that something
is possible. For example, once we built the Ants model and observed the results, we proved
that an ant colony could exhibit characteristics such as “trails,” “optimality,” and “balance™
without a centralized controller (Resnick & Wilensky, 1993; Resnick, 1994; Wilensky &
Resnick, 1999). These characteristics are all emergent outcomes of low-level mechanisms.
A key function of ABMs is to explicate the power of the emergence. In general, it is dif-
ficult for people to understand how such simple rules can lead to complex observed phe-
nomena, and ABMs make this connection explicit. Even if this were not the way ants
actually worked, the model illustrates that this is one mechanism that could be used. We
can also compare and contrast alternative hypotheses. We could, for example, build the
other food-gathering hypotheses discussed earlier as computational models and compare

10. The Argentine author Borges has a fanciful short story (1946) based on the premise of a map as big as the
lerrain il maps.

Copyrighted material

Chapter 1

that make them agent-based models”? Now that we have described the process of designing
one particular model, let us take a step back and describe more formally what agent-based
modeling is and how it can be used.

What Is Agent-Based Modeling?

The profitable uses of the Ants model that we described earlier are not particular to that
one model. These are generally applicable affordances of the methodology used to develop
the model, which is agent-based modeling. The core idea of Agent-Based Modeling 1s that
many (if not most) phenomena in the world can be effectively modeled with agents, an
environment, and a description of agent-agent and agent-ecnvironment interactions. An
agent is an autonomous individual or object with particular properties, actions, and pos-
sibly goals. The environment is the landscape on which agents interact and can be geo-
metric, network-based, or drawn from real data. The interactions that occur between these
agents or with the environment can be quite complex. Agents can interact with other agents
or with the environment, and not only can the agent’s interaction behaviors change in time,
but so can the strategies used to decide what action to employ at a particular time. These
interactions are constituted by the exchange of information. As a result of these interac-
tions, agents can update their internal state or take additional actions. The goal of this
textbook i1s to explore in detail all of the different aspects and uses of agents and their
interactions.

Agent-Based Models vs. Other Modeling Forms

What makes agent-based models distinct from other models? The most common form of
scientific models is the equation form. Parunak, Wilensky, and colleagues (Parunak et al.,
1998; Wilensky, 1999b; Wilensky & Reisman, 2006) discuss the many differences between
ABM and equation-based modeling (EBM). One distinction is that because ABM models
individuals it can model a heterogeneous population, whereas equational models typically
must make assumptions of homogeneity. In many models, most notably in social science
models, heterogeneity plays a key role. Furthermore, when you model individuals, the
interactions and results are typically discrete and not continuous. Continuous models do
not always map well onto real-world situations. For instance, equation-based models of
population dynamics treat populations as if they are continuous quantities when in fact
they are populations of discrete individuals. When simulating population dynamics it is
very important to know if you have a sustainable population. After all, a wolf population
cannot continue if there are fewer than two wolves left; in reality, a millionth of a wolf
cannot exist and certainly cannot reproduce, but it can result in increased wolf population
in EBMs. The mismatch between the continuous nature of EBMs and the discrete nature
of real populations causes this “nano-wolf” problem (Wilson, 1998). As a result, for EBMs

Copyrighted material

What Is Agent-Based Modeling? 33

to work correctly, they must make the assumption that the population size is large and
that spatial effects are unimportant (Parunak et al., 1998; Wilensky & Reisman, 2006;
Wilkerson-Jerde & Wilensky, 2010, in press).

Another advantage of ABM over EBM is that it does not require knowledge of the
aggregate phenomena: One does not need to know what global pattern results from the
individual behavior. When modeling an outcome variable with EBM, you need to have a
good understanding of the aggregate behavior and then test out your hypothesis against
the aggregate output. For example, in the wolf-sheep (predator-prey) example, to build the
EBM, you need to have an understanding of the relationship between (aggregate) wolf
populations and sheep populations. To encode this aggregate knowledge such as in the
classic Lotka-Volterra equations (Lotka, 1925; Volterra, 1926), you must have knowledge
of differential equations.'' In contrast, ABM enables you to write simple rules for simple
entities, requiring knowledge only of commonsense behaviors of individual wolves and
sheep and yet still observe the aggregate result by running the model. Thus, even if you
have no hypothesis as to how the aggregate variables will interact, you can still build a
model and generate results.

Because agent-based models describe individuals, not aggregates. the relationship
between agent-based modeling and the real world 1s more closely matched. It is therefore
much easier to explain what a model is doing to someone who does not have training in
the particular modeling paradigm. This 1s beneficial because it means that no special train-
ing 1s required to understand an agent-based model. It can be understood by all of the
stakeholders in a modeling process. Moreover, with some ABM languages like NetLogo,
the syntax is so readable that stakeholders without knowledge of how to build a model
can often read the model code and understand what is going on. This helps improve the
verifiability of the model.”* This “glass box™ approach to modeling (Tisue & Wilensky,
2(0M4) enables all interested parties to talk about the model all the way down to its most
basic components,

Finally, the results generated by ABMs are more detailed than those generated by
EBMs. ABMs can provide both individual and aggregate level detail at the same time,
Since ABMs operate by modeling each individual and their decisions, it is possible to
examine the history and life of any one individual in the model, or aggregate individuals
and observe the overall results. This “bottom-up™ approach of ABMs is often in contrast
with the “top-down™ approach of many EBMs, which tell you only how the aggregate

1. Differential equations are often represented with another modeling approuch, systems dynamics modeling,
which provides discrete approximations (o the equations. We discuss system dvnamics modeling in more depth
in chapter 8.

12. A model is considered verified if the implemented model matches the conceptual maodel. Of course, since
conceptual models and implemented models are distinet entities, it is impossible 1o say a model is completely
verified, but it is possible to say that model is venfied to @ certain extent,

Copyrighted material

Chapter 1

system is behaving and do not tell you anything about individuals. Many EBMs assume
that one aspect of the model directly influences, or causes, another aspect of the model,
while ABMs allow indirect causation via emergence to have a larger effect on the model
outcomes.

Randomness vs. Determinism

One important feature of agent-based modeling, and of computational modeling in
general, is that it is easy to incorporate randomness into your models,"” Many equation-
based models and other modeling forms require that each decision in the model be
made deterministically. In agent-based models this is not the case; instead, the decisions
can be made based on a probability. For instance, in the Ants model, as the ants move
around the landscape, their decisions are not completely determined: instead, at each
time step they change their heading a small amount based on a random number. As a
result, each ant follows a unique, irregular path. In reality, ants might be atfected by
small changes in elevation, the presence or absence of twigs and stones, and even the
light of the sun. To build a complete model of all of these factors might be very tedious
and would probably be very specific to a particular environment. Moreover, since our
real goal in building this model is to understand how ants gather food and not how
they move about the landscape, there is no guarantee that a more deterministic model
will provide us with a better answer to this question. Thus, using the random number
serves as an approximation that may turmn out to be just as correct in answering our
driving question.

The “random™ Ants model is easier to describe than a deterministic one. If we are
explaining the Ants model to a person who has never seen it before, we can say that at
cach time step the ants change their heading by a small random amount. We do not have
to describe how the model takes into account all of the environmental factors that could
be involved. This simplification also speeds up model development, since we do not need
o spend time formalizing all of these details. If at a future time we decide that the ants
do need to make more deterministic decisions about their environment, we can incorporate
that knowledge at that time. Thus, though randomness in a model acts as an approximation
to real world concepts, the model can later be made less approximate by the incorporation
of additional knowledge.

Finally, there are often times when we simply do not know enough about how a complex
system works in order to build a completely deterministic model. In many of these cases
the only type of model that we can build 1s a model with some random elements. Agent-
based modeling and other modeling forms that allow you to incorporate random features
are essential to studying these kinds of systems.

13. Since computers are deterministic machines the randomness that they possess is not true randomness but

rather “pseudo-randomness.” This will be discussed further in chapter 5.

Copyrighted material

What Is Agent-Based Modeling? 35

When Is ABM Most Beneficial?

Agent-based modeling has some benefits over other modeling techniques, but, as with any
tool, there are contexts in which it is more useful than others. ABM can be used to model
Just about any natural phenomenon (e.g., you could describe any phenomenon by describ-
ing the interaction of its subatomic particles). However, there are some contexts for which
the cost of building an ABM exceeds the benefits, and there are other times when the
benefits are extraordinary given the costs. It is sometimes difficult to discern the difference
between these two scenarios. However, there are a few general guidelines that can help to
identify sitvations where ABM will be particularly valuable. These are meant as guidelines
and not particular prescriptions or “rules”™ about when to use ABM. Most often, you will
have to judge based on the particular situation,

Some problems with large number of homogenous agents are often better modeled (i.e.,
they will provide more accurate solutions to aggregate problems faster) using an aggregate
solution like mean field theory or system dynamics modeling (Opper & Saad, 2001;
Forrester, 1968). For instance, if you are concerned about the temperature in a room, then
tracking every individual molecule and its history is not necessary. On the other hand, if
a problem has only a handful of interacting agents, then you usually do not need to bring
to bear the full power of ABM and instead can write detailed equations describing the
interaction—two billiard balls colliding, for example, does not require ABM. As a rule of
thumb, agent-based models are most useful when there are a medium number (tens to
millions) of interacting agents (Casti, 1995).

Agent-based models are more useful when the agents are not homogenous. For instance,
modeling all the trades and events on a stock market floor requires a more rich and detailed
examination of individual-level behavior. Different stock trading agents have different risk
thresholds and hence will not make the same decision given the same environmental state.,
Even in the Ants model, while the ants all had the same rules of behavior, they were not
homogenous in location, heading, food-carrying state, and so on. ABM is very useful when
agents are heterogeneous and the heterogeneity of the agents affects the overall perfor-
mance of the system. Since ABM enables each individual to be tracked and described at
the individual level, it 1s much more powerful than techniques such as systems dynamics
modeling (Forrester, 1968; Sterman, 2000: Richmond & Peterson, 1990). System dynamics
modeling requires the creation of a separate “stock™ for each group of agents with different
properties, and, when the space of properties is large, this becomes difficult to build, track.
and integrate. ABM, on the other hand, requires you only to specify how agents’ properties
are defined and not to keep track of all possible agent types. which provides a more concise
description of a complex system. Thus, using ABM is especially beneficial when the agents
are heterogeneous.

Having heterogeneous agents also allows the interactions between agents to be quite
complex. Since we can specify an almost infinite number of different agent types, we can
specify just a few simple rules to describe how those agents interact with each other to

Copyrighted material

Chapter 1

create a very rich tapestry of interactions. Moreover, since ABM allows individual agents
to keep a history of interactions, they can change their behaviors, and even their strategies,
based on past events," For example, in an ABM of the evolution of cooperation, it is
possible that agents can learn and hence modify their behavior as a result of continual
interaction with a particular group of agents. They may learn to distrust that group, or
alternatively they may leam to act more favorably toward that group. Thus ABM is very
useful when modeling complex interactions of adaptive agents.

In the same way that ABM is useful when the interaction between agents is complex,
it 1s also useful when the agents’ interaction with the environment is complex. The envi-
ronment in an ABM is often itself composed of stationary agents, and thus modeling
agent-environment interactions has all of the power of modeling any agent-to-agent inter-
action, For example, in an ABM of fish ecology, a fisherman can recognize a particular
location as a place that he has fished before and decide not to fish there again. This agent-
environment interaction enables geographic and location-dependent information to be
included in the model, and thus we get richer data than a geographic-independent model.
In the fish model, it may be known that the average fish population is steady over time
for a large area, but that could mean that the average fish population is steady in all of the
subareas, or that different subareas trade off with each other, resulting in a larger fish
population in some places and a smaller one in others. Thus, the rich description of envi-
ronment and geography entailled by ABM allows for the generation of more detailed
information. This enables ABM to generate spatial patterns of results as opposed to
spatially homogenous aggregate results,

Another way that ABM provides more detailed information than equation-based or
many other modeling approaches is through its rich conception of time. In ABM, one
models agents and their interactions with each other. These interactions occur temporally;
that is, some interactions occur before or after others. ABM thus enables you to move
beyond a static snapshot of the system and toward a dynamic understanding of the system’s
behavior. In this way, ABM provides a rich and detailed account of the process of a sys-
tem’s unfolding in time, and not just the final state of the system. For example, in a stock
market model you can actually observe individuals buying and selling stocks over time
instead of modeling only the change in the stock’s price. By enabling a detailed conception
of time, ABM vastly expands on the detail of the resultant model.

Trade-offs of ABM
Agent-based modeling provides some benefits over other methods of modeling, but, in
any particular situation, choosing a modeling methodology is a case of choosing the

14, Strategies are distinet from behavior because they express how to behave in a particular set of circumstances.
Thus, a change in strategy often results in a change of behavior, but a change in behavior is not necessarily the
result of a change n strategy.

Copyrighted material

What Is Agent-Based Modeling? 39

(the code represents the conceptual model) and validated (the model has a correspondence
to the real world). We also cover issues to consider in replicating an ABM. Since validation
and replication usually require statistical comparison, there is a short introduction to the
necessary statistics.,

In chapter 8 we tie many of these threads together to discuss how ABM is applied in
real-world settings and examine advanced uses of ABM. We highlight some of the prin-
cipal examples from domains such as ecology, economics, land-use planning, computer
science, and political science. We discuss what ABM methodology has contributed to
scientific knowledge and what it will be used for in the future. We discuss how to incor-
porate these richer data sources into your ABM. These sources include GIS, Social
Network Analysis, and sensor data (visual and nonvisual). We address how to export data
from ABMs to advanced mathematical analysis packages, We also discuss how to make
ABMs more powerful, by incorporating techniques such as machine leaming, system
dynamics modeling, and participatory simulation. We conclude with a discussion of future
research trends and challenges within ABM and upcoming areas of applications of ABM
to new knowledge domains.

In the appendix, we examine the origins and history of ABM, with an emphasis on its
computational roots. This is provided to set a historical context for the rest of the book
enabling us to understand how a vanety of fields came together to create what we now
call ABM. Some readers may wish to read the appendix at this time, though 1t can be
completely skipped for the reader focused on model building. But before we embark on
our ABM journey, allow us to take one last look at the Ants model.

Conclusion

The Ants model is interesting for biologists, and we have even discussed how it can be
used to reason analogically about other systems, like computer networks and path plan-
ning. But what if we wanted to transform the Ants model to be more like some other
system?” There are many similarities between ant colonies and human organizational
systems. They both exhibit problem-solving behavior. They both are results of organized
structures that have evolved over the millenma. For example, what if we tried to recon-
ceptualize the ants in the system as humans? Then we can visualize the ant colony as the
central business district of a town. With this slight shift in perspective, we can start to see
how the model could resemble a human city, with individuals that go off to work every
day and return in the evening.

The last description suggests a major difference between the ant and the human
systems. Humans tend to leave for work around the same time in the moming and return
home around the same time in the evening. So we need to modify our model slightly:
Instead of having the ants (now humans) leave randomly from the nest, we have them
leave at random intervals around a start time, go off to find some food, and stay near

Copyrighted material

Chapter 1

the food until a certain amount of time passes, then return to their homes. And humans
do not live in a colony: they live in different locations around a city, so we need to give
each human a different home that they start with, and then allow them to walk (with
some randomness) to their work, But humans do not walk randomly (well, not much of
the time); they instead take preplanned routes on roads. So now let us put down a road
network for them to drive on their way to work., But if they are driving to work, then
they will be limited by the speed of the traffic. So now we need to implement a vehicle
simulation on the roads. And so it goes. ... Slowly, our model of one specific ant blos-
soms into a model of many ants collecting food, which then metamorphoses into a model
of urban commuting patterns. A powerful aspect of ABM is that 1t enables us to find
universal patterns that characterize apparently quite different phenomena, to generate
these patterns with simple rules, and to explore the effects of simple modifications to
those rules.

What models will you build? What are the simple rules that describe the agents in your
model? What are your agents? Are they humans, ants, cars, computers, deer, viruses, cells,
coffee trees, hurricanes, air particles, electrons, snowflakes, sand grains, students, teachers,
videogames, marketing strategies, innovations, or any of a vast number of objects, events,
or things? Whatever it 1s you want to model, ABM provides you with tools and capabilities
that enable you to simulate and analyze it as a complex system. As you progress through
this book, you will be introduced to the tools and develop the skills that you need to explore
the world around you in an agent-based way.

Al this point, it is recommended that you work through the three NetLogo tutorials
found in the NetLogo user manual that 1s available from the help menu of the NetLogo
application. It will be necessary to work through the tutorials to do many of the explora-
tions at the end of this chapter and to follow chapter 2.

Explorations

Beginner NetLogo Explorations

I. Complete the tutorials that are available in the NetLogo User Manual.

2. Look over the models in the Sample Models section of the NetLogo models library.
The models are grouped by subject area. Pick out a model you find interesting and try
running it in different ways, What set of parameters gives vou the most interesting behav-
1or? Is there a way to change a parameter in a small way and get a very different behavior?
Explicitly describe the rules the agents are following.

3. Describe a phenomenon that you think it would be interesting to model using ABM.
What are the agents in this model? What properties do they have? What kind of actions
can the agents take? What kind of environment do the agents exist in? What is the order
of events that occurs at each time step of the model? What types of output will this model
generate’! What do you expect to observe as a result of running this model?

Copyrighted material

What Is Agent-Based Modeling? 41

Ants and Other Model Explorations

4. Examine the code for the Netlogo Ants model, described in the chapter. The wiggle
procedure right now has the ant turn a random amount to the left and then back to the
right a random amount. This approximates a random walk that is centered on moving
straight ahead. If you changed the procedure so the walk was biased to the left or to the
right, how would that change the results? What if the limits of how much the ant tumed
were changed? Make these modifications and observe the results.

5. Termites model Run the Termites model (found in the Biology section of the NetLogo
models library). In this model there are only two objects: termites and wood chips. What
are the termites doing in this model? Without looking at the code or the info window, can
you describe the rules governing the termites’ behavior? Hint: Tt might help to reduce the
number of termites and wood chips and to slow down the speed slider.

6. Daisyworld model Some ABMs are used not as models of real-world events, but rather
as thought experiments. Run the Daisyworld model (found in the Biology section of the
NetLogo models library). This model defines a world in which the whole surface is covered
by daisies. and it examines how different factors affect the global temperature of the world.
Adjust the parameters of the model and observe how the model reacts. The standard
parameters result in a temperature slightly below 50. Find a set of parameters that move
the temperature closer to 12. This model rarely results in a constant temperature; it usually
oscillates. Describe this oscillation.

Concept Explorations
1. Modeling at different levels Agent-based models can be written at different levels.

For example, one model may have agents that are populations of wolves and sheep,
whereas another model may have agents that are individual wolves and sheep. Write a
description of how packs of wolves interact with flocks of sheep at the group level. Now
write a description of how individual sheep interact with individual wolves. How are your
descriptions different? What phenomena are you describing? At what times would the
group level description be helpful? At what times would the individual level description
be helpful?

8. Emergence and ABM Agent-based models often exhibit emergent properties. One
characteristic of an emergent phenomenon is that the system exhibits a property that is not
defined at the individual level. For instance, examine the Traffic Basic model (found in
the Social Sciences section of the models library). Run the model several umes and observe
the results. What causes the tratfic jams in the model? Does there appear to be any external
event that causes them? Inspect the cars. Is there any property of these cars that describes
a traffic jam? If one car moves slowly. is that enough to cause traffic jams?

9. ABM for education and understanding ABM provides us with a new way of under-
standing the world around us. ABM has many uses in research. But ABM also has great
potential as a tool for education. For instance, molecules in a free gas can be thought of

Copyrighted material

Chapter 1

as agents moving around and colliding with each other. Examine the GasLab Free Gas
model (found in the Chemistry and Physics section of the models library). Do you think
this model is easier to understand than a traditional equation-based approach to under-
standing Free Gas phenomena? What affordances does the ABM approach give us that
traditional approaches lack? Are there ways that ABM can be more confusing than tradi-
tional approaches? If so how?

NetLogo Explorations

10. Create at least two different ways of distributing turtles randomly across the screen.
In one method, use only turtle motion commands such as forward, left, and right.
In another method. use set or setxy. Create buttons to launch these procedures. Compare
and contrast your different methods. Is one of these more efficient? Is one of them more
realistic? In what situations would each of them have advantages over the other?

1. Write a procedure to get a color to spread from patch to patch. (There are many ways
to do this. Pick one you like.) Create a button to launch this procedure.

2. Write a procedure that makes the turtles chase atter the mouse cursor. Create a button
to launch this procedure.

13. Select a new shape for the turtles from the shapes editor, and then create a “cloud” of
turtles (a bunch of turtles in the same local area) using your new shape. Create some green
patches. Make the turtles follow the mouse cursor around the screen but avoid the green
patches. Make the green color spread from green patches to other patches nearby. Create
buttons to launch these procedures.

4. Create a “cloud™ of turtles, half of them one color and half of them another color.
Based on a probability have one color of turtles move up and the other color turtles move
down. Label the turtles with their who number. Create buttons to launch these procedures.
Create a monitor that keeps track of how many times one of the turtles has moved.

15. (a) Create a new model with a setup procedure that creates turtles. (b) Create a slider
that controls the number of turtles created. (¢) Write a go procedure that makes the turtles
wander around the screen randomly. (d) Change the go procedure to make the turtles afraid
of each other. (¢) Make the turtles die when they reach the edge of the screen. (f) Create
a plot that displays the number of turtles.

6. Write two procedures. In the setup procedure, turn the left side of the screen red,
and the right side of the screen green and create two turtles. Give one turtle a shape from
the shapes editor and make a new shape for the other turtle. In the go procedure, make
the turtles move randomly about the screen. When a turtle is in an area of one color, create
a circle of patches of the other color centered on the turtle.

17. Both turtles and patches can create visual images in the NetLogo view. Create a turtle
and have it draw a circle (using the pen-down command). Create the outline of a circle
with patches without using a turtle pen. Write a procedure that asks a turtle to draw a
square given a starting location and side length. Write a similar procedure using patches.

Copyrighted material

What Is Agent-Based Modeling? 43

Compare and contrast the code for these two procedures. Which set of code is more
compact? Are there advantages or disadvantages to using patches or turtles to accomplish
this task?

I18. Open the random walk example (found in the Code Examples folder in the models
library). Inspect the code. What do you predict the turtle’s path will look like? Run the
model. Does the path look like you expected it would? Modify the model code so that the
turtle’s path is still random but is less “jagged,” 1.e., 1s smoother and straighter.

19. Most of this textbook addresses the use of ABM to model and scientifically explain
phenomena. However, you can also use ABM to create powerful visualizations. As we
have mentioned, ABM has even been used to create Academy Award-winning special
effects. Examine the Particle Systems Basic model (found in the Computer Science section
of the models library). This model creates interesting visual images from the manipulation
of simple agents. Explore this model, and understand how the agents behave and what
properties they have. Describe a non-agent-based model that would create similar results
as the base model with the initial parameters. Now examine the NetLogo model again.
Change the initial number of particles, the step size, and the gravity. Can you describe
both an agent-based model and a non-agent-based model that creates these results? Which
of these two models is easier to describe? Why?

20. Computer modeling and chaos theory Chaos theory was developed from traditional
equation-based modeling, but one of 1ts mspirations came from computer modeling.
Edward Lorenz discovered that mathematical systems could produce very different results
depending on the initial conditions that the systems have. He realized this because he tried
to restart a computer model of the weather system halfway through a run with a new set
of parameters that lacked a small amount of precision from his previous set of parameters.
The resulting model behaved very different from his original model. Agent-based models
can exhibit this same “sensitivity to initial conditions.” For instance, examine the Sun-
flower model (found in the Biology section of the models library). This is an agent-based
model of how rows of sunflower seeds are added to a sunflower. Run the model with the
default settings. Now change one of the parameters. Run the model again. Repeat this
process. As you keep manipulating the parameters, do you eventually get to the point where
you can predict the behavior of the model with new parameters? Explain yvour answer,
Why 1s this model predictable or unpredictable?

Copyrighted material

Chapter 2

Copyrighted image

(A) Before: live cell (starred). (B) After: the stamed cell dies.

The game is played on a large grid, such as a checkerboard or graph paper. Let’s say
we are playing on a square grid with 51 squares’ (or “cells”) on a side. Each cell can be
either “alive™ or “dead.” This is called the “state” of the cell. Every cell is surrounded by
eight “neighbor™ cells. The grid is considered to “wrap around™ so that a cell on the left
edge has three (3) neighbor cells on the right edge and, similarly, a cell on the top edge
has three (3) neighbor cells on the bottom edge. There is a central clock. The clock ticks
establish a unit of time. In the game of Life, the unit of time is called a generation. More
generally, in agent-based models, the unit of time is referred to a tick. Whenever the clock
ticks, each cell updates its state according to the following rules:

Each cell checks the state of itself and its eight neighbors and then sets itself to either alive or dead.
In the rule descriptions that follow, blue cells are “dead,” green cells are “alive™ and the yellow stars
indicate the cells affected by the rule described.

(1) If the cell has less than two (2) alive neighbors, it dies (figure 2.1).

(2) If it has more than three (3) alive neighbors, it also dies (figure 2.2).

(3) If it has exactly two (2) alive neighbors, the cell remains in the state it is in
(figure 2.3),

(4) If it has exactly three (3) alive neighbors, the cell becomes alive if it is dead, or stays
alive if it is already alive (figure 2.4).

I. The standard setup for the NetLogo grid is to have an odd number of cells, so that there is always a center
cell. Other setups are possible and are described in chapter 5.

Copyrighted material

Creating Simple Agent-Based Models 47

Copyrighted image

(A) Before: starred cell surrounded by more than 3 live neighbors. (B) After: starred cell dies,

Copyrighted image

(A) Betore: 3 starred cells each with two live neighbors, (B) Alter: each starred cell stays alive.

Copyrighted material

Chapter 2

Copyrighted image

(A) Before: 2 starred dead cells have 3 live neighbors. (B) After: 2 starred dead cells become alive,

Since Gardner's publication of Conway's Game of Life, many people have explored it and
have been surprised by the wide diversity of shapes and patterns that “emerge” from these
simple rules. We will now use NetLogo to construct the Game of Life.

We will begin by reviewing the basic NetLogo elements. We start by opening the
NetLogo application. The application opens with a blank interface with a large black square
in it (see figure 2.5). The black square is the known as the “view™ and is the area in which
we will play the Game of Life. The surrounding white area is known as the “interface” and
is where we can set up user-interface elements such as buttons and sliders. Right-click on
the view and select “edit” from the drop-down menu. You will see the Model Settings dialog
(figure 2.6) where we can configure some basic settings for our NetL.ogo model.

Every NetLogo model consists of three tabs.” The tab that you are looking at now is the
Interface tab, where we work with widgets and observe model runs. Next we will work
with the Code tab, where we write the model procedures.

A third very important tab is the /nfo tab. In this chapter, we will not work with the Info
tab in detail, but it is an important part of any model. This is where model authors put the
information about their models. Details on how the Info tab is structured can be found in
the “Sections of the Info Tab™ box in chapter five. The Info tab is a very useful resource for
exploring a NetLogo model and we recommend that Textbook readers read them carefully
when working with models and take the time to write good Info tabs for models you create.

2. In some versions of NetLogo, there is a fourth “Review™ tab.

Copyrighted material

Creating Simple Agent-Based Models 49

The NetLogo application at startup.

Now let us return to the Interface tab, and begin developing our Life-simple model. The
view is composed of a grid of cells known, in NetLogo parlance, as patches. Click Settings
in the toolbar of the Interface tab. By default, the view origin is at the center of the view
and its current maximum x-coordinate and y-coordinate is 16. To begin developing our
Life-simple model, we will change the values of max-pxcor and max-pycor to 25, which
will give us a grid of 51 by 51 patches, for a total of 2,601 patches. This creates a much
larger world enabling more space to create the elements of the Game of Life. To keep the
view a manageable size on the screen, we will change the default patch size from 13 1o
8. As the Game of Life is played in a wrapping gnid, we keep the wrapping checkboxes
checked (as they are by default, we will explain these in more detail in chapter 5). We can
now click OK and save these new settings. (See figure 2.7.)

Copyrighted material

Chapter 2

Lopyrignted image

iMmlﬁdFMh

(“Cancel) (_Apply) 0K

Figure 2.6
The NetLogo Model Settings dialog before adjusting the settings,

The Game of Life is played on a grid of cells, so we will consider each NetLogo patch
as a different cell. Life has two kinds of cells in 1, “live™ cells and “dead™ cells. We choose
to model live cells as green patches and dead cells as blue patches. Once we have thought
through what the model will look like we still need to create the model instructions. To
do this, we will need to write NetLogo instructions (or code) in the Code tab. We select
the Code tab and begin to write our code. NetLogo code takes the form of modules known
as “procedures.” Each procedure has a name and begins with the word to and ends with
the word end.

Our Life model (Life-Simple in the IABM Textbook folder of the NetLogo models
library) will consist of two procedures: setup, which initializes the game, and go, which
advances the clock by one tick.

We create the setup procedure as follows:

Copyrighted material

Creating Simple Agent-Based Models 53

Box 2.1
(continued)

lale

ORYTIINed |

conunuca)

versions of our game sequentially without having to close NetLogo and open it back up.
The second section issues commands to (or makes requests of) all of the patches. In
NetLogo, we are polite in our interactions with agents, so to issue commands to the patches
we use the form ask patches. We then enclose our requests to the patches in brackets.
However, do not mistake our politeness—the patches have no choice but to do as they are
asked. As a result, you will often find that in this book, we will slip interchangeably between
the language of commands and requests as synonymous. In the second section of our setup
code, there are two commands/requests. The first asks each patch to set its color (pcolor
which stands for patch color) to blue, making all the cells dead. When creating agent-based
models, it is useful to think of commands to agents in an agent-centric way. This will help
you to understand how the model works, as described in the box that follows:

Copyrighted material

