An Introduction to Category Theory

Category theory provides a general conceptual framework that has proved fruitful in
subjects as diverse as geometry, topology, theoretical computer science and
foundational mathematics. Here is a friendly, easy-to-read textbook that explains the
fundamentals at a level suitable for newcomers to the subject.

Beginning postgraduate mathematicians will find this book an excellent
introduction to all of the basics of category theory. It gives the basic definitions; goes
through the various associated gadgetry, such as functors, natural transformations,
limits and colimits; and then explains adjunctions. The material is slowly developed
using many examples and illustrations to illuminate the concepts explained. Over 200
cxercises, with solutions available online, help the reader to access the subject and
make the book ideal for self-study. It can also be used as a recommended text for a
taught introductory course.
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Preface

As it says on the front cover this book is an introduction to Category Theory. It
gives the basic definitions; goes through the various associated gadgetry such
as functors, natural transformations, limits and colimits; and then explains ad-
junctions, This material could be developed in 50 pages or so, but here it takes
some 22() pages. That is because there are many examples illustrating the var-
ious notions, some rather straightforward, and others with more content, More
importantly, there are also over 200 exercises. And perhaps even more impor-
tantly, solutions to these exercises are available online,

The book is aimed primarily at the beginning graduate student, but that does
not mean that other students or professional mathematicians will not find it
useful. I have designed the book so that it can be used by a single student or
small group of students to learn the subject on their own, The book will make
a suitable text for a reading group. The book does not assume the reader has
a broad knowledge of mathematics. Most of the illustrations use rather simple
ideas, but every now and then a more advanced topic is mentioned. The book
can also be used as a recommended text for a taught introductory course,

Every mathematician should at least know of the existence of category the-
ory, and many will need to use categorical notions every now and then, For
those groups this is the book you should have. Other mathematicians will use
category theory every day. That group has to learn the subject sometime, and
this is the book to start that process. Of course, the more advanced topics are
not dealt with here.

The book has been developed over quite a few years. Several short courses
of about 10 hours have been taught (not always by me) using some of the
material. In 2007, 2008, and 2009 I gave a course over the web to about a
dozen universities. This was part of MAGIC, the

Mathematics  Access Grid Instruction and Collaboration
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cooperative of quite a few University Departments of Mathematics in England
and Wales. That was an interesting experience and helped me to split the mate-
rial into small chunks each of the right length to fit into one hour. (The course
is still being taught but someone else has taken over the wand.) Of course, the
order in which material is taught need not be the same as the written account.

As someone once said, Mathematics is not a spectator sport. To learn and
understand Mathematics you have to get stuck in and get your hands dirty.
You have to do the calculations, manipulations, and proofs yourself, not just
read the stuff and pretend you understand it. Thus I have included over 200
exercises to help with this process. I have also written a more or less complete
set of solutions to these exercises. But these are not available in the book, for it
is too easy simply to look up a solution. When you can’t see how to do it you
have to sweat a bit to find a solution. Someone else once said that horses sweat,
gentlemen perspire, and ladies glow. However, [ can’t remember meeting many
horses who could do mathematics all that well. In other words, although effort
is important to learn mathematics you also need something else. You need
help every now and then. That is why there are exercises and solutions. These
solutions are available at

www.cambridge.org/simmons

The book is divided into six Chapters, each chapter is divided into several
Sections, and a few of these are divided into Blocks (Subsections). Each chap-
ter contains a list of Items, that is Definitions, Lemmas, Theorems, Examples,
and so on. These are numbered by section. Thus item X.Y.Z is in Chapter X,
Section Y, and is the Zth item in that section. Where a section is divided into
blocks the items are still numbered by the parent section.

Each section contains a selection of Exercises. These are numbered sepa-
rately throughout the section. Thus Exercise X.Y.Z is in Chapter X, Section
Y, and is the Zth exercise of that section. Again, where a section is divided
into blocks the exercises are still numbered by the parent section.

QOccasionally you will see a word or two IN THIS FONT, This is a mention of
a NOTION that is dealt with in more detail later. You should remember to come
back to this place when you understand the notion.

There are several other books available on this subject. Some of these are
introductory texts and some are more advanced. I have listed some of them in
the bibliography. None of these are needed when reading this book, but some
will certainly help broaden and advance your understanding of the subject. I
have refrained from passing comment on these books, for [ know that different
people have different tastes. However, you should look around for different
accounts. Some of these will help.
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I first became aware of Category Theory in 1965 during a Summer Meeting
in Leicester (England). Since then I have been trying to learn and understand
the subject. It is patently obvious to me that Category Theory is a very useful
tool. It helps to organize many parts of mathematics. It can sort out the ‘rou-
tine” aspects of a proof and isolate the ‘essential content” of the result. [n some
ways that is why Eilenberg and MacLane invented the subject. However, I am
not one of those 42ers who think that Category Theory is the essential foun-
dations for Mathematics, Life, and Everything. Of course Category Theory is
something that every mathematician should know something about, but there
are other things as well.

Many people have influenced this book. For several years Andrea Schalk
has used the material to teach an introductory course. Hugh Steele, Roman
Krenicky, and Francisco Lobo have pointed out and sometimes corrected my
eccentricities. And Wolfy has guided me through some of the deeper mysteries
of LaTeX. Where would we be without the wonderful LaTeX?

There may still be mistakes, inaccuracies, or garbled bits in the book. I
would be quite happy to pass on the blame, but T won’t. T am not a politi-
cian. I am responsible for everything inside the cover. The outside cover is the
work of others.

Any book of this kind must contain many diagrams, some of which must
commute. I have used Paul Taylor’s diagram package to do this job. If you
don’t know this package then I recommend you have a look at it. I have also
used his lesser known tree drawing package at one place.

At Cambridge University Press my contact, Silvia Barbina, has been very
helpful. T once taught her a little bit about football (and, as she reminded me,
some Model Theory). Silvia has made writing this final version very enjoyable.
She has kept me on the straight and narrow, so I didn’t wander off to do some-
thing else. In her charming Italian style she asked me (instructed me) to cut
out all the jokes. This was quite difficult since some of the official categorical
terminology is a joke, but I have done my best.

Clare Dennison and Lucy Edwards oversaw the production period (getting
my raw code converted into the material you have in front of you). Siriol Jones
copy-edited the book and corrected many of my silly mistakes. I thank them
all. Roger Astley was chief pie-man for the whole project.

On a more personal level I am very grateful to Bobby Manc and what he
is achieving. I hope he continues for quite some time. The Lodge (Appleby
Lodge) is at last getting back to what it should be. Ruth Maddocks kept me
cheerful. She made me the odd cup of tea. A very odd cup of tea.

Enjoy yourself and learn something at the same time.



Copyrighted material



1.1. Categories defined 3

it is better to use ‘arrow’ for the abstract notion, and so distinguish between
the general and the particular.

The word ‘domain’ already has other meanings in mathematics. Why bother
with this and ‘codomain’ when there are two perfectly good words that capture
the idea quite neatly. You will also see

f:A—> B

used to name the arrow above. However, as we see later, you should not think
of an arrow as a function.
All three of the notations

A ida idag la A

are used for the identity arrow assigned to the object A. We will tend to use
@d 4. Notice that the source and the target of ¢d 4 are both the parent object A.
Quite often when there is not much danger of confusion id is written for id 4.
You will also find in the literature that some people write ‘A’ for the arrow
td 4. This is a notation so ridiculous that it should be laughed at in the street.

Certain pairs of arrows are compatible for composition to form another
arrow. Two arrows

f g

A By By C

are composible, in that order, precisely when By and B are the same object,
and then an arrow

A

is formed. For arrows

A - B

both of the notations

gof gf

A C

are used for the composite arrow. Read this as
g after f

and be careful with the order of composition. Here we write g o f for the
composite.

We need to understand how to manipulate composition, sometimes involv-
ing many arrows.
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Composition of arrows is associative as far as it can be. For arrows

I

At g9 o " .p

various composites are possible, as follows.
4 (hog)of D
A—f— B hog » D
A—72>Ff— B g - C h— D
A go f > C h—s D
A -~ D

ho(go f)

It is required that the two extreme arrows are equal

(hog)o f=ho(gof)
and we usually write
hogof

for this composite. This is the first of the axioms restricting the data.
The second axiom says that identity arrows are just that. Consider

id id
Aty F g e g

an arbitrary arrow and the two compatible identity arrows. Then
idpof=[f=foida

must hold.
Given two objects A and B in an arbitrary category C, there may be no
arrows from A to B, or there may be many., We write

C[A,B] or C(A,B)
for the collection of all such arrows. For historical reasons this is usually called
the
hom-set

from A to B, although

arrow-class

would be better, Some people insist that C'[A, B] should be a set, not a class.
As usual, there are some variants of this notation. We often write

[4,B] for CJA, B]
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especially when it is clear which category C'is intended. Sometimes
Hom¢[A, B]

is used for this hom-set.
We have seen above one very small diagram. Composition gives us a slightly
larger one. Consider three arrows

h

arranged in a triangle, as shown. Here we haven’t given each object a name,
because we don’t need to. However, the notation does nor mean that the three
objects are the same. For this small diagram, the triangle, the composite g o f
exists to give us a parallel pair

of arrows across the bottom of the triangle. These two arrows may or may not
be the same. When they are

h=gof

we say the triangle commutes. We look at some more commuting diagrams
in Section 2.1, and other examples occur throughout the book.

Examples of categories

In the remaining sections of this chapter we look at a selection of examples of
categories. Roughly speaking these are of four kinds.

The first collection is listed in Table 1.1 on page 6. These all have a similar
nature and are examples of the most common kind of category we meet in
practice. In each an object is a structured set, a set furnished, or equipped, with
some extra gadgetry, the furnishings of the object. An arrow between two
objects is a function between the carrying sets where the function ‘respects’ the
carried structure. Arrow composition is then function composition. We look at
some of these categories in Section 1.2.

Some categories listed in Table 1.1 are not defined in this chapter. Some are
used later to illustrate various aspects of category theory, in which case each



Categories

Table 1.1 Categories of structured sets and structure preserving functions

Category  Objects Arrows
Set sets total functions
Pfn sets partial functions
Set | pointed sets point preserving functions
RelH sets with a relation relation respecting functions
Sgp semigroups morphisms
Mon monoids morphisms
CMon commutative monoids morphisms
Grp groups morphisms
AGrp abelian groups morphisms
Rng rings morphisms
CRng commutative rings morphisms
Pre pre-ordered sets monotone maps
Pos posets monotone maps
Sup complete posets \/-preserving
monotone functions
Join posets with all finitary joins V-preserving
monotone functions
Inf complete posets /\-preserving
monotone functions
Meet posets with all finitary meets A-preserving
monotone functions
Top topological spaces continuous maps
Top, pointed topological spaces point preserving
continuous maps
Top°*°"  topological spaces continuous open maps
Vect i vector spaces over a given field X' linear transformations
Set-R sets with a right action from action preserving functions
a given monoid 2
R-Set sets with a left action from action preserving functions
a given monoid R
Mod-R  right R-modules over aring I? morphisms
R-Mod  left R-modules over aring R morphisms
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Table 1.2 More complicated categories

Category Objects Arrows

RelA sets binary relations

Pos™ posets poset adjunctions

PosP? posets projection embedding pairs
s presheaves natural transformations

on a given poset S
c presheaves natural transformations
on a given category C

Ch(Mod-R) chain complexes

is defined when it first appears. Some categories are listed but not used in this
book, but you should be able to fill in the details when you need to.

These simple examples tend to give the impression that in any category an
object is a structured set and an arrow is a function of a certain kind. This is
a false impression, and in Section 1.3 we look at some examples to illustrate
this. In particular, these examples show that an arrow need not be a function
(of the kind you first thought of).

An important message of category theory is that the more important part of
a category is not its objects but the way these are compared, its arrows. Given
this we might expect a category to be named after its arrows. For historical
reasons this often doesn’t happen.

Section 1.4 contains some examples to show that the objects of a category
can have a rather complicated internal structure, and the arrows are just as
complicated. These examples are important in various parts of mathematics,
but you shouldn’t worry if you cannot understand them immediately.

Table 1.2 lists some of these more complicated examples looked at in Sec-
tions 1.3 and 1.4.

Finally in Section 1.5 we look at two very simple kinds of categories. These
examples could be given now, but in some ways it is better if we leave them
for a while.

Exercises

1.1.1 Observe that sets and functions do form a category Set.

1.1.2 Can you see that each poset is a category, and each monoid is a cate-
gory? Read that again.



10 Categories

As suggested above, many categories fit into this ‘algebraic’ form. Each
object is a structured set, and each arrow (usually called a morphism or a map)
is a structure respecting function. Almost all of the categories in Table 1.1 fit
into this kind, but one or two don’t.

In a sense the study of monoids is the study of composition in the miniature.
There is a corresponding study of comparison in the miniature. That is the
topic of the next example.

1.2.2 Example A pre-order < on a set S is a binary relation that is both re-
flexive and transitive. (Sometimes a pre-order is called a quasi-order.) A partial
order is a pre-order that is also anti-symmetric.

A

preset poset
is a set S furnished with a
pre-order partial order

respectively. Thus each posetis a preset, but not conversely.
When comparing two such structures

(R, <r) (S, <s)

we use the carrying sets R and .S to refer to the structures and write < for
both the carried comparisons. Rarely does this cause any confusion, but when
it does we are a bit more careful with the notation.

Given a pair I, S of presets a monotone map

/

R S

is a function, as indicated, such that

r<y= f(z) < f(y)

for all =,y € R. Note that this condition is an implication, not an equivalence.
It is routine to check that for two monotone maps

f g

R S T

between presets the function composition g o f is also monotone.
This gives us two categories

Pre Pos

where the objects are

presets posets

respectively, and in both cases the arrows are the monotone maps. Each identity
arrow is the corresponding identity function viewed as a monotone map. [
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Consider a pair R and S of posets. Each is a preset, so we have the two
collections of arrows

Pre|R, S| Pos|R, S|

in the categories. A moment’s thought shows that, as sets of functions, these
two sets are the same. Technically, this shows that Pos is a FULL SUBCATE-
GORY of Pre.

The study of monoids is the study of composition in the miniature.

The study of presets is the study of comparison in the miniature.

What should we do to study these two notions together and in the large?
Category theory! In a sense every category is an amalgam of certain monoids
and presets, and that is a good enough reason why we should always keep these
two simple notions in mind.

From the examples we have seen so far it is easy to get the impression that
certain things always happen. The next example shows that some categories
can be awkward (and sometimes cantankerous),

1.2.3 Example We enlarge the category Set of sets and total functions to the
category Pfn of sets and partial functions. The objects of Pfn are just sets

A, B,C,...

as in Set. However, an arrow

A B

is a partial function from A to B. In other words, an arrow is a total function

A B

=2

X

from a subset X of the source A. (This is an example where the use of the word
‘domain” for source can be confusing. The set X is the domain of definition
of the partial function.) Notice that we need to distinguish between the total
function f and the arrow f it determines. The notation has been chosen to
emphasize that distinction.

We wish to show that these objects and arrows form a category Pfn. To do
that we must first produce a composition of arrows.
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Consider a pair of partial functions.

e

How might we compose these? We somehow want to stick f and g together,
but these functions are not composition compatible.
We extract a subset U C A by

ac€U+=ac Xand f(a) €Y

(for @ € A). Since f is defined on the whole of U we restrict f to U.

B 9

s
P

Now we do have composition compatible functions. Thus we take

C

i
i

gof
to be that arrow (partial function) determined by
gof=3oFfu
to produce a composition of arrows in Pfn.

Notice here how the symbol ‘o’ is overloaded. On the right it is the standard
composition of total functions. On the left it is the defined operation on par-
tial functions. If at first you find this confusing then write ‘e’ for the defined
operation. Thus

gef=ge fly
is its definition.
There is still some work to be done. For instance, we need to show that this
composition of arrows is associative. That is left as an exercise. O

Once we see it the step from Set to Pfn is not so big. An arrow is still a
function, but we have to take a little more care with composition. There is also
a much neater way of handling Pfn. Perhaps you can think about that.
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We began this section by looking at the category Mon of monoids. We
conclude by looking at two categories attached to each monoid.

1.2.4 Example Let R be a fixed, but arbitrary, monoid. A
left right

R-setis a set A together with an action

R, A A AR A
T, a ——— Ta a,r —— ar
where
s(ra) = (sr)a (ar)s = a(rs)
la=a a=al

for each a € A and r,s € R. Here the two definitions are given in parallel.
These R-sets are the objects of two categories

R-Set Set-R

with left R-sets on the left and right R-sets on the right.
Given two R-sets A and B of the same handedness, a morphism

f

A B

is a function f such that

S(ra) = rf(a) flar) = f(a)r
for each a € A and r € R. These are the arrows of the two categories. O

This may look a quite simple example but it is useful. Many aspects of cat-
egory theory can be illustrated with these categories. We use them quite a lot
in this book. They are also module categories in miniature. We can replace the
monoid R by aring and replace each set A by an abelian group. This gives the
categories

R-Mod Mod-R

of left and right modules over R, respectively. These categories have quite a
bit more structure, but we won’t go into that too much here.
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Exercises

1.2.1 The category Pno described in this exercise may look less than excit-
ing, but it plays an important role in mathematics. (It was originally discovered
by Dedekind without the category theory.)

The objects of Pno are the structures (A, «r, a) where A is a set, and where
a: A —— Ais afunction, and @ € A is a nominated element. Given two
such structures a morphism

(A, a,a) / (B, 3,b)

is a function f : A —— B which preserves the structure in the sense that

fea=gof  fla)=b

hold.

(a) Verify that Pno is a category.

(b) Show that (N, succ,0) is a Pno-object (where succ is the successor
function).

(c) Show that for each Pno-object (A, a, a) there is a unique arrow

(N, suce, 0)

(A, o, a)
and describe the behaviour of the carrying function.

1.2.2  Consider pairs (A, X') where A is asetand X C A. For two such pairs
a morphism

(4,x) 7

(B,Y)
is a function f : A — B that respects the selected subsets, that is
flx)eyY

for each « € X. Show that such pairs and morphisms form a category SetD,
the category of sets with a distinguished subset.

1.2.3 Consider pairs (A, R) where A is a set and R C A x A is a binary
relation on A. Show that these pairs are the objects of a category. You must
find a sensible notion of morphism for such pairs.

1.2.4 A topological space (S, 0S) is a set S furnished with a certain family
@S of subsets of S (called the open sets of the space). This family is required
to contain both @ and S, be closed under N (binary intersection), and be closed
under | J (arbitrary unions).
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Consider an arrow F as above,so F C B x A, Fora € Aand b € B we
write bFa for (b, a) € F. For two composible arrows

r G
A B C

we define the composition G o F by
(G o F)a <= (3b € B)[cGbFa)

fora € A,b € B. We show that a is G o F' related to c by passing through a
common element b € B. Itis easy to check that this composition is associative,
and the equality relation on a set gives the identity arrow.

The two categories Set and RelA are connected in a certain way (which
will be explained in more detail later). There is a canonical way

f I'(f)

A B — A B

of converting a Set-arrow into a RelA-arrow with the same source and target.
We simply take the graph of the function, that is we let

bT(f)a <= b= f(a)
fora e A,be B, o

The nextexample is important in itself, and also provides a miniature version
of a central notion of category theory, that of an ADJUNCTION.

1.3.3 Example We modify the category Pos of posets, of Example 1.2.2, to
produce a new category Pos'. As with Pos, the objects of Pos ' are posets,
but the arrows are different.

Given a pair S, T of posets, an adjunction from S to T is a pair of monotone
maps as on the left such that the equivalence on the right

f

S T fla) b= a<qg(b)

-

i
holds forall a € Sand b € T'. We call

f the left adjoint g the right adjoint
of the pair, and sometimes write
fg

to indicate an adjunction.
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Here we use the more common notation and write

f*
S T
[+
to indicate an adjunction f* - f,. Sometimes a harpoon arrow
J* A S

S——~T

is used to indicate an adjunction. By convention, an adjunction points in the
direction of its left component. Thus S is the source and T is the target. (You
are warned that in some of the older literature this convention hadn’t yet been
established.)

Poset adjunctions are the arrows of Pos .

This gives us the object and arrows of Pos”, but we still have some work
to do before we know we have a category.

Consider a pair of adjunctions.

R FAal g g g. T

which ought to be composible. How should the composite

(" Fge)o (f* 4 1)

R T

be formed? The two left hand components are monotone maps that compose to
give a monotone map. Similarly the two right hand components are monotone
maps that compose to give a monotone map. Thus we have a pair of monotone
maps
gioft
R T
Ji o gs

going in opposite directions. We check that this is an adjunction and take that
as the composite. Almost trivially, this composition is associative, and so we
do obtain a category. O

It is not so surprising that any given monotone map may or may not have a
left adjoint, and it may or may not have a right adjoint. It can have neither, and
it can have one without the other. What is a little surprising is that it can have
both adjoints where these are not the same. In fact, arbitrarily longs strings of
adjoints can be produced. A simple example of this is given in Chapter 6.

Once we become familiar with categories we find that old categories can be
used to produce new categories. Let’s look at some examples.
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1.3.4 Example Consider categories C and D. To help us distinguish be-
tween these let us write

A, B,C... forobjects of C f,g,h... forarrows of C
R,5,T ... for objects of D a9, 0,... for arrows of D
respectively. We form a new category, the product
C x D
of C and D as follows. Each new object is an ordered pair of old objects
(4, R)
an object A from C and an object R from D. A new arrow
(A,R) —— (B,S5)
is a pair of old arrows

f 0

A B R S

from the given categories. For composible new arrows

(9, 9)

) SO s (C,T)

the composite

(go f,pob)

(A, R) (C,T)

is formed using composition in the old categories. Almost trivially, this does
give a category. O

That’s not the most exciting example you have ever seen, is it? Here is a
more interesting construction.

1.3.5 Example Given a category C we form a new category where the new
objects are the arrows of C. This is the arrow category of C.
Consider the small graph

(1)
1

with two nodes, here labelled 0 and 1, and with one edge. We use (| ) to convert
C into a new category

c!

the category of (| )-diagrams in C.
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We think of (] ) as a TEMPLATE for diagrams in C, and these diagrams are
the objects of C'*. Thus a new object is a pair of old objects

Ao
|

&7

t
Ay

and an old arrow between them. Given two new objects a new arrow

Ay By
|
a —f— 3
' '
Al B]_
is a pair of old arrows
Ay 1, B,
| |

« 3 fioa=Fofy

' |

S

such that the square commutes. Composition of new arrows is performed in the
obvious way, we compose the two component old arrows. You should check
that this does give a category. O

This is a simple example of a much more general construction, that of a
FUNCTOR CATEGORY. We look at this once we know what a FUNCTOR is.
Other simple examples of this construction are given in the exercises.

The idea of the previous example is to view all the arrows of the old category
as the objects of the new category. Sometimes we want to do a similar thing
but using only some old arrows.

1.3.6 Example Given a category C and an object S we form the two slice
categories

(C19) (sl0C)
of objects

over S under S
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respectively. Each object of the new category is an arrow

to S from S
A S
| |
o o
} }
S A
of C. An arrow of the new category
A B S S
| | |
o —f— 3 o —f— 7
t 1 1 1
) s A B
is an arrow of C
A / - B S
o 3
a 3
S A : - B
bj
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for which the indicated triangle commutes. Composition of the new arrows is

obtained from composition of arrows in C

O

As with Example 1.3.5 this construction is a particular case of a more gen-
eral construction, that of a COMMA CATEGORY. Before we can explain that we

need to understand the notion of a FUNCTOR.

Exercises

1.3.1 Consider the strictly positive integers 1,2,3,... as objects. For two

such integers m, n let an arrow

n

m

be an m x n matrix A (with real entries). Given two compatible matrices

B A
k k

n

m
let the composite

Ao B

n m

be the matrix product AB. Show that this gives a category.
Can you show that this example is a bit of a cheat?
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1.3.7 Posets and certain adjoint pairs form another category Pos™”,
The objects of Pos®” are again just posets. A Pos’-arrow

4 (f.q) B

is a Pos -arrow

4|
4 179 g
for which g o f = id 4. These arrows are sometimes called projection pairs.
Show that these projection pairs are closed under composition, and hence
Pos™ is a category.
You see here a useful little trick. It can be helpful to draw arrows in different,
but related, categories in a different way. Thus here we have
Pos _
Pos™ _
Pospp —_

for the three different kinds of arrows.

1.3.8 Consider the ordered sets Z and R as posets, and let

L

Z R
be the insertion.
(a) Show there are (unique) maps
A
R Z
P
such that
Lp A
7 R 7

are adjunctions,

(b) Show also that this composite is idz in Pos ™ and the other composite,
on R, is idempotent.

(c) Show that ¢ + pis a Pos""-arrow, but A 4 ¢ is not.

1.3.9 For a poset S let £S be the poset of lower sections under inclusion. (A
lower section of S is a subset X C S such that

y<rzeX=yecX

forall z,y € S.)
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(a) For a monotone map

¢

T S

between posets, show that setting f = ¢ (the inverse image map) produces
a monotone map

f=0"

LT « LS

in the opposite direction.
(b) Show that f has both a left adjoint and a right adjoint

FAfA
where, in general, these are different.

1.3.10 Let C be an arbitrary category. In Example 1.3.5 we used () as a
template to obtain a category C'! of certain diagrams from C. The same idea
can be used with other templates.

A wedge in a category C is a pair or arrows

Ao
7N
A4 A,

as shown. A wedge morphism

Ap fo By
Ay — [ — By
A, ? B,

is a triple of arrows which make the two associated squares commute.
(a) Show that wedges and wedge morphisms form a category.
(b) This wedge example uses

SO\

as the template. Play around with other templates to produce other examples
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of categories. For example, consider each of
[ ] L ] L
//,\\\ ,// \\\ ///‘\\
L] [ ] e ——» @ L ] [ ]
L]

and worry about which cells are required to commute.

1.3.11 Let 1 and 2 be the 1-element set and the 2-element set, respectively.
Describe the categories

(Set | 1) (1| Set) (Set|2) (2] Set)

and show that you have met two of them already together with near relatives
of the other two.

1.3.12 Given a category C and two objects S, T" we form

s (s1C1T)
a|s the butty category between S and T'. Each object
| of the new category is an object A of C together
A with a pair of arrows from S and to 7. An arrow of
| the new category is an arrow f of C' to make the
ar two triangles commute.
/ S
r /N
A——f—— B
s N
| | T
a® 3% (a) Show that with the appropriate notion of
J' i composition this gives a category.
A—yrf—1B (b) Can you show that for an appropriate parent
‘ ‘ category C both the slice categories
T Br
! | (c1T) (510)
T T

are instance of the butty construction?
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1.4 More complicated categories

From the examples we have seen so far you might conclude that category the-
ory is making a bit of a fuss. It is true that objects are not just structured sets
and arrows are not just functions, but the examples seem to suggest that we
don’t move too far from those ideas. Of course, as yet we have seen only com-
paratively simple examples of categories. One of the original aims of category
theory was to organize and analyse what we now see as rather complicated
categories. The simpler examples came along later. In this section we look at
a couple of examples of the more complicated kind of category. You proba-
bly won’t understand these at a first reading, but you should give it a go. You
should come back to these examples as you learn more about category theory.

1.4.1 Example Let S be any partially ordered set. We describe the category
S of PRESHEAVES ON S. There is a more general notion where S is replaced
by an arbitrary category, but we save that for later. We may think of S as the
category of ‘sets developing over S”. At first sight the structure of S looks
quite complicated, but you will get used to it.

We think of S as a store of indexes i, j, k, . . . partially ordered

j<i

to form a poset.
A presheaf on S is an S-indexed family of sets

A (A(i)]i € S)
together with a family of connecting functions
A(3, )

A A®) A(7)

one for each comparison j < i. Note these functions progress down the poset.
These functions have to fit together in a coherent fashion. Thus

A(iy i) = id ags)
for each index ¢ € S, and the triangle
A(k,i
( 1l) o A(k)
S Ak 4) 0 AGL1) = A1)
A5, 4) Ak, )
A(j)

commutes for all & < j < 4. These are the objects of § Note the way the

A(i)

connecting functions are indexed.



