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CHAPTER 1

INTRODUCTION

Information theory is a new branch of probability theory with extensive
potential applications to communication systems. Like several other branches of
mathematics, information theory has a physical origin. It was initiated by
communication scientists who were studying the statistical structure of
electrical communication equipment.

Our subject is about a decade old. It was principally originated by Claude
Shannon through two outstanding contributions to the mathematical theory of
communications in 1948 and 1949. These were followed by a flood of research
papers speculating upon the possible applications of the newly born theory to a
broad spectrum of research areas, such as pure mathematics, radio, television,
radar, psychology, semantics, economics, and biology. The immediate
application of this new discipline to the fringe areas was rather premature. In
fact, research in the past 5 or 6 years has indicated the necessity for deeper
investigations into the foundations of the discipline itself.

Despite this hasty generalization which produced several hundred research
papers (with frequently unwarranted conclusions), one thing became evident.
The new scientific discovery has stimulated the interest of thousands of
scientists and engineers around the world.

Our first task is to present a bird’s-eye view of the subject and to specify its
place in the engineering curriculum. In this chapter a heuristic exposition of the
topic is given. No effort is made to define the technical vocabulary. Such an
undertaking requires a detailed logical presentation and is out of place in this
informal introduction. However, the reader will find such material presented in
a pedagogically prepared sequence beginning with Chap. 2. This introductory
chapter discusses generalities, leaving a more detailed and precise treatment to



subsequent chapters.! The specialist interested in more concrete statements

may wish to forgo this introduction and begin with the body of the book.!

1-1. Communication Processes.

Communication processes are concerned with the flow of some sort of
information-carrying commodity in some network. The commodity need not be
tangible; for example, the process by which one mind affects another mind is a
communication procedure. This may be the sending of a message by telegraph,
visual communication from artist to viewer, or any other means by which
information is conveyed from a transmitter to a receiver. The subject matter
deals with the gross aspects of communication models rather than with their
minute structure. That is, we concentrate on the over-all performance of such
systems without being restrained to any particular equipment or organ.
Common to all communication processes is the flow of some commodity in some
network. While the nature of the commodity can be as varied as electricity,
words, pictures, music, and art, one could suggest at least three essential parts of
a communication system (Fig. 1-1):

1. Transmitter or source
2. Receiver or sink

3. Channel or transmission network which conveys the communiqué from the
transmitter to the receiver

Y

Transmitter — Channel Receiver

FIG. 1-1. The model of a communication system.

This is the simplest communication system that one can visualize. Practical cases
generally consist of a number of sources and receivers and a complex network. A
familiar analogous example is an electric power system using several
interconnected power plants to supply several towns.



In such problems one is concerned with a study of the distribution of the
commodity in the network, defining some sort of efficiency of transmission and
hence devising schemes leading to the most efficient transmission.

When the communiqué is tangible or readily measurable, the problems
encountered in the study of the communication system are of the types
somewhat familiar to engineers and operational analysts (for instance, the study
of an electric circuit or the production schedule of a manufacturing plant).
When the communiqué is “intelligence” or “information,” this general
familiarity cannot be assumed. How does one define a measure for the amount of
information? And having defined a suitable measure, how does one apply it to the
betterment of the communication of information?

To mention an analog, consider the case of an electric power network
transmitting electric energy from a source to a receiver (Fig. 1-2). At the source
the electric energy is produced with voltage V.. The receiver requires the

electric energy at some prescribed voltage V,. One of the problems involved is

the heat loss in the channel (transmission line). In other words, the impedance
of the wires acts as a parasitic receiver. One of the many tasks of the designer is
to minimize the loss in the transmission lines. This can be accomplished partly
by improving the quality of the transmission lines. A parallel method of
transmission improvement is to increase the voltage at the input terminals of
the line. As is well known, this improves the efficiency of transmission by
reducing energy losses in the line. A step-up voltage transformer installed at the
input terminals of the line is appropriate. At the output terminals another
transformer (step-down) can provide the specified voltage to the receiver.

Without being concerned about mathematical discipline in this introductory
chapter, let us ask if similar procedures could be applied to the transmission of
information. If the channel of transmission of information is a lossy one, can one
still improve the efficiency of the transmission by procedures similar to those in
the above case? This of course depends, in the first place, on whether a measure
for the efficiency of transmission of information can be defined.
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Source |V, ¥ To receiver |V

FIG. 1-2. An example of a communication system.

1-2. A Model for a Communication System.

The communication systems considered here are of a statistical nature. That is,
the performance of the system can never be described in a deterministic sense;
rather, it is always given in statistical terms. A source is a device that selects and
transmits sequences of symbols from a given alphabet. Each selection is made at
random, although this selection may be based on some statistical rule. The
channel transmits the incoming symbols to the receiver. The performance of the
channel is also based on laws of chance. If the source transmits a symbol, say A,
with a probability of P{A} and the channel lets through the letter A with a
probability denoted by P{A|A}, then the probability of transmitting A and
receiving A is

P{A} - P{A|A}

The communication channel is generally lossy; i.e., a part of the transmitted
commodity does not reach its destination or it reaches the destination in a
distorted form. There are often unwanted sources in a communication channel,
such as noise in radio and television or passage of a vehicle in the opposite
direction in a one-way street. These sources of disturbance are generally
referred to as noise sources or simply noise. An important task of the designer is
the minimization of the loss and the optimum recovery of the original
commodity when it is corrupted by the effect of noise.

In the deterministic electrical model of Fig. 1-2, it was pointed out that one



device which may be used to improve the efficiency of the system is called a
transformer. In the vocabulary of information theory a device that is used to
improve the efficiency of the channel may be called an encoder. An encoded
message is less susceptible to channel noise. At the receiver’s terminal a decoder
is employed to transform the encoded messages into the original form which is
acceptable to the receiver. It could be said that, in a certain sense, for more
“efficient” communication, the encoder performs a one-to-one mathematical
mapping or an operation F on the input commodity I, F(I), while the decoder

performs the inverse of that operation, F 1.

Encoder: F I F(I)
Decoder: F=1 F(I) I
(1-1)
Transmitter Encoder -» Channel pe=={ Decoder p~—q{ Receiver
Noise

FIG. 1-3. General structure of a communication system used in information theory.

This perfect procedure is, of course, hypothetical; one has to face the ultimate
effect of noise which in physical systems will prevent perfect communication.
This is clearly seen in the case of the transmission of electrical energy where the
transformer decreases the heat loss but an efficiency of 100 per cent cannot be
expected. The step-up transformer acts as a sort of encoder and the step-down
transformer as a decoding apparatus.

Thus, in any practical situation, we have to add at least three more basic parts
to our mathematical model: source of noise, encoder, and decoder (Fig. 1-3). The
model of Fig. 1-3 is of a general nature; it may be applied to a variety of
circumstances.



A novel application of such a model was made by Wiener and Shannon in their
discussions of the statistical nature of the communication of messages. It was
pointed out that a radio, television, teletype, or speech transmitter selects
sequences of messages from a known transmitter vocabulary at random but with
specified probabilities. Therefore, in such communication models, the source,
channel, encoder, decoder, noise source, and receiver must be statistically
defined. This point of view in itself constitutes a significant contribution to the
communication sciences. In light of this view, one comes to realize that a basic
study of communication systems requires some knowledge of probability theory.
Communication theories cannot be adequately studied without having a good
background of probability. Conversely, readers acquainted with the
fundamentals of probability theory can proceed most efficiently with research in
the field of communication.

In the macroscopic study of communication systems, some of the basic
questions facing us are these:

1. How does one measure information and define a suitable unit for such
measurements?

2. Having defined such a unit, how does one define an information source, or
how does one measure the rate at which an information source supplies
information?

3. What is the concept of channel? How does one define the rate at which a
channel transmits information?

4, Given a source and a channel, how does one study the joint rate of
transmission of information and how does one go about improving that rate?
How far can the rate be improved?

5. To what extent does the presence of noise limit the rate of transmission of
information without limiting the communication reliability?

To present systematic answers to these questions is our principal task. This is
undertaken in the following chapters. However, for the benefit of those who
wish to acquire a heuristic introduction to the subject, we include a brief
discussion of it here.



1-3. A Quantitative Measure of Information.

In our study we deal with ideal mathematical models of communication. We
confine ourselves to models that are statistically defined. That is, the most
significant feature of our model is its unpredictability. The source, for instance,
transmits at random any one of a set of prespecified messages. We have no
specific knowledge as to which message will be transmitted next. But we know
the probability of transmitting each message directly, or something to that
effect. If the behavior of the model were predictable (deterministic), then
recourse to measuring an amount of information would hardly be necessary.

When the model is statistically defined, while we have no concrete assurance
of its detailed performance, we are able to describe, in a sense, its “over-all” or
“average” performance in the light of its statistical description. In short, our
search for an amount of information is virtually a search for a statistical
parameter associated with a probability scheme. The parameter should indicate
a relative measure of uncertainty relevant to the occurrence of each particular
message in the message ensemble.

We shall illustrate how one goes about defining the amount of information by
a well-known rudimentary example. Suppose that you are faced with the
selection of equipment from a catalog which indicates n distinct models:

[x1,%9, -« %]

The desired amount of information I(x; ) associated with the selection of a

particular model x; must be a function of the probability of choosing x;:

I(z) = f(Plz:})

(1-2)

If, for simplicity, we assume that each one of these models is selected with an



equal probability, then the desired amount of information is only a function of n.

nG) = 1(3)

(1-2a)

Next assume that each piece of equipment listed in the catalog can be ordered
in one of m distinct colors. If for simplicity we assume that the selection of colors
is also equiprobable, then the amount of information associated with the

selection of a color ¢; among all equiprobable colors [cy,¢;, . . . ¢l is

o) = 5Plah) = 1(3)

m

(1-2b)

where the function f(x) must be the same unknown function used in Eq. (1-2a).
Finally, assume that the selection is done in two ways:

1. Select the equipment and then select the color, the two selections being
independent of each other.

2. Select the equipment and its color at the same time as one selection from
mn possible equiprobable choices.

The search for the function f(x) is based on the intuitive choice which requires
the equality of the amount of information associated with the selection of the
model x;, with color ¢jin both schemes (1-2¢) and (1-2d).

I(zs end ) = Li(z) + Ia(e)) = f(-?-ll) + f("ll)



(1-2¢)
1
I(zxyand ¢;) = f (ﬂT)

(1-2d)

Thus

1(3)+1(3) =1(E)

(1-3)

This functional equation has several solutions, the most important of which, for
our purpose, is

f(z) = — logz

(1-4F
To give a numerical example, let n=18 and m = 8.

Ii(z3) = log 18
Is(ey) = log 8
I(zx and ¢;) = Ii(m) + Is(ey)
I(z: and ¢;) = log 18 4 log 8 = log 144

Thus, when a statistical experiment has n equiprobable outcomes, the average
amount of information associated with an outcome is log n. The logarithmic
information measure has the desirable property of additivity for independent



statistical experiments. These ideas will be elaborated upon in Chap. 3.

1-4. A Binary Unit of Information.
The simplest case to consider is a selection between two equiprobable events E;

and E,. E; and E, may be, say, head or tail in a throwing of an “honest” coin.

Following Eq. (1-4), the amount of information associated with the selection of
one out of two equiprobable events is

-log % =log 2

An arbitrary but convenient choice of the base of the logarithm is 2. In that case,
- log, % = 1 provides a unit of information. This unit is commonly known as a

bit.3

FIG. 1-4. A probability space with two equiprobable events.

Next consider the selection of one out of 22, 23, 24, . . ., 2N equally likely
choices. By successively partitioning a selection into two equally likely
selections, we come to the conclusion that the amounts of information
associated with the previous selection schemes are, respectively, 2, 3,4,...,N
bits.



FIG. 1-5. Successive partitioning of the probability space.

In a slightly more general case, consider a source with a finite number of
messages and their corresponding transmission probabilities.

[15.1,1"3, e o ya)
(P{z:),P{zs), . . . ,Pl2a}]

The source selects at random each one of these messages. Successive selections
are assumed to be statistically independent. The probability associated with the
selection of message x;, is P{x}}. The amount of information associated with the

transmission of message x, is defined as

I, = - log P{x}

I; is also called the amount of self-information of the message x;. The average

information per message for the source is



I = gtatistical average of Iy = — 2 P{i.] log P{z)
k=1

(1-5)

For instance, the amount of information associated with a source of the above
type, transmitting two symbols 0 and 1 with equal probability, is

I = —(3log 34 + 4 log }¢) = 1 bit

If the two symbols were transmitted with probabilities and 1- , then the
average amount of information per symbol becomes

I=—aloga— (1 —a)log (1 —a)

(1-6)

The average information per message I is also referred to as the entropy (or the
communication entropy) of the source and is usually denoted by the letter H. For
instance, the entropy of a simple source of the above type is

H(py,p2, - - - spp) = - (py log py + py log py + - . .+ p, log py,)

where (py,p,, . . . ,p,) refers to a discrete complete probability scheme. Figure 1-6

shows the entropy of a simple binary source for different message probabilities.

Next, consider a second similar source having m symbols, and designate the
amount of information per symbol of the two sources by H(n) and H(m),
respectively. If the two sources transmit their symbols independently, their joint
output might be considered as a source having mn distinct pairs of symbols. It



can be shown that for two such independent sources the average information
per joint symbol is

H(mn) = H(m) + H(n)

-“Hlpl I-'P’

T F

k7
FIG.1-6. The entropy of an independent discrete memoryless binary source

The formal derivation of this relation is given in Chap. 3.

1-5. Sketch of the Plan.

From a mathematical point of view, the heuristic exposition of the previous two
sections is somewhat incomplete.

We still need to formalize our understanding of the basic concepts involved and
to develop techniques for studying more complex physical models. It was
suggested that, given an independent source S which transmits messages x; from a

finite set

[.1“.:1,3,'-:, 8 ,:F;]
[P{z:},P{za}, . . . ,Plzal]

there is an average amount of information I(x) associated with the independent
source S.



I (x) = expected value or average of I(x;) for all messages

Our next step is to generalize this to the case of random variables with two or
more not necessarily statistically independent dimensions, for instance, to
define the amount of information per symbol of a scheme having pairs of
statistically related symbols (x,y;). This investigation in turn will lead to the

study of a channel driven by the source supplying information to that channel. It
will be shown that the average information for such a system is

Expected value of I(zsy) = I(X;¥)*

(1-7)*

From a physical point of view, the above model may be viewed in a simpler
fashion. Consider a source transmitting any one of the two messages x; and x,

with respective probabilities of & and 1 - . The output of this source is
communicated to a receiver via a noisy binary channel. The channel is described
by a stochastic matrix:

a l—a
1-b b

When x, is transmitted, the probability of a correct reception is a and otherwise
1 - a. Similarly, when x, is transmitted, the probability of correct and incorrect
receptions are b and 1 - b, respectively.

It will be shown (Chap. 3) that there is an average amount of information I(X
;Y) associated with this model which exhibits the rate of the information

transmitted over the channel. This, in turn, raises a basic question. Given such a
channel, what is the highest possible rate of transmission of information over



this channel for a specified class of sources? In this manner, one arrives in a
natural way at the concept of channel capacity and efficiency of a statistical
communication model.

In the above example, the capacity of the channel may be computed by
maximizing the information measure I(X;Y) over all permissible values of

In short, with each probability scheme we associate an entropy which
represents, in a way, the average amount of information for the outcomes of the
scheme. When a source and a receiver are connected via a channel, several
probability schemes such as conditional and joint probabilities have special
significance. An important task is to investigate the physical significance and the
interrelationships between different entropies in a communication system. The
formal treatment of these relations and the concept of channel capacity is
presented in several chapters of the text.

The reader acquainted with probability theory may regard information theory
as a new branch of that discipline. He can grasp it at a fair speed. The reader
without such a background has to move much more slowly. However he will find
the introductory material of Chap. 2 of substantial assistance in the study of
Chaps. 3 and 4. An introductory treatment of a random variable assuming a
continuum of values is given in Chap. 5. Chapter 6 presents a general study of
averaging and moments. The reader with such a background will readily
recognize the entropy functions that form the nucleus of information theory as
moments of an associated logarithmic random variable: - log P {X}. Thus the
entropy appears to be a new and useful form of moment associated with a
probability scheme. This idea will serve as an important link in the integration
of information and probability theories. Chapter 7 gives a concise introduction
to multinormal distributions, laws of large numbers, and central-limit theorems.
These are essential tools for the proof of the main theorems of information
theory.

Chapters 8 and 9 extend the information-theory concept to random variables
assuming a continuum of values (also continuous signals). The probability
background of Chaps. 2, 5, 6, 7, and 10 is in most part indispensable for the study
of information theory. However, a few additional topics are included for the sake



of completeness, although they may not be directed toward an immediate
applicaton.

Chapter 10 presents a bird’s-eye view of stochastic theory, followed by Chap.
11, which studies the information theory of stochastic models. A slightly more
advanced consideration (but perhaps the heart of the subject) appears in Chap.
12.

A main application of the theory thus far seems to be in the devising of an
efficient matching of the information source and the channel, the so-called
coding theory. The elements of this theory appear in Chaps. 4 and 13. The
Appendix is designed to introduce the reader to a few of the many topics
available for further reading in this field.

1-6. Main Contributors to Information Theory.

The historical background of information theory cannot be covered in a few
pages. Fortunately there are several sources where the reader can find a
historical review of this subject, e.g., The Communication of Information, by E. C.
Cherry (Am. Scientist, October, 1952), and “On Human Communication,” by the
same author (John Wiley & Sons, Inc., 1957). (In Chap. 2 of the latter book,
Cherry gives a very interesting historical account of developments leading to the
discovery of information theory, particularly the impact of the invention of
telecommunication.)

As far as the communication engineering profession is concerned, it seems
that the first attempt to define a measure for “the amount of information” was
made by R. V. L. Hartley® in a paper called Transmission of Information (Bell
System Tech. J., vol. 7, pp. 535-564, 1928).

Hartley suggested that “information” arises from the successive selection of
symbols or words from a given vocabulary. From an alphabet of D distinct
symbols we can select DV different words, each word containing N symbols. If
these words were all equiprobable and we had to select one of them at random,
there would be a quantity of information I associated with such a selection.
Furthermore, Hartley suggested the logarithm to the base 10 of the number of

possible different words DY as the quantity of information I = N log D.



The main contributions, which really gave birth to the so-called information
theory, came shortly after the Second World War from the mathematicians C. E.
Shannon and N. Wiener. Wiener’s mathematical contributions to the field of
Fourier series and later to time series, plus his genuine interest in the field of
communication, led to the foundation of communication theories in general. His
two books, “Cybernetics” and “Extrapolation, Interpolation, and Smoothing of
Stationary Time Series” (1948 and 1949), paved the way for the arrival of new
statistical theories of communication. In a paper entitled The Mathematical
Theory of Communication (Bell System Tech. J., vol. 27, 1948), Shannon made the
first integrated mathematical attempt to deal with the new concept of the
amount of information and its main consequences. Shannon’s first paper, along
with a second paper, laid the foundation for the new science to be named
information theory. Shannon’s earlier contribution may be summarized as follows:

1. Definition of the amount of information from a semiaxiomatic point of
view.

2. Study of the flow of information for discrete messages in channels with and
without noise (models of Figs. 1-1 and 1-3).

3. Defining the capacity of a channel, that is, the highest rate of transmission
of information for a channel with or without noise.

4, In the light of 1, 2, and 3, Shannon gave some fundamental encoding
theorems. These theorems state roughly that for a given source and a given
channel one can always devise an encoding procedure leading to the highest
possible rate of transmission of information.

5. Study of the flow of information for continuous signals in the presence of
noise, as a logical extension of the discrete case.

Subsequent to his earlier work, Shannon has made several additional
contributions. These have considerably strengthened the position of the original
theory.

Following Wiener’s and Shannon’s works an unusually large number of
scientific papers appeared in the literature in a relatively short time. A
bibliography of information theory and allied topics might now, 13 years after



the publication of Shannon’s and Wiener’s works, contain close to 1,000 papers.
This indicates the great interest and enthusiasm (perhaps overenthusiasm) of
scientists toward this fascinating new discipline. Here it would be impossible to
give a detailed account of the contributions in this field. The reader may refer to
A Bibliography of Information Theory, by F. L. Stumpers, and also to IRE
Transactions on Information Theory (vol. IT-1, no. 3, pp. 31-47, September, 1955).

Even though a historical account has not been attempted here, the names of
some of the contributors should be mentioned in passing. Bell Telephone
Laboratories appears to be the birthplace of information and coding theory.
Among the contributors from Bell Labs are E. N. Gilbert, R. W. Hamming, J. L.
Kelley, Jr., B. McMillan, S. 0. Rice, C. E. Shannon, and D. Slepian. P. Elias, R. M.
Fano, A. Feinstein, D. Huffman, C. E. Shannon, N. Wiener, and J. A. Wozencraft of
the Massachusetts Institute of Technology have greatly contributed to the
advancement of information and coding theory. Information theory has received
significant stimuli from the works of several Russian mathematicians. A. 1.
Khinchin, by employing the results of McMillan and Feinstein, produced one of
the first mathematically exact presentations of the theory. Academician A. N.
Kolmogorov, a leading man in the field of probability, and his colleagues have
made several important contributions. A few of the other Russian contributors
are R. L. Dobrushin, D. A. Fadiev, M. A. Gavrilov, I. M. Gel'fand, A. A. Kharkevich,

V. A. Kotelnikov,® M. Rozenblat-Rot, V. I. Siforov, and I. M. and A. M. Iaglom.

The afore-mentioned names are only a few of a long list of mathematicians
and communication scientists who have contributed to information theory.
Some other familiar names are D. A. Bell, A. Blanc-Lapierre, L. Brillouin, N.
Abramson, D. Gabor, S. Goldman, L. J. Good, N. K. Ignatyev, J. Loeb, B. Mandelbrot,
K. A. Meshkovski, W. Meyer-Eppler, F. L. Stumpers, M. P. Schutzenberger, A.
Perez, W. Peterson, A. Thomasian, R. R, Varsamov, J. A. Ville, P. M. Woodward.

A list of those actively engaged in the field would be too long to be included
here. Reference to some of the current work will be found in the text and in the
bibliography at the end of the book.

For a comprehensive list, the reader is referred to existing bibliographies such
as those by Stumpers, Green, and Cherry. Recent contributions to information



theory have been aimed at providing more exact proofs for the basic theorems
stated by earlier contributors. A state of steady improvement has been
prevailing in the literature,

McMillan, Feinstein, and Khinchin have greatly enhanced the elegance of the
theory by putting it on a more elaborate mathematical basis and providing
proofs for the central theorems as earlier stated by C. E. Shannon. These
contributors have confirmed that under very general circumstances, it is
possible to transmit information with a high degree of reliability over a noisy
channel at a rate as close to the channel capacity as desired.

J. Wolfowitz derived a strong converse of the fundamental theorem of
information theory. Among other important theorems, he proved that reliable
transmission at a rate higher than the channel capacity is not possible. In the
past 2 or 3 years a large number of scientists have become interested in
integrating some of the work on encoding theory within the framework of
classical mathematics. Reference will be made to their work in Chaps. 13 and 14.

S. Kullback has described the growth of information theory from its statistical
roots and emphasized the interrelation between information theory and
statistics (Kullback).

The study of time-varying channels has also received considerable attention.
Among those who have contributed are C. E. Shannon, R. A. Silverman and S. H.
Chang, and V. I. Siforov and his colleagues.

To sum up, the present trend in information theory seems to be as follows:
From an engineering point of view, a search for applications of the theory (radar
detection, speech, telephone and radio communication, game and decision
theory, and particularly implementation of codes) is evident, while the
mathematician is still seeking for more rigor in the foundation of the theory and
elegance par excellence.

1-7. An Outline of Information Theory.

If we were to make a two-page résumé of information theory for those
scientists with a broad background of probability theory, the following could be
suggested.



1. The average amount of information conveyed by a discrete random variable
Y about another discrete random variable X is suggested by C. E. Shannon.

o . ~ B PiX =z, ¥ =y}
I(X,I")—EZP{X—::;,Y—QH lﬁgm=zi;p[}'mm}
t=] km]

(1-8)

This definition can be generalized to cover not only the case of two or more
random variables assuming a continuum of values but also the more general
case of random vectors, generalized functions, and stochastic processes

(Gel'fand and Taglom?).

2. The channel is specified by P{Y = y; /X = x;} for all encountered integers i and

k. The largest value of the transinformation I(X;Y) obtained over all possible
source distribution P{X = x;} is called the capacity of the channel [Shannon (1)].

The definition of the channel capacity can be subjected to generalizations
similar to those suggested in 1.

3. Let X and Y be two finite sets of alphabets with x € X and y € Y. The
simplest channel is specified by P{ |[x € X}. Now consider words of n symbols
selected from the X alphabet. These words will be denoted by u € U and their
corresponding received pairs by v € V. This is an nth-order extension of the
channel.

4. Given a source P{X = x;}, a channel P{ |X = x;}, and their respective nth-order

extensions, then to a specified message ensemble U, we may associate a
partitioning of the V space such that



| U — By k=1,2,...,N
B.MNB; = fork=j k=12 ... ,N
P[Bﬁlﬂ;} 1 -2 k=1,2,...,N
A a specified positive
number usually very small

(VAN

This is a decision scheme which in turn specifies a code (N,n, ) [A. Feinstein (I)].

5. The central theme of information theory is the following so-called
fundamental coding theorem. Given a source, a channel with capacity C, and two
constants

O<H=C O0=< <1

it can be shown that there are an integer n=g( ,H) and a code (N,n, ) with (N
= function of  and n) = 2", This is the coding theorem stating the possibility of
transmitting information at a rate H < C over a noisy channel under specified
circumstances.

6. Further elaborate mathematical treatment of the concepts of information
theory was presented by B. McMillan, who extended the definition of source and
channels from a Markov chain to stationary processes. A proof of the
fundamental theorem of 5 as well as a clear understanding of the concepts
involved in 5 is due to Feinstein. Khinchin considerably improved the status of
the art in general and gave a proof of the fundamental theorem of 5 for the case
of stationary processes. A converse of the fundamental theorem of 5 is due to J.
Wolfowitz, who also gave sharper estimates than those given in 5. Remaining
questions include the search for more general encoding theorems along the lines

suggested in 1. A recent step in this direction was taken by C. E. Shannon.? The
search for engineering applications, particularly low-error probability codes, is
ever increasing.

PROBLEMS



1-1. An alphabet consists of four letters A, B, C, D with respective probabilities

.. 1 1 . . . .
of transmission ¥~ 3%, %, V6. Find the average amount of information associated
with the transmission of a letter.

1-2. An independent, discrete source transmits letters selected from an
alphabet consisting of three letters A, B, and C, with respective probabilities

Pa =0.7 PB =0.2 pC=0.1

(a) Find the entropy per letter.

(b) If consecutive letters are statistically independent and two-symbol words
are transmitted, find all the pertinent probabilities for all two-letter words and
the entropy of the system of such words.

1-3. Plot the curve y = -x log, x for

1-4. A pair of dice are thrown. We are told that the sum of the faces is 7. What
is the average amount of information contained in this message (that is, the
entropy associated with the probability scheme of having the sum of the faces

equal to 7)?

1-5. An alphabet consists of six symbols A, B, C, D, E, and F which are
transmitted with the probabilities indicated below:

c ol1 1/f3

D o111 M



E 01111 Mg

F 011111 a3

(a) Find the average information content per letter.

(b) 1f the letters are encoded in a binary system as shown above, find P{1} and
P{0} and the entropy of the binary source.

1-6. A bag contains 100 white balls, 50 black balls, and 50 blue balls. Another
bag contains 80 white balls, 80 black balls, and 40 blue balls. Determine the
average amount of information associated with the experiment of drawing a ball
from each bag and predicting its color. The result of which experiment is, on the
average, harder to predict?

1-7. There are 12 coins, all of equal weight except one, which may be lighter or
heavier. Using information-theory concepts, show that it is possible to
determine which coin is the odd one and indicate whether it is lighter or heavier
in not more than three weighings with an ordinary balance.

1-8. Solve Prob. 1-7 when the number of coins is N. What is the minimum
number of weighings?

1-9. There are seven coins, five of equal weight and the remaining two also of

equal weight but lighter than the first five coins. Find the minimum number of

weighings necessary to locate these two coins.’



PART 1
DISCRETE SCHEMES WITHOUT MEMORY

.. . choose a set of symbols, endow them with certain properties and postulate
certain relationships between them. Next, . . . deduce further relationships
between them. . . . We can apply this theory if we know the “exact physical
significance” of the symbols. That is, if we can find objects in nature which
possess exactly those properties and inter-relations with which we endowed the
symbols. . . . The “pure” mathematician is interested only in the inter-relations
between the symbols. . . . The “applied” mathematician always has the problem
of deciding what is the exact physical significance of the symbols. If this is
known, then at any stage in the theory we know the physical significance of our
theorems. But the strength of the chain depends on the strength of the weakest
link, and on occasion the link of “physical significance” is exceedingly fragile.

J. E. Kerrich, “An Experimental Introduction to the Theory of Probability”
Belgisk Import Co., Copenhagen



CHAPTER 2

BASIC CONCEPTS OF DISCRETE PROBABILITY

2-1. Intuitive Background.

Most of us have some elementary intuitive notions about the laws of probability,
and we may set up a game or an experiment to test the validity of these notions.
This procedure is much like the so-called classical approach to the theory of
probability, which was commonly used by mathematicians up to the 1930s.
However, this approach has been subjected to considerable criticism; indeed, the
literature on the subject contains many contradictions and controversies in the
writings of the major authors. These arise from the intuitive background used
and the lack of well-defined formalism and rigor. Thus, the experiment or game
is usually defined by assuming certain symmetries and by accepting certain
results a priori, such as the idea that certain possible outcomes are equally likely
to occur. For example, consider the following problem: Two persons, A and B,
play a game of tossing a coin. The coin is thrown twice. If a head appears in at
least one of the two throws, A wins. Otherwise, B wins. Intuitively, it seems that
the four following possible outcomes are equally probable:

(HH), (HT), (TH), (TT)

where H denotes head and T denotes tail. A may assume that his chances of
winning the game are %, since a head occurs in three out of four cases (to his
advantage). On the other hand, the following reasoning may also seem logical. If
the outcome of the first throw is H, A wins; there is no need to continue the
game. Accordingly, only three possibilities need be considered, namely:



(H), (TH), and (TT)

where the first two cases are favorable to A and the last one to B. In other words,
the probability that A wins is really “/3instead of %. The intuitive approach in

this problem thus seems to lead to two different estimates of probability.'°

The twentieth century has witnessed enormous advances in the rigorous
axiomatic treatment of many branches of mathematics. It is true that the
axiomatic approach is essentially present in the familiar euclidean geometry and
is, in a way, a very old principle. But it was not until the early twentieth century,
when the formal and logical structure of mathematics was given serious,
systematic study, that its fundamental and profound implications were
recognized. Actually, however, the groundwork for the axiomatic treatment was
laid by mathematicians such as Peano, Cantor, and Boole during the middle of
the nineteenth century. The later efforts of Hilbert, Russell, Whitehead, and
others led to a complete reorientation of the basic formulations, bringing
mathematics to its present level.

Although consideration of the axiomatic treatment is not our subject here, it
may be interesting to point out its general nature. First, a necessary set of
symbols is introduced. Then certain inference or operation rules are given for
the desired formal manipulation of the symbols, and a proper set of axioms is
determined. The formal system thus created must be consistent; that is, the
axioms must be independent and noncontradictory. Strictly speaking, the
derivation of the theorems is manipulation of symbols without content, using
axioms as a starting point and applying the rules of operation. The fundamental
nature of a formal system is by no means obvious, and the limitations are even
today under very careful study.

A rather new branch of mathematics exists which deals in an axiomatic
manner with properties of various abstract spaces and functions defined over
these spaces. This is the so-called “measure theory.” In the late 1930s and early
1940s attempts were made to put the probability calculus on an axiomatic basis.
The work of Kolmogorov, Doob, and many others has contributed greatly toward
this aim. Today formal probability theory is an important branch of measure



theory (in a strictly formal sense), although the epistemological meaning of
probability itself is subject to philosophical discussion. This latter aspect has
been studied by several profound thinkers (von Neumann, Carnap, Russell,
Fisher, Neyman, and many others).

Today engineers and research scientists recognize that they must have a
working knowledge of the powerful tools of twentieth-century mathematics.
Although completely axiomatic and rigorous treatment of this subject is far
beyond the scope of this discussion, a classical presentation would be out of
date, as it would completely forgo the important modern contributions to the
theory. Under these circumstances, it seems that a survey of the modern theory
of probability at a nonprofessional level will be a reasonable compromise. Most
engineering students are not very familiar with concepts of probability, and it is
important that they gain some appreciation of them.

In what follows, some elementary concepts of the theory of sets or so-called
“set algebra” must first be introduced. Then these concepts are used to
introduce the fundamental definitions of the theory of probability. Such a
presentation allows a much wider application of the probability theory than
does the older approach, which is inadequate for attacking a large class of
modern problems.

2-2. Sets.

The word set, in mathematics, is used to denote any collection of objects
specified according to a well-defined rule. Each object in a set is called an
element, a member, or a point of the set. If x is an element of the set X, this
relationship is expressed by

1€ X z belongs to X

(2-1)

When x is not a member of the set X, this fact is shown by



¢ & X  zdoes not belong to X

(2-2)

For example, if X is the set of all positive integers, then

e X

V2EX
-3€X

A set can be specified by either giving all its elements or stating the
requirements for the elements belonging to the set. If a, b, ¢, and d are the only
members of a set X, then we may write either

X = {a,b,c,d}
(2-3)

or

X = |z}

(2-4)

In the latter case x designates a general element of X with the understanding
that the rule for identifying the members of X is known. For example, if the set X
consists of the number of dots on the faces of a die, then we may write

X =1{1,2,3,4,5,6}



If the set X consists of all rectangles with an area of 1 square foot we may write X
={x}, denoting by x any general rectangle having the specified area.

When every element of a set A is a member of a set B, we say that A is a subset
of B. This relationship is expressed by either of the forms

z} C B 4 is contained in B

(2-5)

or

BDOA 4 is a subset of B

(2-6)

For example, if A is the set of positive integers and B the set of all rational
numbers, then A is a subset of B.

The sets A and B are said to be equal if they have exactly the same elements,
that is, if and then

B
nuUnN
o

(2-7)

For instance, if the set A consists of the roots of the equation

(x+1)(x%-4)(x-3)=0



and

B ={-2,-1,02,3}
C = {z} z being any integer such that |z| < 4

then

In many instances, when dealing with specific problems, it is most convenient
to confine the discussion to objects that belong to a fixed class of elements. This
is referred to as a universal set. For example, suppose that, in a certain problem
dealing with the study of numbers, it may be required to define the set of all
integers I, or the set of positive numbers P, or the set of perfect square integers
S. All these sets can be looked upon as subsets of the larger set of all real
numbers. This latter set may be considered as the universal set U, a definition
which is useful in dealing with the specific problem under discussion.

3)

FIG. 2-1. Example of a Venn diagram.

In problems concerned with the interrelationship of sets, an illustrative

diagram called a Venn'! diagram is of considerable visual assistance.



The elements of the universal set in a Venn diagram are generally shown by
points in a rectangle. The elements of any set under consideration are
commonly shown by a circle or by any other simple closed contour inside the
universal set. The universe associated with the aforesaid example is illustrated in
Fig. 2-1.

A set may contain a finite or an infinite number of elements. When a set has
no element, it is said to be an empty or a null set. For example, the set of the real
roots of the equation is a null set.

222+1=0

2-3. Operations on Sets.

Consider a universal set U of any arbitrary elements. U contains all possible
elements under consideration. The universal set may contain a number of
subsets A, B, C, D, . . . which individually are well-defined sets. The operation of
union, intersection, and complement is defined as follows:

The union or sum of two sets A and B is the set of all those elements that belong
to A or B or both.

The intersection or product of two sets A and B is the set of all those elements
that belong to both A and B.

The difference B-A of any set A relative to the set B is a set consisting of all
elements of B that are not elements of A.




FIG. 2-2. Sum or union A + B.

£
b

FIG. 2-3. Intersection or product A - B.

7 %

N\

FIG. 2-4, Complement.

FIG. 2-5. Difference A-B.

The complement or negation of any set A is the set A containing all elements
of the universe that are not elements of A.

In the mathematical literature the following notations are commonly used in



conjunction with the above definitions.

AUB A union B, or 4 cup B

(2-8)

AMNB - A intersection B, or A cap B
(2-9)
A~-B relative complement of B in 4
(2-10)
BCA B is contained in 4
~ A complement of A
(2-11)
In the engineering literature the notations given below are primarily used.
A+ B sum or union
(2-12)
A-Bor AB intersection or product

(2-13)



A-B difference
(2-14)

A’ complement

(2-15)
For the convenience of the engineer we shall generally adhere to the latter

notations. However, where any confusion in notation may occur we shall resort
to mathematical notation.

The universe and the empty set will be denoted by U and @, respectively.
When the product of two sets A and B is an empty set, that is,

ANB=29§
(2-16)

the two sets are said to be mutually exclusive. When the product of the two sets A
and B is equal to B, then B is a subset of A.

ANB=EB8B implies BCA

(2-17)

The sum, the product, and the difference of two sets and the complement of
any set A are illustrated in the shaded areas of the Venn diagrams of Figs. 2-2 to
2-5. Figures 2-6 and 2-7 illustrate the sets referring to Egs. (2-16) and (2-17).



FIG. 2-6. Mutually exclusive sets. AB = 0.

A

FIG. 2-7. Subset B A. AB=B.

Examples 2-1. Let the universe consist of the set of all positive integers, and
let

A = {1,2,3,6,7,10}.
B = [3,4,810]
C = [z}

where x is any positive integer larger than 5.
FindA+B,A*B,A-B,A-C,B-C,C ,andA+B+C.

Solution



A4+ B={123467810}
A-B = (310}
A —B=|[126,7}
A-C = [6,710]
B-C = (8,10}
C' = {11213J4a5'
(A+B)+C=U — {5}

2-4. Algebra of Sets.

We now state certain important properties concerning operations with sets. Let
A, B, and C be subsets of a universal set U; then the following laws hold.

FIG. 2-9. Distributive law. A + BC = (A + B)(A + C).



FIG. 2-10. Dualization. (A+B) =A B

FIG. 2-11. Dualization. (AB) =A +B

Commutative Laws:

A+B=B+ A
AB = BA

(2-18)

Associative Laws:

(A+B)+C=A+ (B+0)
(AB)C = A(BC)

(2-19)



Distributive Laws:

AB+ C) = AB + AC
A+BC=(A+B)(A+0

(2-20)
Complementarity:

A+ A"=UT
AA' =8

(2-21)

A4+U=U
AU = A

(2-22)

A+08=A
AG =0

(2-23)
Difference Law:

(AB) + (A = B) = 4
(AB)(A — B) =9
A—-B=AF

(2-24)



Dualization or De Morgan’s Law:

(A_I_B).r:ﬁ:Br
(AB)’= AJ+BJ'

(2-25)

Involution Law:
(AY = A

(2-26)

The complement of the set A is the set A.

Idempotent Law: For all sets A,
A+ A=A
AA =A

(2-27)

While the afore-mentioned laws are not meant to offer an axiomatic
presentation of set theory, they are of a fundamental nature for deriving a large
variety of identities on sets. The agreement of all these laws with the laws of
thought can be verified. One assumes that an element x is a member of the set of
the left side of each identity, and then one has to prove that x will necessarily be
a member of the set of the right side of the same equation. For instance, in order
to prove the distributive law [Eq. (2-20)], let

x A(B+C)



Then

xE A
x € (B+()

Then at least one of the following three cases must be true:
(a)

xXE A
x € B

(b)

xE A
xEC

(c)

XxXEA
X EB
xe

These are in turn equivalent to
(a) x € AB
(b)x € AC
(c) x € ABC

but ABC C AB

Therefore it is sufficient to require

x € AB+AC

Similarly, one can show that x € AB + AC implies x € A(B + C).

The Venn diagram is often a very useful visual aid. Its use is of valuable



assistance in solving problems, as long as the formal proofs are not overlooked.

Example 2-2.. Verify the following relation:

(A+B)-AB=AB +A B

Solution. By virtue of the third relation of Egs. (2-24),

(A+B)-AB=(A+B)(AB)’

Application of De Morgan’s law yields

(A + B)(AB)' = (A + B)(4' + B")
(A+B)A'+B)=A'A+A'B+BA+BB=AB + A'B

For an alternative proof, let

x € [(A +B) - AB]

Then only one of the following two cases is possible:
(a)

XEA
XEB

(b)

X EB
XxXEA

These cases are equivalent to



€A ‘
“ = B,}z € AB

EB ,
(b)zed,}ze.dﬂ

Note that AB  and A B are mutually exclusive sets. Similarly, one can show
that all the elements belonging to the set at the right side of the above equation
also belong to the set of the left side. Thus the two sides present equivalent sets.

Example 2-3.. Express the set composed of the hatched region of Fig. E2-3 in
terms of specified sets.

Solution. The desired set A is
A = AIAZ + A2A3 + A4A5A6

See Fig. E2-3.

FIG. E2-3

Example 2-4. Verify the relation

(A+B) Cc=C-C(A+B)

Solution. We may wish to verify the validity of this relation by using the Venn



diagram of Fig. E2-4.. The left side of this equation represents the part of the set
C that is not in A or B. The right side represents C - CA - CB, that is, the part of C
that is not included either in A or in B.

FIG. E2-4

Example 2-5. Consider the relay circuit of Fig. E2-5.. The setup contains coils
which must be activated for closing or opening the corresponding relay. A, B,
and C are normally open relaysand A ,B ,and C are normally closed relays
which are respectively activated by the same controlling source. For instance,
when relay A is open because of the effect of its activating coil, A is closed. In
order to have a current flow between the terminals M and N, we must have the
set of relay operations indicated by ABC + AB C+ A B C. With this in mind,
the question is to replace the given network by a less complex equiualent circuit.

A B C A
r{F—{—{= —{ e
A B C C
Mol N Mo—]b—t $—o
A B ¢C B'
e pfp— le—
(a) (b)

FIG. E2-5



Solution. A way of simplifying the above expression is the following:

F = C(AB + AB' + A'B’)
F = C[A(B 4+ B') + A'B')
F = C(AU + A'B’)

F = C(A + A'B)

F = C(A + B)

A circuit presentation of this example is illustrated in Fig. E2-5b.

Example 2-6. Verify the equivalence of the two relay circuits of Fig. E2-6.

A B - A A
=i . | =
Oy | e ] e pr———)
A B . B B’
——— ———fp— —{}-
(a) (b)
FIG. E2-6

Solution. The set that corresponds to the operation of the circuit in Fig. E2-6b is

(A+B)(A +B )

Direct multiplication gives

AA +AB +BA +BB =AB +A B

The latter set can be immediately identified with the circuit of Fig. E2-6b.



Sheffer-stroke Operation. Examples 2-5 and 2-6 have illustrated some use of
Boolean algebra in relay circuits. As another example of the use of Boolean
algebra in engineering problems, we discuss briefly what is referred to as the
Sheffer-stroke operation. This operation for two sets X and Y is denoted by (X|Y)
and is defined by the equation

X|]Y)=X UY notX,ornotY,ornotXandY

x :
r . .

FIG. 2-12.. Sheffer stroke.
The Sheffer stroke commonly illustrated by the three-port diagram of Fig. 2-12
has the distinct property that it can replace all three basic operations of Boolean

algebra (sum, product, and negation). The validity of this statement can be
exhibited in a direct manner.

T

FIG. 2-13.. Product operation by two Sheffer strokes.

XUy

xm



FIG. 2-14.. Summing operation by three Sheffer strokes.

x—@ x

FIG. 2-15.. Operation of negation with a Sheffer stroke.

PRODUCT OPERATION. Reference to the diagram of Fig. 2-13 suggests that

(XIMIX|Y)) = X'V Y
=(XNY))=XNY

SUMMING OPERATION. The diagram of Fig. 2-14 suggests

((XIX)I(YY)) = (X|X)'V (Y]Y)
=XUY

NEGATION. Reference is made to the diagram of Fig. 2-15..

Xx)=x UX =X

2-5. Functions.

In this section, some well-defined objects or numbers will be associated with
each and every element of a given set. The rule on which this relationship is
based is commonly known as function.



Domain Range

FIG. 2-16.. Domain X and range Y.

If X = {x} is a set and y = f (x) is a rule, that is, a sequence of specified
operations and correspondence for assigning a well-defined object y to every
member of X, then by applying this rule to the set X, we obtain a set Y = {y}. The
set X is called the domain and Y the range. When x covers the elements of X, then
y will correspondingly cover the elements of Y. For example, let X be the set of
all persons living in the state of California on January 1, 1959, and let the
function be defined as follows: anyone who is the father of a person described by
X and is in the state of Colorado on January 1, 1959. Assuming that all the words
appearing in the rule, such as father, California, Colorado, are well-defined
words, this may be considered as a well-defined function. To each member of X
there corresponds an object in the set Y. In this example, element zero in Y
corresponds to some of the elements of X, and several members of X might have
a unique correspondent in Y.

As another simple example, consider the set
X = [11230! -2, 11%110]

and the function



fix)=x*-1
which lead to the set
Y = {0,3,—1,3,0,— 34,99}

The domain of x and the range of y are shown in Fig. 2-16, the correspondence
being one-to-one from X to the Y set.

Example 2-7. A set of ordered pairs s = {(X,Y)}, that is, a set of points in the
rectangular coordinate system, is given in Fig. E2-7a.
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FIG. E2-7

(a) Describe the elements of the subset a = {(X,Y) ly <x }.
(b) Describe the elements of the subset b = s - a. Solution
(a) See Fig. E2-7b.
(b) See Fig. E2-7c.

Numerical Functions. Functions that have numerical values are the most



common type. We can define the basic algebraic operations for a family of
numerical functions defined over a specific domain X = {x}. For instance, if f;(x),

f>(x), and f5(x) = const = k have a common domain,

J1(z) + falz)
kfi(z), kfs(z)
f1(z) * fa(x)

(2-28)

are also defined over the same domain.

As a particularly interesting case of numerical function, consider the
correspondence between the elements of a set having a finite number of
elements and a set of positive integers. Such functions have the following basic
property: If A and B are two disjoint sets having a number of a and b elements,
respectively, then the number of elements of the set A + B is

n(A\UB) =n(d) +nB)=a+b

(2-29)

where n(X) means the number of elements in the set X. The number of elements
of a finite set has the simple but important property of being a real additive
function. In other words, assume that A and B are themselves subsets of a set S
containing a finite number of subsets A, B, C, D, . . . . Let f be a function that
assigns a real number f(X) to each X S, such that for any two disjoint subsets
of S we have

fiA U B) = f(a) + f(B)



Then f is called an additive set function. This result, of course, holds for the union
of a finite number of disjoint subsets of S.

Equivalent Sets. Let A and B be two sets. A rule that associates with each
element a € A exactly an element b € B, and conversely, is said to be a one-to-
one correspondence between A and B. Two sets A and B are equivalent if, and
only if, a one-to-one correspondence between their elements can be established.

As an example, consider the set of all persons (A) living in New York State and
(B) living in the state of Arizona at a given time. Now if we associate each person
of A with the cardinal numbers 1 to N, inclusive, and each person of B with the
cardinal numbers 1 to M, inclusive, it is clear that there is a one-to-one
correspondence between the elements of A + B and the set of cardinal numbers 1
to M + N, inclusive.

The number of elements in a set may or may not be finite. In the latter case, if
the elements of the set can be placed in a one-to-one correspondence with the
set of natural numbers

{112r3: ' e }

(2-30)

we say that the set has a denumerable or countable number of elements. For
example, the number of elements in the set

{1,49,16,...,n%,...}

is denumerably infinite.

A common example of nondenumerable sets can be given by considering
points on a straight line. Let x denote the abscissa of a point of the line segment
between points A and B with respective abscissa a and b. The inequality



a<x<b

indicates a set of points on the line AB that does not contain the end points A and
B. Such a set is termed an open interval and is denoted by

]a,bl open interval a <z < b

(2-31)

Similarly, a closed interval is defined and denoted as follows:

[a,b] closed interval a £z < b

(2-32)

It can be shown that the number of points in [0,1] are nondenumerable,'? If

the set A is equivalent to the set of points in [0,1], it is said that A has the power

of continuum. 3

The additive property of the function under consideration, i.e., the number of
elements in finite sets, makes the following relations self-evident.

n(A U B) = n(4) + n(B) — n(4B)
n(A — B) = n(4) — n(AB)

(2-33)

n(4) + n(4d") = n(U)

(2-34)



For a set containing three subsets A, B, and C one can derive

n(A\UBUC) =n[(4d)V (BU(O)]
n(AVBUCQC) =n(d)+n(BUC) —an(ABU AQ)
n(A\VBUC) =n(d) + n(B) + n(C) — n(BC) — n(AB)

-~ n(AC) + n(ABC)

(2-35)

The following example is designed to employ the additive property of the
afore-mentioned set functions.

Example 2-8. There are three radio stations A, B, and C which can be received
in a town of 3,000 families. The following data are given:

(a)1,800 families listen to station A.
(b)1,700 families listen to station B.

(c)1,200 families listen to station C.

(d)1,250 families listen to stations A and B.
(e)700 families listen to stations A and C.

() 600 families listen to stations B and C.
(9)200 families listen to stations A, B, and C.

Of course any family may listen to other stations besides the ones specified in
each case. The problem is to obtain the number of families who are not listening
to any station.

Solution. We draw the pertinent Venn diagram of Fig. E2-8 and, starting from
the bottom of the above list, indicate the corresponding number of elements of
each subset on the diagram. The number of families in set g is 200. Thus, the
number of families listening to B and C but not to A is

n(BCA ) =n(BC) - n(BCA) = 600 - 200 = 400



FIG. E2-8

Following this procedure one can obtain all the numbers associated with each
disjoint set in the Venn diagram. The total number of families listening to one or
more stations is 2,350. This indicates that there are 650 families not listening to
any of the above radio stations.

Similar questions can easily be answered by referring to the Venn diagram of
Fig. E2-8. For example, the number of families who are not listening to A but are
listening either to B or to C or to both is

nld(B\J C)} = n(4'B) + n(4'C) — n(4’BC)
n{A'(B\J C)] = 450 + 500 — 400 = 550

2-6. Sample Space.

In this section we shall make preparations for applying the concept of set theory
to probability. When talking about probability we usually have in mind what can
be termed an experiment with certain outcomes. An outcome is any one of the
possibilities that may be expected from the experiment. The totality of all these
outcomes forms a universal set which is called the sample space. Each outcome is
a point of the sample space.

For example, the throw of an ordinary die may be considered as an
experiment having six possible outcomes. With this experiment we associate a



universal set containing six points, each corresponding to one of the outcomes

of the experiment:

{1,2,3,4,5,6 }

If the die is thrown twice, the sample space associated with the experiment
contains 36 points corresponding to the following outcomes:

11 12 13 14 15 16

21 22 23 24 25 26
31 32 33 34 356 36
41 42 43 44 45 46
51 52 53 b4 55 56
61 62 63 64 65 66

A sample space may be finite or infinite, if it contains a finite or an infinite
number of points, respectively. The sample space corresponding to a single
throw of a die is finite. On the other hand, the sample space corresponding to an
experiment of throwing the die until a 6 appears is an infinite space. It is
possible to conceive a situation where one may have to throw the die infinitely
many times without obtaining a 6. A sample space containing at most a
denumerable number of elements is termed discrete. Sample spaces containing a
nondenumerable number of elements include the so-called “continuous sample
space.” In this case the range of the elements covers a continuum of values in
contrast with the discrete set of values in the discrete sample space.

A subset of a sample space is called an event. Thus, an event is a subset of a
sample space containing any number of points or outcomes.

(See Fig. 2-17.)
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FIG. 2-17. A probability space.

An event containing no outcomes is a null set or an empty set and represents
an event that is impossible. An event containing all sample points is an event
that is certain to occur. This may be denoted by the universal set U, which means
that the event under consideration is bound to occur. The outcome of an event

implies the occurrence of any one of its possible outcomes. The following

glossary of terms may be of assistance in the transition from the language of set

theory to that of probability theory:

xEXorXCA

yEA

ABCem®eD=S

A+B+C+eee+D=S

All possibilities.

A particular event.

The event A must occur (certain).
The event A is impossible.

The event A does not occur.

x is any particular outcome of X. The
occurrence of x implies the occurrence of A
and X.

y is not an outcome of the event A.

S is the event of the simultaneous
occurrence of events A,B,C, ... D.

S is the event of the occurrence of A or Bor C



or...or D, or any combination of these.
ABCeeeD=0 Theevents AB,C,...,Dare incompatible.

A+B+C+mae+D=U At least one of the events A, B, C, ..., D must
occur.

Example 2-9. A traveler has the choice of traveling by car, train, plane, or any
combination of the three for a particular trip. Define the sample space and
express some of the events of interest.

Solution. Let C, T, and P correspond to the fact of traveling by car, train, or
plane, respectively. The following events are self-explanatory.

CTP traveling by car, train, and plane
CTP  traveling by car and train but not by plane
CT traveling by car and train (with or without plane)

C+T traveling by car, by train, or by car and train (may or may not take the
plane)

U-P not traveling by plane

Example 2-10. A traveler travels between cities M and N. The possible roads
are shown in Fig. E2-10. Define the sample space and the events that the traveler
goes through towns A, B, or both.

Solution. Assuming that the traveler does not change direction while traveling,
the following selection of roads is possible:

15, 25, 146, 147, 246, 247, 36, 37, 345



FIG. E2-10

The sample space has nine points; i.e., our defined experiment may have nine
distinct outcomes. The event of passing through the town A (event E;) consists of

any of the three points 15, 146, and 147. The event of passing through the town B
(event E,) consists of any of the three points 147, 247, and 37. Finally the event of

passing through A and B (event E,E,) consists of a single point 147. Similarly, the

following events can easily be identified:

E\E, 15, 146
E.\E, 37, 247

E, 4+ E; 15, 146, 147, 247, 37
E.E; 25, 246, 36, 345

2-7. Probability Measure.

In Sec. 2-5 on Functions we have associated arbitrary set functions with the
elements of sets. In particular, we have outlined some numerical functions and
observed certain rules such as the additivity relation of Eq. (2-33), when the set
function was the number of elements in each set. The study of the mathematics
of set functions has its place in a branch of mathematics known as measure
theory. The probability measure is a specific type of function which can be
associated with sets. When dealing with abstract mathematics, one may specify
any arbitrary properties for the measure. However, the end result in this study is
probability as applied to the physical world. It is mainly for this reason that we
require our probability measure to fulfill the requirements that will be described
below. These requirements are matters of convenience for our subsequent



dealing with physical problems rather than a mathematical necessity.

An experiment is defined so that to each possible outcome of this experiment
there corresponds a point in the sample space. The number of outcomes of this
experiment is assumed to be at most denumerable. The outcomes are labeled by
symbols ay, and a single-valued real function m{a;} called the probability measure

is defined. An event of interest A is considered as the set of the outcomes a;

giving rise to that event. The probability measure of an event is defined as the
sum of the probability measures associated with all the outcomes a; of that

event. Two events A and B are termed disjoint if they contain no outcome in
common. That is, two disjoint events cannot happen simultaneously. The
probability measure has the following assumed properties:

0 £ m{ A}
(2-36) 1
m{A\J B} = m{A} + m{B} if A and B are disjoint

(2-37)

m{X} =0 ifX=290
(2-38)

m{X} =1 UX=U
(2-39)

For a more general case involving a continuous sample space one employs the
concept of integration. This is not considered here as it requires rigorous
mathematical treatment beyond the present scope of interest. The interested



reader is referred to “Probability Theory” by M. Loeve (Chap. 1).

The above measure-theory approach is certainly valid. Any measure satisfying
the specified requirements, when applied to a problem involving sets, will lead
to a consistent mathematical setup. For example, if A, B, and C are subsets of a
universal set U with an additive probability measure, that is, the measure
associated with the union of two disjoint sets is equal to the sum of their
individual measures, the following relations are valid:

m{A} < m{B]

m{A) = m{B} — m{B — AI, if4 CB

(2-40)
(2-40a)

m{A’'} = m{U — A} = m{U] — m{4} =1~ m[A)
(2-41)
m{AU B} = m{(4 — AB)\J B} = m{A} — m{AB} + m{B]}
(2-42)
m{A} + m{B} > m{AB]
(2-43)
For three disjoint sets,

m{A\JBUC} =m{A} + m{B} + m{C]}

(2-44)



For three sets in general,

m{A\JB\UC} =m{A} 4+ m{B] + m{C} |
—~ m{AB} — m{BC} — m{CA} + m|{ABC)

(2-45)

Example 2-11. Consider a set of all intervals I contained in the closed interval
[0,1]. With each and every interval I we associate a measure function L(I) equal to
the ordinary length of the same interval. See if such a measure satisfies the
requirements of a probability measure.

Solution. The requirement of (2-36) is satisfied, as the length associated with
each member of the set is a nonnegative number between 0 and 1. The condition
(2-37) is fulfilled by nonoverlapping intervals (mutually exclusive sets). The
requirements (2-38) and (2-39) are also met. For a more thorough discussion the
reader is referred to Creamér (Chap. 4, The Lebesgue Measure of a Linear Point
Set).

2-8. Frequency of Events.!3

In Sec. 2-7 on Probability Measure an introductory axiomatic account of
probability as a measure of a set was given. The object of this section is to
supplement the set-theory point of view with some perhaps less formal
discussion of the probability of occurrence of certain events of a defined
experiment. In other words, we wish to make a transition from the suggested
abstract mathematical measure to some empirical numerical function fulfilling
the specified measure requirements.

The first step toward this objective is to define an experiment such as the
tossing of a coin or the drawing of a card from a given deck of cards. Next, all the
outcomes of this experiment must be specified. Now consider a specific event X
among all the possible events of the experiment under consideration. If the basic
experiment is repeated N times among which the event X has appeared n(X})

times, the ratio



n(Xs)
N

is defined as the relative frequency of the occurrence of the event X;. In case N is

increased indefinitely, intuitively speaking, the “limit” of

n(Xx)
N

(2-46)
asN e is the probability P{X;} of the event X;. This “definition” of probability
is more elaborate than the classical definition of Laplace which defines the
probability as the ratio of the number of favorable events to the total number of
possible events. In the latter definition all events are considered to be equally

likely, that is, throwing of a true die by an honest person under prescribed
circumstances. It is to be noted that

0<n(X,) N

(2-47)
n(Xy)
0s=5 =1

(2-48)

(2-49)



Equation (2-49) states that the probability of any event X;. is a real number in the

real interval [0,1].

0SP{X,} <1

(2-50)

Considering an event that occurs in every observation yields the limiting case
P{x} } = 1, which is a certain event. Also, an event that never occurs will lead to the
other limiting case, P{X} = 0, which is an impossible event.

We have thus far shown that this empirical definition of probability satisfies
the requirements (2-36), , (2-38), and (2-39). It remains to be seen whether the
requirement (2-37) holds or not. In order to verify this, consider two particular
events A and B among the events that result from the experiment. Let the
experiment be repeated n times. Each observation can belong to only one of the
four following categories (Fig. 2-18) :

1. A has occurred but not B, the event AB

2. B has occurred but not A, the event BA

3. Both A and B have occurred, the event AB.

4, Neither A nor B has occurred, the event A B

FIG. 2-18.. Probability space of two events.

Note that



A = AB'\J AB
B =BA'\JAB
AUB = AB'U ABU BA’

If the number of events of each category is denoted by ny, n,, ns, and ny,

respectively, the following equations are self-explanatory:

mtng+ng+n=n

(2-51)

ny + Ny

J{A}, relative frequency of A independent of B =

(2-52)

f{B}, relative frequency of B independent of 4 = g ;l‘- na

(2-53)

ny + N + ns

f{A + B}, relative frequency of either 4, B, or both =

(2-54)

f{ AB], relative frequency of A and B occurring together = %

(2-55)

flA|B}, relative frequency of A under condition that B has occurred



_ ns
ng + Ng

(2-56)
fiB|A}, relative frequency of B under condition that A has occurred

- ns
n1 + N

(2-57)

When the number of experiments tends to infinity, these simple relations with
proper interpretation lead to the addition law and multiplication law:

P{A\J B} = P{A} + P{B} — P{AB}
(2-58)
P{AB} = P{A|P|B|A}
(2-59)
P{AB} = P{B|P{A|B}
(2-60)
For the special case of mutually exclusive events, .P(AB) = 0,

P{A + B} = P{A] + P{B]



(2-61)

Equation (2-61) shows the validity of the requirement (2-37) for the chosen set
function termed the relative frequency of the event.

More specifically, we have proved that the probability measure defined by Eq.
(2-46) satisfies the following basic properties for all sets defined in sample space:

0<P{A} <1
(2-62)

P{A\UB)] = P{A} + P{B} for mutually exclusive A and B

(2-63)

P{X} =0 if, and only if, X = @
(2-64)

PiX} =1 if, and only if, X = U
(2-65)

Therefore the suggested definition of the frequency can serve as a probability
measure. The implication of Egs. (2-58) to (2-60) will be investigated in
subsequent sections.

The frequency approach is a rather common approach for defining the
probability when dealing with physical problems. Its mathematical concept
relies on the tacit assumption of an equiprobable measure, that is, the equal
likelihood of the outcome of the repeated experiments. We assume that the
measure associated with an event, in the case of the repeated experiment, is



proportional to the number of the outcomes in the event under consideration. In
essence, this assumption makes the frequency definition somewhat too
restrictive.

2-9. Theorem of Addition.

It seems appropriate now to continue with our formalism without restriction to
an immediately practical but slow procedure. For two events A and B of the
sample space one has

AU (B~ AB)= AUB

(2-66)

The additive property of the probability measure in Sec. 2-7 suggests that

m{A + B]
P(A + Bj

m{A} + m{B} — m|{AB}
P{A} + P{B} — P{AB} < P{A} + P{B}

I

(2-67)
If two events A and B are mutually exclusive, then
P{AB} = P{@#} =0
(2-68)
P{A\U B} = P{A} + P{B]j
(2-69)

For two opposite events Aand A ,onehas A+A =U, and since AA" =0, then



P{AU A"} = P{A} + P{A'} = P{U} =1
P{A'} =1~ P{A} o

(2-70)
For the three events A, B, and C, we may write

P{AUBWUC} = P[4\ B} + P(C} — P{(4 U B)C}

(2-71)

P{A\JUBWUC] = P{A] + P{B} + P{C} — P{AB} — P{BC}
- P{CA} 4+ P{ABC)

(2-72)
This is indeed made clear by employing a pertinent Venn’s diagram, P{ABC}

being the probability of the simultaneous occurrence of the three events. If the
events are mutually exclusive, then

P{A\UB\UC(C] = P|A} + P|{B} + P|C}

(2-73)

More generally, for a number of events Ay, A,, ..., A, one may write

P{A;U A3 U+ + U A} = PlA,} + P{As} + -+ + P{4,]
— P{A A3} — P{AAs} — ++ - — P‘Al-ldnl + P{Al-&ﬂﬁii
+ P{A1AsAd + +  + + PlAnsAaida) + - ¢
+ (=1)*P{A144 « « - 4a] (2-



(2-74)

By extension of the relation in Eq. (2-66), it can be shown without difficulty that
PlA,U A, + -+ A,}) S P{Ay} + Plds) 4+ + - - + P{4a]

(2-75)

The equality sign holds when the events A and A; are mutually exclusive for all k

#J.

Example 2-12. An urn contains 11 balls numbered from 1 to 11. If a ball is
selected at random, what is the probability of having a ball with a number which
is a multiple of either 2 or 37

Solution. Let A and B be the events that the ball number is a multiple of 2 and 3,
respectively. The event of interest is A + B.

Pl4d] = 5

P|B} = ¥

PlAB} = ¥4,
PlIA4Bl=5%1+%1-H1=4

Example 2-13. One card is drawn from a regular deck of 52 cards. What is the
probability of the card being either red or a king?

Solution. Let A be the event that the card is red, and B the event that the card is
a king. The event of interest is A + B. Where A and B are not exclusive events,

apply Eq. (2-67):

PlA] = 34
P(B} = X3
P{AB} = (33)(}4) = Mq
PlA +B) =3 + ¥s — 36 = U3



Example 2-14. An honest coin is tossed 10 times. What is the probability of
having at least (a) one tail and (b) two tails?

Solution. The main assumption in this and in similar problems is the concept of
independence of successive trials and the equally probable outcomes.

Let A and B be the events of getting no tail and exactly one tail, respectively.
Then

PiA} - (2) 1024
P[B;-m(z) 1034

The events of interest are

U—-A=A4'
1 1023
PlA') m1 —
(a) 102-4 1024

~(A4B) =(U—~A)—B=A"—-B
) 1,028 10 _ 1,018
o TW-Bl=iem T T 1,02

2-10. Conditional Probability.

Consider two events A and B. The conditional probability of event A based on the
hypothesis that event B has occurred is defined by the following relation:

P{A|B) = %‘%} P(B} %0

(2-76)

The use of this definition can be justified by returning to the previously
treated case of Sec. 2-8. The frequency of the occurrence of event A under the
assumption that B has occurred is



Mg ﬂAB}

fIAIBY = o = "7(B)

(2-77)

By the same token, the frequency of the occurrence of B, knowing that A has
already occurred, is

na f{AB}
ABIA) = o = 714
(2-78)

Increasing the number of trials indefinitely gives

P{A|B} = prgr  P{B} %0
(2-79)

P{B|A} = EPL{%‘% P(4) 0
(2-80)

The two events A and B are said to be mutually independent if

P{A|B} = P|A)
P{B|A} = P{B]}

(2-81)



Note that for mutually independent events
P{AB} = P{A} - P|B}

(2-82)

Equations (2-81) and (2-82) are alternatively used as the defining relations for

two mutually independent events.®

Example 2-15. Three boxes of identical appearance contain two coins each. In
one box both are gold, in one box both silver, and in the third box one is a silver
coin and the other is a gold coin. Suppose that a box is selected at random and,
further, that a coin in that box is selected at random. If this coin proves to be
gold, what is the probability that the other coin in the box is also gold?

Solution. Let

Agg be the event that the other coin in the selected box is also gold (that is, the
selected box is gg box)

Bg be the event that the first coin in the selected box is a gold coin

The desired probability is

PiBulAu’ 'PiAnl

P{AN'IBI} -

P[B,)

PiB,} =% -4 =14
Pldeﬂ = 1
P{B;|4g) =1

PlaniB,) =258 = %

Example 2-16. In a certain group of engineers, 60 per cent have insufficient
background of information theory, 50 per cent have inadequate knowledge of
probability, and 80 per cent are in either one or both of the two categories What
is the percentage of people who know probability among those who have a



sufficient background of information theory?
Solution. Let
A be those having insufficient background of information theory
B be those having inadequate knowledge of probability

Then

PlA] = 0.60 P[4} =040
P|B} = 0.50 P{B'} = 0.50
P{A 4+ B} =080 P|A + B} = P{A'B'] =0.20

It is required to find

P{A'B'] _ 0.20

PIBIA'} = "pram = 0.40

= 50 per cent

2-11. Theorem of Multiplication.

The multiplication rule for the case of two events A and B can be obtained
through the definition of the conditional probability.

P{AB} = P{A}P{B|A}
P{AB} = P{B}P{A|B}

(2-83)

This rule can be extended to the case of more than two events. For instance, for
three events A, B, and C, one writes

P{ABC} = P{AB}P{C|AB)
| — P{A}P{B|A}P{C|AB)



(2-84)
More generally,

P[A1,An, . ¥ % ,An] = P[A1’P!A3|A1}P{A5|A1A:} b
P{AuA 4y . . . JAsa]

(2-85)

When a finite number or a countably infinite number of events A, A,, ..., A, are

mutually independent,'” we have

P{AyA,, . .. A} = P{AJP{As} + + + P{As]}

(2-86)

Example 2-17. In a small library there are 1,000 books, among which 500 are
scientific. Among the scientific books are 100 which are devoted to engineering
subjects. Three books are chosen at random, the chosen book being replaced
each time. What is the probability of getting

(a)All three scientific books

(b)Three scientific books among which only one is an engineering book

(c)At least one of the three an engineering book

Solution. Let S and E stand for the event of selecting a scientific and an
engineering book, respectively. The events of interest discussed in the problem
are



(a) 8188,
b) (SLE) (81E") (8:E") + (S1E")(S:E)(S:E") + (8,E')(8:E")(8:E)

(G} U - E:E’E
(@) P{8:8:8:} = P{S:1}P{8:}P{8;} = (34)* = 3¢
() P(SE| = P|E|S|P{8]

P{SE] = 334 = M,
P(SE’'} = P|E'|S] - P{8]
P{SE'| = %5-3¢ = ?io
. BP{(S:E)(8:E")(S:E") ] =3 - 3o~ %o 3o = 0048
(e) P{U - E E:E} =1- P|E1E,E,]
P|U - E,E,] =1 = (Ho)* = 0271

Example 2-18. Four persons write their names on individual slips of paper
and deposit the slips in a common box. Each of the four draws at random a slip
from the box. Determine the probability of each person retrieving his own name
slip.

Solution. Let Ej, be the event that the kth person retrieves his own name slip.

The event of interest is E;E,E5E,. Equation (2-85) yields

P[E,EQE;E..I = P!EdEnEaEl} 'P‘E!IEIE" 'P[E!IE'I] 'P{E‘]
P|E.\E:E:E] = 1-14 -4 -4 = 34,4

Example 2-19. The probability of the closing of each relay of the circuit of Fig.
E2-19 is a given . Assuming that all relays act independently, what is the
probability of a current existing between terminals A and B?

Ao—ye  —11

FIG. E2-19



Solution. Let the event of closing each relay 1, 2, 3, and 4 be E;, E,, E5, and E,,

respectively. The four events are independent but not necessarily mutually
exclusive. The event of interest is

E = E.\E; + E,E,
P|E} = P(E\E; 4 E;E\} = P|E\E;} + P{E:E.:} — P{E:\E:.E:E|
P|E} = P|E,|P|(E,} +PIE.]PIE.] — P|E,|P(E;:|P{E:|P|E.}
P|E} = 2a% — a* '

Note that

Pl0} =0
Pl1} =1
0<PE} <1 for0<a<l

2-12. Bayes’s Theorem.

In many problems we wish to concentrate on two mutually exclusive and
exhaustive events of the sample space, that is, two events A; and A , such that

AAy =P
A1+A2=U

(2-87)

The assumption is that each of these events has a subevent of special interest to
us. If the subevents are indicated by EA; and EA,, then the event of interest E =

EA, + EA, can occur only when A; or A, occurs. The conditional probabilities
P{E/A;} and P{E[A,} are assumed to be known; we are also given the information

that E has occurred. The problem is to determine how likely it is that E has
occurred because of the occurrence of either of the two events A, and A,. In

mathematical notation, given



PIA;} = Wy P{Aﬂ = W32
A1+A2=U A1Ag=g
P{E|A\} =p1  PlE|A:} = s

(2-88)

find P{A|E} and P{A,|E}.

The computation can be done in a direct way by applying the rule of addition
and multiplication. Note that

E = AEVJ A:E

(2-89)

As A E and A,E are mutually exclusive events, we may write

P{E} = P{A,E} + P{A,E}

These probabilities can be calculated as follows:

P{A\E} = P{A:}P{E|A,]
P{A;E} = P{A,}P[E|4,}

(2-90)

Therefore,



P{E} = P{A\}P{E|4:} + P{A:}P{E|A,]

piaug - PUAE] _ P(A:)P(E|4)) _
(4B} = ~5rgr = PTA;IPIEIA,] + Pl4:P{EIAs)
P{A:E} P{As}P{E|As)

PIA:E} = =prgT = PI4,)P(E|4:} T P{A:]PIEI4:)

(2-91)

Finally one finds

_ w1P1
Pi4,|E} = wip1 + waPs

- waPs
Pl4JE} = wipr + waPs

(2-92)

The probabilities expressed in Eqgs. (2-92) are called the a posteriori
probabilities of A, and A,, given E. The probabilities ,p, and ,p, are termed
the a priori probabilities of E, given A; and A,. Equations (2-92) provide a means
for calculating the a posteriori probabilities from the a priori probabilities.
Equations (2-92) are known as Bayes’s rule. It is of interest to note that Bayes’s
rule applies to a partitioned sample space, as shown in Fig. 2-19. The events A,
and A, may each consist of sets containing a number of subevents. Electrical
engineers may note that Bayes’s rule is somewhat similar to Thévenin’s theorem
in network theory. Thévenin’s theorem permits a partitioning of the network

into two parts and a study of the system with respect to one pair of terminals of
the partitioned boundary.
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FIG. 2-19. (a) Thévenin’s partitioning. A;, a part of the network; A,, the remainder
network. (b) Bayes’s partitioning.

Bayes’s theorem, like Thévenin's theorem, can be extended to a partitioning
of the sample space into mutually exclusive and exhaustive parts. Suppose that
an event E can occur as a result of the occurrence of several mutually exclusive
and exhaustive events A;, A,, . . ., A,. Let the corresponding conditional

probabilities be given as

P{E|Ail =p Kk

]
-
2

(2-93)

and let

P{Ak} =

Then, by the law of addition, we have
E=AE+4 AE+4 -+ 4+ AE

(2-94)



P{E} = P{A\E 4+ AE + - - - 4 A.E)
(2-95)

P{E} =wipr+ wePs+ * * * + waPa

(2-96)

The question is to find the a posteriori probability of the occurrence of event Ay,

given the occurrence of E.

P{A:|P{E|A:} _ P{A:|P{E|Ax}
i S P{E|4,}P{4,)

j=1

P{AE} =

(2-97)

or, equivalently,

- Wik P
P{4:|E} = wWiP1 + wP2 + ¢+ WaPn

(2-98)

This equation comprises what is known as Bayes’s theorem.

Example 2-20. Let U;, U, Us, be three urns with two red and one black, three
red and two black, and one red and one black balls, respectively. One of the
three urns is chosen at random and a ball is drawn from it. The color of the ball
is found to be black. What is the probability that it has been chosen from U;?



Solution. This is an example of a situation where Bayes’s theorem can be
applied. Let E be the event that a black ball has been drawn; 4; is the event that

the ith urn has been chosen, i =1, 2, 3.
Then

Also,
P{E|A;} = 1 PlE|A;} = 3§ PlE|4s] = 34
P{A;|E]} = P{choosing urn U,|black ball drawn}
P{A:}P{E|A,}
8
Y PLEIAGPIAY

g=1
S . 15 T
%08 + 36 +24) 37

Example 2-21. Three urns are given:

Urn 1 contains two white, three black, and four red balls.
Urn 2 contains three white, two black, and two red balls.
Urn 3 contains four white, one black, and one red ball.

One urn is chosen at random, and two balls are drawn from that urn. If the
two balls happen to be white and red, what is the probability that they were
drawn from urn 37

Solution.

Let A; = event of choosingurni,i=1, 2, 3

RW = event of choosing a red and a white ball

We want P{A;|RW}.

Using Bayes’s rule,



But

P{A;]P|RW|A,}
(A, JP{RWIA,| + P[A4;] A;] + PlAJFPIE
Pid,} = P[Aﬂ - PM-:] = 1

PIRW|A,} = (9) 36
(7) 21

P|RW|A;} = =

PlAyRW] =

P{RW|d,} =

Therefore,

PIABWY = e 5 T o) ~ 61

Bayes’s!'® theorem comprises one of the most used, and occasionally misused,
concepts of probability theory. In many problems an event may occur as an
“effect” of several “causes.” From a number of observations on the occurrence of
the effect, one can make an estimate on the occurrence of the cause leading to
that effect. This rule is frequently applied to communication problems,
particularly in the detection of signals from an additive mixture of signals and
noise. When the detecting instrument indicates a signal, we have to make a
decision whether the received signal is a true one or a false alarm due to
undesired signals (noise) in the system. Such decisions are generally made
possible by an application of Bayes’s rule which is also called the rule of inverse
probability. The decision criterion may be made more effective by introducing
some kind of weighting coefficients called loss matrix and minimizing the over-
all “loss.”



2-13. Combinatorial Problems in Probability.

In many problems involving choice and probability, the number of possible ways
of arranging a given number of objects on a line is of interest. For example, if
three persons A, B, and C are standing in a line, the probability that A remains
next to B can be calculated as follows: There are six different arrangements
possible:

ABC ACB BAC BCA CAB CBA

Of these arrangements, there are four desirable ones. Thus, if the concept of

equiprobable measures is assumed, the probability in question is %/,

Combinatorial problems have a limited use in our subsequent studies. For this
reason, we shall give only a review of the most pertinent definitions in this
section. The reader interested in combinatorial problems will find a considerable
amount of information in Feller (Chaps. 2 to 4).

Permutation: A permutation of the elements of a finite set is a one-to-one
correspondence between elements of that set (such a correspondence is also
called a mapping of the set onto itself). For example, if a set contains only four
objects A, B, C, and D, we may write two equivalent sets

A,B,C,DandB,C, A, D

ABCD] [BCAD
and

The ordered sets; ['1 2 3 4 1 2 3 4] are two
permutations of the elements of the original set, since



A— B
B—C
C— A
D— D

(2-99)
The following definition is of considerable assistance in dealing with

combinatorial problems.

Factorial: The factorial function for a positive integer n is defined as
nl=nnh—-1)n-2) ---4-3-2-1

(2-100)

with the additional convention

0!l=1

(2-101)

The number of different permutations of a set with n distinct elements is
Po=nn—1)n-—2)++-+-4-3:2+-1=nl
(2-102)

Combination: The number of different permutations of r objects selected from n
objects is



nl

P,"=n{n—1)(n-—2)"'(n—f'i-l)‘-‘m

(2-103)

Every permutation of elements of a set contains the same elements but in
different order. When two sets of objects are in one-to-one correspondence so
that some of the elements of one do not appear in the other they are called
different combinations. For example, if we combine the members of the set
{A,B,C,D} two by two, AB, AC, DB are different combinations but AB and BA are not.

The number of different combinations of n objects taken r at a time is

' 2 n!

e = i rlln—1n)!

(2-104)

When confusion will not result, one may use the notation "7 for C,".

(-)-C)

(2-105)

()=

(2-106)

Note that



(2-108)

The following theorem is often used in combinatorial problems. Let a set
contain k mutually exclusive subsets of objects: with

[AIJA'o’: e s-‘!i’
Ai:!‘:‘ilraﬂs""mh} t=1,2 ...,k

n; being the number of elements in the set A;. The number of permutations of the

total number of elements n is

nl
ﬂ;!‘]‘hl oo ﬁk'

(2-109)

In fact, one has to divide the number of permutations of n objects by n;! (fori =1,
2, ..., k) since the permutations of the identical objects of the A; set cannot be

distinguished from each other. For example, the number of color permutations
of three black and two white balls is



51 5x4

3p1 — o1~ 10

Binomial Expansion: Let n be a positive integer; then

(ﬂ- + b)ﬂ- = q" + (1:) a1 + (:) ar—2}? + W

+(r) au—rbr_.{_ s ae +bn

(2-110)

or

(@ + b)* = a» + na*'b + ﬂ%'!:—l—)- a~tht

L onn = 1)(@n - 2)
+ 31

a_ﬂ-—lb‘+ P e os +bn

(2-111)

A useful of a binomial coefficent is given in a table which is called Pascal
triangle:



11

)
@ @ C) 31

O 0@ @ e
G 06 @ @ o

In the following a number of simple examples dealing with permutations and
combinations are presented. In these examples, the primary assumption is that
the probability is given by the frequency of the event under consideration; that
is, the concept of equiprobable measure prevails. Hence, such problems are
reduced to a study of the ratio of the favorable cases to all possible cases. In this
respect the formula of combinatorial analysis will be used.

Example 2-22. What is the probability of a person having four aces in a bridge
hand?

Solution. The number of all possible different hands equals the combination of
13 from 52 cards. For the number of favorable cases one may think of first
removing the four aces from the deck and then dealing all possible combinations
of hands 9 by 9. The addition of the four aces to each one of these latter hands
gives a favorable case.

(43),(52 _10-11-12-13 _ 11
o /*\13) T 2050 5152 ~ 4166

Example 2-23. Two cards are drawn from a regular deck of cards. What is the
probability that neither is a heart?



Solution. Let A and B be the events that the first and the second card are hearts,
respectively; then we wish to know P{A B }.

Therefore

Piﬁ‘]-l-—P{Al-l—}a’-H

P{B'|A’
FPiA'B'| = ’951 3 =1

If we wish to apply combinatorial principles, we may say that the number of
all possible cases of selecting two cards is (2 . The number of favorable cases is
(2)

2 .

Therefore the probability in question is

39Y , (52 _ 39! 21501 _39-38 _ 19
( )( 21371 621 ~ 51-52 34

2-14. Trees and State Diagrams.

The material of this section is intended to offer a graphical interpretation for
certain simple problems of probability which arise in dealing with repeated
trials of an experiment.

For example, suppose that a biased coin is tossed once; the outcome may be
denoted by H and T and shown by the diagram of Fig. 2-20. Similarly, if the coin
is tossed twice, the second set of outcomes may be shown in the same treelike
diagram. If the probability of getting a head is denoted by p, then the probability
of getting, say, HT can be directly computed from the weighted length of the
associated tree path, that is,

p(1-p)



1/2 7 I
1/2 /s
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FIG. 2-21. An example of a probability tree.

If it is desired to obtain the probability of getting a head and a tail irrespective of
their order, then the answer to the problem is given by summing up the two
weighted tree paths.

p(1-p)+(1-p)p=2p(1-p)

This simple graphical procedure can be used profitably in certain types of
problems. The following are examples of such problems.

Example 2-24. The urn A contains five black and two white balls. The urn B



contains three black and two white balls. If one urn is selected at random, what
is the probability of drawing a white ball from that urn?

Solution. From the tree diagram of Fig. 2-21 one can see that the probability of
the event of interest is the sum of the following measures:

M M43 =13,

Example 2-25. Find the probability that at least three heads are obtained in a
sequence of four throws of an honest coin.

Solution. From a tree diagram or from the binomial expansion one obtains
4
(3) - 09+ (5) - 06067 = 3o + 566 = s

If a coin is tossed n times, we note that the probability of getting, say, exactly r
heads (r < n) is the sum of the tree measures of all tree paths leading to r heads

r
and n - r tails. Since there are “ ¥ such states, it is found that the desired

probability is
n F . — b
(r)p (1 —p)»~

(2-113)

The tree diagram can easily be drawn for experiments with a finite number of
outcomes. In the problems discussed thus far in this section, it is tacitly assumed
that the outcomes of each experiment remain independent of the previous
experiments. In engineering terminology such experiments are said to lack
memory. For these experiments the probability of any outcome is always the
same. That is, an outcome of the nth trial has exactly the same probability of



occurrence as in the kth trial (k # n). n). This type of experiment leads to the
concept of so-called independent stochastic processes. In certain types of problems
an outcome may be influenced by the past history or “memory” of the
experiment. Such experiments are termed dependent stochastic processes. Among
the latter type, perhaps the simplest ones are those experiments in which the
probability of an outcome of a trial depends on the outcome of the immediately
preceding trial. These are called Markov processes.

Let an experiment have a finite number of n possible outcomes, a,, a,, . . ., and

a,, called states. We assume the process to be of the finite Markov type and

initially in the state k. For a Markov process, we specify a table of probabilities
associated with transitions from any state to any other state. This is called a
probability transition matrix.

ay a2 g A / _

a | P Pz Pz """ P

az| P21 P22 P2 " " P

Qs | Ps1 Paz Pz " " " DPin

Gn| Pn1 Pas Paz ° ° " Pan
(2-114)

pik = plala} denotes the probability that the next outcome of the experiment
will be the state k, given that the immediately preceding experiment led to the
state j. Note that in a transition probability matrix the sum of all elements of
each row must equal unity.

One of the most common problems associated with the Markov process is,
given that it started with state j, to find the probability of reaching the state k
after a specified number of steps r, that is, p{aklaj}(") = pjk(r). This question has a

rather simple answer, namely, (1) draw the tree diagram, (2) select all tree paths
connecting the node representing the state j to that of the state k in r steps, and
(3) add the corresponding tree measures. This procedure is exemplified in the



tree diagram of Fig. 2-22 for r = 1 and r = 2. When r = 1, the answer is obvious:
Plaa;}® = Pla;} P{as|a;}

(2-115)

For r = 2 one has to add the probabilities of reaching state aj, from the state g; in

all possible ways, that is, the sum of the measures associated with all three paths
connecting a; to aj in two steps.

Pla|a;}® = Pla;}[P{ai|a;} Plasla:} + P{asla;} Plailas}
‘ + * + + + Plaala;} P{aslaa}]

= Pla} Y Plaja)Plaed = Pla) 3 Pu-Pa

i=1 i=]



ey (d)

FIG. 2-22. Trees for a finite chain. (a) r=1.(b)r=2.(c)r=1.(d) r=2.

Forr=3,

ge=n j=n

Plarla}® = P(a;} ), Y, Plada;)P{ajla:}P{arla,}

By defining the initial probability of different states as a diagonal matrix,



we can sum up the above development in concise matrix notation. That is, for
any states j and k we have

[Plajla} V] = [Py @][P]

Similarly,

[Plajla ] = [Py I[PI[P] = [Py ©[PT?

For the general case,
(P{aja:} ] = [Pp®@][P)
(2-116)

This relation determines the probability P{ajlak}(r) for any values of j, k, and r.

Consider next the probability of reaching the state a; in r steps, given that the
initial state could have been any q;, i =1, 2, ..., n, that is, the probability of
getting to aj, (in r steps) when any of the n states could have been the initial
state. Let this probability be symbolized by P{ay| }). Figure 2-22c and d

illustrates the case for r =1 and r = 2, respectively.

Forr=1,



Plal 1 = Y PlalPlaa)

im]

Forr=2,
i n o=
Pla| }@ = Y 3 Pla)P{ala}P{aia,}
=] pw=]
Forr=3,

Pla| }® = i i iP{miP{a,lm]P[m[a,iP{aalml

im] pm] Am]

The matrix formulation follows immediately. Let [P°] be a row matrix describing
the initial probabilities [P{a,}, P{a,}, . . ., Pla,)]; then

[Pla| }V] = [PO][P]
[Plal @] = [PO)P]?

For the general case,

(Plax| }@] = [PO)P)

(2-117)

This relation determines the probability P {a| 1) for any values of positive

integers k and r. Note that P{ay| }) will always be a row matrix since [P?)] is a

row matrix.



Example 2-26. A relay alternates between the open state denoted by 1 and the
closed state designated by 0. The transition probability matrix is given as

1 0
o L %]

Assuming that the initial probability of the relay being in either state is %,

determine
(a)The probability of reaching state 1 via state 0 in one step, that is, Pm(])-
(b)poo™.
(C)P01(2),

(d)Pn(z).
(@)p{1] } @, the probability of reaching state 1 in two steps.

0O = O = O o= O e

FIG. E2-26

Solution. The state diagram and the tree diagram are drawn in Fig. E2-26.
According to the tree diagram,



(a) P = 3§ . 1§ = 1§

(b) Poo'? = 34 - 3§ = 14

(¢) Pa® = MO8 38 +34-34) =%

(d) Pu® = 34(35-36 + 14 - 34) = ¥

(e) pll] }® = p® 4 pa® = 5{3 + 3 = }4

An alternative solution for part (e) is given by the matrix relation of Eq. (2-117).
ps [ 2] =05 a3 %] -ns 2

Therefore,
pil], J® =p(0] 1™ =34

Finally we may answer the same question by using the materials of Sees. 2-9
(Theorem of Addition) and 2-10 (Conditional Probability).

(a) pl01] = p{0}p{1]0} = 34-34§ = 13§
®) p{00} = p{0}p[0J0} = 343§ = 14
(c) p{001} + p{011} = p{00}p{1]0} + p{O1]}p {11}
=15 -+ =3
(d) p{111} + p(101} = p{11}pf1|1}] + p{10}p{1]0}
' =14-3%-% +16-14-1¢ = B{g
(e) ~pil] @ =3¢ + ¥g = 34

Example 2-27. A communication source having a three-letter alphabet
transmits sequences of messages. The transition probability matrix is given
below:

A B C

A0 1§ %
Blls 15 4
Cl% 0 %



For the beginning of each message, letters A, B, C occur with probabilities 3{3,
Hs and Ms, respectively.

(a) Determine the probability of getting a message commencing with

AB, BB, CA,
ABA, BBC, CAC

(b) Find a set of initial probabilities which will produce a so-called “steady
state,” i.e., the probability that the letter transmitted at the nth state does not
depend on n.

Solution

(a) The probabilities in question are, respectively,

3483 = 344 g 38 = 34 s 3% = ez
36a-% = Heaz  Ya-34 =Koz Moz 38 = 23

(b) The desired initial probability matrix [PO]=[ , , ] must satisfy the
condition

[PO[P]® = [POI[PI®-D 1 a positive integer

In particular,
[PO](P] = [P]

Therefore

a =¥ + %
B = alf + B3¢
v =a¥ + B4 + %



These equations lead to
a =14 B =3 v =34

[t can be shown that, if one considers very long messages, the frequency of the

occurrence of the letter A will approach 1/3, etc. For further comments on the
Markov chain, see Chap. 11.

2-15. Random Variables.

In the preceding sections the concept of an event and of sample space of an
experiment played an important role. The discussion of the present section is
aimed at an intuitive introduction of random variables.

Most experiments of practical interest have numerical outcomes; that is, the
result of the experiment is a number, or a pair of numbers, etc. In other words,
the results can be described by using a coordinate space, the coordinate space
being in a correspondence with the sample space of the event.

A random variable is a real-valued function defined over the sample space of a
random experiment. Restricting the random variable to assume only real values
is quite natural, as one is interested in the numerical outcomes of an experiment
(even though in various practical applications complex values of random
variables are also considered). The word “random” stresses the fundamental fact
that we are dealing with experiments governed by laws of chance rather than
any deterministic law. The throws of a symmetrical die or coin under
hypothetically symmetrical conditions represent random experiments. The
salient feature of these experiments is that, even though they exhibit a certain
kind of regularity when repeated over a long range of time, it is impossible to
predict, with complete certainty, the outcome of any particular trial,

Let Q be the sample space of a random experiment. Each point of Q describes a
possible outcome of the experiment. This outcome may not be a numerical result
in itself but some numerical data can be assigned to it. For instance, if the
experiment were the picking at “random” of a card out of a deck of 52, the
number of possible outcomes at any particular trial would be 52, depending



upon which one of the cards had been picked. Here, although the outcome does
not furnish us with a numerical result, we can represent the possible outcomes
by, say, the first 52 integers or by 52 points on a line.

The correspondence between a point of Q and a point in the coordinate space
is designated by a mathematical function. This function is termed a random
variable. Generally, we shall denote random variables by capital letters such as X
and Y, and their specific values by the same letters in lower case. A random
variable X assumes different values x,, x5, . . ., x,,, . . . which are points of the

coordinate space. The coordinate space may be a one-dimensional or a
multidimensional space. The random variable may take a finite number of n-
tuple values or infinitely many. The sample space may be a space with finite or
countably infinite points or even a continuous space, that is, with an
uncountable number of points. The following practical examples illustrate some
possibilities.

Example 2-28. The experiment is throwing an ordinary honest die. The
sample space has six events of interest. The associated random variable takes
only six possible numerical values, 1, 2, 3, 4, 5, and 6. Each of these real numbers
corresponds to a specific event.

Example 2-29. The experiment is throwing three honest dice. The associated
random variable takes on 6° different numbers of triads as values. The random
variable may be conveniently represented by a point in the three-dimensional
euclidean space.

2-16. Discrete Probability Functions and Distributions.

Consider Q the sample space of a random experiment. If the outcomes of this
experiment can be put into one-to-one correspondence with the positive
integers, the sample space will contain a countable number of points. Such a
sample space is said to be a discrete sample space. In a discrete sample space, when
the random variable X assumes values

[(X1,X2, -+« Xpr - -



the probability function f(x) is defined as where

[pllp?! o0 3Py . .}
) = PlX =m}) =

(2-118)

The probability distribution function F(x), known also as the cumulative distribution
function (CDF), is defined as

F(z) = 3, ()

zj<zT
(2-119)

For example, the throw of an honest coin until a head appears is a random
experiment. The sample space of this experiment is a discrete space. If X
corresponds to the event of the appearance of the first head on the kth throw,
then X assumes the following values:

[X]=11,23, ...k ..
(2-120)

The probability function f(x) and the CDF are

f@) = [2—1 222-% .. 2% .. ]
Fla) =2+ 20 4« + 2



(2-121)

These functions are plotted in Fig. 2-23a and b, respectively.

The definition of the probability function and CDF can be directly extended to
the case of a multivariate random variable. For instance, in Example 2-29 the
sample space is a three-dimensional euclidean space with 216 points. The
random variable X assumes 216 triad values X = (X;,X,,X3) for any experiment.

The corresponding probability function is

f(zy,23,23) = P{X;1 = 1y,
X = 2y, X3 = 74}

f(zy,2s,28) = % - = %16

Af(x)

0.500 f-— =

0.250 - — 4 —

0125 —+ — — —1
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(b)



FIG. 2-23. (a) Probability function associated with Eq. (2-121). (b) CDF associated with Eq.
(2-121).

Here all permissible outcomes have equal probabilities.

The CDF gives the total probability of the set of points having each coordinate
less than or equal to some specified value (x;,%,,%3), that is,

F(xq,%9,X3) = Zf(xl-,xj,xk)

for

X;= [X1] X; = [Xz] Xj = [X3]

where [ ] denotes the greatest integer contained in the letter inside the brackets.

2-17. Bivariate Discrete Distribution.

The case of a random variable assuming pairs of values (x;Y}) is of particular

interest. In fact, in most engineering problems the interrelation between two
random quantities leads to a bivariate discrete distribution. The joint probability
function and the CDF are defined as before:

flzy) = PlX =27 =y
F(zyy) = PIX <z, Y <y}

(2-122)

If the joint probability function f{X,Y) is known, say in the form of a matrix, then
there are four additional quantities of interest which can be readily computed.
These are marginal probability functions and marginal CDF’s as defined below:



fi(z) = P{X = z, all permissible ¥'s} = ¥ f(zy)
- v

fay) = P{Y = y;, all permissible X's} = 3’ f(z,yy)

Fy(z) = Fi(zx)

Th ST

Faly) = § fa(ys)

(2-123)

The indices 1 and 2 in the marginal distributions are simply to indicate that f;(x)
refers to the variable x, that is, the first variable, and f,(y) to the second variable.

Now assume that all pairs of values (xi,Yj) are written in a matrix form:

(21,91 [(Zyys)) * * + (Zyys)

[X,Y] = @hﬂl) (2,y3) (xsllan

(Zm¥n)

&

L (zm:yl} (

(2-124)

The corresponding probabilities can be written in a similar form:

r —
P11 Pz Yt P

[z, u)] = @ pm] "’“)

# = = LI ] * & ® . % #

DPm1 | Dm2 DPmn ...I



(2-125)

The marginal probability f;(x,) is the probability of the occurrence of events for
which X = x, without regard to the value of Y. This is readily obtained by adding

the terms appearing in the second row of the probability matrix.
filze) = pu 4+ P24+ + pon

(2-126)

Similarly, the marginal distribution f,(y;) can be obtained by adding the terms of

the kth column of the joint probability matrix. For example,
foaye) = pa+paat " * + P2

(2-127)

If the random variables X and Y are such that for all values of (x,-,yj) we have

f(xiy;) = filzd)fa(ys)

(2-128)

then the variables are said to be statistically independent of each other. For
example, the simultaneous throw of two honest coins has the following
outcomes:

)= [ Bt B] wd (= [P0 7]



Evidently, these two variables are independent of each other, since for any entry
of the probability matrix we have

PIX=H\=pu+pu=%
PlY=T} =pu+tpu=%
PiIX=H,Y=T) =(pu+pu)(pratpa) =% =134

Conversely, a check for independence is to determine if Eq. (2-128) holds for all
possible outcomes.

The conditional distributions can also be defined and obtained in a
straightforward manner. The conditional probability P{X = xI-IY = yj} is designated

as f(x,-L/j). That is, if the computation of f(xl-L’j) is desired, then we concentrate on
the jth column of the (x,y) matrix.

—31%'
Talls
[X:Y = y:l = ZY;

| TmYj ]
(2-129)

Next the term x;y; is selected and its associated probability is obtained.

PIX = 2l¥ = y) = flady) = T2
Jao(y) = 0

(2-130)



It is to be noted that f(xL/ ) is a permissible conditional probability function as all

its terms are nonnegative and

F(ze,y5)

- _ Ja(y))
‘Z{f(xaly:) f o =)
falys) #= 0
(2-131)

Similarly, the conditional probability of Y, given X = x;, is found to be

iz = L)

Si(zi) = 0

(2-132)

Example 2-30. Consider the simultaneous throw of two honest dice X and Y.
Find P {3 =X <5, 2 <Y =<3} and the marginal probabilities.

Solution. The two-dimensional random variable assumes 36 pairs of values,
each with an equal probability of *§e.

Pu = 3, for each point of the sample space
Flzy) =P(X <z, Y 29

The marginal CDF’s are



Fi(z) = E p(ik) =

j=1 k-l
Fy(y) = g z p(sk) = L:-]
k=l jml
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The probability of having 3 < X < 5and 2 = Y = 3 is 86 = 3 The marginal
probabilities are P{3 =X =5} =% and P{2= Y =3} = 1/3. Note that the two variables
are independent, since, for all entries of the probability matrix, *§e = Ve Ve.

2-18. Binomial Distribution.

Consider a random experiment with only two possible outcomes, E; and E,. Let
the probability of the occurrence of E; and E, be p and g = 1 - p, respectively. If

the experiment is, repeated n times and the successive trials are independent of
each other, the probability of obtaining E; and E, r and n - r times, respectively,

n 'y
(e

(2-133)

is



This can be proved as follows: The probability of any sequence having r events
E; and n - r events E, is p'q"”, as the successive trials are assumed to be

independent of each other. Moreover, the number of such sequences is equal to
the number of combinations of n objects r at a time. Hence the formula of Eq. (2-
133) follows by the addition rule of probabilities.

A
r (;_1) P’ g (:‘3) pTg™"
0 1 1.000 0.216 0216
1 3 0400 | 0.380 0.432
2 3 0.160 0.600 0.288
3 1 0.064 1.000 0.064
|,
0o 1 2 3

FIG. 2-24. Example of a binomial probability function.

Let us now define a random variable X which takes the values r if in a
sequence of n trials there are exactly r E;. Then by Eq. (2-133)

1) = P{X =1} (f) prg

> () e

r=s

F(z) = P{X < z}

(2-134)

The distribution function of the random variable X is a step function of the type
shown in Fig. 2-23b. The corresponding probability density function is shown in
Fig. 2-24.



Example 2-31. What is the probability of getting exactly three 1's in five
throws of a die? What is the probability of obtaining at most two 1’s?

Solution. According to Eq. (2-134), for p = V&, q = 76, n =5, and r = 3, one writes
pixer s = () G ) -
For the second part of the problem,
ro = rux 5= () 0 (' + () ) () +B) G (' -oo

Example 2-32. In a game of n throws of a die, for what value of n is the
probability of getting at least two 6’s larger than %?

P{23, ... nts} >3}

Solution

BIONORIGIOTONES

The numerical answer to this inequality is found to be

2-19. Poisson’s Distribution.

A random variable X is said to have a Poisson probability distribution if



A
P{X=$}=e";7

(2-135)

where A >0,x=0,1,2,...,and 0! = 1.

The corresponding cumulative distribution function (CDF) is

[z]
_ N\ e |
F(a:)--‘_/_(e-hkl z2>0
k=0
F(z) =0 <0
(2-136)

It is to be noted that F(x) satisfies the conditions required for a distribution
function. In fact, F(x) is monotonic, increasing, and, moreover,

F(0) = e

' _ N AE K AN
Ry = Y of=er (L 5+ ) =

k=

It is of interest to note that the Poisson distribution is a certain type of limiting
case of the binomial distribution, in which p is a specified function of n, namely

p,,, where

Then



lim np, =A >0

lim ( )p,.’(l — pﬂ)ﬂ""r o e—l h?

Ti=— 30

(2-137)

The validity of Eq. (2-137) can be checked through the following algebraic
manipulations:

@ = (2) ot — pope = 22=D @z 4 D)

n#

l': ==

(2-138)
; 1 2 z -1\
f(z) =(1 _1_;)(1_1_1) T (1" = )5-1(1"?.)"“"
(2-139)

(L= 1/m(A = 2/n) - - - [1= & = O/n] N
e = T—7F 71 (=P

(2-140)
But

i L= Um0 =20 - i — e = D)
(1 — pn}=




(2—141 )
Therefore,

Clim (1 = pa)* = lim [(1 ~ pn)~1oe]> = ¢

n—®

(2-142)

Finally, for the limiting case we find

f@) = e

(2-143)

Thus, in the binomial case, if the number of trials n becomes reasonably large
and the probability of individual success p is relatively small, so that their
product np = A is of moderate magnitude, the probability of the number of
successes in n trials approaches the Poisson distribution. The following relative
magnitudes illustrate a common range of application for Poisson’s distribution:

n>50p<0.1 A <10

In Chap. 6 it will be shown that A is the “average” value for a random variable
with a Poisson distribution.

Example 2-33. Assuming that, on an average, 3 per cent of the output of a
factory making certain parts is defective and that 300 units are in a package,
what is the probability that, at most, five defective parts may be found in a
package?



Solution. The “average” number of defective parts in a package is 300 x 0.03 = 9.
Assume a Poisson distribution with this average, i.e.,

A=np=9

According to Eq. (2-143), the probability of a box containing x defective parts is

Pre~®
z!
|
F(z) = P(X < 2) = i s

k=0
_ g L9 9 9+ 9
F(5) =¢ "(1 +ﬁ+-2_!+§-]+1_l+5_i

Example 2-34. An industrial process has been running in control with 0.5 per
cent defectives. Find the smallest integer k such that the probability of getting k
or more defectives in a random sample of 100 is less than 0.10.

Solution. Assuming a Poisson distribution with p = 0.005 and n = 100, one finds
A =np =0.5. Thus it is reasonable to use a Poisson distribution. In this case,

P(X'> k) €0.10
P(X <k —1) > 080
k

From a Poisson distribution table one finds that

k-1=1k=2



2-20. Expected Value of a Random Variable.

Consider a discrete single-variate random variable X and its associated
probability function:

[xlr""-ﬂr v e )
[phpﬂr b ;Pn]

If the random experiment under consideration is repeated a large number of
times, the average or mean value of the numerical function X is found to be

n
Average of X = X = E Prx
k=1

(2-144)

For example, for the experiment of rolling an honest die, one finds

X=1.1/:5+2.‘VE+3.1/6+4.1/E+5.1/;5+6.%=3%

More generally, if (X) is a function of a random variable X (also called a
weighting function), the mean value of  (X) is defined as

Mean of ¢(X) = ¢(X) = i P (ze)

k=1

(2-145)

In the literature of probability, the mean of a function is generally referred to as
its expected value. An alternative notation for denoting the mean value of a



random quantity is a capital E in front of that quantity, for instance, E(x) or E(X +
Y) or E(2X + X3). When the function  (X) is of the form  (X) = X/, where j is a
positive integer, its expected value is called the moment of the jth order of X.
For example,

E(X) = X = first-order moment of X = Y puzs
' km]
E(X?) = X? = second-order moment of X = ) puz;®
k=1
E(X?® = X*® = third-order moment of X = E Drs®
‘ F=1

---------------------------------

(2-146)

The physical significance of moments is not discussed here. At present the
reader is required only to acquaint himself with the concept of Eq. (2-145), that
is, how the means of different weighting functions can be calculated. The
concept of averaging is of considerable importance in engineering problems. For
example, assume that X is a random voltage applied as the input to a device with
an input-output relationship

Y= (X)

Then E(Y) is the d-c level for the output of the system. Similarly, if Y is applied
across a unit resistor, the power consumed in the resistor, measured with
respect to its d-c level, will have the same numerical value as the second

moment of the random variable (Y - Y), that is, the expectation of

{W(X) — Elp(X)]}*



(2-147)

There are at least three special weighting functions of particular interest in
probability and information theory. These are

X1 =123, ...
eX ¢ = base of natural logarithm
log X

Without discussing the details at this time, we merely point out the most
important application feature of each of the above functions:

E() This gives moments of different orders of X.

E(eX) When this mean is known, one can find the values of different
moments without recourse to direct computation.

E(- log X) In the following chapter it will be shown that, when X is taken to be
the probability function f{x), the new random variable [ - log f(x)]
presents the amount of uncertainty associated with the occurrence of
each outcome of the discrete experiment. Therefore, its mean value
will stand for the average uncertainty of the system under
consideration.

The concept of averaging can be generalized in a direct manner to weighting
functions of n random variables associated with an n variate. For example, in the
case of a bivariate random variable [X,Y] and a weighting function  (X,Y), we
have

B(X, 1)) = 3, 3 ¥(@u)us

(2-148)



PROBLEMS

2-1. Determine whether or not the following relations are correct (the primes
denote the complements):

(@) (A+B)(A+C)=A+BC

(b) (A+B)-B=AB’

(A B=A+B

(d) (A-AB)C=A(B+()’

(e(A+B )C=A" B C

(N (A+B)B+C)(C+A)=AB+AC+BC

@ANBNB NC=0

2-2. Let A, B, C be three arbitrary events of a sample space. Find the
expressions for the following cases:

(a) At least one of the three events occurs.
(b) B occurs and either A or C occurs, but not both.
(c) Not more than two occur simultaneously.

2-3. Consider the set of points S = { (X,Y) } shown in Fig. P2-3.
(a) Find the subset a = {(x;y) Ix2 +y? <4},
(b) Describe the subset b = {(x,y)[v < x%}.

(c) Describe the subset ¢ = {(x,y)lx <y}
(d) Describe the subset b N c.
(e) Describe the subset (b U a)c” .
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FIG. P2-3

2-4. Given a set S = {0,1,2,3,4,5,6,7,8,9,10},
(a) Define the function F,(x) = x/2 over S and draw its graph.
(b) Define the function F,(x) = x + 3 over S and draw its graph.

(c) Determine the subset a = {xl(x/ 2)(x + 3) < 4}.

2-5. Show the following identities and draw the corresponding Sheffer-stroke
diagrams.

(a) (Xl(Y]Y)) =X" UvY.

(b) (X|(XIX)) = U.

(c) Verify the identity of the expression for the output as given in

Fig. P2-5
aandb.



wluy:l
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(a)
: o
1
| o
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(b)
FIG. P2-5
2-6.1f A, A5, ..., A, are independent events, show that

PlA; + Ay + + -+ + Ax} =1 — P{A}}P{4,} - - - P{4,]

2-7. Two cards are drawn at random successively, the first being replaced
before the second is drawn. What is the probability of the first being a club and
the second not a queen?

2-8. Two dice are thrown. Denote by A the event that the sum of the faces is
even and by B the event that their difference is even. Describe the events A + B,
AB,A B ,AB,and A +Band find their probabilities.

2-9. Given five letters a, b, ¢, d, e, in how many different ways can one write
three-letter words without repeating any letter (a) irrespective of their order
and (b) considering the order of letters?



2-10. In how many different ways can a committee of four men and two
women be selected from a total of 20 men and 10 women?

2-11. A survey of 1,000 people has indicated the following results: 714 listen to
radio station A, 640 to station B, and 850 to station C. It also indicated that 530
listen to both A and B, 375 to both C and B, and 720 to A and C. Determine
whether these data are not self-contradictory.

2-12. What is the probability of obtaining 8, 9, or 10 with two dice in one trial?

2-13. Two dice are thrown. Let A be the event that the sum of the faces is odd
and B the event that at least one is a 1. Describe the events AB, A + B, AB and
find their probabilities.

2-14. What is the probability of drawing a club or a face card of any color in a
single draw from an ordinary deck of cards?

2-15. Two events A and B associated with an experiment have respective
probabilities of occurrence p and g. Show that in n trials the probability that AB
occurs K, times; AB , K, times; A B,K;times;andA B K, times is

Klgx:; gl S0 l"ﬂx’ql"’l'(l‘ - p)ErtEy(] = g)EstE,

2-16. Urn A contains seven silver dollars and one $10 gold coin. Urn B contains
10 silver dollars. Nine coins are taken from B and put in A; then eight coins are
selected at random from the 17 coins in A and put back in urn B. If you were to
select one of the two urns, which one should you select?

2-17. 1f the probability of a safe return from a certain trip is P = 0.9, what is
the probability of exactly four safe returns out of six such trips?

2-18. A single card is removed from a regular deck of cards. From the
remainder, we draw two cards and observe that they are both diamonds. What is
the probability that the removed card was also a diamond?

2-19. Show that the two relay circuits of Fig. P2-19 are equivalent.



FIG. P2-19

2-20. Express the event of the functioning of the network in FIG. P2-20 in
terms of the subevents E;, E,, . . ., E¢, where E; implies the functioning of the kth

relay.
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FIG. P2-20

2-21. Two persons toss a coin n times each. What is the probability that they
score the same number of heads?

2-22. If a box contains 40 good and 10 defective objects, what is the
probability that 10 objects selected at random from the box are all good?

2-23. What is the probability that in a bridge hand a player and his partner
have a total of three aces?



2-24. Assuming that the ratio of male to female children is 1:2, find the
probability that in a family of six children

(a) All children will be of the same sex.

(b) The four oldest children will be boys and the two youngest will be girls.

(c) Exactly half the children will be boys.

2-25. In a game of bridge, if a player has no ace, what is the probability that
his partner has no ace either?

2-26. Find the probability that three, and only three, tails are obtained in a
sequence of four tosses of a coin.

2-27. Assuming that the probability of each relay being closed is p, derive the
probability for the flow of a current between nodes A and B of Fig. P2-27.

Ao {}5 oB

FIG. P2-27

2-28. Same question as in the preceding problem for the networks of Fig. P2-
28.



FIG. P2-28

2-29. The following joint probability matrix is given for discrete random
variables X and Y. Evaluate the marginal and the conditional probability

functions.
[ 142 ¥ 0O l
0 19 15
Ms 14 Hs

2-30. The joint density function for two random variables X and Y is given
below:

) = kixy2 (<) for x and y positive integers
) elsewhere
Xy)=0
Find

PIX <4,Y <4j

2-31. Evaluate the probability of getting a four 0, 1, 2, 3, 4, and 5 consecutive
times on five throws of a die.



2-32. If the probability of hitting a target is % in each shot, independent of the
number of shots fired,

(a) What is the probability of the target being hit twice in five shots?

(b) What is the probability of the target being hit at least twice in five shots?

2-33. A book of 200 pages contains 100 misprints. Assuming that these are
distributed at random, estimate the chances that a page contains at least two
misprints.

2-34. The random variable X assumes the values [0,1,2] with respective

probabilities [1/3,%,9{2]. The random variable Y assumes the values [0,1] witch
probabilities {%,%]. Assuming that the two variables are independent, determine
their joint probability functions.

2-35. Study the different probability functions (joint, marginal, and
conditional) associated with the following experiment. We draw five cards from
an ordinary deck of cards and study the two random variables below:

X, number of aces drawn
Y, number of queens drawn

2-36. A random event E has the probability of occurrence 1/K in each
experiment independently of the preceding outcome. Determine the following
probabilities:

(a) E does not occur in n consecutive trials.

(b) E occurs in the nth experiment only but not in any of the previous ones.

(¢) E occurs exactly twice in n experiments.

(d) Let K = 4, n = 4 and evaluate the results of parts (a), (b), and (c).

2-37. Smith-Jones-Robinson Problem. The following problem has appeared in the
Scientific American (vol. 200, no. 2, p. 136, February, 1959) in an entertaining
article entitled “Brain-teasers” That Involve Formal Logic.



Engineer
Brakeman
Fireman
Los Angeles
Omaha
Chicago

Smith Mr. Smith

Jones ' Mr. Jones

Rabinson Mr. Robinson
FIG. P2-37

1. Smith, Jones, and Robinson are the engineer, brakeman, and fireman on a
train, but not necessarily in that order. Riding the train are three passengers
with the same three surnames, to be identified in the following premises by

“Mr.” before their names.
2. Mr. Robinson lives in Los Angeles.
3. The brakeman lives in Omaha.
4. Mr. Jones long ago forgot all the algebra he learned in high school.
5. The passenger whose name is the same as the brakeman’s lives in Chicago.

6. The brakeman and one of the passengers, a distinguished mathematical
physicist, attend the same church.

7. Smith beat the fireman at billiards.

Who is the engineer?

HINT: The solution by methods of set theory may become somewhat
cumbersome. It is suggested in the above reference to use two matrices as
notational aid. Each cell is the intersection of two sets, corresponding to the set
of elements contained in the pertinent column and row. Put a 1 or a 0 in a cell
indicating that such an intersection is a valid premise or not.



2-38. Eddington’s Controversy. The following problem exemplifies the type of
confusion that existed in probability prior to the introduction of set-theory
considerations.

If A, B, C, D each speak the truth once in three times (independently), and A
affirms that B denies that C declares that D is a liar, what is the probability that D
was speaking the truth?

The following comments on Eddington’s problem are given in an article
entitled “Brain-Teasers” That Involve Formal Logic by M. Gardner (op. cit.).

“Eddington’s answer of *#f1was greeted by howls of protest from his readers,
touching off an amusing controversy that was never decisively resolved. The
English astronomer Herbert Dingle, reviewing Eddington’s book in Nature (Mar.
23, 1935), dismissed the problem as meaningless and symptomatic of Eddington’s
confused thinking about probability. Theodore Sterne, an American physicist,
replied (Nature, June 29, 1935) that the problem was not meaningless but lacked
sufficient data for a solution. Dingle responded (Nature, Sept. 14, 1935) by
contending that, if one granted Sterne’s approach, there were enough data to

reach a solution of exactly Vi, Eddington then reentered the fray with a paper
entitled The Problem of A, B, C and D (Math. Gaz., October, 1935), in which he
explained in detail how he had calculated his answer.”

The difficulty lies chiefly in deciding exactly how to interpret Eddington’s
statement of the problem. If B is truthful in making his denial, are we justified in
assuming that C said that D spoke the truth? Eddington thought not. Similarly, if
A is lying, can we then be sure that B and C said anything at all? Fortunately we
can side-step all these verbal difficulties by making (as Eddington did not) the
following assumptions: (1) All four men made statements. (2) A, B, and C each
made a statement that either affirmed or denied the statement that follows. (3)
A lying affirmation is taken to be a denial, and a lying denial is taken to be an
affirmation.

2-39.1% If a stick is broken at random into three pieces, what is the probability
that the pieces can be put together in a triangle?

HINT: The problem, despite its apparently clear statement, is ambiguous. It



requires some additional information about the exact method of breaking the
stick. The following two explanations are given in the cited reference.

“One method is to select, independently and at random, two points from the
points that range uniformly along the stick, then break the stick at these two
points. If this is the procedure to be followed, the answer is %4, and there is an
elegant way of demonstrating it with a geometrical diagram. . . .

“Suppose, however, that we interpret in a different way the statement ‘break
a stick at random into three pieces.” We break the stick at random, we select
randomly one of the two pieces, and we break that piece at random. What are
the chances that the three pieces will form a triangle? If after the first break we
choose the smaller piece, no triangle is possible.”

The latter interpretation of the problem gives V& for the required probability.

2-40. The joint probability matrix of two variables is given below. Determine
whether they are statistically independent.

31342 e 542
2|36e Ms B4e
1142 3 B%q
yiz 1 2 8

2-41. Two urns contain four white and three black balls and three white and
seven black balls, respectively. One urn is selected at random and a ball is drawn
from it. What is the probability that this ball is white?

2-42. A Markov chain has the transition probability matrix given below:

0 3% 4
0 s 3:
1 0 0

The three states are initially selected with probabilities %,. Ve 6, V.
(a)What is the probability of reaching state 2 via state 1 in one step?



(b) What is the probability of reaching state 2 via 1 in two steps?
(c) What is the probability of reaching state 3 in two steps?

2-43. Define the probability function for the number of boys in a family of six
children, assuming that both sexes are equiprobable and no multiple birth
occurs.

2-44. From the joint probability matrix below,

ys|f 0 B4g 13
yal M2 3} Ms
yille M O

Iy Tz Ts

compute and tabulate:
(a) Marginal probability P; {x;}.
(b)Marginal probability P,{y;}.

(© Plybyy.
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CHAPTER 3

BASIC CONCEPTS OF INFORMATION THEORY:
MEMORYLESS FINITE SCHEMES

The object of this chapter is to present the basic elements of information
theory of discrete schemes in a manner parallel to the presentation of the
elements of discrete probability theory. Our immediate aim is to develop a
measure for information content of a discrete system. That measure will then be
used for evaluating the rate of transmission of information in a communication
system. No effort will be made to expound on the philosophical context of terms
such as “information measure” or “communication.” In order to grasp a basic
understanding of this newly developed scientific field, it seems desirable to
confine ourselves to an accurate abstract mathematical model rather than to
deal with generalities of a semiphilosophical nature. The following approach is
suggested:

We shall consider a discrete random experiment and its associated sample
space Q. Let X be a random variable (a real numerical function) associated with
Q; we know that, say, E(X) has a particular physical meaning in regard to the
random experiment. That is, if the experiment is repeated a large number of
times, the values of X when averaged will approach E(x). In summary, E(x) has
given a certain “physical” indication about the experiment. Similarly, E(X") has a
certain significance in our studies. Then the question arises, could we search for
an indicative number associated with the random experiment such that it
provides a “measure” of surprise or unexpectedness of occurrence of outcomes
of the experiment? Shannon has suggested that the random variable - log P{E;}

is an indicative relative measure of the occurrence of the event E;. In particular,

he shows that the mean of this function is a good indication of the average
uncertainty with respect to all the outcomes of the experiment.



The reader should note that the above terms in quotation marks are used here
with their common meaning. Their more accurate technical meaning will be
defined later.

3-1. A Measure of Uncertainty.

Consider the sample space Q of events pertaining to a random experiment. We
partition the sample space in a finite number of mutually exclusive events Ej,

whose probabilities p; are assumed to be known (Fig. 3-1). The set of all events

under consideration can be designated as a row matrix [E] and the
corresponding probabilities as another row matrix [P].

(E] = [Ey,Bs, . . . Ey)

with U By = U
kw=]

(3-1)
iP] - [phph . :Pﬁ]

n
with e =1
2,

(3-2)

Equations (3-1) and (3-2) contain all the information that we have about the
probability space - which is called a complete finite scheme. For example, the
following matrix represents such a situation :

E - E, E, E;
P 02 05 03



FIG. 3-1. A discrete probability space.

The fundamental problem of interest is to associate a measure of surprise or
uncertainty, H(py,p,, - . . ,pn), With such probability schemes. Of course at this

point it is questionable what is meant by a measure of uncertainty. The
clarification of this concept has to come gradually; it is, in essence, the central
theme of information theory. The problem can be approached in either of two,
not necessarily exclusive, ways:

1. First postulate the desired properties of such an uncertainty measure; then
derive the functional form of H(p,,p,, . . . ,p,). The postulation of the desired
properties can be based on some intuitive approach, such as physical motivation
or “usefulness” for some purpose, but after such a postulate is adopted,
mathematical discipline must prevail and no further intuitive approach may be
employed.

2. Assume a known functional H(py,py, . . . ,p,) associated with a finite
probability scheme and justify its “usefulness” for the physical problems under

consideration.

Our present approach is primarily of type 2. The more mathematically
inclined readers who prefer an axiomatic approach are referred to Sec. 3-19 or
Feinstein (I).

Shannon and Wiener have suggested the following measure of uncertainty or



entropy associated with the sample space of a complete finite scheme.

H(X) = — ), pilog pi

=]

(3_ 3 )20

where p; is the probability of the occurrence of the event E; as described in Egs.

(3-1) and (3-2). The base of the logarithm is rather arbitrary; however, for
communication problems it is convenient to use the binary base.

Our immediate plan in this chapter is first to investigate the principal
properties of this suggested measure of uncertainty and to justify its
“usefulness” with respect to statistical problems of communication systems.
Next we shall generalize this concept to two-dimensional probability schemes,
which provide simple models for communications. Finally the discussion will be
directed toward more general n-dimensional probability schemes. We shall
always be restricted to complete systems of events; that is, we assume that Eqs.
(3-1) and (3-2) are satisfied.

3-2. An Intuitive Justification.

In this section we wish to justify the usefulness of the function suggested in Eq.
(3-3) in connection with communication problems. In problems dealing with
communication systems, it is often instructive to regard a finite exhaustive
probability scheme as a mathematical model for a communication source, In this
analogy, any elementary event or outcome, Ej, may be considered as a letter of

the alphabet of the communication transmitter.

Now consider the random variable

X = —logp

(3-4)



defined over the sample space of Fig. 3-1. To each event Ej there corresponds a

value x;, of the random variable X, where by hypothesis

Ty = = log PlEﬂ ;. = log';p;.

(3-5)

The quantity - log pj is frequently called the amount of self-information

associated with the event Ej :
I(Ey) = — log ps

(3-6)
The unit of the amount of information is called a bit, where one bit is the

amount of information associated with the selection of one of two equiprobable
(pr = %) events. In other words, if the sample space is partitioned into two

equally likely events E, and E2, then

I(E)) = I(Es) = — log ¥ =1 bit

(3-7)

A selection between two equally likely events requires one unit of

information. If Q were partitioned into 2N equally probable events E (k=1, 2, . ..

, 2N), then the self-information associated with any event E;, would be

I(Ey) = —logpr = —log2¥ =N bits



(3-8)
The generalization from equiprobable events to the general case is

straightforward. In fact, in order to evaluate the self-information associated

with a particular event Eo, we divide the Q space in two parts Eo and #o; thus

I(E,) = — log p(Ee) = — log po bits

(3-9)

For instance, if P* = ’]'{_B, the occurrence of Eo in the average conveys to us 4
bits of information. The measure of self-information is essentially nonnegative:

I(E) = "‘108 pe 2 0

(3-10)

The equality is only by the certain event; obviously, no information is conveyed
by the knowledge of the occurrence of such an event.

The average amount of information or entropy of a finite complete probability
scheme is defined by

H(X) = NEJ . Z Ptlﬂgm
k=1

(3-11)

where the random variable X is defined over the sample space of events €and
the events satisfy Egs. (3-1) and (3-2). H(X) is the average amount of self-
information per event, the average being taken over the entire sample space. In



fact, if - log p; indicates the measure of uncertainty associated with the event E,
then H(X) will clearly represent the mean or the expected value of the
uncertainty associated with our probability scheme. As a simple example, let us
consider the following three sets of complete events and compare their

entropies.
(I) E = (Ay,4,] P = [}456,%%%4s6l
(IT) E = [ByB)] P =[}4,}4]
(I1I) E = [Cy,Cy] P = [14¢,26]

The average self-information associated with each of these schemes is given

respectively by
(I) I,= — (Y456 log Y556 + 255454 log 25345¢) = 0.0369 bit
(II) I;= —(14 log 15 + ¥4 log ¥4) = 1 bit

(D) In = — (Mg log /s + e log He) = 0.989 bit

In system 1 it is relatively easy to guess whether A; or A, will occur. In system III

this guess is much harder, and in II it is most difficult to predict the occurrence
of one of the events B, or B,. It is common sense to attribute a larger average

uncertainty to system II than to system III and a larger average uncertainty to
system III than to system I. This is in agreement with the results obtained by
application of the chosen self-information function, that is,

[<T,-T,

The average uncertainty associated with II is far more than that associated with
I. For I, we are almost sure that A, generally occurs. For II, the average

uncertainty is larger, as it is most difficult to say whether B; or B, occurs.



3-3. Formal Requirements for the Average Uncertainty.

Shannon’s approach, as well as several other authors’, in suggesting a suitable H
function has been to some extent directed toward an axiomatic description of
such functions. The desired H function should have the following basic
properties:

1. Continuity. That is, if the probabilities of the occurrence of events E; are

slightly changed, the measure of uncertainty associated with the system should
vary accordingly in a continuous manner.

1,2,...,n

H(py,ps . . . ,ps) continuous in pi k
0Ssm<=1

IA N

(3-12)

This requirement is obviously in conformity with our physical senses, since a
slight change in the probability of the occurrence of an event should not provide
us with a significantly large amount of information.

2. Symmetry. The H function must be functionally symmetric in every py.
Indeed, the measure of uncertainty associated with a complete probability set
[Ex, ©k] must be exactly the same as the measure associated with the set
[E j,Ex). Our measure must be invariant with respect to the order of these

events.
H(Pirpﬁ .o :Pl\) = H(PE,PI, boe s :Pl)

(3-13)

3. Extremal Property. When all the events are equally likely, the average
uncertainty must have its largest value. In this case, it is most uncertain which
event is going to occur. Conversely, once we know which specific event among a



number of n equally likely events has occurred, we have acquired the largest
average amount of information relevant to the occurrence of events of a
universe consisting of n complete events.

) 11 1
Mmmmdﬂ@mm“-mﬂ'H&ﬁ“'”a

(3-14)

4. Additivity. Suppose that we have obtained a suitable measure of the average
uncertainty H(p,,p2, . . . ,p,,) associated with a complete set of events. Now, let us

assume that the event E,, is divided into disjoint subsets (Fig. 3-2) such that




FIG 3-2 A partitioning of the probability apace illustrating the additive property of the
information measure

Evidently, the occurrence of the event E, can be considered as another total
sample space where the probabilities associated with events F, can be

normalized in the form

(3-17)

[This recourse provides a rather convenient relative frame of reference. That is,
we call the event E,, a sample space €) | associated with the experiments of
obtaining all events Fj, (k=1, 2,..., m), when we know that E, is bound to occur.]

Therefore we have three probability spaces and hence the following three H
functions:

Hl(pl,jh, oo :pﬂ)

Ha(pyps, . . « ;Pa—1,q1,02 « - - 40m)
& 0 In
PnPa " ' Da

(3-18)

A suitable additive or linear measure which also satisfies our common sense is
given by

H; = Hy + p.Hs

(3-19)



The occurrence of the weighting factor p, in this linear form is rather

anticipated. However, the uninitiated reader will find the examples of the
following section helpful in illustrating this point.

Complying with properties 1 to 4 given above, or with similar requirements,
one should be able to derive a functional form for the desired uncertainty
function. Such treatments have appeared in the work of Feinstein, Khinchin,
Shannon, Schutzenberger, and others. Their findings are not too complicated,
but for a detailed presentation much more space is required than is available in
the present work. The following references to the literature are recommended
for further reading.

1. Fadiev assumes properties 1, 2, and 4 and, subsequent to several lemmas,
proves that H must be of the form suggested in Eq. (3-11) except for a
multiplicative constant. (See Feinstein [1].)

2. Khinchin assumes properties 1, 3, and 4 and the fact that adding a null set to
a complete set of events should not change its entropy, and he derives the form
of Eq. (3-11) up to a positive constant multiplier.

3. Schutzenberger [I] aims for a more general axiomatic search for a measure
of information associated with a complete set of events. He shows that functions
other than the Shannon-Wiener entropy of Eq. (3-11) may also be employed. An

example of such a function is given in the work of R. A. Fisher.?! It should be
pointed out, however, that the Shannon-Wiener suggested form is certainly the
simplest of all such forms. The present richness and depth of the literature of
information theory are to a great extent due to the simplicity of the form of Eq.
(3-11).

3-4. H Function as a Measure of Uncertainty.

In this section we shall present a treatment concerning the suggested measure
of uncertainty. We have discussed that such a measure should obey the following
requirements:

H(py,ps, - . . ,p») continuousin px forall0 < p < 1



(3-20)

H(py, 1 — pe) = H(1 — ps, pi) k=12, ...,n

(3-21)
maximum of H(p,,p Pa) = H 13 1
LMYy « « » 3Fn nln)"':!n
(3-22)
H(Pl,]'—'z. o v e g Pr-ng,9z - . . JQM) = H(php’l = . ,p"_hp’)'
+ paH (P"’ ., ; p..)
(3-23)
where
m
Pn = g
n :;Z; b

In the following, we demonstrate that the function defined in Eq. (3-11)
satisfies all these requirements.

Property 1: Continuity. The entropy function H(py,p,, . . . p,) is continuous in
each and every independent variable pj, in the interval ]o, 1}. The proof follows

directly.



—H(py,ps, - . . ,P») = p1 log .‘P1 + palogpe+ ¢+ + palog pa
=plog pr+palogpa+ - - * + Paalog paci+ (1 = pr— pa—
—po-)log(l —=pr=pa— "+ —puy) |

(3-24)

Note that all independent variables py, p,, ..., p,—q and also (1 -p; -py -+ -
pP,-1) are continuous in ]0, 1] and that the logarithm of a continuous function is

continuous itself.

Property 2: Symmetry. The entropy function is, obviously, a symmetrical
function in all variables.

Property 3: Extremal Value of the Entropy Function. We should like to show that
the entropy function has a maximum when all the individual probabilities are
equal.

Pr=pP2= """ =Dy

(3-25)

This is in conformity with our intuitive feelings; i.e., in a system where all
different states are equiprobable, our average uncertainty will be greatest (in
other words, it is most difficult to predict which state is most likely to occur).

We may arbitrarily select p,, as a dependent variable depending on p; (k = 1, 2,

.,n-1). In fact,
dH oH ap; d d Opn
—_— = N i . g’ B, o i ! 1 i e a n) =
= 4 3% 3p o (px log ps) o (pa log pa) N

(3-26)



But
Pa=1l—=(D1+ps+ "+ o+ 4 Do)

(3-27)

Hence

% = —(logs ¢ + log p) + (logz e + log p,)

(3-28)
dH _ _ jog P
dps Pn
(3-29)
(%i =0 yiglds Pk = Dn
(3-30)

Since p; was chosen arbitrarily, we come to the conclusion that, for an
extremal point of the H function, we must have

.pl=pla-*l- upn::a

(3-31)

It remains to be shown if the latter relation makes the H function a maximum



and not a minimum. For this we note that

H(1,00,...,0)=0

(3-32)

But

H(T—t:%, £ a ,;la)zlogn}()

(3-33)

Thus when all the mutually exclusive events are equiprobable, the H function
reaches its maximum value.

Property 4: Additivity. We prove the validity of this property by reducing the
left member to a form identical with the right member of Eq. (3-23) :

H(pljph vooov gPa=1,01402 . . . I'qlﬂ)
r=1 m
- 2 D log px ~ kEqulog Qs

k=1
== Y pelogpe+ pulogpa— 3 @ log
k=] k=]
m
= H(pyps, . . . ;o) + Palogpn — ) arlog g
kes]

(3-34)

But



m m m
Pn log pn — zgn 10g ¢ = Pn ), 2= log pa — Eqﬂom
k=1 k=1 k=1
O
= =—Tn 10
Y, 2o
kel
- g1 ‘.h m
an (pn pn pa)
(3-35)

This proves the identity of the two sides of Eq. (3-23).

It is to be noted that, since H functions are essentially nonnegative, we have

H (Pllph e +oe 3 Pa-101,02 . . . IQM) H (thh e rpn—hpn)

(3-36)

That is, the partitioning of events into subevents cannot decrease the entropy of
the system.

FIG. E3-1

Example 3-1

(a) Evaluate the average uncertainty associated with the sample space of



events shown in Fig. E3-1.
P[ ] = U’ﬁ:“ﬁl%d

(b) Evaluate the average uncertainty pertaining to each of the following
probability schemes.

aM=Bwcl [BIM, clm]

(c) Verify the rule of the additivity of the entropies.

Solution

(a)H(6,%{s,3{s) = }{s(15 log 5 + 12 log 3 — 32) bits

H(}6,%) = }5(16 log 5 — 24) bits
(b) H(6:38) = }{5(15 log 3 — 10) bits

(c)It is a matter of numerical computation to verify that

H(},56,2{s) = H(E,36) + 3$H(S,346)

Example 3-2. Verify the rule of additivity of entropies for the following
probability schemes (Fig. E3-2a).

(a)[A,B,C,D] (Fig. E3-2b).

(b)[A,A ][B|A CIA ,D]A ](Fig. E3-2¢).
(c) (Fig. E3-2d.)



(b)

(d)

FIG. E3-2

Numerical example:

Solution. The object of the problem is to demonstrate that the average
uncertainty in a system is not affected by the arrangement of the events, as long
as the probabilities of the individual events do not change.

(a)

H=—PA lOgPA—PB lOgPB—PclOgPC—PDIOgPD



where
PA=%PB=%PC=1/EPD=%

H = ~1flog 3§ — 34 log }{ — 3§ log 3§ — 3§ log 2§
= log2 + }4log4 + 3§ log 8 + }§ log 8
=36+ 36+ 3 + 3
= 134 bits

(b) According to the additivity property [Eq. (3-19)] of the H functions,

P
H-[—P.:logPA—'(l—PA)lOE(l—?4)]—(1—1‘94}( 2 !glfa}_?;
. Pe P
+1—0F41051 cP + lﬂg F.-l)

= —P4log Pa — (1 = Pa)log (1 —Ps) — Py log ILP

~ Polog ;=% — Pplog 125

= —~Pylog Py — (Pg + Pc¢ + Pp)log (1 — Ps) — Pglog Ps + P»s

log (1 — P4) — Pclog Pe 4+ Pclog (1 — P4) — Pplog Pp + Pplog (1 ~ Py)
= —P,4log Py ~ Pglog Pg — Pclog Pc — Pplog Pp

where
PA=1/2‘PB=%PC=1/éPD=%

H= —3log}4 — ¢ log 14 — 24(3¢ log 14 + 34 log }{ + 3{ log 34)
= 3¢ log 2 + 34 log 2 + 34(}¢ log 2 + }{ log 4 + 4 log 4)
=14 4+ 1§ + }4(}¢ + 14 + }9)
= 13{ bits



(c)

H = —(P4s+ Pg) log (P4 + Ps) — (P¢ + Pp) log (Pc + Pp)
Pa P Pg Pp
+ (Pa + P3) (_ Py +Pp iogp“ +Ps Py +Pp IOEPJ +Pn)
Pe Pe Pp Pp

+(P¢+Pﬂ)(’ﬁﬂ+Pnl°‘Pg+Pp' e+ nl°5Pc+Pn)
= —(P4 4+ Pg) log (P4 + Pg) = (Pc + Pp) log (P¢ + Pp)

Pp Pe Pp
~Palog g py ~ Prl g p, ~ PolEp 1 p, ~ Pr B p TR
= —(P4 + P5) log (P4 + Ps) — (Pe¢ + Pp) log (Pc + Pp)

— Pslog Py + Pslog (Pa + Ps) — Pglog Pg + Pglog (P4 + Ps)
— Pelog Po + Pelog (Pe + Pp) — Po log Pp + P log (Pc + Pb)
= —P4log P4 — Pslog Pg — Pclog Pc — Pplog Pp

where

PA=1/2PB=%PC=1/éPD=1/é

H = —(34) log 3{ — 3 log 3£ + 34(—3¢ log 3§ — 13 log }¢)
+ 34(—34 log 34 ~ 3§ log }4)
= —34log3 + 34 log4 + 34 log4 + 34(—326log 2 + log 3)
+ 34(34 log 2 + 3¢ log 2)
= —3log3 + 3 + 3¢ + 34(—3% +log3) + 34035 + }4)
= —3{log3 4+ % — 3¢ + 34 log3 + ¥4
=134 bits

3-5. An Alternative Proof That the. Entropy Function
Possesses a Maximum.

The Shannon-Wiener theory of information is strongly linked with the
logarithmic function. Thus it is desirable to spend some time investigating some
of the basic mathematical properties of the logarithmic function. Such
mathematical presentations may seem distant from an immediate engineering
application; however, they are of prime significance to those who are interested



in basic research in the field.

First we shall prove a lemma on the convexity of the logarithmic function.
Then the lemma will be employed in giving an alternative proof for property 3 of
the previous section.

Lemma 1. The logarithmic function is a convex function.

The reader will recall that a function of the real variabley = f{x) is said to be
convex upward in a real interval if for any x; and x, in that interval one has

5(f(z:) + f(za)] < ;(-’*.1 + z:)

(3-37)

Geometrically this relation can be simply interpreted by saying that the chord
connecting points 1 and 2 lies below the curve. An equivalent definition can be
given for a curve that is convex upward in an interval. That is,

af(z1) + (1 = a)f(zs) £ flazs + (1 — a)z4] 0<a=x<1

(3-38)

The geometrical interpretation of Eq. (3-38) is that in the interval under
consideration the chord lies everywhere below the curve (see Fig. 3-3a).
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FIG. 3-3. (a) An upward convex function. (b) Logarithmic function is upward convex.

A necessary and sufficient condition for y = f{x) to be convex on the real axis is
that

ay
E’;’ <0
(3-39)

for every point of the real axis, provided that the second derivative exists. This
requirement is satisfied for the function

y=Inz

(3-40)

In fact,



(3-41)

%50 for0<z< =

(3-42)

Note that this property is independent of the base of the logarithm as long as the
base is a number greater than unity:

Inz=1In2"log: z

(3-43)

Thus we have shown that for positive values of x; and x,

z + zs

34(log z1 + log z:) < log 5

(3-44)

(-’Fﬂ-ﬂu < = -g =

(3-45)

The geometric mean of two positive numbers is smaller than their average.??



An alternative formulation of Eq. (3-38) can be given by using the following

equivalent criterion for convex functions. 23 If f(x) is convex on the real interval
a < x = b, then for any three values of x, asx; =x, <x3<b,

1 f(::x) 1

T ,f(a::) 1 S 0

zy flzs) 1
(3—46)

Lemma 2. For any positive number we have
nz<z~-1

(3-47)

This is a simple conclusion of the convexity of In x. Evidently, the tangent at
point x = 1 is above the logarithmic curve (Fig. 3-3b). The equation of the tangent
to the curve at x = 1 is given by

U= (% :-1) (x—1)

(3-48)

ye=z2—1

(3-49)

Inz<z-1



(3-50)

Again note that this property is equally true for the logarithmic function of the
base 2, i.e.,

log)c:lnxlogeS(x—l)loge

The above lemma will be of some use in our future work. At present, we may
employ it to give an alternative proof for the fact that the average uncertainty is
greatest when all the events are equiprobable. In order to show this, assume that
the space of x contains m points, not necessarily with equal probabilities. It is
required to show that H(X) is smaller than the entropy of the equiprobable case,
that is,

H(X) < —m (% log ‘:‘:)

(3-51)
or to prove
H(X) <logm
(3-52)
But by definition,

m

1 1
H(X) —logm = Z Di lugE +Iogﬁ

1



(3-53)

Since we are dealing with exhaustive systems, log (1/m) can be replaced by

(s 2)(3»)

(3-54)
or
H(X) — 1 m—(i B l)+i o
g =(Q,mloey) + ) pilogy,
(3-55)

1
H(X) — logmzZp: log?k—m

(3-56)

Applying Lemma 2, we find

1 1 '
H — l = ¢ s—— < i — .
(X) og m IE P Iogp < IE P (p. )Iog e

(3-57)



H(X) — log m < logs e [2 (ﬂ% - ;o.)] =0
1

(3-58)

H(X) <logm

(3-59)

The maximum entropy corresponds to the case when all m states have equal
probabilities of occurrence p; = 1/m.

3-6. Sources and Binary Sources.

In the study of probability one usually employs concepts of sets but uses certain
terminology which differs from that of set theory. Examples of such terminology
were given in Sec. 2-6. Similarly, information theory uses certain specialized
terms which need to be translated into a more universally understood
mathematical form. For our immediate use the following terms are defined:

A source or transmitter is similar to the space of a random experiment. That
is, a source is the assemblage of all possible events associated with the sample
space of a complete random experiment. Each outcome of the experiment
corresponds to an elementary output of the source and is called a symbol or a
character or a letter.

The finite alphabet of a communication source consists of all its finite distinct
characters, much in the same way that the sample space consists of all possible
elementary outcomes of a discrete random experiment.



|- A word= a specified
sequence of letters

—A letter, a symbol, or
a character

FIG. 3-4. A symbolic illustration of the message space of an independent source; words are
specified as sequences of letters (with or without repetition).

A finite sequence of characters may be called a word or a message in the same way
that the sequence of a number of outcomes associated with the repetition of an
experiment may be designated as an event. This is schematically illustrated in
Fig. 3-4. When the probabilities of the selection of successive letters are
independent, we say that the source has no memory. This chapter is devoted to
the study of discrete schemes without memory. The study of sources with
memory will be deferred until Chap. 11.

A binary source is associated with the sample space of a random binary
experiment when the experiment is repeated over and over. In lieu of saying
that a random experiment has only two possible exclusive outcomes A and B, we
adhere to communication terminology and say that a binary source has an
alphabet of two letters A and B. The following three matrices summarize the
information-theory performance of a binary source:

Alphabet = |[letters] = [4,B}
Probability matrix'[P] = [p, 1 — p] = [p,q]
Self-information matrix [I] = [— log p, — log (1 — p)]
Average information per letter H = I = —plog p
- (1= p)log (1 - p)

(3-60)



The communication entropy for such a system will be
H(p) = —plogp —glogg= —plogp — (1 — p) log (1 — p)

(3-61)

A plot of the function H(p) in terms of p is shown in Fig. 3-5. The maximum of
this function, as anticipated, occurs at p = %, for which the entropy becomes 1 bit
per letter. If a transmitter is sending the two letters A and B with equal
probabilities, the average information per letter is a maximum of 1 bit per letter.

An interesting observation can be made here about the entropy of a binary
source. That is, H(p) of Eq. (3-61) is a function concave downward (or convex
upward).

WlH(p)) + H(ps)] £ H (P_L%'._p.?)

(3-62)

AHip)

FIG. 3-5. Entropy of an independent binary source.

Suppose that we have three specific binary sources for communication
between two stations. If we assume the pertinent probabilities for the first



letters of each source to be p;, p,, and (p; + p,)/2, the above statement tells us

that the average uncertainty of the third source is larger than the mean of the
other two. Loosely speaking, it is relatively more difficult to predict the
transmission of the letters of the third source.

For example, consider the following two binary sources s; and s,.

par=X pua=M4

P = %% Per = ¥4
H(s)) = —)glog 24 — 2§ log 24 = —2§ + log 3
H(s:) = =Y loglf —34log34 =2 —341log3

A third binary source with an average probability (ps; + psy)/2 and (pg; +

pp2)/2 per letter will have an average entropy per letter of

Pa=MMHB+M) =184 ps=21012%+3) =1%,
H(s) = —1gqlog 164 — 144 log 1744 = 3 + log 3 — L4y log 7
— 1744 log 17

The average information per letter for the third source is greater than the
mean of the average information associated with letters of the first and the

second source.

3-7. Measure of Information for Two-dimensional Discrete
Finite Probability Schemes.

In this section, we extend the definition of the measure of information from a
one-dimensional to a two-dimensional probability scheme. The content of this
section forms an important part of the basic concepts of information theory for
several reasons. In the first place, the appropriate generalization from one-
dimensional to two-dimensional can be considered as an induction rule for the
derivation of the information measure of any finite-dimensional probability
space. In the second place, the two-dimensional probability scheme provides the
simplest mathematical model for an engineering communication system, that is,



a system with a “transmitter” and a “receiver” or a transducer with in and out
ports. Finally the concept of mutual informationor transinformation which forms
one of the fundamental concepts of information theory can be discussed in the
light of this product space.

(a) (b)

FIG. 3-6. (a) A sample space E. (b) A sample space F.

Consider two finite discrete sample spaces Q,, Q,, and their product space Q as
illustrated in Figs. 3-6 and 3-7. In Q; and Q, we select complete sets of events in
the sense of Egs. (3-1) and (3-2).

[E} - [ElrEia ¢ + 2 tEnj
{F} = [FyFy, . . . ,Fu

(3-63)




FIG. 3-7. Product space of E' XF,

Each event Ej of Q; may occur in conjunction with any event F; of Q,; thus the

following events form a complete set of events in the product space Q,Q,.

E1F1 E;Fs T EI.FM
E)Fy, E;)F, - -+ EiFyn

{EF} =
(3-64)
where EiF; stands for the simultaneous occurrence of the events Ey and F;. In this

fashion, we are confronted with the following three complete sets of probability
schemes:

P(E} = [P{E:}]
(3-65)
P{F} = (P{F}}]
(3-66)
P|EF} = [P{EFy)]
(3-67)

No stipulation is made about the independence or dependence of the events Ej



and Fj. Of course, each one of the above three schemes is, by assumption, a finite

complete probability scheme. The data pertaining to this fact can be
conveniently obtained from the joint probability matrix below.

Y
X{»{1,1} p{12} -+ p{lm]
[P{X, Y]] = pi2,1} p{22} - p{2m]

ooooooooooooooooooo

pin,1} p{n2} -+ - p{nm}

(3-68)

X and Y are random variables, associated with spaces Q, and Q,, respectively,

and (X,Y) with the product space. The marginal probabilities of the two-
dimensional random variables (X,Y) yield the probabilities pertaining to each of
the random variables X and Y. For example,

P{I:l} ‘P{EI; —- P{EIFIUEIFQU e UE;F.‘]
= p{l,1} + 2{L,2} + - -+ + p{1,m]

(3-69)

Ply) = P{F3} = P{FsE,\J FsE3\J « - + U F3E,}
= P[1r2] + pizrﬁl + "+ P[nrzl

(3-70)

or

Pla) = 3 plawy]

j=1



(3-71)

Ply;} = i Pz, s}

k=]
(3-72)

Thus we have three finite complete probability schemes, and naturally there are
three corresponding entropies:

H(X,Y) =
-p{1,1} log p{1,1} — p{1,2} log p{1,2} = -+ - — p{1,m} log p{1,m}
-p{2,1} log p{2,1} — p{2,2} log p{2,2} — - - - — p{2,m] log p{2,m}
—pin,1} log p{n,1} — p{n,2} log p{n,2} — -+ - — p{n,m} log p{n,m]
(3-73)
H(X) = .
-(P{I,ll + pllrz} + e + P{lnml} log (p{l:l} + p[l,g} +" e
+ p{l,m})
-(@(2,1} + p(2,2} + - - - + p{2,m}) log (p{2,1] + p{2,2} + - - -
| + p{2,m})

.........................................

=(pin,1} + p{n2} + - -+ + p{n,m}) log (pin,1} + p{n2} + - - -
+ p{n,m})

(3-74)



H(Y) = _
=(@{L1} + p{2,1} + - - - + pin,1}) log (p{L,1} + p{2,1} + - - -
+ pin,1})
-(p[llz} + p{2)2} + -+ ’P{ﬂnzn 103 (p{l,Zi + ‘p{2,2} + ¢
-+ pin,2})
—(@{lm} + p{2m} + - - - + pin,m}) log (p{1,m} + p{2;m} + - - -
+ pi{n,m})

(3-75)

The above three entropies can be expressed in a more condensed fashion by
using directly the two-dimensional joint probability matrix of Eq. (3-68):

kmn jw=m

HX,Y) = = Y Y pikj} log p{kai

.l'-l =1

(3-76)

k=g J=m

H(X) = - 2 [(2 plk,j}) log Z pikg) |

(3-77)

k=n k=n

H(Y) = - Z[(Z pik,j}) log Z p{k,j} ]

(3-78)

H(X,Y) represents the joint entropy, H(X) the marginal entropy of X, and H(Y) the
marginal entropy of Y.



The marginal entropies can, of course, be directly expressed in terms of
marginal probabilities p{x;} and plyj}, that is,

k=n
HX) = - kZI plz:} log p{z:}
(3-79)
jam

H(Y) = — Y plys} log plys}

i=1

(3-80)

The next section deals with conditional entropies associated with a discrete
two-dimensional probability scheme.

3-8. Conditional Entropies.

Reference is made to the matrix of Eq. (3.68) and Fig. 3-7; an event F, for

example, may occur in conjunction with Ey, E,, ..., or E,,.
L n
F; = U EEFJ'
kel
(3-81)

PIX =z Y = yy
P{Y = y;}

PIX =alY =y} =

(3-82)

or



{k,7}

D
T =
pizslyil 2 Tu]

(3-83)

Now consider the following probability scheme:
(BIF) = (BAFLEIF, - - BAF)

(3-84)

oy o [0} p(25) | plng)
PLEIF;) [Piy:l'plys}’ 'piy,-l]

(3-85)

The sum of the elements of this matrix is unity; that is, the probability scheme
thus described in not only finite but also complete. Therefore an entropy may be
directly associated with such a situation.

n

N plkd) o lR)
H(Xly;) = 1"21 p{y;} log ol

n

- E plxsly;} log pfzely;}
k=1

(3-86)

Now one may take the average of this conditional entropy for all admissible
values of yj, in order to obtain a measure of average conditional entropy of the



system.

H(X|Y) = HX) = j):‘,lpiwl[H(XIw)]

- 2 ?{ys) nix plzelyi} log plzslysl

i=1

(3-87)

m n

HX|Y) =~ ) Y pluilplaly) log plzsly)

jml k=]l
(3-88)

Similarly, one can evaluate the average conditional entropy H(YI%):

H(Y|X) = -;E El plz)plwln} log plyiles)
=] =
(3-89)

The two conditional entropies (the word “average” will be omitted for briefness)
can be written as

H(X = - Ky Ui 1 I3
(X|Y) :__Zl kZ_',Ip{z y;} log plaly;)

(3-90)



H(Y|X) = - i E pizx,ys} log plysla

km] jml

(3-91)

The conditional entropies along with marginals and the joint entropy
compose the five principal entropies pertaining to a joint distribution. All
logarithms are taken to the base 2 in order to obtain units in binary digits. Note
that all entropies are essentially positive numbers as they are sums of positive
numbers.

The physical interpretation of the different entropies will be discussed in the
subsequent section.

Example 8-3. Determine five entropies pertaining to the joint probability
matrix of Example 2-30.

Solution

6 @8
H(X,Y) = = ) ¥ Pijlog 3§s = — log 3§ = 2(1 + log 3)
11
. .
H(X) = H(Y) = — ) P;log 3§ = —log }§ = 1 +log 3
1

4 6
H(X]Y) = H(Y|X) = ~ 3 ¥ Pijlog 4§ = 1 +log 3
11

3-9. A Sketch of a Communication Network.

In this section, we wish to present an informal sketch of a model for a
communication network. In contrast to the material of the previous sections, the
content of this section is not presented in a strict mathematical frame. The
words source, load, channel, transducer, transmitter, and receiver are used in
their common engineering sense. Later on, we shall assign a strict mathematical
description to some of these words, but for the present the reader is cautioned



against any identification of these terms with similar terms defined in the
professional literature.

In the study of physical systems from a systems engineering point of view, we
generally focus our attention on a number of points of entry to the system. For
example, in ordinary electric networks, we may be interested in the study of
voltage-current relationships at the same port of entry in the network (Fig. 3-
8a). This is generally known as a one-port system.

When the voltage-current relationships between two ports of entries are of
interest, the situation is that of a two-port system. In a two-port system, a
physical driving force is applied to one port and its effect observed at a second
port. The second port may be connected to a “receiver” or “load” (Fig. 3-8b).
Such a system is usually known as a two-port, or a loaded transducer. More
generally, in many physical problems we may be interested in the study of an n-
port network (Fig. 3-8¢). From linear network theory, we know that a complete
study of n-port systems requires a knowledge of transmission functions between
different ports. For example, if we concentrate on different impedances of a
network, the following matrices are considered for a general study of a one-port,
two-port, and n-port, respectively.

ZII Zl! e Zln

Zu zn] Zay Ly - Zag
[zll] I:zn Zgg ............
znl zﬂﬂ znn

(3-92)

(The impedances are used in the ordinary circuit sense, Zj; being the transfer

impedance between the kth and the jth port.)

An equivalent interpretation can be made for the study of probabilistic
systems. In fact, the systems point of view does not rely on the deterministic or
probabilistic description of the performance. It is based on the ports of
application of stimuli and observation of responses. For instance, consider a



source of communication with a given alphabet. The source is linked to the
receiver via a channel. The system may be described by a joint probability matrix,
that is, by giving the probability of the joint occurrence of two symbols, one at
the input and the other at the output. The joint probability matrix may be
designated by

P{Ih;ﬁ'l} P[f'l:y!] L 5 Plxlrynl
(P{X,Y]] = Plzayi} P{?i,yi} v o+ Plze,Ya}

ooooooooooooooooooooo

P{Zmys} Plomys} -+ Pl&mn)

(3-93)

1 2

=2 -0 O
T Current E 1‘
Voltage Voltage koed

source ”» source o oy

S 1 2

(a) (b)
Load
Source
(c)

FIG. 3-8. (a) A one-port network. (b) A two-port analog of a channel connecting a source
and a receiver. (c) An n-port analog of a communication system consisting of several
sources, channels, and sinks.



But in a product space of the two random variables X and Y there are five basic
probability schemes of interest. These are

[P{X,Y}] joint probability matrix

(3-94)

[P{X}] marginal probability matrix of X
(3-95)

(P {_Y_]] _ marginal probability matrix of ¥
(3-96)

[P{X|Y}] conditional probability matrix
[P{Y|X}] . conditional probability matrix

(3-97)

Thus we are naturally led to five distinct functions in the study of a simple
communication model.

This idea can be generalized to n-port communication systems. The problem is
similar to the study of an n-dimensional discrete random variable or product
space. In each product probability space there are a finite number of basic
probability schemes (marginals and conditionals of different orders). With each
of these schemes, we may associate an entropy and directly interpret its physical
significance.

A source of information is in a way similar to the driving source in a circuit;
the receiver is similar to the load, and the channel acts as the network
connecting the load to the source. The following interpretations of the different



entropies for a two-port communication system seem pertinent.

H(X) Average information per character at the source, or the entropy of the
source.

H(Y) Average information per character at the destination, or the entropy at
the receiver.

H(X,Y) Average information per pairs of transmitted and received characters, or
the average uncertainty of the communication system as a whole.

H(Y]X) A specific character x;, being transmitted; one of the permissible y; may be

received with a given probability. The entropy associated with this
probability scheme when x;, covers sets of all transmitted symbols, that is,

H t Y I Iij; , is the conditional entropy H(YIX)’ a measure of information

about the receiving port, where it is known that x is transmitted.

H(X}Y) A specific character y; being received; this may be a result of transmission
of one of the x; with a given probability. The entropy associated with this
probability scheme when y; covers all the received symbols, that is,

&

my'l__‘)' , is the entropy ( { ) or equivocation, a measure of
Yi). 1 xly

information about the source, where it is known that Y is received.

H(X) and H(Y) give indications of the probabilistic nature of the transmission

and reception ports, respectively. H(vlx) gives an indication of the noise or error

in the channel, and H(XlY) indicates a measure of equivocation, that .is, how well
one can recover the input content from the output.

All the probabilities encountered in the two-dimensional case can be derived
from the joint probability matrix. Thus, a joint probability matrix specifies a
communication channel, in much the same way that an impedance or
admittance matrix specifies the performance of an ordinary linear two-port
network with respect to its ports.

3-10. Derivation of the Noise Characteristics of a Channel.



In communication problems in general, the joint probability matrix is not given.
It is customary to specify the noise characteristics of a channel and the source
alphabet probabilities. From these data we can directly derive the joint and the
output probability matrices. For example, the joint probability matrix is

pladplusl  pladplmfzd - plalplylnl
p{z:2) ply|2a} plzzlpiyslzzl s oo plaalplyn|zal

P2} P{YslTal  PITalP(YslTm} * * + DT} P {Un]Tn)

which can be written as

P ivi] =lpix v

(In this form we assume that the marginal probability matrix is written in a
diagonal form.)

Similarly, if for convenience [P{X}] is written in the form of a row matrix, we
have

[PEIPLYIXY] = [P{Y}]

where [P{ Y}] will also be a row matrix designating the probabilities of the
output alphabets.

This section offers for discussion two particularly simple communication
channels:

1. Discrete noise-free channel
2. Discrete channel with independent input-output

Discrete Noise-free Channel. In such channels, as their name indicates, every



letter of the input alphabet is in a one-to-one correspondence with a letter of
the output alphabet. The joint probability matrix, as well as the channel
probability matrix, is of the diagonal form:

p{z1,y1) 0 v 0
plxyn=| 0 Pl om0
0 0 o izl
(3-98)
{1 0 0
1 .
pixiv = pivixn =01 ;
0 0 - 1
(3-99)
For a noise-free channel the entropies are
HX,Y) = HX) = H(Y) = = 3 plzo) 108 plzou)

(3-100)

H(Y|X) = H(X|Y) =0

(3-101)

The interpretation of these formulas for a communication system is rather
clear. To each transmitted symbol in a noise-free channel there corresponds



one, and only one, received symbol. The average uncertainty at the receiving
end is exactly the same as at the sending end. The individual conditional
entropies are all equal to zero, a fact that reiterates a nonambiguous or noise-
free transmission.

Discrete Channel with Independent Input-Output. In a similar fashion, one can
visualize a channel in which there is no correlation between input and output
symbols. That is, an input letter x; can be received as any one of the symbols y; of

the receiving alphabet with equal probability. As will be shown, such a system is
a degenerate one as it does not transmit any information. The joint probability
matrix has n identical columns.

AN ¢

X P 2 L 5 m 1
S I R B
Pm Pm P z
(3-102)

The input and output symbol probabilities are statistically independent of
each other, that is,

plzyyil = palzlpe{ysl

(3-103)

This can be shown directly by calculation:

1
Dij = Np; (E 'F'f) - ﬂﬁii =M
1



(3-104)

From this one concludes that
plady} = pulz} = nps

(3-105)
1
plyilzd = pelyi} = =

(3-106)

The different entropies can be computed directly:
HX,Y) = —n (3 »logp)
i=1
(3-107)
HX)= - Y npilognp: = —n (Y pilog p) — logn
i=1 _ i=1
(3-108)
H(Y) = —-n l1+ng1 = log n
(L n

(3-109)



H(X|Y) = — EI np; log np: = H(X)

(3-110)

= log n = H(Y)

2|

HY|X) = - Z np; log

tm]
(3-111)

The interpretation of the above formula is that a channel with independent
input and output ports conveys no information whatsoever. To mention a
network analogy, this channel seems to have the largest internal “loss,” like a
resistive network, in contrast to the noise-free channel which resembles a
“lossless” network.

3-11. Some Basic Relationships among Different Entropies.

In this section we should like first to investigate some of the fundamental
mathematical relations that exist among different entropies in a simple two-port
communication system and then point out their significance in communication
theories. Our starting point is the evident fact that the different probabilities in
a two-dimensional distribution (product space) are interrelated, plus the fact
that the chosen logarithmic weighting function is a convex function on the
positive real axis. We begin with the basic relationship that exists among the
joint, marginal, and conditional probabilities, that is,

plany} = plalyil - plysl = pluslad - plad

(3-112)



log plzw,y;} = log p{zely;} + log p{y;}
= log p{yjlz:} + log p{a}

(3-113)

The direct substitution of these relations in the defining equations of the
entropies leads to the following basic identities:

H(X,Y) = H(X|Y) + H(Y)
(3-114)
H(X,Y) = H(Y|X) + H(X)

(3-115)

Next we should like to establish a fundamental inequality first shown by
Shannon, namely,

H(X) > H(X|Y)

(3-116)

For the proof of this inequality, we employ once again Eq. (3-50) for log

(pxis/pCeily;})-



H(X|Y) — H(X) = 2 2 p{z,y;} 10!;;{%?%}'

i=1l k=1
< ;;p{xhw} (pz;—:]%y - 1) log ¢

(3-117)

But the right side of this inequality is identically zero as

i ki (plas} - P{‘UJ} — plzi,y;}) log e = ‘zl (p{y;} — p{#i” log e =0
Je=1 k=1 F \
(3-118)

Hence,
H(X) > H(X|Y)
(3-119)

and similarly one shows that
H(Y) 2 H(Y|X)

(3-120)

The equality signs hold if, and only if, X and Y are statistically independent. It is
only in such a case that our key inequality Eq. (3-50) becomes an equality (at
point x = 1), that is,



plz)  _

AT

(3-121)

for all permissible values of k and j. This is the case of independence between X
and Y.

1

N
]

Y2
*3

RE!
s

Ys
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FIG. E3-4

Example 3-4. A transmitter has an alphabet consisting of five letters
{x1,%,,%3,%4,%5} and the receiver has an alphabet of four letters {y,,y,,y3,y4}. The

joint probabilities for the communication are given below. See Fig. E3-4.



/J1 Y Ys ¥
2,025 0 0 O
2y/.010 030 0 0
2| 0 0.05 0.10 0
2| 0 0 0.06 0.10
25| 0 0 0.05 0

Determine the different entropies for this channel.

Solution

Si(z1) = 0.25 Jo(yy) = 0.256 4 0.10 = 0.35

fi(zs) = 0.10 + 0.30 =040  fi(ys) = 0.30 4 0.05 = 0.35

fi(zs) =0.06 4+ 0.10 = 0.16  fs(ys) = 0.10 + 0.05 + 0.05 = 0.20
fi(z)) = 0.06 4+ 0.10 = 0.16  fa(y) = 0.10

Sizs) = 0.05
Sty =L 2 BB 2 D gl = ST o ﬁ%g
J(@ilys) = ;,—39 = f—’, fysles) = U—ﬁ - 2
faly) = 338 = 2 frlzn) = 230 . 2
fzdy) = 0 0 =1 fydz) = g ig g
Hasly) = 9—19 % filzs) = l’ %
f@alys) = O%: ; f(yslzs) = 0?: %
fady) = F:—“" -3 Tl = 288 = 1
Sl = 5o = 4 Sz = -“-5- -1

HX,Y) = = Y ¥ f(z.y) log f(z)

L
= —0.25 log 0.26 — 0.10 log 0.10 — 0.30 log 0.30 — 0.05 log 0.05
= 0.10 log 0.10 — 0.05 log 0.05 — 0.10 log 0.10 — 0.05 log 0.06
- 2.865
H(X) = —22:{: ) log fil2)
--02510;025 0.10 log 0.40 — 030[05040—-005103015
— 0.10 log 0.15 — 0.05 log 0.15 — 0.10 log 0.15 — 0.05 log 0.056
= 2.086

H(Y) = 2 Ef(x.v) log /2(»)
- -—025105035 0.10 log 0.356 — 0.30 log 0.356 — 005105 0.36



- 0.10 log 0.20 — 0.05 log 0.20 — 0.05 log 0,20 — 0.10 log 0.10
= 1.866

L 1)
H(YX) - ZZf(z,ynos fen)

= —0.10 log }4 — 0.30 log 34 — 0.05log 34
— 0.10 log 3§ — 0.05 log 3§ — 0.10 log 3§
= (.600

HEIY).= = ) ¥ f(a) log 520
z y
= —0.25 log 8¢ — 0.10 log 3¢ — 0.30 log % — 0.05 log 34
=~ 0.10 log }§ — 0.05 log 24 — 0.05 log 34
= 0,800

Note that

H(X,Y) < H(X) + H(Y)
2.665 < 2.086 + 1.856

and

H(X,Y) = H(Y) + H(X|Y) = H(X) + H(Y|X)
2.665 = 1.856 + 0.809 = 2.066 -+ 0.600

3-12. A Measure of Mutual Information.

Consider a discrete communication system with given joint probabilities
between its input and output terminals. Each transmitted symbol x;, while going
through the channel has a certain probability P{yjlx} of being received as a
particular symbol y; In the light of previous developments, one may look for a
function relating a measure of mutual information between x; and yj. In other
words, how many bits of information do we obtain in knowing that y;
corresponds to x; when we know the over-all probability of x; happening along

with different y? In order to avoid a complex mathematical presentation, we
follow a procedure similar to that of Sec. 3-3. We assume a definition for mutual
information and justify its agreement with that of the previously adopted



definition of the entropy. Finally, we shall investigate some of the properties of
the suggested measure of mutual information. A measure for the mutual
information contained in (xly;) can be given as

Y = lao. PLTYY _ piziy;}
T =108 Stz = 1% patplul

(3-122)

This expression gives a reasonable measure of mutual information conveyed
by a pair of symbols (x,-,yj). For a moment, we concentrate on the received

symbol y;. Suppose that an observer is stationed at the receiver end at the
position of the signal y;. His a priori knowledge that a symbol x; is being
transmitted is the marginal probability p{x;}, that is, the sum of the probabilities
of x; being transmitted and received as any one of the possible y;. The a
posteriori knowledge of our observer is based on the conditional probability of x;
being transmitted, given that a particular y; is received, that is, p{xib{f}.

Therefore, loosely speaking, for this observer the gain of information is the
logarithm of the ratio of his final and initial ignorance or uncertainties.
However, the mathematically inclined reader may wish to forgo such
justification and use (3-122) as a definition.

The following elementary properties can be derived for the mutual
information function:

1. Continuity. I(x;y;) is a continuous function of p{xi[yj}

2. Symmetry or reciprocity. The information conveyed by y; about x; is the same

as the information conveyed by x; about y;, that is,
I(ziy;) = I(y;%)

(3-123)



Obviously, Eq. (3-122) is symmetric with respect to x; and y;.

3. Mutual and self-information. The function I(x;x;) may be called the self-
information of a symbol x;. That is, if an observer is stationed at the position of
the symbol x; his a priori knowledge of the situation is that x; will be transmitted
with the probability p{x;} and his a posteriori knowledge is the certainty that x;

has been transmitted; thus

1
pi{z:}

I(z;) = I(zi;2:) = log
(3-124)
Obviously,
L) < Ieim) = I(z)
(3-125)
Izay) < Iysys) = I(ws)
(3-126)

An interesting interpretation of the concept of mutual information can be
given by obtaining the average of the mutual information per symbol pairs, that

is,

I(X;Y) = ITzy) = Z;p{zs.yf}l{z;;m)

(3-127)



I(X;Y) = ’Z Zp{zc,y;} log p_;_?‘ifff}

(3-128)
It could be ascertained that this definition provides a proper measure for the
mutual information of all the pairs of symbols. On the other hand, the definition

ties in with our previously defined basic entropy formulas. Indeed, by direct
application of the defining equations one can show that

I(X;Y) = H(X) + H(Y) — H(X,Y)
(3-129)
I(X;Y) = H(X) - H(X|Y)
(3-130)
I(X;¥) = H(Y) — H(Y|X)

(3-131)

The entropy corresponding to the mutual information, that is, I(X;Y), indicates a
measure of the information transmitted through the channel. For this reason it
is referred to as transferred information or transinformation ..of the channel.
Note that, based on the fundamental equation (3-116), the right side of Eq. (3-
130) is a nonnegative number. Hence, the average mutual information is also
nonnegative, while the individual mutual-information quantities may become
negative for some symbol pairs. For a noise-free channel,

I(X;Y) = HX) = HY)



