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Introduction

Machine learning has come of age. And just in case you might think this 1s a mere
platitude, let me clarify.

The dream that machines would one day be able to learn 1s as old as computers
themselves, perhaps older still. For a long time, however, 1t remained just that: a
dream. True, Rosenblatt’s perceptron did trigger a wave of activity, but in retrospect,
the excitement has to be deemed short-lived. As for the attempts that followed, these
fared even worse; barely noticed, often 1gnored, they never made a breakthrough—
no software companies, no major follow-up research, and not much support from
funding agencies. Machine learning remained an underdog, condemned to live in
the shadow of more successful disciplines. The grand ambition lay dormant.

And then 1t all changed.

A group of visionaries pointed out a weak spot in the knowledge-based systems
that were all the rage in the 1970s’ artificial intelligence: where was the “know-
ledge” to come from? The prevailing wisdom of the day insisted that it should
take the form of if-then rules put together by the joint effort of engineers and field
experts. Practical experience, though, was unconvincing. Experts found it difficult
to communicate what they knew to engineers. Engineers, in turn, were at a loss as
to what questions to ask and what to make of the answers. A few widely publicized
success stories notwithstanding, most attempts to create a knowledge base of, say,
tens of thousands of such rules proved frustrating.

The proposition made by the visionaries was both simple and audacious. If it 1s
so hard to tell a machine exactly how to go about a certain problem, why not provide
the instruction indirectly, conveying the necessary skills by way of examples from
which the computer will—yes—Iearn!

Of course, this only makes sense if we can rely on the existence of algorithms to
do the learning. This was the main difficulty. As it turned out, neither Rosenblatt’s
perceptron nor the techniques developed after it were very useful. But the absence
of the requisite machine-learning techniques was not an obstacle; rather, 1t was a
challenge that inspired quite a few brilliant minds. The 1dea of endowing computers
with learning skills opened new horizons and created a large amount of excitement.
The world was beginning to take notice.

X1



X11 Introduction

The bombshell exploded in 1983. Machine Learning: The Al Approach' was
a thick volume of research papers which proposed the most diverse ways of
addressing the great mystery. Under their influence, a new scientific discipline
was born—uvirtually overnight. Three years later, a follow-up book appeared and
then another. A soon-to-become-prestigious scientific journal was founded. Annual
conferences of great repute were launched. And dozens, perhaps hundreds, of
doctoral dissertations, were submitted and successfully defended.

In this early stage, the question was not only Zow to learn but also what to learn
and why. In retrospect, those were wonderful times, so creative that they deserve to
be remembered with nostalgia. It 1s only to be regretted that so many great thoughts
ater came to be abandoned. Practical needs of realistic applications got the upper
hand, pointing to the most promising avenues for further efforts. After a period of
enchantment, concrete research strands crystallized: induction of the if-then rules for
knowledge-based systems; induction of classifiers, programs capable of improving
their skills based on experience; automatic fine-tuning of Prolog programs; and
some others. So many were the directions that some leading personalities felt
it necessary to try to steer further development by writing monographs, some
successful, others less so.

An important watershed was Tom Mitchell’s legendary textbook.? This summa-
rized the state of the art of the field in a format appropriate for doctoral students
and scientists alike. One by one, universities started offering graduate courses that
were usually built around this book. Meanwhile, the research methodology became
more systematic, too. A rich repository of machine-leaning test beds was created,
making 1t possible to compare the performance or learning algorithms. Statistical
methods of evaluation became widespread. Public domain versions of most popular
programs were made available. The number of scientists dealing with this discipline
grew to thousands, perhaps even more.

Now, we have reached the stage where a great many universities are offering
machine learning as an undergraduate class. This 1s quite a new situation. As a
rule, these classes call for a different kind of textbook. Apart from mastering the
baseline techniques, future engineers need to develop a good grasp of the strengths
and weaknesses of alternative approaches; they should be aware of the peculiarities
and 1diosyncrasies of different paradigms. Above all, they must understand the
circumstances under which some techniques succeed and others fail. Only then will
they be able to make the right choices when addressing concrete applications. A
textbook that 1s to provide all of the above should contain less mathematics, but a
lot of practical advice.

These then are the considerations that have dictated the size, structure, and style
of a teaching text meant to provide the material for a one-semester introductory
course.

'Edited by R. Michalski, J. Carbonell, and T. Mitchell.
*T. Mitchell, Machine Learning, McGraw-Hill (1997).
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The first problem 1s the choice of material. At a time when high-tech companies
are establishing machine-learning groups, universities have to provide the students
with such knowledge, skills, and understanding that are relevant to the current needs
of the industry. For this reason, preference has been given to Bayesian classifiers,
nearest-neighbor classifiers, linear and polynomial classifiers, decision trees, the
fundamentals of the neural networks, and the principle of the boosting algorithms.
Significant space has been devoted to certain typical aspects of concrete engineering
applications. When applied to really difficult tasks, the baseline techniques are
known to behave not exactly the same way they do in the toy domains employed
by the instructor. One has to know what to expect.

The book consists of 17 chapters, each covering one major topic. The chapters are
divided into sections, each devoted to one critical problem. The student 1s advised
to proceed to the next section only after having answered the set of 2—4 “control
questions” at the end of the previous section. These questions are here to help
the student decide whether he or she has mastered the given material. If not, it 1s
necessary to return to the previous text.

As they say, only practice makes perfect. This 1s why at the end of each chapter
are exercises to encourage the necessary practicing. Deeper insight into the diverse
aspects of the material will then be gained by going through the thought experiments
that follow. These are more difficult, but 1t 1s only through hard work that an
engineer develops the right kind of understanding. The acquired knowledge 1s then
further solidified by suggested computer projects. Programming is important, too.
Nowadays, everybody is used to downloading the requisite software from the web.
This shortcut, however, 1s not recommended to the student of this book. It is only
by being forced to flesh out all the details of a computer program that you learn to
appreciate all the subtle points of the machine-learning techniques presented here.




Chapter 1
A Simple Machine-Learning Task

You will find 1t difficult to describe your mother’s face accurately enough for your
friend to recognize her in a supermarket. But if you show him a few of her photos,
he will immediately spot the tell-tale traits he needs. As they say, a picture—an
example—is worth a thousand words.

This 1s what we want our technology to emulate. Unable to define certain objects
or concepts with adequate accuracy, we want to convey them to the machine by
way of examples. For this to work, however, the computer has to be able to convert
the examples into knowledge. Hence our interest in algorithms and techniques for
machine learning, the topic of this textbook.

The first chapter formulates the task as a search problem, introducing hill-
climbing search not only as our preliminary attempt to address the machine-learning
task, but also as a tool that will come handy in a few auxiliary problems to be
encountered in later chapters. Having thus established the foundation, we will
proceed to such issues as performance criteria, experimental methodology, and
certain aspects that make the learning process difficult—and interesting.

1.1 Training Sets and Classifiers

Let us introduce the problem, and certain fundamental concepts that will accompany
us throughout the rest of the book.

The Set of Pre-Classified Training Examples Figure 1.1 shows six pies that
Johnny likes, and six that he does not. These positive and negative examples of the
underlying concept constitute a training set from which the machine 1s to induce a
classifier—an algorithm capable of categorizing any future pie into one of the two
classes: positive and negative.

© Springer International Publishing AG 2017 1
M. Kubat, An Introduction to Machine Learning,
DOI 10.1007/978-3-319-63913-0_1



2 1 A Simple Machine-Learning Task

Johnny likes:

!

Fig. 1.1 A simple machine-learning task: induce a classifier capable of labeling future pies as
positive and negative instances of “a pie that Johnny likes”

The number of classes can of course be greater. Thus a classifier that decides
whether a landscape snapshot was taken In spring, summer, fall, or
winter distinguishes four. Software that identifies characters scribbled on an
iPad needs at least 36 classes: 26 for letters and 10 for digits. And document-
categorization systems are capable of identifying hundreds, even thousands of
different topics. Our only motivation for choosing a two-class domain 1s its
simplicity.



1.1

Table 1.1 The twelve training examples expressed in a matrix form

Training Sets and Classifiers

Crust Filling
Example Shape Size Shade Size Shade Class
ex | Circle Thick Gray Thick Dark pos
ex2 Circle Thick White Thick Dark pos
ex3 Triangle Thick Dark Thick Gray pos
exd Circle Thin White Thin Dark pos
exd Square Thick Dark Thin White pos
ex6 Circle Thick White Thin Dark pos
ex’/ Circle Thick Gray Thick White neg
ex8 Square Thick White Thick Gray neg
ex9 Triangle Thin Gray Thin Dark neg
ex10 Circle Thick Dark Thick White neg
exl11 Square Thick White Thick Dark neg
ex12 Triangle Thick White Thick Gray neg

Attribute Vectors To be able to communicate the training examples to the
machine, we have to describe them 1n an appropriate way. The most common
mechanism relies on so-called attributes. In the “pies”™ domain, five may be
suggested: shape (circle, triangle, and square), crust-size (thin or thick),
crust-shade (white, gray, or dark), £filling-size (thin or thick), and
filling-shade (white, gray, or dark). Table 1.1 specifies the values of these
attributes for the twelve examples in Fig. 1.1. For instance, the pie in the upper-
left corner of the picture (the table calls 1t ex1) 1s described by the following
conjunction:

(shape=circle) AND (crust-size=thick) AND (crust-shade=gray)
AND (filling-size=thick) AND (filling-shade=dark)

A Classifier to Be Induced The training set constitutes the input from which we
are to induce the classifier. But what classifier?

Suppose we want 1t in the form of a boolean function that i1s tfrue for
positive examples and false for negative ones. Checking the expression
[ (shape=circle) AND (filling-shade=dark)] against the training
set, we can see that its value 1s false for all negative examples: while it is possible
to find negative examples that are circular, none of these has a dark filling. As for
the positive examples, however, the expression is frue for four of them and false for
the remaining two. This means that the classifier makes two errors, a transgression
we might refuse to tolerate, suspecting there 1s a better solution. Indeed, the reader
will easily verify that the following expression never goes wrong on the entire
training set:

[ (shape=circle) AND (filling-shade=dark) ] OR
[ NOT (shape=circle) AND (crust-shade=dark) ]
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Problems with a Brute-Force Approach How does a machine find a classifier of
this kind? Brute force (something that computers are so good at) will not do here.
Just consider how many different examples can be distinguished by the given set
of attributes in the “pies” domain. For each of the three different shapes, there
are two alternative crust -sizes, the number of combinations being 3 x 2 = 6.
For each of these, the next attribute, crust-shade, can acquire three different
values, which brings the number of combinations to 3 x 2 x 3 = 18. Extending this
line of reasoning to all attributes, we realize that the size of the instance space 1s
3 x2x3x2x3 =108 different examples.

Each subset of these examples—and there are 2'"® subsets!—may constitute the
list of positive examples of someone’s notion of a “good pie.” And each such subset
can be characterized by at least one boolean expression. Running each of these
classifiers through the training set is clearly out of the question.

Manual Approach and Search Uncertain about how to invent a classifier-
inducing algorithm, we may try to glean some inspiration from an attempt
to create a classifier “manually,” by the good old-fashioned pencil-and-paper
method. When doing so, we begin with some tentative initial version, say,
shape=circular. Having checked it against the training set, we find it to
be frue for four positive examples, but also for two negative ones. Apparently,
the classifier needs to be “narrowed” (specialized) so as to exclude the two
negative examples. One way to go about the specialization 1s to add a conjunction,
such as when turning shape=circular into [(shape=circular) AND
(filling-shade=dark) ]. This new expression, while false for all negative
examples, 1s still imperfect because it covers only four (ex1, ex2, ex4, and
ex6) of the six positive examples. The next step should therefore attempt some
generalization, perhaps by adding a disjunction: { [ (shape=circular) AND
(filling-shade=dark)] OR (crust-size=thick) }. We continue in
this way until we find a 100% accurate classifier (if it exists).

The lesson from this little introspection 1s that the classifier can be created by
means of a sequence of specialization and generalization steps which gradually
modify a given version of the classifier until it satisfies certain predefined require-
ments. This 1s encouraging. Readers with background in Artificial Intelligence will
recognize this procedure as a search through the space of boolean expressions. And
Artificial Intelligence 1s known to have developed and explored quite a few of search
algorithms. It may be an 1dea to take a look at least at one of them.

What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

 What 1s the input and output of the learning problem we have just described?
« How do we describe the training examples? What 1s instance space? Can we
calculate 1ts size?
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* In the “pies” domain, find a boolean expression that correctly classifies all the
training examples from Table 1.1.

1.2  Minor Digression: Hill-Climbing Search

Let us now formalize what we mean by search, and then introduce one pop-
ular algorithm, the so-called hill climbing. Artificial Intelligence defines search
something like this: starting from an initfial state, find a sequence of steps which,
proceeding through a set of interim search states, lead to a predefined final state.
The individual steps—transitions from one search state to another—are carried out
by search operators which, too, have been pre-specified by the programmer. The
order in which the search operators are applied follows a specific search strategy
(Fig. 1.2).

Hill Climbing: An Illustration One popular search strategy 1s hill climbing. Let
us 1llustrate its essence on a well-known brain-teaser, the sliding-tiles puzzle. The
board of a trivial version of this game consists of nine squares arranged in three
rows, eight covered by numbered tiles (integers from 1 to 8), the last left empty. We
convert one search state into another by sliding to the empty square a tile from one
of 1ts neighbors. The goal 1s to achieve a pre-specified arrangement of the tiles.

[ Search Operators h [ Search Strategy h

. \

[ Initial State :D ° LFinalState h

.

Search Agent

Fig. 1.2 A search problem is characterized by an initial state, final state, search operators, and a
search strategy
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The flowchart 1n Fig. 1.3 starts with a concrete initial state, in which we can
choose between two operators: “move tile-6 up” and “move tile-2 to the
lett.”” The choice 1s guided by an evaluation function that estimates for each state
its distance from the goal. A simple possibility 1s to count the squares that the tiles
have to traverse before reaching their final destinations. In the mitial state, tiles 2, 4,
and 5 are already in the right locations; tile 3 has to be moved by four squares; and
each of the tiles 1, 6, 7, and 8 have to be moved by two squares. This sums up to
distanced = 4+ 4 x2 = 12.

In Fig. 1.3, each of the two operators applicable to the initial state leads to a
state whose distance from the final state is d = 13. In the absence of any other
guidance, we choose randomly and go to the left, reaching the situation where the
empty square is in the middle of the top row. Here, three moves are possible. One of
them would only get us back to the initial state, and can thus be ignored; as for the
remaining two, one results in a state with d = 14, the other 1n a state with d = 12.
The latter being the lower value, this 1s where we go. The next step 1s trivial because
only one move gets us to a state that has not been visited before. After this, we again
face the choice between two alternatives ... and this how the search continues until
it reaches the final state.

Alternative Termination Criteria and Evaluation Functions Other termination
criteria can be considered, too. The search can be instructed to stop when the
maximum allotted time has elapsed (we do not want the computer to run forever),
when the number of visited states has exceeded a certain limit, when something
sufficiently close to the final state has been found, when we have realized that
all states have already been visited, and so on, the concrete formulation reflecting
critical aspects of the given application, sometimes combining two or more criteria
in one.

By the way, the evaluation function employed in the sliding-tiles example was
fairly simple, barely accomplishing its mission: to let the user convey some notion
of his or her understanding of the problem, to provide a hint as to which move a
human solver might prefer. To succeed in a realistic application, we would have to
come up with a more sophisticated function. Quite often, many different alternatives
can be devised, each engendering a different sequence of steps. Some will be quick
in reaching the solution, others will follow a more circuitous path. The program’s
performance will then depend on the programmer’s ability to pick the right one.

The Algorithm of Hill Combing The algorithm 1s summarized by the pseudocode
in Table 1.2. Details will of course depend on each individual’s programming style,
but the code will almost always contain a few typical functions. One of them
compares two states and returns frue 1f they are identical; this 1s how the program
ascertains that the final state has been reached. Another function takes a given search
state and applies to it all search operators, thus creating a complete set of “child
states.” To avoid infinite loops, a third function checks whether a state has already
been investigated. A fourth calculates for a given state its distance from the final
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Hill Chmbmg Final State:
/1 4 112]3
initial state 6 7 4 7 6 5

SRS

-

Fig. 1.3 Hill climbing. Circled integers indicate the order in which the search states are visited.
d 1s a state’s distance from the final state as calculated by the given evaluation function. Ties are
broken randomly

state, and a fifth sorts the “child” states according to the distances thus calculated
and places them at the front of the list L. And the last function checks 1f a termination
criterion has been satisfied.'

One last observation: at some of the states in Fig. 1.3, no “child” offers any
improvement over its “parent,” a lower d-value being achieved only after temporary
compromises. This 1s what a mountain climber may experience, too: sometimes,
he has to traverse a valley beftore being able to resume the ascent. The mountain-
climbing metaphor, by the way, 1s what gave this technique 1ts name.

'For simplicity, the pseudocode ignores termination criteria other than reaching, or failing to reach,
the final state.
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Table 1.2 Hill-climbing search algorithm
1.  Create two lists, L and Lg,.,. At the beginning, L contains only the initial state, and L., 1S
empty.

2.  Let n be the first element of L. Compare this state with the final state. If they are identical,
stop with success.

(e

Apply to n all available search operators, thus obtaining a set of new states. Discard those
states that already exist in Lg..,. As for the rest, sort them by the evaluation function and
place them at the front of L.

4. Transter n from L into the list, L..,, Of the states that have been investigated.

N

If L = @, stop and report failure. Otherwise, go to 2.

What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

* How does Artificial Intelligence define the search problem? What do we
understand under the terms, “search space” and “search operators™?

* What 1s the role of the evaluation function? How does 1t atfect the hill-climbing
behavior?

1.3 Hill Climbing in Machine Learning

We are ready to explore the concrete ways of applying hill climbing to the needs of
machine learning.

Hill Climbing and Johnny’s Pies Let us begin with the problem of how to decide
which pies Johnny likes. The input consists of a set of training examples, each
described by the available attributes. The output—the final state—is a boolean
expression that 1s frue for each positive example 1n the training set, and false for each
negative example. The expression involves attribute-value pairs, logical operators
(conjunction, disjunction, and negation), and such combination of parentheses as
may be needed. The evaluation function measures the given expression’s error rate
on the training set. For the initial state, any randomly generated expression can be
used. In Fig. 1.4, we chose (shape=circle), on the grounds that more than a
half of the training examples are circular.

As for the search operator, one possibility 1s to add a conjunction as
illustrated in the upper part of Fig.1.4: for instance, the root’s leftmost child
1s obtained by replacing (shape=circle) with [ (shape=circle) AND
(filling-shade=dark) ] (in the picture, logical AND 1is represented by the
symbol “A.’). Note how many different expressions this operator generates even
in our toy domain. To shape=circle, any other attribute-value pair can be
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@ g shape = circle

. -
Addition of (AND)
8 shape = circle [ shape = circle ) shape = circle )
A fill shade = dark A fill size = thick A crust size = thick
L O N N L BN N N
|-E = 2!12| |E = 6/12| |e = 5.!'1%
\_ _J - . - _J
Addition of (OR)
: op N 7 .
( shape = circle ) (shape = circle ([ shape = circle
» fill shade = dark) A fill shade = dark ) A fill shade = dark )
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- _/ . _ — A

Fig. 1.4 Hill-climbing search in the “pies” domain

“ANDed.” Since the remaining four attributes (apart from shape) acquire 2, 3, 2,
and 3 different values, respectively, the total number of terms that can be added to
(shape=circle) is2 x2 x 3 = 36.

Alternatively, we may choose to add a disjunction, as illustrated (in the picture)
by the three expansions of the leftmost child. Other operators may “remove a
conjunct,” “remove a disjunct,” “add a negation,” “negate a term,’ various ways
of manipulating parentheses, and so on. All in all, hundreds of search operators can
be applied to each state, and then again to the resulting states. This can be hard to
manage even in this very simple domain.

1" - Y

Numeric Attributes In the “pies” domain, each attribute acquires one out of a
few discrete values, but in realistic applications, some attributes will probably be
numeric. For instance, each pie has a price, an attribute whose values come from
a continuous domain. What will the search look like then?

To keep things simple, suppose there are only two attributes: weight and
price. This limitation makes it possible, in Fig. 1.5, to represent each training
example by a point in a plane. The reader can see that examples belonging to
the same class tend to occupy a specific region, and curves separating individual
regions can be defined—expressed mathematically as lines, circles, polynomials.
For 1nstance, the right part of Fig. 1.5 shows three difterent circles, each of which
can act as a classifier: examples 1nside the circle are deemed positive; those outside,
negative. Again, some of these classifiers are better than others. How will hill
climbing go about finding the best ones? Here 1s one possibility.

*Of the 36 new states thus created, Fig. 1.4 shows only three.
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Weight Weight

Fig. 1.5 On the left: a domain with continuous attributes; on the right: some “circular” classifiers

Hill Climbing in a Domain with Numeric Attributes

Initial State A circle 1s defined by its center and radius. We can 1dentity the initial
center with a randomly selected positive example, making the initial radius so small
that the circle contains only this single example.

Search Operators Two search operators can be used: one increases the circle’s
radius, and the other shifts the center from one training example to another. In the
former, we also have to determine how much the radius should change. One 1dea 1s
to increase 1t only so much as to make the circle encompass one additional training
example. At the beginning, only one training example 1s inside. After the first step,
there will be two, then three, four, and so on.

Final State The circle may not be an ideal figure to represent the positive region. In
this event, a 100% accuracy may not be achievable, and we may prefer to define the
final state as, say, a ‘““classifier that correctly classifies 95% of the training examples.”

Evaluation Function As before, we choose to minimize the error rate.

What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

* What aspects of search must be specified before we can employ hill climbing 1n
machine learning?

 What search operators can be used in the “pies” domain and what in the “circles”
domain? How can we define the evaluation function, the initial state, and the final
state”’
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1.4 The Induced Classifier’s Performance

So far, we have measured the error rate by comparing the training examples’ known
classes with those recommended by the classifier. Practically speaking, though, our
goal 1s not to re-classity objects whose classes we already know; what we really
want 1s to label future examples, those of whose classes we are as yet 1gnorant.
The classifier’s anticipated performance on these 1s estimated experimentally. It 1s
important to know how.

Independent Testing Examples The simplest scenario will divide the available
pre-classified examples into two parts: the training set, from which the classifier 1s
induced, and the festing set, on which it 1s evaluated (Fig. 1.6). Thus in the “pies”
domain, with its 12 pre-classified examples, the induction may be carried out on
randomly selected eight, and the testing on the remaining four. If the classifier then
“guesses” correctly the class of three testing examples (while going wrong on one),
its performance 1s estimated as 75%.

Reasonable though this approach may appear, 1t sutfers from a major drawback:
a random choice of eight training examples may not be sufficiently representative
of the underlying concept—and the same applies to the (even smaller) testing set.
If we induce the meaning of a mammal from a training set consisting of a whale,
a dolphin, and a platypus, the learner may be led to believe that mammals live in
the sea (whale, dolphin), and sometimes lay eggs (platypus), hardly an opinion a
biologist will embrace. And yet, another choice of trainingexamples may result in a

Fig. 1.6 Pre-classified
examples are divided into the
training and testing sets

available examples

training| testing
set set

classifier satisfying the highest standards. The point 1s, a different training/testing set
division gives rise to a different classifier—and also to a different estimate of future
performance. This 1s particularly serious if the number of pre-classified examples 1s
small.

Suppose we want to compare two machine learning algorithms in terms of the
quality of the products they induce. The problem of non-representative training
sets can be mitigated by so-called random subsampling.’ The idea is to repeat the
random division into the training and testing sets several times, always inducing a
classifier from the i-th training set, and then measuring the error rate, £;, on the i-th
testing set. The algorithm that delivers classifiers with the lower average value of
E;’s 1s deemed better—as far as classification performance is concerned.

Later, we will describe some other methodologies.
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The Need for Explanations In some applications, establishing the class of each
example 1s not enough. Just as desirable is to know the reasons behind the
classification. Thus a patient 1s unlikely to give consent to amputation if the only
argument 1n support of surgery 1s, “this 1s what our computer says.” But how to find
a better explanation?

In the “pies” domain, a lot can be gleaned from the boolean expression itself. For
instance, we may notice that a pie was labeled as negative whenever 1ts shape was
square, and 1ts filling white. Combining this observation with alternative sources
of knowledge may offer useful insights: the dark shade of the filling may indicate
poppy, an ingredient Johnny is known to love; or the crust of circular pies turns out
to be more crispy than that of square ones; and so on. The knowledge obtained in
this manner can be more desirable than the classification itself.

By contrast, the classifier in the “circles” domain is a mathematical expression
that acts as a “black box” which accepts an example’s description and returns the
class label without telling us anything else. This is not necessarily a shortcoming.
In some applications, an explanation 1s nothing more than a welcome bonus; 1n
others, it 1s superfluous. Consider a classifier that accepts a digital image of a hand-
written character and returns the letter it represents. The user who expects several
pages of text to be converted into a Word document will hardly insist on a detailed
explanation for each single character.

Existence of Alternative Solutions By the way, we should notice that many
apparently pertect classifiers can be induced tfrom the given data. In the “pies”
domain, the training set contained 12 examples, and the classes of the remaining 96
examples were unknown. Using some simple combinatorics, we realize that there
are 2°° classifiers that label correctly all training examples but differ in the way they
label the unknown 96. One induced classifier may label correctly every single future
example—and another will misclassify them all.

What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

* How can we estimate the error rate on examples that have not been seen during
learning?

 Why is error rate usually higher on the testing set than on the training set?

* Give an example of a domain where the classifier also has to explain its action,
and an example of a domain where this 1s unnecessary.

 What do we mean by saying that, “there 1s a combinatorial number of classifiers
that correctly classify all training examples™?
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1.5 Some Difficulties with Available Data

In some applications, the training set 1s created manually: an expert prepares the
examples, tags them with class labels, chooses the attributes, and specifies the value
of each attribute in each example. In other domains, the process 1s computerized. For
instance, a company may want to be able to anticipate an employee’s intention to
leave. Their database contains, for each person, the address, gender, marital status,
function, salary raises, promotions—as well as the information about whether the
person 1s still with the company or, 1f not, the day they left. From this, a program
can obtain the attribute vectors, labeled as positive if the given person left within a
year since the last update of the database record.

Sometimes, the attribute vectors are automatically extracted from a database, and
labeled by an expert. Alternatively, some examples can be obtained from a database,
and others added manually. Often, two or more databases are combined. The number
of such variations 1s virtually unlimited.

But whatever the source of the examples, they are likely to suffer from imperfec-
tions whose essence and consequences the engineer has to understand.

Irrelevant Attributes To begin with, some attributes are important, while others
are not. While Johnny may be truly fond of poppy filling, his preference for a pie
will hardly be driven by the cook’s shoe size. This 1s something to be concerned
about: irrelevant attributes add to computational costs; they can even mislead the
learner. Can they be avoided?

Usually not. True, in manually created domains, the expert is supposed to know
which attributes really matter, but even here, things are not so simple. Thus the
author of the “pies” domain might have done her best to choose those attributes
she believed to matter. But unsure about the real reasons behind Johnny’s tastes,
she may have included attributes whose necessity she suspected—but could not
guarantee. Even more often the problems with relevance occur when the examples
are extracted from a database. Databases are developed primarily with the intention
to provide access to lots of information—of which usually only a tiny part pertains
to the learning task. As to which part this 1s, we usually have no idea.

Missing Attributes Conversely, some critical attributes can be missing. Mindful of
his parents’ finances, Johnny may be prejudiced against expensive pies. The absence
of attribute price will then make it impossible to induce a good classifier: two
examples, identical in terms of the available attributes, can differ in the values of the
vital “missing” attribute. No wonder that, though 1dentically described, one example
1s positive, and the other 1s negative. When this happens, we say that the training set
1s inconsistent. The situation 1s sometimes difficult to avoid: not only may the expert
be 1gnorant of the relevance of attribute price; it may be impossible to provide this
attribute’s values, and the attribute thus cannot be used anyway.

Redundant Attributes Somewhat less damaging are attributes that are redundant
in the sense that their values can be obtained from other attributes. If the database
contains a patient’s date-of-birth as well as age, the latter 1s unnecessary
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because it can be calculated by subtracting date-of-birth from today’s date.
Fortunately, redundant attributes are less dangerous than irrelevant or missing ones.

Missing Attribute Values In some applications, the user has no problems identi-
fying the right choice of attributes. The problem 1s, however, that the value of some
attributes are not known. For instance, the company analyzing the database of its
employees may not know, for each person, the number of children.

Attribute: Value Noise Attribute values and class labels often cannot be trusted on
account of unreliable sources of information, poor measurement devices, typos, the
user’s confusion, and many other reasons. We say that the data suffer from various
kinds of noise.

Stochastic noise 1s random. For instance, since our body-weight varies during the
day, the reading we get 1in the morning 1s different from the one in the evening. A
human error can also play a part: lacking the time to take a patient’s blood pressure,
a negligent nurse simply scribbles down a modification of the previous reading.
By contrast, systematic noise drags all values 1n the same direction. For instance,
a poorly calibrated thermometer always gives a lower reading than it should. And
something different occurs in the case of arbitrary artifacts; here, the given value
bears no relation to reality such as when an EEG electrode gets loose and, from that
moment on, all subsequent readings will be zero.

Class-Label Noise Class labels suffer from similar problems as attributes. The
labels recommended by an expert may not have been properly recorded; alter-
natively, some examples find themselves in a “gray area” between two classes,
in which event the correct labels are not certain. Both cases represent stochastic
noise, of which the latter may affect negatively only examples from the borderline
region between the two classes. However, class-label noise can also be systematic:
a physician may be reluctant to diagnose a rare disease unless the evidence 1s
overwhelming—his class labels are then more likely to be negative than positive.
Finally, arbitrary artifacts in class labels are encountered in domains where the
classes are supplied by an automated process that has gone wrong.

Class-label noise can be more dangerous than attribute-value noise. Thus in
the “circles” domain, an example located deep inside the positive region will stay
there even if an attribute’s value is slightly modified; only the borderline example
will suffer from being “sent across the border.” By contrast, class-label noise will
invalidate any example.

What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

 Explain the following types of attributes: wrrelevant, redundant, and missing.
[1lustrate each of them using the “pies” domain.
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Fig. 1.7 The training examples are used to induce a classifier. The classifier is then employed to
classify future examples

* What i1s meant by “inconsistent training set”? What can be the cause? How can it
affect the learning process?
* What kinds of noise do we know? What are their possible sources?

1.6 Summary and Historical Remarks

* Induction from a training set of pre-classified examples 1s the most deeply studied
machine-learning task.

* Historically, the task 1s cast as search. One can propose a mechanism that exploits
the well-established search technique of hill climbing defined by an initial state,
final state, interim states, search operators, and evaluation functions.

 Mechanical use of search 1s not the ultimate solution, though. The rest of the
book will explore more useful techniques.

* C(lassifier performance is estimated with the help of pre-classified testing data.
The simplest performance criterion is error rate, the percentage of examples
misclassified by the classifier. The baseline scenario 1s shown in Fig. 1.7.

» Two classifiers that both correctly classity all training examples may differ
significantly in their handling of the testing set.

* Apart from low error rate, some applications require that the classifier provides
the reasons behind the classification.

 The quality of the induced classifier depends on training examples. The quality
of the training examples depends not only on their choice, but also on the
attributes used to describe them. Some attributes are relevant, others 1rrelevant
or redundant. Quite often, critical attributes are missing.

* The attribute values and class labels may suffer from stochastic noise, systematic
noise, and random artefacts. The value of an attribute in a concrete example may
not be known.
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Historical Remarks The idea of casting the machine-learning task as search was
popular in the 1980s and 1990s. While several “founding fathers” came to see things
this way independently of each other, Mitchell [67] 1s often credited with being the
first to promote the search-based approach; just as influential, however, was the
family of AQ-algorithms proposed by Michalski [59]. The discipline got a major
boost by the collection of papers edited by Michalski et al. [61]. They framed the
mindset of a whole generation.

There 1s much more to search algorithms. The interested reader is referred to
textbooks of Artificial Intelligence, of which perhaps the most comprehensive 1s
Russell and Norvig [84] or Coppin [17].

The reader may find it interesting that the question of proper representation
of concepts or classes intrigued philosophers for centuries. Thus John Stuart Mill
[65] explored concepts that are related towhat the next chapter calls probabilistic
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Fig. 1.8 Determine the order in which these search states are visited by heuristic search
algorithms. The numbers next to the “boxes” give the values of the evaluation function for the
individual search states

representation; and Willlam Whewel [96] advocated prototypical representations
that are close to the subject of our Chap. 3.

1.7 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s 1deas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.
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Exercises

. In the sliding-tiles puzzle, suggest a better evaluation function than the one used

in the text.

. Figure 1.8 shows a search tree where each node represents one search state and

1s tagged with the value of the evaluation function. In what order will these states
be visited by hill-climbing search?

. Suppose the evaluation function in the “pies” domain calculates the percentage

of correctly classified training examples. Let the initial state be the expression
describing the second positive example in Table 1.1. Hand-simulate the hill-
climbing search that uses generalization and specialization operators.

. What is the size of the instance space in a domain where examples are described

by ten boolean attributes? How large 1s then the space of classifiers?

Give It Some Thought

N

. In the “pies” domain, the size of the space of all classifiers is 2'°®, provided that

each subset of the instance space can be represented by a distinct classifier. How
much will the search space shrink if we permit only classifiers in the form of
conjunctions of attribute-value pairs?

. What kind of noise can you think of in the “pies” domain? What can be the source

of this noise? What other 1ssues may render training sets of this kind less than
perfect?

. Some classifiers behave as black boxes that do not offer much 1n the way of

explanations. This, for instance, was the case of the “circles” domain. Suggest
examples of domains where black-box classifiers are impractical, and suggest
domains where this [imitation does not matter.

. Consider the data-related difficulties summarized in Sect. 1.5. Which of them are

really serious, and which can perhaps be tolerated?

. What 1s the difference between redundant attributes and irrelevant attributes?
. Take a class that you think is difficult to describe—for instance, the recognition

of a complex biological object (oak tree, ostrich, etc.) or the recognition of a
music genre (rock, folk, jazz, etc.). Suggest the list of attributes to describe the
training examples. Are the values of these attributes easy to obtain? Which of the
problems discussed in this chapter do you expect will complicate the learning
process’?
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Computer Assignments

1.

o

Write a program implementing hill climbing and apply it to the sliding-tiles
puzzle. Choose appropriate representation for the search states, write a module
that decides whether a state is a final state, and implement the search operators.
Define two or three alternative evaluation functions and observe how each of
them leads to a different sequence of search steps.

. Write a program that will implement the “growing circles” algorithm from

Sect. 1.3. Create a training set of two-dimensional examples such as those in
Fig. 1.5. The learning program will use the hill-climbing search. The evaluation
function will calculate the percentage of training examples correctly classified by
the classifier. Consider the following search operators: (1) increase/decrease the
radius of the circle, (2) use a different training example as the circle’s center.

. Write a program that will implement the search for the description of the “pies

that Johnny likes.” Define your own generalization and specialization operators.
The evaluation function will rely on the error rate observed on the training
examples.



Chapter 2
Probabilities: Bayesian Classifiers

The earliest attempts to predict an example’s class based on the known attribute
values go back to well before World War II—prehistory, by the standards of
computer science. Of course, nobody used the term “machine learning,” in those
days, but the goal was essentially the same as the one addressed 1n this book.

Here 1s the essence of the solution strategy they used: using the Bayesian
probabilistic theory, calculate for each class the probability of the given object
belonging to it, and then choose the class with the highest value.

2.1 The Single-Attribute Case

Let us start with something so simple as to be unrealistic: a domain where each
example 1s described with a single attribute. Once we have developed the basic
principles, we will generalize them so that they can be used in more practical
domains.

Probabilities The basics are easily explained using the toy domain from the
previous chapter. The training set consists of twelve pies (N,; = 12), of which
six are positive examples of the given concept (N,,, = 6) and six are negative
(Npeg = 6). Assuming that the examples represent faithfully the real situation, the
probability of Johnny liking a randomly picked pie 1s therefore 50%:

Nyo, 6 |
P(pos) = ;; =75 = 0.5 (2.1)

Let us now take into consideration one of the attributes, say, filling-size. The
training set contains eight examples with thick filling (Ny,;x = 8). Out of these, three
are labeled as positive (N,o5\mick = 3). This means that the “conditional probability
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Fig. 2.1 The prior
probabilities, P(pos) =
and P(thick) = {5; the
conditional probabilities,
P(pos|thick) = 3 and
. 3.,
F(thlﬂk’pfﬁ)_ﬁ) = 2; and the
joint probability,
P(likes, thick) = 3

3 Johnny likes Thick Filling
12

of an example being positive given that filling-size=thick”1s 37.5%—this
1s what the relative frequency of positive examples among those with thick filling
implies:

N{J.‘i 1 3
P(pos|thick) = —Plhick _ = _ (375 (2.2)
Niick 8

Applying Conditional Probability to Classification Importantly, the relative fre-
quency 1s calculated only for pies with the given attribute value. Among these same
eight pies, five represented the negative class, which means that P(neg|thick) =
5/8 = 0.625. Observing that P(neg|thick) > P(pos|thick), we conclude
that the probability of Johnny disliking a pie with thick filling 1s greater than the
probability of the opposite case. It thus makes sense for the classifier to label all
examples with £illing-size=thick as negative instances of the “pie that
Johnny likes.”

Note that conditional probability, P(pos|thick), is more trustworthy than the
prior probability, P(pos), because of the additional information that goes into its
calculation. This 1s only natural. In a DayCare center where the number of boys 1s
about the same as that of girls, we expect a randomly selected child to be a boy with
P(boy) = 0.5. But the moment we hear someone call the child Johnny, we increase
this expectation, knowing that it is rare for a girl to have this name. This i1s why
P(boy|Johnny) > P(boy).

Joint Probability Conditional probability should not be confused with joint
probability of two events occurring simultaneously. Be sure to use the right notation:
in joint probability, the terms are separated by commas, P(pos,thick); in
conditional probability, by a vertical bar, P(pos|thick). For a randomly picked
pie, P(pos, thick) denotes the probability that the example is positive and its
filling is thick; whereas P(pos|thick) refers to the occurrence of a positive
example among those that have £il1ling-size=thick.
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A Concrete Example Figure 2.1 illustrates the terms. The rectangle represents
all pies. The positive examples are contained in one circle and those with
filling-size=thick in the other; the intersection contains three instances
that satisty both conditions; one pie satisfies neither, and is therefore left outside
both circles. The conditional probability, P(pos|thick) = 3/8, is obtained by
dividing the size of the intersection (three) by the size of the circle thick (eight).
The joint probability, P(pos, thick) = 3/12, is obtained by dividing the size
of the intersection (three) by the size of the entire training set (twelve). The prior
probability of P(pos) = 6/12 is obtained by dividing the size of the circle pos
(s1x) with that of the entire training set (twelve).

Obtaining Conditional Probability from Joint Probability The picture con-
vinces us that joint probability can be obtained from prior probability and condi-
tional probability:

3 8 3

P(pos, thick) = P(pos|thick) - P(thick) = 3=
3 6 3
P(thick,pos) = P(thick|pos) - P(pos) = c 1= 1

Note that joint probability can never exceed the value of the corresponding
conditional probability: P(pos,thick) < P(pos|thick). This is because
conditional probability 1s multiplied by prior probability, P(thick) or P(pos),
which can never be greater than 1.

Another fact to notice 1s that P(thick,pos) = P(pos,thick) because
both represent the same thing: the probability of thick and pos co-occurring.
Consequently, the left-hand sides of the previous two formulas have to be equal,
which implies the following:

P(pos|thick) - P(thick) = P(thick|pos) - P(pos)

Dividing both sides of this last equation by P(thick), we obtain the famous
Bayes formula, the foundation for the rest of this chapter:

P(thick|pos) - P(pos)

P(pos|thick) = P(thick) (2.3)

If we derive the analogous formula for the probability that pies with
filling-size = thick will belong to the negative class, we obtain the
following:

| P(thick|neg) - P(neg)
P(neg|thick) = P(Chick) (2.4)
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Comparison of the values calculated by these two formulas will tell us which
class, pos of neg, 1s more probable. Things are simpler than they look: since the
denominator, P(thick), is the same for both classes, we can just as well 1gnore it
and simply choose the class for which the numerator i1s higher.

A Trivial Numeric Example That this formula leads to correct values 1s illustrated
in Table 2.1 which, for the sake of simplicity, deals with the trivial case where
the examples are described by a single boolean attribute. So simple 1s this single-
attribute world, actually, that we might easily have obtained P(pos|thick) and
P(negl|thick) directly from the training set, without having to resort to the mighty
Bayes formula—this makes 1t easy to verity the correctness of the results.

When the examples are described by two or more attributes, the way of
calculating the probabilities 1s essentially the same, but we need at least one more
trick. This will be introduced 1n the next section.

What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

 How is the Bayes formula derived from the relation between the conditional and
joint probabilities?

* What makes the Bayes formula so useful? What does it enable us to calculate?

 (Can the joint probability, P(x,y), have a greater value than the conditional
probability, P(x|y)? Under what circumstances is P(x|y) = P(x,y)?

2.2 Vectors of Discrete Attributes

Let us now proceed to the question how to apply the Bayes formula in
domains where the examples are described by vectors of attributes such as

Multiple Classes Many realistic applications have more than two classes, not just
the pos and neg from the “pies” domain. If ¢; 1s the label of the i-th class, and if x
1s the vector describing the object we want to classifty, the Bayes formula acquires
the following form:

P(x|c;)P(c;)
P(x)

P(ci|x) =
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Table 2.1 Illustrating the principle of Bayesian decision making

Let the training examples be described by a single attribute, £i11ing-size, whose value is
either thick or thin. We want the machine to recognize the positive class (pos). Here are
the eight available training examples:

ex | ex2 ex3 exd4d ex5 ex6 ex’/ ex8
Size | thick thick thin thin thin thick thick thick

Class | pos pos posS pos neg neg neg neg

The probabilities of the individual attribute values and class labels are obtained by their
relative frequencies. For instance, three out of the eight examples are characterized by
filling-size=thin; therefore, P(thin) = 3/8.

P(thin) = 3/8
P(thick) = 5/8
P(pos) = 4/8
P(neg) = 4/8

The conditional probability of a concrete attribute value within a given class 1s, again,
determined by relative frequency. Our training set yields the following values:

P(thin|pos) = 2/4
P(thick|pos) = 2/4
P(thin|neg) = 1/4
P(thick|neg) = 3/4

Using these values, the Bayes formula gives the following conditional probabilities:

P(posg|thin) = 2/3
P(pos|thick) =2/5
P(neg|thin) = 1/3
P(neg|thick) = 3/5

(note that P(pos|thin) + P(neg|thin) = P(pos|thick) 4+ P(neg|thick) = 1)

Based on these results, we conclude that an example with £illing-size=thin should
be classified as positive because P(pos|thin) > P(neg|thin). Conversely, an example
with filling-size = thick should be classified as negative because P(neg|thick) >
P(pos|thick).

The denominator being the same for each class, we choose the class that
maximizes the numerator, P(x|c;)P(c;). Here, P(c;) is easy to estimate by the relative
frequency of ¢; in the training set. As for P(x|c;), however, things are not so simple.
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 Under what circumstances shall we assume that the individual attributes are
mutually independent? What benefit does this assumption bring for the estimates
of P(x|c;)?

* Discuss the conflicting aspects of this assumption.

2.3 Probabilities of Rare Events: Exploiting the Expert’s
Intuition

In the first approximation, probability 1s almost identified with relative frequency:
having observed x thirty times in one hundred trials, we assume that P(x) = 0.3.
This 1s how we did it 1n the previous sections.

Table 2.2 Bayesian classification: examples described by vectors of independent attributes

Suppose we want to apply the Bayesian formula to the training set from Table 1.1 in order to
determine the class of the following object:

x = [shape=square, crust-size=thick, crust-shade=gray
filling-size=thin, filling-shade=white]

There are two classes, pos and neg. The procedure 1s to calculate the numerator of the Bayes
formula separately for each of them, and then choose the class with the higher value. In the
training set, each class has the same number of representatives: P(pos) = P(neg) = 0.5.
The remaining terms, [['_, P(x;|pos) and [[/_, P(x;|neg), are calculated from the following
conditional probabilities:

P(shape=square |pos) =1/6 P(shape=square |neg) = 2/6
P(crust-size=thick|pos) = 5/6 P(crust-size=thick|neg) = 5/6
P(crust-shade=gray |pos) =1/6 P(crust-shade=gray |neqg) =2/6
P(filling-size=thin|pos) = 3/6 P(filling-size=thin|neg) =1/6

P(filling-shade=white |pos) = 1/6 P(filling-shade=white|neg) =2/6

Based on these values, we obtain the following probabilities:

1 5 1 3 1 15

P(K|PGS):HP(I5|PDE}:E‘B'E‘E'E:E

=1

. 2 5 2
P(x|neg) = ]_[P(xslneg) = e e 66 = —

=1

Since P(x|pos) < P(x|neg), we label x with the negative class.
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Table 2.3 Classification with the Naive-Bayes principle
The example to be classified i1s described by x = (x;.. .., Xn).

I. For each x;, and for each class c;, calculate the conditional probability, P(x; |¢:_,-), as the relative
frequency of x; among those training examples that belong to ¢;.
2. For each class, ¢;, carry out the following two steps:

1) estimate P(c;) as the relative frequency of this class in the training set;
ii) calculate the conditional probability, P(x|c;), using the “naive” assumption of mutually
independent attributes:

P(x|cj) = n P(xi|cj)

=1

‘2

. Choose the class with the highest value of P(¢;) - [ ., P(xi|c;).

=1

To be fair, though, such estimates can be trusted only when supported by a great
many observations. It 1s conceivable that a coin flipped four times comes up heads
three times, and yet it will be overhasty to interpret this observation as meaning
that P(heads) = 0.75; the physics of the experiment suggests that a fair coin
should come up heads 50% of the time. Can this prior expectation help us improve
probability estimates in domains with insufficient numbers of observations?

The answer 1s, “Yes, we can use the m-estimate.”

The Essence of an m-Estimate Let us illustrate the principle using the case of an
unfair coin where one side comes up somewhat more frequently than the other. In
the absence of any better guidance, the prior expectation of heads is 3., = 0.5.
An auxiliary parameter, m, helps the engineer tell the class-predicting program how
confident he 1s 1n this value, how much the prior expectation can be trusted (higher
m 1ndicating higher confidence).

Let us denote by N,; the number of times the coin was flipped, and by Nj,.qq, the
number of times the coin came up heads. The way to combine these values with the
prior expectation and confidence is summarized by the following formula:

N hecads MITheads
thﬂdﬁ — (27)

Ny +m

Note that the formula degenerates to the prior expectation, jeuus, If Nuyg =
Nieads = 0. Conversely, it converges to that of relative frequency if N,; and Nj,euas
are so large as to render the terms mm..0s and m negligible. Using the values
Theads = 0.5 and m = 2, we obtain the following:

N heads T 2 x0.5 N, heads 1 ]
N::fh’ + 2 Nc:H + 2

P heads —

Illustrating Probability Estimates Table 2.4 shows how the values thus calculated
gradually evolve 1n the course of five trials. The reader can see that the m-estimate
1s for small numbers of experiments more 1n line with common sense than relative
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Table 2.4 For each successive trial, the second row gives the observed outcome; the third, the
relative frequency of heads; the last, the m-estimate of the probability, assuming 7.0 = 0.5 and
m=>2

Toss number 1 2 3 4 5

QOutcome Heads Heads Tails Heads Tails
Relative frequency 1.00 1.00 0.67 0.75 0.60
m-estimate 0.67 0.75 0.60 0.67 0.57

frequency. Thus after two trials, m-estimate suggests a 0.75 chance of heads,
whereas anybody espousing relative frequency will have to concede that, based on
the two experiments, there 1s a zero chance that the coin will come up tails. As the
number of trials increases, though, the values returned by m-estimate and relative
frequency tend to converge.

The Impact of the User’s Confidence Let us take a closer look at the effect of
m, the user’s confidence. A lot 1s revealed 1f we compare the two different settings
below: m = 100 on the left and m = 1 on the right (in both cases, mjeqis = 0.5).

Nhfﬂdﬁ _I_ 50 Nhf{]‘dj _l_ 015
Ni!” + 100 Nuﬂ -+ I

The version with m = 100 allows the prior estimate to be modified only if really
substantial evidence 1s available (Njeqqs > 50, Noy > 100). By contrast, the version
with m = 1 allows the user’s opinion to be controverted with just a few experimental
trials.

Domains with More Than Two Outcomes Although we have used a two-outcome
domain, the formula 1s applicable also in multi-outcome domains. Rolling a fair die
can result in six different outcomes, and we expect that the probability of seeing,
say, three points 18 7. = 1/6. Using m = 6, we obtain the following:

]
Nihree + MITthree Nihree + 6 - 6 Nihree + I

Prhree — —
Nay + m Nan + 6 Nay + 6

Again, if N, 1s so high that m = 6 and mm,.. = 1 can be neglected, the formula
converges to relative frequency: Pyee = “ﬁf—ﬁ If we do not want this to happen
prematurely (perhaps because we have high confidence in the prior estimate, 7. ),

we prevent it by choosing a higher m.

The Limits of m-Estimates We should not forget that the m-estimate is only as
ooo0d as the parameters it relies on. If we start from an unrealistic prior estimate, the
result can be disappointing. Suppose that 7,..4s = 0.9 and m = 10. Equation (2.7)
then turns into the following:

Nﬁtmd&: + 9
Na + 10

P heads —
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When we use this formula to recalculate the values from Table 2.4, we will realize

that, after five trials, the probability 1s estimated as Ppeqis = % — % = (.8,
surely a less plausible value than the one obtained in the case of 70045 = 0.5 where
we g0t Ppoqqs = 0.57. The reader 1s encouraged to verity that the situation will

somewhat improve if we reduce m.

Mathematical Soundness I.et us make one last comment. A common understand-
ing 1n mathematics 1s that the probabilities of all possible events should sum up to
I: 1f an experiment can have N different outcomes, and 1f P; 1s the probability of
the i-th outcome, then Z’:’Ll P; = 1. It 1s easy to verify that Eq. (2.7) satisfies this
condition for any value of m. Suppose we are dealing with the coin-tossing domain
where there are only two possible outcomes. If the prior estimates sum up to |
(Theads + Twits = 1), then, given that Nyqa¢ + Nits = Nan, we derive the following:

Nheads M heads I Nigils+mat g
Ngn+m Nai+m

P heacds + P tails —

. Nheadst+Niails+m (Hhe"ﬁdﬁ + JTI{IEES)
Naii+m

=1

The interested reader will easily generalize this to any finite number of classes.

Why This May Be Useful In the problem presented in Table 2.5, we want to
classify example x using the Bayesian classifier. To be able to do that, we first need
to calculate the requisite conditional probabilities. Trying to do so for the positive
class, however, we realize that, since the training set 1s so small, none of the training
examples has crust-shade=gray, the value observed in x. If the probabilities
are estimated by relative frequency, this concrete conditional probability would be
0. As a result, P(x|pos) = 0, regardless of all the other probabilities. This simply
does not seem right.

The problem disappears 1f we use m-estimate instead of relative frequency
because the m-estimate 1s non-zero even if the concrete value has never being
observed in the training set.

What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

» Under what circumstances is relative frequency ill-suited for estimates of discrete
probabilities?

 What 1s the impact of parameter m in Eq. (2.7)? Under what circumstances will
you prefer large m, and when will you rather go for small m?

* What 1s the impact of the prior estimate, mj..4, 1n Eq.(2.7)? How 1s the
credibility of m-estimates affected by unrealistic values of .4,
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Table 2.5 An example of one reason for using m-estimates in Bayesian classification

Let us return to the “pies” domain from Table 1.1. Remove from the table the first example, then
use the rest for the calculation of the probabilities.

X = [shape=circle, crust-size=thick, crust-shade=gray

filling-size=thick, filling-shade=dark]

Let us first calculate the probabilities of the individual attribute values:

P(shape=circle|pos) = 3/5
P(crust-size=thick|pos) =4/5
P(crust-shade=gray |pos) =0/5
P(filling-size=thick|pos) =2/5
P(filling-shade=dark|pos) =3/5

Based on these values, we obtain the following probabilities:

A2 3
! = (.

P(x|pos) =

We see that the circumstance that none of the five positive examples has crust -shade=gray
causes the corresponding conditional probability to equal 0.

The problem is solved if we calculate the probabilities using the m-estimate. In this case, none
of the conditional probabilities will be 0.

2.4 How to Handle Continuous Attributes

Up till now, we limited our considerations to attributes that assume discrete values,
estimating their probabilities either by relative frequency or by the m-estimate. This,
however, 1s not enough. In many applications, we encounter attributes (such as
age, price orweight) that acquire values from continuous domains.

Relative frequency 1s then impractical. While it 1s easy to establish that the
probability of an engineering student being male 1s P, = 0.7, the probability
that this student’s body weight 1s 184.5 pounds cannot be specified so readily: the
number of different weight values being infinite, the probability of any one of
them 1s infinitesimally small. What to do in this case?

Discretizing Continuous Attributes One possibility 1s to discretize. The simplest
“trick” will split the attribute’s original domain in two; for instance, by replacing
age with the boolean attribute o1d that is true for age > 60 and false otherwise.
However, at least part of the available information then gets lost: a person may be
old, but we no longer know how old; nor do we know whether one old person is
older than another o1d person.
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What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

 What 1s the probability density function, pdf, and how does it help us in the
context of Bayesian classification?

 Explain the discretization mechanism that helped us arrive at an informal
definition of a pdf.

 How does the Bayes formula change in domains with continuous attributes? How
do we estimate the values of the individual terms?

2.5 Gaussian “Bell” Function: A Standard pdf

One way to approximate a pdf 1s to employ the discretization technique from the
previous section. Alternatively, we can capitalize on standardized models known to
be applicable to many realistic situations. Perhaps the most popular among them 1s
the gaussian function, named after the great German mathematician.

The Shape and the Formula Describing It The curve in Fig. 2.3 1s an example; its
shape betrays why many people call it a “bell function.” The maximum is reached
at the mean, x = i, and the curve slopes down gracefully with the growing distance
of x from g. It 1s reasonable to expect that this 1s a good model of the pdf of such
variables as the body temperature where the density peaks around x = 99.7 degrees
Fahrenheit.

Expressed mathematically, the gaussian function is defined by the following
formula where e 1s the base of the natural logarithm:

=)’

px) =k-e 22 (2.10)

Parameters Note that the greater the difference between x and i, the greater the
exponent’s numerator, and thus the smaller the value of p(x) because the exponent
is negative. The reason the numerator is squared, (x — ), is to make sure that the
value slopes down with the same angle on both sides of the mean, u; the curve
is symmetric. How steep the slope is depends on o2, a parameter called variance.
Greater variance means smaller sensitivity to the difference between x and u, and
thus a “flatter” bell curve; conversely, smaller variance defines a narrower bell curve.

The task for the coefficient k& 1s to make the area under the bell function equal to
1 as required by the theory of probability. It would be relatively easy to prove that
this happens when k is determined by the following formula:

1
k = N 2.11)
TO
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Setting the Parameter Values To be able to use this model when approximating
pe;(x) in a concrete application, we only need to estimate the values of its
parameters, 1 and o”. This is easy. Suppose that class ¢; has m representatives
among the training examples. If x; 1s the value of the given attribute in the i-
th example, then the mean and variance, respectively, are calculated using the
following formulas:

n=—-3x (2.12)

1 'L
ot =—— ) (i—p)’ (2.13)

m

=1

In plain English, the gaussian center, 1, 1s obtained as the arithmetic average of
the values observed in the training examples, and the variance i1s obtained as the
average of the squared differences between x; and . Note that, when calculating
variance, we divide the sum by m — 1, and not by m, as we might expect. The
intention 1s to compensate for the fact that p itself 1s only an estimate. The variance
should therefore be somewhat higher than what it would be 1f we divided by m.
Of course, this matters only if the training set is small: for large m, the difference
between m and m — 1 1s negligible.

What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

* (Give an example of a continuous variable whose pdf can be expected to follow
the gaussian distribution.

 What parameters define the bell function? How can we establish their values
using the training set?

* How—and why—do we normalize the bell function?

2.6 Approximating PDFs with Sets of Gaussians

While the bell function represents a good mechanism to approximate the pdf 1n
many realistic domains, it 1s not a panacea. Some variables simply do not behave
that way. Just consider the distribution of body-weight in a group that mixes
grade-school children with their parents. If we create the pdf using the discretization
method, we will observe two peaks: one for the kids, and the other for the grown-
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ups. There may be three peaks if it turns out that body-weight of fathers 1s
distributed around a higher mean than that of the mothers. And the number of peaks
can be higher still if the families come from diverse ethnic groups.

Combining Gaussian Functions No doubt, a single bell function would misrep-
resent the situation. But what 1f we combine two or more of them? If we knew
the diverse sources of the examples, we might create a separate gaussian for each
source, and then superimpose the bell functions on each other. Would this solve our
problem?

The honest answer 1s, “yes, 1n this ideal case.” In reality, though, prior know-
ledge about diverse sources 1s rarely available. A better solution will divide the
body-weight values into great many random groups. In the extreme, we may
even go as far as to make each example a “group” of 1ts own, and then 1dentity a
gaussian center with this example’s body-weight, thus obtaining m bell functions
(for m examples).

The Formula to Combine Them Suppose we want to approximate the pdf of a
continuous attribute, x. If we denote by u; the value of x in the i-th example, then
the pdf 1s approximated by the following sum of m functions:

'lr-l'_.f—f-i }2

px) =k-X"_ e 2’ (2.14)

i —

As before, the normalization constant, &, 1s here to make sure that the area under
the curve 1s 1. This 1s achieved when k 1s calculated as follows:

k = (2.15)

From mathematics, we know that 1t m 1s sufficiently high, Eq. (2.14) approxi-
mates the pdf with almost arbitrary accuracy.

Illustrating the Point Figure 2.4 illustrates the approach using a training set
consisting of m = 3 examples, the values of attribute x being x; = 0.4,x, = 0.5
and x3 = 0.7. The upper three charts show three bell functions, each centered at
one of these points, the variance always being o2 = 1. The bottom chart shows the
composed pdf created by putting together Egs. (2.14) and (2.15), using the means,
;= 0.4, uy, =0.5,and u3 = 0.7, and 6> = 1:

2

1 (x—0.4)2 (x—0.5) (x—0.7)2

p(x) = e 2 4 2 e 2
3/ 2

The Impact of Concrete Parameter Values The practical utility of the pdf thus
obtained (its success when used in the Bayes formula) depends on the choice of 0.
In Fig.2.4, we used 0° = 1, but there is no guarantee that this will work in any
future application. To be able to adjust it properly, we need to understand how it
affects the shape of the composite pdf.
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Inspecting the gaussian formula, we realize that the choice of a very small value
of o causes great sensitivity to the difference between x and p;; the individual bell
functions will be “narrow,” and the resulting pdf will be marked by steep peaks
separated by extended “valleys.” Conversely, the consequence of a high o2 will be
an almost flat pdf. Seeking a compromise between the two extremes, we will do well
if we make o dependent on the distances between examples.

The simplest solution will use g’ = Wimax — Mmin, Where ey and  [yin
are the maximum and minimum values of w;, respectively. It you think this too
crude, you may consider normalizing the difference by the number of examples:
0% = (Wmax — Mmin)/m. Large training sets (with high m) will then lead to smaller
variations that will narrow the contributing gaussians. Finally, in some domains we
might argue that each of the contributing bell functions should have a variance of its
own, proportional to the distance from the center of the nearest other bell function.
In this case, however, we are no longer allowed to set the value of k by Eq. (2.15).

A Numeric Example The example in Table 2.6 illustrates the whole procedure on
a concrete case of a small training set and a vector to be classified. The reader 1s
encouraged to go through all its details to get used to the way the formulas are put
together. See also the illustration in Fig. 2.5.

When There Are Too Many Examples For a training set of realistic size, it 1s
impractical to identify each training example with one gaussian centers; nor 1s it
necessary. More often than not, the examples are grouped 1n clusters that can be
detected by cluster analysis techniques—see Chap. 14. Once the clusters have been
found, we 1dentify the gaussian centers with the centroids of the clusters.

What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

* Under what circumstances 1s the gaussian function a poor model of the pdf??
* Why does the composite pdf have to be normalized by k?
 How do we establish the centers and variances of the individual bell functions?

2.7 Summary and Historical Remarks

» Bayesian classifiers calculate the product P(x|c;)P(c;) separately for each class,
¢;, and then label the example, x, with the class where this product has the highest
value.

* The main problem is how to calculate the probability, P(x|c;). Most of the time,
the job 1s simplified by making the assumption that the individual attributes are
mutually independent, in which case P(x|c;) = ]_[_;"':l P(xj|c;), where n is the
number of attributes.
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Fig. 2.4 Composing the pdf from three examples with the following values of attribute x: p; =
0.4, i, = 0.5, and 3 = 0.7. The upper three charts show the contributing gaussians; the bottom
chart, the composition. The variance 1s o’ =
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[14]. The first to use the assumption of independent attributes was Good [33]. The
idea of approximating pdf’s by the sum of bell functions comes from Parzen [74].

When provided with perfect information about the probabilities, the Bayesian
classifier 1s guaranteed to provide the best possible classification accuracy. This
1s why 1t 1s sometimes used as a reference to which the performance of other
approaches 1s compared.

2.8 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

Exercises

1. A coin tossed three times came up heads, tails, and tails, respectively. Calculate
the m-estimate for these outcomes, using m = 3 and Tpeuqs = Traits = 0.5.

2. Suppose you have the following training examples, described by three attributes,
X1, X7, X3, and labeled by classes ¢; and ¢;.

2.1 02 3.0 | ¢
33 1.0 129 | ¢
27 112 134 | ¢
05 53 00 |c
.I.S 4.7 .0.5 €2

Using these data, do the following:

(a) Assuming that the attributes are mutually independent, approximate the
following probability density functions: p., (x), p., (X), p(x). Hint: use the
idea of superimposed bell functions.

(b) Using the pdf’s from the previous step, decide whether x = [1.4,3.3, 3.0]
should belong to ¢; or ¢».
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Give It Some Thought

1. How would you apply the m-estimate in a domain with three possible outcomes,
|A, B, C], each with the same prior probability estimate, 74 = g = ¢ = 1/3?
What if you trust your expectations of A but are not so sure about B and C? Is
there a way to reflect this circumstance in the value of the parameter m?

2. Suggest the circumstances under which the accuracy of probability estimates will
benefit from the assumption that attributes are mutually independent. Explain the
advantages and disadvantages.

3. How would you calculate the probabilities of the output classes 1n a domain
where some attributes are boolean, others discrete, and yet others continuous?
Discuss the possibilities of combining different approaches.

Computer Assignments

. Machine learning researchers often test their algorithms using publicly available
benchmark domains. A large repository of such domains can be found at the
following address: www.ics.uct.edu/~mlearn/MLRepository.html. Take a look at
these data and see how they differ in the numbers of attributes, types of attributes,
sizes and so on.

2. Write a computer program that will use the Bayes formula to calculate the class
probabilities in a domain where all attributes are discrete. Apply this program to
our “pies’” domain.

3. For the case of continuous attributes, write a computer program that accepts the
training examples in the form of a table such as the one in Exercise 3 above.
Based on these, the program approximates the pdfs, and then uses them to
determine the class labels of future examples.

4. Apply this program to a few benchmark domains from the UCI repository
(choose trom those where all attributes are continuous) and observe that the
program succeeds in some domains better than in others.



