SECOND EDITION

MICHAEL WOOLDRIDGE



An Introduction to
MultiAgent Systems

Second Edition

Michael Wooldridge

Department of Computer Science, University of Liverpool

FWILEY

A John Wiley and Sons, Ltd, Publication



This edition first published 2009
(© 2009 John Wiley & Sons Ltd

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 85Q),
United Kingdom

For details of our global editorial offices, for customer services and for information about how to
apply for permission to reuse the copyright material in this book please see our website at
www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance
with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the
prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All
brand names and product names used in this book are trade names, service marks, trademarks or
registered trademarks of their respective owners. The publisher is not associated with any product
or vendor mentioned in this book. This publication is designed to provide accurate and
authoritative information in regard to the subject matter covered. It is sold on the understanding
that the publisher is not engaged in rendering professional services. If professional advice or other
expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Wooldridge, Michael J., 1966-
An introduction to multiagent systems / Michael Wooldridge. — 2nd ed.
p- cm.
Includes bibliographical references and index.
ISBN 978-0-470-51946-2 (pbk.)
1. Intelligent agents (Computer software) I. Title.
QA76.76.158W65 2009

006.3—dc22 2009004188

A catalogue record for this book is available from the British Library.
ISBN 9780470519462 (pbk.)

Set in 10/12pt Palatino by Sunrise Setting Ltd, Torquay, UK.
Printed in Great Britain by Bell & Bain, Glasgow.



Contents

Preface xiii
Acknowledgements xxi
PartI Setting the Scene 1
1 Introduction 3
1.1 The Vision Thing 6
1.2 Some Views of the Field 9
1.3 Frequently Asked Questions (FAQ) . . . . . R R 12
Part I Intelligent Autonomous Agents 19
2 Intelligent Agents 21
2.1 Intelligent Agents . . . . . . . . e 26
2.2 Agents and Objects 28
2.3 Agents and Expert Systems . . . . .. ... R R R 30
2.4 Agents as Intentional Systems 31
2.5 Abstract Architectures for Intelligent Agents . . . ... ... ... ... .... 34
2.6 How to Tell an Agent What to Do 38
3 Deductive Reasoning Agents 49
3.1 Agentsas TheoremProvers . ..................0c00....... 50
3.2 Agent-Oriented Programming . . . . .. ... . ... ... ............ 55
3.3 Concurrent MetateM 56




viii Contents

4 Practical Reasoning Agents 65
4.1 Practical Reasoning = Deliberation + Means-Ends Reasoning . . . .. . ... 65
4.2 Means-Ends Reasoning 69

13 Impl . Practical R o A 75
4.4 The Procedural Reasoning System . . . . . .. .. ... .. .. .. .. ..... 79

5 Reactive and Hybrid Agents 85
5.1 Reactive Agents 85
511 TI ] . hi 86

5.1.2  PENGI 90

5.1.3 Situated automata 90

5.1.4 Theagent network architecture . . . .. .. ... ... ... ....... 91

5.1.5  The limitations of reactive agents 92

52 Hybrid Agents . . . . . . . .. . e 92
521 TouringMachines . . . . . . .. ... L Lo 94

5.2.2 InteRRaP 96

523 3T 98

524 Stanley . . . . .. e e 99

Part Il Communication and Cooperation 105
6 Understanding Each Other 107
6.1 Ontology 'undamentals . . . . .. .. . ... . . ... . ... 108
6.1.1 Ontology building blocks 108

6.1.2  An ontology of ontologies 110

6.2 Ontology Languages . . . . . . . . . . . ... e 113
621 XML —ad hoc antologies 113

6.22  OWL = The web ontology language 114

23 KIF — logies in first-order logi 120

6.3 RDEFE 121
6.4 Constructingan Ontology . . . . . . . . ... e 124
6.5 Software Tools for Onfnlngipq 127

7 Communicating 131
7.0 Speech Acts . . . .. e 132
71.1 Austin 132

7.1.2  Searle 133

7.1.3 The plan-based thpnry of speech acts 134

714 S | . | acti 135

7.2 Agent Communication Languages 136
721 KOML . . . e e 136

7.2.2  The FIPA agent communication Iangnagp 140

723 JADE . . . e e e e e e e e e 146




Contents ix

8 Working Together 151
8.1 Cooperative Distributed Problem Solving . . . . . . . . .. . 151
8.2 Task Sharing and Result Sharing 153
8.2.1 Task qharing in the Contract Net 156

83 ResultSharing . . . . . . . . .. . e e 159
8.4 Combining Task and Result Sharing 159
8.5 Handling Inconsistency . . ... ... .. ... L L Lo 161
8.6 Coordination 162

861 Coordination frroteh partial slobal alanm 6

8.6.2 Coordination through joint intentions 165

8.6.3 Coordination by mutual modelling . . . ... ... ........... 170

8.6.4 Coordination by norms and social laws 173

8.7 Multiagent Planning and Qynchrnnimﬁnn 177
183

9 Methodologies

9.1 Whenisan égent-Based Solution épprﬂprjate? 83

9.2 Agent-Oriented Analysis and Design 184
9.2.1 The AAll methodology . .. ... ... ... ... ... . . ... ... 184

92.2 (Gaia 186

923 Tropos o . v e e e e e 187

9.24 Prometheus 188

9.25 AgentUML . . . ... ... .. .. ... 188

926 AgentsinZ . . ... 189

9.3 Pitfalls of Agent Development . . . .. .. ... .. o o 190
94 Mobile Agents 193

10 Applications 201
10.2 Agents for Distributed Sensing 203
10.3 Agents for Information Retrieval and Management 205
10.4 Agents for Electronic Commerce 211
10.5 Agents for Human—-Computer Interfaces . . . . . .. . ... ... ... ..... 213
10.6_Agents for Virtual Environments 214
10.7 Agpnh: for Social Simulation 214
10.8 Agentsfor X . . . . . e e e 218
Part IV Multiagent Decision Making 221
11 Multiagent Interactions 223
11.1 Utilities and Preferences . . . . . . . . o o v v vt it i 223
11.2 Setting the Scene 226
11.3 Solution Concepts and Solution Properties . . . ... .............. 229
11.3.1 Dominant strategies . . . . . o v i i e 230

11.3.2 Nashequilibria . . . .. ... ... ... ... .. ... ..., 230




X Contents
11.3.3 Paretoefficiency . . .. .. .. ... ... ... ... 233
11.3.4 Maximizing social welfare . . . . . .. . ... ... . ... .. ... .. 235
11.4 Competitive and Zero-Sum Interactions 235
11.5 The Prisoner’s Dilemma . . . . . . . . . . . . 0 e 236
11.5.1 The shadow of the future 240
11.5.2 Programequilibria . . . . . . . .. .. 243
11.6 Other Symmetric 2 x 2 Interactions . . . . . . . ... ... . . ... .. 245
11.7 Representing Multiagent Scenarios 248
11.8 Dependence Relations in Multiagent Systems . . . . ... ............ 249
12 Making Group Decisions 253
12.1 Social Welfare Functions and Social Choice Functions 253
12.2 Voting Procedures . . . . . . .. . . . .. 255
12.2.1 Plurality . .. ... o 255
12202 § ial ority electi 257
12.2.3 TheBordacount . . ... . ... . . . . it 260
12.2.4 TheSlaterranking . .. ... .. .. ... ... ... . ... . ..., 260
12.3 Desirable Properties for Voting Procedures . . . .. ... ... ......... 261
12.3.1 Arrow’s theorem 263
12.4 Strategic Manipulation . . .. ... ... ... ... Lo 264
13 Forming Coalitions 269
13.1 CooperativeGames . . . . . .. . . ... 270
13.1.1 Thecore . . . . . o i e e e e e e e e e e e e 272
13.1.2 TheShapleyvalue . ... ... ... .. ... .. ............. 274
13.2 Computational and Representational Issues 277
13.3 Modular Representations . . . . . . . . . . . i 278
13.3.1 Inducedsubgraphs . . . .. . . ... ... ... . .. 278
13.3.2 Marginal contribution nets 280
13.4 Representations for Simple Games . . . . . .. ... ... .. ... .. .... 281
13.4.1 Weighted voting games 282
134.2 Network flowgames . . . . .. ... ....... .. ........... 285
13.5 Coalitional Games with Goals 287
13.6_Coalition Structure Formation 288
14 Allocating Scarce Resources 293
14.1 Classifying Auctons . . . . . .. . . 204
14.2 Auctions for Single Items 295
14.2.1 Englishauctions . . . .. .. ... ... ... ... ... 295
14.2.2 Dutch auctions 296
14.2.3 First-price sealed-bid auctions 294
14.2.4 Vickrey auctions 296
1425 Expectedrevenue . . . . . . .. ... ... Lo 297
14.2.6 Tiesand collusion . . . . . 298

14.2.7 Counterspeculation . . . . . . ... .. ... 299




Contents xi

14.3 Combinatorial Auctions 299
14.3.1 Biddinglanguages . ... .. . ... ... ... ... ... .......302
14.3.2 Winner determination 306
14.3.3 The VCG mechanism 308

144 Auctionsin Practice . . . . . . . . . . . e e e 310
14.4.1 Onlineauctions . . . . . . . . . . .. e 310
14.4.2 Adwords auctions 311
14.4.3 The trading agent competition 312

15 Bargaining 315
15.1 Negotiation Parameters . . . ... ... ... .. .. ... ... .. ... ... 315
15.2 Bargaining for Resource Division 317
15.2.1 Patientplayers . . . . . . . . .. 317
15.2.2 Impatientplayers . . . . . ... ... ... ... ... ...320
15.2.4 Applications of alternating offers . . . . . ... ... ... ........323

15.3 Bargaining for Task Allocation . . ... .. ... .. ... ... ... .. ... 323
15.3.1 The monotonic concession protocol . . . ... ... ... .. .. .... 326
15.3.2 The Zeuthen strategy 327
153.3 Deception . . . . . ... ... 329
15.4 Bargaining for Resource Allocation 330
16 Arguing 337
16.1 Typesof Argument . . ... ... ... .......................338
16.2 Abstract Argumentation . . .. .. ... L Lo 338
16.2.1 Preferred extensions 339
16.2.2 Credulous and sceptical acceptance . . . ... ...... ... ..... 341
16.2.3 Preferences in abstract argument systems 343

17

16.3 Deductive Argumentation Systems . . . . . . ... ... 345
16.4 Dialogue Systems . . . . . . . . . e 348
16.5 Implemented Argumentation Systems 350
Logical Foundations 355

171 1oics for Knowled [ Boliof 255

17.1.1_Paossible-worlds semantics for modal Ingir’q

17.1.2 Normalmedallogies . . . . . . . ... . . .. . . .. . . ... .. ... 38
1713 N ] lal logi . ic logi 361

17.1.4 l.ogical omniscience

715 Axioms for knowled ! beliof 164

17.1.6 Multiagent epistemiclogics . . . ... ... ... ... ... .....365
17.1.7 Common and distributed knowledge . . .. ... ... ... ... ... 367
17.2 Logics for Mental States 369
17.2.1 Cohen and Levesque’s intention logic . . . . . ... . ... ... 369
17.2.2 Modelling speechacts . . . . .. ... .. ... . ... ... .. ..... 371




xii Contents

17.3 Logics for Cooperation . . . . . . . .. ... .. 373
17.3.1 Incomplete information . . ... .. .. ... ... ... ... ..., 375
17.3.2_Cooperation logics for sacial choice . . . .. o o o 0 .. 376

17.4 Putting Logic to Work 376
17.4.1 Logicinspecification . . . . . .. ... Lo o o oo 377
17.4.2 Logicinimplementation . . . ... ... .. ... .. ..., ......378
17.4.3 Logicin verification 381

Part V Coda 391
A A History Lesson 393
B Afterword 405
Glossary of Key Terms 407
References 425

Index 453



Preface

Table 1: A summary of notation.

Sets

{a,b,c} the set containing elements a, b, and ¢

@ the empty set (contains nothing)

aeS ais a member of set 5, e.g.,a € {a, b, c}

{x|P(x)} set of objects x with property P

51C 5 set Sq is a subset of set S, e.g., {b} C {a, b, ¢}

S1M 85, the intersection of S1 and 53, e.g., {a, b} N {b} = {b}
S1US,; the union of 57 and Sy, e.g., {a, b} U {b,c} = {a, b, c}
S1\ S the difference of S; and S5, e.g., {a, b} \ {b} = {a}
2° powersetof S, e.g., 202t} — (@, {a}, {b}, {a, b}}

|S| cardinality of § (number of elements it contains)

Common sets

N
R
R,

the natural numbers: 0,1, 2,3, ...
the real numbers
the positive real numbers

Relations and functions

(a,b) a pair of objects, first element a second element b

Sy x S Cartesian product (a.k.a. cross product) of 57 and S,

Sy % xSy Cartesian productof sets 51, S5, ..., Sy

{ay,ap,...,ay) tuple consisting of elements ay, ap, ..., ay

f:D—R a function f with domain D and range R

f(x) the value given by function f for input x

Permutations

I1(S) the possible permutations of set S, e.g., I1({a, b}) = {(a, b), (b, a)}
Logic

T the Boolean value for truth

1 the Boolean value for falsity

o logical formulae

- negation ('not’), e.g., - L =T

v disjunction (‘or”), ¢ v ¢ =T iff either g = T or p =T

A conjunction (‘and’), ¢ A ¢ = T iffboth ¢ = T and ¢p = T

— implication (‘implies”), ¢ — ¢ =T iff¢g=Loryp =T

o biconditional (‘iff’), ¢ <> 1 is the same as (¢ — P) A (P — ¢)
DB a database - a set of logical formulae

DBF ¢ logical proof — ¢ can be proved from DB

I=¢ formula ¢ is true under interpretation [

XV

e an introduction to the basic ideas of intelligent autonomous agents (Chapter 2) and
then an introduction to the main approaches to building such agents (Chapters 3-5)

e an introduction to the main approaches to building multiagent systems in which
agents can communicate and cooperate to solve problems (Chapters 6-10)



xvi Preface

e an introduction to decision-making in multiagent systems and logical modelling of
multiagent systems (Chapters 11-17).

Although the book is not heavily mathematical, there is inevitably some mathematics. A
coherent course, avoiding the more mathematical sections, would include Chapters 1 to 10.
A course on the principles of multiagent systems would include Chapters 1 and 2, and then
move on to Chapters 11 to 17.

Complete lecture slides, exercises, and other associated teaching material are available
at:

http://www.csc.liv.ac.uk/~mjw/pubs/imas/

I welcome additional teaching materials (e.g., tutorial /discussion questions, exam papers
and so on), which I will make available on an ‘open source’ basis — please email them to me
at:

mijw@liv.ac.uk.

Chapter structure

Every chapter of the book ends with the following elements:

e A ‘class reading’ suggestion, which lists one or two key articles from the research
literature that may be suitable for class reading in seminar-based courses.

e A ’'notes and further reading’ section, which provides additional technical comments
on the chapter and extensive pointers into the literature for advanced reading. This
section is aimed at those who wish to gain a deeper, research-level understanding of
the material.

e A ‘mind map’, which gives a pictorial summary of the main concepts in the chapter,
and how these concepts relate to one another. The hope is that the mind maps will be
useful as a memory and revision aid.

What was left out and why

Part of the joy in working in the multiagent systems field is that it takes inspiration from,
and in turn contributes to, a very wide range of other disciplines. The field is in part
artificial intelligence (AlI), part economics, part software engineering, part social sciences,
and so on. But this poses a real problem for anyone writing a book on the subject, namely,
what to put in and what to leave out. While there is a large research literature on agents,
there are not too many models to look at with respect to textbooks on the subject, and so
I have had to make some hard choices here. When deciding what to put in/leave out, |
have been guided to a great extent by what the ‘mainstream” multiagent systems literature
regards as important, as evidenced by the volume of published papers on the subject. The
second consideration was what might reasonably be (i) taught and (ii) understood in the
context of a typical one-semester university course. This largely excluded most abstract
theoretical material, which will probably make most students happy (if not their teachers).



Preface xvii

I deliberately chose to emphasize some aspects of agent work, and give less emphasis to
others. In particular, I did not give much emphasis to the following:

Learning It goes without saying that learning is an important agent capability. However,
machine learning is an enormous area of research in its own right, and consideration
of this would take us at something of a tangent to the main concerns of the book.
After some agonizing, I therefore decided not to cover learning. There are plenty of
references to learning algorithms and techniques in agent systems: see, for example,
[Kaelbling, 1993; Stone, 2000; Wei, 1993; Weil, 1997; Weil and Sen, 1996].

Artificial life Some sections of this book (in Chapter 5 particularly) are closely related to
work carried out in the artificial life, or “alife’, community. However, the work of
the alife community is carried out largely independently of that in the ‘mainstream’
multiagent systems community. By and large, the two communities do not interact
with one another. For these reasons, I have chosen not to focus on alife in this book.
(Of course, this should not be interpreted as in any way impugning the work of the
alife community: it just is not what this book is about.) There are many easily available
references to alife on the Web. A useful starting point is [Langton, 1989]; another good
reference is [Mitchell, 1996].

Robotics As will become evident later, many ideas in the multiagent systems community
can trace their heritage to work on autonomous mobile robots. In particular, the agent
decision-making architectures discussed in the first part of the book are drawn from
this area. However, robotics has its own problems and techniques, distinct from those
of the software agent community. In this book, I will focus almost exclusively on
software agents, but will give some pointers to the autonomous robots community
as appropriate. See [Matari¢, 2007; Murphy, 2000] for introductions to autonomous
robotics, and [Arkin, 1998; Thrun et al., 2005] for advanced topics.

Software mobility As with learning, I believe mobility is a useful agent capability, which
is particularly valuable for some applications. But, like learning, I do not view it to be
central to the multiagent systems curriculum. In fact, I do touch on mobility, but only
briefly: the interested reader will find plenty of references in Chapter 9.

In my opinion, the most important things for students to understand are (i) the ‘big picture’
of multiagent systems (why it is important, where it came from, what the issues are, and
where it is going), and (ii) what the key tools, techniques, and principles are. I see no
value in teaching students deep technical issues in (for example) the logical aspects of
multiagent systems, or game-theoretic approaches to multiagent systems, if these students
cannot understand or articulate why these issues are important, and how they relate to
the ‘big picture’. Similarly, teaching students how to program agents using a particular
programming language or development platform is of severely limited value if these same
students have no conception of the deeper issues surrounding the design and deployment
of agents. Students who have some sense of the big picture, and have an understanding
of the key issues, questions, and techniques, will be well equipped to make sense of the
deeper literature if they choose to study it.



xviii Preface

Omissions and errors

Unprovided with original learning, unformed in the habits of thinking, unskilled in the
arts of composition, I resolved to write a book.

Edward Gibbon

In writing this book, I tried to set out the main threads of work that make up the multiagent
systems field, and to critically assess their relative merits. In doing so, I have tried to be as
open-minded and even-handed as time and space permit. However, I will no doubt have
unconsciously made my own foolish and ignorant prejudices visible, by way of omissions,
oversights, and the like. If you find yourself speechless with rage at something I have
omitted — or included, for that matter — then all I can suggest is that you accept my apology,
and take solace from the fact that someone else is almost certainly more annoyed with the
book than you are.

Little did I imagine as I looked upon the results of my labours where these sheets of
paper might finally take me. Publication is a powerful thing. It can bring a man all
manner of unlooked-for events, making friends and enemies of perfect strangers, and
much more besides.

Matthew Kneale (English Passengers)

I have no doubt that the book contains many errors — some perhaps forgivable, and others
unquestionably not. I assure you that this is more depressing for me than it is annoying
for you, but I am cheered by the following commentary on Alan Turing’s paper On
Computable Numbers (the paper that introduced Turing machines, and thereby invented
much of computer science):

This is a brilliant paper, but the reader should be warned that many of the technical
details are incorrect. ...1t may well be found most instructive to read this paper for its
general sweep, ignoring the petty technical details.

Martin Davis (The Undecidable)

If Turing couldn’t get the ‘petty technical details’ right, then what hope is there for us mere
mortals? Nevertheless, comments, corrections, and suggestions for a possible third edition
are welcome, and should be sent to the email address given above.

Web references

It would be very hard to write a book about Web-related issues without giving URLs
as references. In many cases, the best possible reference to a subject is a website, and
given the speed with which the computing field evolves, many important topics are only
documented in the ‘conventional’ literature very late in the day. But citing web pages as
authorities can create big problems for the reader. Companies go bust, sites go dead, people
move, research projects finish, and when these things happen, web references become
useless. For these reasons, [ have therefore attempted to keep web references to a minimum.
I have preferred to cite the ‘conventional’ (i.e., printed) literature over web pages when
given a choice. In addition, | have tried to cite only web pages that are likely to be stable
and supported for the foreseeable future. The date associated with a web page is the date
at which I checked the reference was working.



Preface xix

What has changed since the first edition?

There was a time when I rather arrogantly believed I had read all the key papers in the
multiagent systems field, and had a basic working knowledge of all the main research
problems and techniques. Well, if that was ever true, then it certainly isn’t any more, and
hasn’t been for nearly two decades: the time has long since passed when any one individual
could have a deep understanding of the entire multiagent systems research area. I
mentioned above that one of the joys of the multiagent systems area was its diversity, but of
course this very diversity makes life hard not just for the student, but also for the textbook
author. Since the first edition of this book appeared, literally thousands of research papers
and dozens of books on multiagent systems have been published, and there now seems to
be a truly dizzying collection of journals, conferences, and workshops specifically devoted
to the topic. This makes it very hard indeed to decide what to include in a second edition.

The biggest single change since the first edition is the inclusion of much more material
on game-theoretic aspects of multiagent systems. The reason for this is simple: game theory
has been a huge growth area not just in multiagent systems research, but in computer
science generally, and I felt it important that this explosion of interest was reflected in my
coverage. The main changes in this respect are as follows. First, the introductory coverage
of basic game-theoretic notions such as Nash equilibrium has been clarified and deepened.
(For example, I was cavalier with the distinction between ‘>’ and ‘>’ in the first edition,
and it seems these distinctions are quite important in game theory ...) Completely new
material has been added on computational social choice theory (voting), and coalitions and
coalition formation. The coverage of auctions has been extended considerably, to include
combinatorial auctions and the basic principles of mechanism design. Auctions now get a
chapter of their own, as does negotiation.

The other main changes are as follows. First, | have clarified and deepened the coverage
of argumentation, which now gets a chapter of its own. Given the huge growth of the
semantic web since 2001, ontologies and semantic web ontology languages also get a
chapter of their own.

Apart from this, the main changes have been polishing (trimming some sections down
where they were verbose), and generally updating material. I have also tidied up the
figures, and added marginal notes for key concepts. There are not many changes to the
chapters on agent architectures, as this has not been a very active research area since the
publication of the first edition.

From my point of view, the main failing of the first edition was that I didn’t emphasize
computational aspects enough; I have tried to do this more systematically in the second
edition, particularly in the sections on game-theoretic ideas. Finally, I have never heard
anybody complain about a textbook having too many examples, so I have made an effort
to include more of these.



xxii Acknowledgements

Finally, I suppose I should acknowledge the British weather. The summer of 2008 was,
by common consent, one of the wettest, coldest, greyest British summers in living memory.
Had the sun shone, even occasionally, I might have been tempted out of my office, and this
second edition would not have seen the light of day.

My personal life in the six years since the first edition of this book has been pretty busy,
largely due to the arrival of Lily May Wooldridge on 10 May 2002, and Thomas Llewelyn
Wooldridge on 13 August 2005. I am immensely proud and immensely lucky to be the
father of such beautiful, happy, funny, and warm-hearted children. And of course Lily,
Tom, and I are blessed to have Janine at the heart of our family.

Mike Wooldridge
Liverpool
Summer 2008



Part I

Setting the Scene



The aim of Chapter 1 is to sell you the multiagent systems project. If you
want to understand a software technology, it helps to understand where the
ideas underpinning this technology came from, and what the drivers and
key challenges are behind this technology. In this chapter, we will see where
the multiagent systems field emerged from in terms of ongoing trends in
computing, what the long-term visions are for the multiagent systems field,
how the multiagent systems paradigm relates to other trends in software, and
what the key issues are in realizing the multiagent systems vision.



Chapter

Introduction

The history of computing to date has been marked by five important, and continuing,
trends:

o ubiquity

e interconnection

o intelligence

o delegation

e human-orientation.

By ubiquity, I simply mean that the continual reduction in cost of computing capability
has made it possible to introduce processing power into places and devices where it would
hitherto have been uneconomic, and perhaps even unimaginable. This trend will inevitably
continue, making processing capability, and hence intelligence of a sort, ubiquitous.

While the earliest computer systems were isolated entities, communicating only with
their human operators, computer systems today are usually interconnected. They are
networked into large distributed systems. The Internet is the obvious example; it is becoming
increasingly rare to find computers in use in commercial or academic settings that do not
have the capability to access the Internet. Until a comparatively short time ago, distributed
and concurrent systems were seen by many as strange and difficult beasts, best avoided.
The very visible and very rapid growth of the Internet has (I hope) dispelled this perception
forever. Today, and for the future, distributed and concurrent systems are essentially the
norm in commercial and industrial computing, leading some researchers and practitioners
to revisit the very foundations of computer science, seeking theoretical models that reflect
the reality of computing as primarily a process of interaction.

The third trend is towards ever more infelligent systems. By this,  mean that the complex-
ity of tasks that we are capable of automating and delegating to computers has also grown
steadily. We are gaining a progressively better understanding of how to engineer computer
systems to deal with tasks that would have been unthinkable only a short time ago.

UBIQUITY

INTERCONNECTION

INTELLIGENCE



DELEGATION

HUMAN-
ORIENTATION

GLOBAL
COMPUTING

4 PARTI Setting the Scene

The next trend is towards ever-increasing delegation. For example, we routinely delegate
to computer systems such safety-critical tasks as piloting aircraft. Indeed, in fly-by-wire
aircraft, the judgement of a computer program is trusted over that of experienced pilots.
Delegation implies that we give control to computer systems.

The fifth and final trend is the steady move away from machine-oriented views of
human-computer interaction towards concepts and metaphors that more closely reflect
the way in which we ourselves understand the world. This trend is evident in every way
that we interact with computers. For example, in the earliest days of computers, a user
interacted with a computer by setting switches on the machine. The internal operation of
the device was in no way hidden from the user — in order to use it successfully, one had to
fully understand the internal structure and operation of the device. Such primitive — and
unproductive — interfaces gave way to command-line interfaces, where one could interact
with the device in terms of an ongoing dialogue, in which the user issued instructions
that were then executed. Such interfaces dominated until the 1980s, when they gave
way to graphical user interfaces, and the direct manipulation paradigm in which a user
controls the device by directly manipulating graphical icons corresponding to objects such
as files and programs (the ‘desktop’ metaphor). Similarly, in the earliest days of computing,
programmers had no choice but to program their computers in terms of raw machine
code, which implied a detailed understanding of the internal structure and operation of
their machines. Subsequent programming paradigms have progressed away from such
low-level views: witness the development of assembler languages, through procedural
abstraction, to abstract data types, and most recently, objects. Each of these developments
has allowed programmers to conceptualize and implement software in terms of higher-
level - more human-oriented — abstractions.

These trends present major challenges for software developers. With respect to ubiquity
and interconnection, we do not yet know what techniques might be used to develop
systems to exploit ubiquitous processor power. Current software development models
have proved woefully inadequate even when dealing with relatively small numbers of
processors. What techniques might be needed to deal with systems composed of 10'°
processors? The term global computing has been coined to describe such unimaginably large
systems.

The trends to increasing delegation and intelligence imply the need to build computer
systems that can act effectively on our behalf. This in turn implies two capabilities. The
first is the ability of systems to operate independently, without our direct intervention. The
second is the need for computer systems to be able to act in such a way as to represent our
best interests while interacting with other humans or systems.

The trend towards interconnection and distribution has, in mainstream computer
science, long been recognized as a key challenge, and much of the intellectual energy of
the field throughout the past three decades has been directed towards developing software
tools and mechanisms that allow us to build distributed systems with greater ease and
reliability. However, when coupled with the need for systems that can represent our best
interests, distribution poses other fundamental problems. When a computer system acting
on our behalf must interact with another computer system that represents the interests of
another, it may well be (indeed, it is likely) that these interests are not the same. It becomes
necessary to endow such systems with the ability to cooperate and reach agreements with



CHAPTER 1 Introduction 7

out what needs to be done and how to do it. Finally, the probe must actually do the actions
it has chosen, and must presumably monitor what happens in order to ensure that all goes
well. If more things go wrong, the probe will be required to recognize this and respond
appropriately. Notice that this is the kind of behaviour that we (humans) find easy: we do
it every day — when we miss a flight or have a flat tyre while driving to work. But, as we
shall see, it is very hard to design computer programs that exhibit this kind of behaviour.

A key air-traffic control system at the main airport of Ruritania suddenly fails,
leaving flights in the vicinity of the airport with no air-traffic control support.
Fortunately, autonomous air-traffic control systems in nearby airports recognize
the failure of their peer, and cooperate to track and deal with all affected flights.
The potentially disastrous situation passes without incident.

There are several important issues in this scenario. The first is the ability of systems to take
the initiative when circumstances dictate. The second is the ability of agents to cooperate
to solve problems that are beyond the capabilities of any individual agent. The kind of
cooperation required by this scenario was studied extensively in the Distributed Vehicle
Monitoring Testbed (DVMT) project undertaken between 1981 and 1991 (see, for example,
[Durfee, 1988]). The DVMT simulates a network of vehicle monitoring agents, where each
agent is a problem solver that analyses sensed data in order to identify, locate, and track
vehicles moving through space. Each agent is typically associated with a sensor, which has
only a partial view of the entire space. The agents must therefore cooperate in order to
track the progress of vehicles through the entire sensed space. Air-traffic control systems
have been a standard application of agent research since the work of Cammarata and
colleagues in the early 1980s [Cammarata et al., 1983]; an example of a multiagent air-traffic
control application is the OASIS system implemented for use at Sydney airport in Australia
[Ljungberg and Lucas, 1992].

Well, most of us are not involved in either designing control systems for space probes or
the design of safety-critical systems such as air-traffic controllers. So let us now consider a
vision that is closer to most of our everyday lives.

After the wettest and coldest UK winter on record, you are in desperate need
of a last-minute holiday somewhere warm and dry. After specifying your
requirements to your personal digital assistant (PDA), it converses with a
number of different websites, which sell services such as flights, hotel rooms,
and hire cars. After hard negotiation on your behalf with a range of sites, your
PDA presents you with a package holiday.

This example is perhaps the closest of the three scenarios to actually being realized. There
are many websites that will allow you to search for last-minute holidays, but at the time of
writing, to the best of my knowledge, none of them engages in active real-time negotiation
in order to assemble a package specifically for you from a range of service providers. There
are many basic research problems that need to be solved in order to make such a scenario
work, such as the examples that follow.



8 PARTI Setting the Scene

Autonomous Systems in Space

Space exploration is proving to be an important application area for autonomous
systems. Current unmanned space missions typically require a ground crew of up to
300 staff to continuously monitor flight progress. This ground crew usually makes
all the necessary control decisions on behalf of the space probe, and painstakingly
transmits these decisions to the probe, where they are then blindly executed. Given
the length of typical planetary exploration missions, this procedure is expensive and,
if decisions are ever required quickly, it is simply not practical. Moreover, in some
circumstances, it isn’t possible at all. For example, in the first serious feasibility study
on interstellar travel, [Bond, 1978] notes that an extremely high degree of autonomy
would be required on the proposed mission to Barnard’s star, lasting more than
50 years:

[The control system] must be capable of reacting autonomously in the best way
possible to a set of circumstances which is indeterminate at launch. . .. Goals may
be implanted in the [system] prior to flight, but rigid seeking of those goals may
result in total mission failure; those implanted goals may have to be expanded,
contracted, or superseded in the light of unanticipated circumstances.

[Bond, 1978, p. S131]

An extremely clear description of the type of system that this book is all about,
written in 1978! Sadly, interstellar travel of the type discussed in [Bond, 1978] is a
long way off, if it is ever possible at all. But the idea of autonomy in space flight
remains very relevant for real space missions today. Launched from Cape Canaveral
on 24 October 1998, NASA’s DS1 was the first space probe to have an autonomous,
agent-based control system [Muscettola et al., 1998]. The autonomous control system
in DS1 was capable of making many important decisions itself. This made the mission
more robust, particularly against sudden unexpected problems, and also had the
very desirable side effect of reducing overall mission costs. NASA (and other space
agencies) are currently looking beyond the autonomy of individual space probes, to
having teams of probes cooperate in space exploration missions [Jonsson et al., 2007].

¢ How do you state your preferences to your agent?
e How can your agent compare different deals from different vendors?

e What algorithms can your agent use to negotiate with other agents (so as to ensure
that you are not ‘ripped off”)?

The ability to negotiate in the style implied by this scenario is potentially very valuable
indeed. Every year, for example, the European Commission puts out thousands of contracts
to public tender. The bureaucracy associated with managing this process has an enormous
cost. The ability to automate the tendering and negotiation process would save enormous
sums of money (taxpayers’ money!). Similar situations arise in government organizations
everywhere — a good example is the US military. So the ability to automate the process of



CHAPTER 1 Introduction 9

software agents reaching mutually acceptable agreements on matters of common interest
is not just an abstract concern — it may affect our lives (the amount of tax we pay) in a
significant way.

1.2 Some Views of the Field

The multiagent systems field is highly interdisciplinary: it takes inspiration from such
diverse areas as economics, philosophy, logic, ecology, and the social sciences. It should
come as no surprise that there are therefore many different views of what the ‘multiagent
systems project’ is all about.

1.2.1 Agents as a paradigm for software engineering

Software engineers have derived a progressively better understanding of the characteristics
of complexity in software. It is now widely recognized that interaction is probably the most
important single characteristic of complex software. Software architectures that contain
many dynamically interacting components, each with their own thread of control, and
engaging in complex, coordinated protocols, are typically orders of magnitude more
complex to engineer correctly and efficiently than those that simply compute a function
of some input through a single thread of control. Unfortunately, it turns out that many (if
not most) real-world applications have precisely these characteristics. As a consequence,
a major research topic in computer science over at least the past three decades has been
the development of tools and techniques to model, understand, and implement systems in
which interaction is the norm. Indeed, many researchers now believe that, in the future,
computation itself will be understood chiefly as a process of interaction. Just as we can
understand many systems as being composed of essentially passive objects, which have
a state, and upon which we can perform operations, so we can understand many others
as being made up of interacting, semi-autonomous agents. This recognition has led to the
growth of interest in agents as a new paradigm for software engineering,.

As | noted at the start of this chapter, the trend in computing has been — and will
continue to be — towards ever more ubiquitous, interconnected computer systems. The
development of software paradigms that are capable of exploiting the potential of such
systems is perhaps the greatest challenge in computing at the start of the 21st century.
Agents seem a strong candidate for such a paradigm.

It is worth noting that many researchers from other areas of computer science have
similar goals to those of the multiagent systems community.

Self-interested computation

First, there has been a dramatic increase of interest in the study and application of economic
mechanisms in computer science. For example, auctions are a well-known type of economic
mechanism, used for resource allocation, which have achieved particular prominence in
computer science [Cramton et al., 2006; Krishna, 2002]. There are a number of reasons for
this rapid growth of interest, but perhaps most fundamentally, it is increasingly recognized



THE GRID

MIDDLEWARE

COOPERATIVE
PROBLEM SOLVING

10 PARTI Setting the Scene

that a truly deep understanding of many (perhaps most) distributed and networked
systems can only come after acknowledging that they have the characteristics of economic
systems, in the following sense. Consider an online auction system, such as eBay [eBay,
2001]. At one level of analysis, this is simply a distributed system: it consists of various
nodes, which interact with one another by exchanging data, according to some protocols.
Distributed systems have been very widely studied in computer science, and we have a
variety of techniques for engineering and analysing them [Ben-Ari, 1990]. However, while
this analysis is of course legitimate, and no doubt important, it is surely missing a big
and very important part of the picture. The participants in such online auctions are self
interested. They are acting in the system strategically, in order to obtain the best outcome
for themselves that they can. For example, the seller is typically trying to maximize selling
price, while the buyer is trying to minimize it. Thus, if we only think of such a system as a
distributed system, then our ability to predict and understand its behaviour is going to be
rather limited. We also need to understand it from an economic perspective. In the area of
multiagent systems, we take these considerations one stage further, and start to think about
the issues that arise when the participants in the system are themselves computer programs,
acting on behalf of their users or owners.

The Grid

The long-term vision of the Grid involves the development of large-scale open distributed
systems, capable of being able to effectively and dynamically deploy and redeploy compu-
tational (and other) resources as required, to solve computationally complex problems [Fos-
ter and Kesselman, 1999]. To date, research in the architecture of the Grid has focused
largely on the development of a software middleware with which complex distributed
systems (often characterized by large datasets and heavy processing requirements) can be
engineered. Comparatively little effort has been devoted to cooperative problem solving in
the Grid. But issues such as cooperative problem solving are exactly those studied by the
multiagent systems community:

The Grid and agent communities are both pursuing the development of such open dis-
tributed systems, albeit from different perspectives. The Grid community has historically
focussed on ... ‘brawn’: interoperable infrastructure and tools for secure and reliable
resource sharing within dynamic and geographically distributed virtual organisations
(VOs) [Foster et al., 2001], and applications of the same to various resource federation
scenarios. In contrast, those working on agents have focussed on ‘brains’, i.e. on the
development of concepts, methodologies and algorithms for autonomous problem
solvers that can act flexibly in uncertain and dynamic environments in order to achieve
their objectives.

[Foster et al., 2004]
Ubiquitous computing

The vision of ubiguitous computing is as follows:

[Plopulations of computing entities — hardware and software — will become an effective
part of our environment, performing tasks that support our broad purposes without



CHAPTER 1 Introduction 11

our continual direction, thus allowing us to be largely unaware of them. The vision
arises because the technology begins to lie within our grasp. This tangle of concerns,
about future systems of which we have only hazy ideas, will define a new character for
computer science over the next half-century. What sense can we make of the tangle, from
our present knowledge?

[Milner, 2006]

This vision is clearly connected with the trends that we discussed at the opening of this
chapter, and makes obvious reference to cooperation and autonomy. We might expect that
the ubiquitous computing and multiagent systems communities will have something to
say to one another in the years ahead.

The semantic web

Tim Berners-Lee, inventor of the worldwide web, suggested that the lack of semantic markup

on the current worldwide web hinders the ability of computer programs to usefully process seannc
information available on web pages. The ‘markup’ (HTML tags) used on current web pages "
only provides information about the layout and presentation of the web page. While this
information can be used by a program to present a page, these tags give no indication of

the meaning of the information on the page. This led Berners-Lee to propose the idea of the
Semantic Web:

I have a dream for the Web [in which computers] become capable of analysing all the
data on the Web — the content, links, and transactions between people and computers. A
‘Semantic Web’, which should make this possible, has yet to emerge, but when it does,
the day-to-day mechanisms of trade, bureaucracy and our daily lives will be handled by
machines talking to machines. The ‘intelligent agents’ [that] people have touted for ages
will finally materialise.

[Berners-Lee, 1999, pp. 169-170]

The semantic web vision thus explicitly proposes the use of agents. In later chapters, we
will see how the kinds of technologies developed within the semantic web community
have been used within multiagent systems.

Autonomic computing

Autonomic computing is described as: AUTONOMIC

COMPUTING
[T]he ability to manage your computing enterprise through hardware and software that
automatically and dynamically responds to the requirements of your business. This
means self-healing, self-configuring, self-optimising, and self-protecting hardware and
software that behaves in accordance to defined service levels and policies. Just like the
nervous system responds to the needs of the body, the autonomic computing system
responds to the needs of the business.

[Murch, 2004]

Systems that can heal themselves and adapt autonomously to changing circumstances
clearly have the character of agent systems.



14 PARTI Setting the Scene

e Classical Al has largely ignored the social aspects of agency. I hope you will agree
that part of what makes us unique as a species on Earth is not simply our undoubted
ability to learn and solve problems, but our ability to communicate, cooperate, and
reach agreements with our peers. These kinds of social ability — which we use
every day of our lives — are surely just as important to intelligent behaviour as are
components of intelligence such as planning and learning, and yet they were not
studied in AI until about 1980.

Isn’t it all just economics/game theory?

Game theory is a mathematical theory that studies interactions among self-interested
agents [Binmore, 1992]. It is interesting to note that von Neumann, one of the founders
of computer science, was also one of the founders of game theory [von Neumann and
Morgenstern, 1944]; Alan Turing, arguably the other great figure in the foundations of
computing, was also interested in the formal study of games, and it may be that it was
this interest that ultimately led him to write his classic paper Computing Machinery and
Intelligence, which is commonly regarded as the foundation of Al as a discipline [Turing,
1963]. However, after these beginnings, game theory and computer science went their
separate ways for some time. Game theory was largely — though by no means solely -
the preserve of economists, who were interested in using it to study and understand
interactions among economic entities in the real world.

Recently, the tools and techniques of game theory have found many applications in
computational multiagent systems research, particularly when applied to problems such
as negotiation. Indeed, at the time of writing, game theory seems to be the predominant
theoretical tool in use for the analysis of multiagent systems. An obvious question is there-
fore whether multiagent systems are properly viewed as a subfield of economics/game
theory. There are two points here.

e Many of the solution concepts developed in game theory (such as Nash equilibrium,
discussed later) were developed without a view to computation. They tend to be
descriptive concepts, telling us the properties of an appropriate, optimal solution
without telling us how to compute a solution. Moreover, it turns out that the problem
of computing a solution is often computationally very hard (e.g. NP-complete or
worse). Multiagent systems research highlights these problems, and allows us to
bring the tools of computer science (e.g. computational complexity theory [Garey and
Johnson, 1979; Papadimitriou, 1994]) to bear on them.

e Some researchers question the assumptions that game theory makes in order to reach
its conclusions. In particular, debate has arisen in the multiagent systems community
with respect to whether or not the notion of a rational agent, as modelled in game
theory, is valid and/or useful for understanding human or artificial agent societies.

Note that all this should not be construed as a criticism of game theory, which is without
doubt a valuable and important tool in multiagent systems, likely to become much more
widespread in use over the coming years.



CHAPTER 1 Introduction 15

Software Agents in Popular Culture

Software technologies do not seem the most obvious subject matter for novels or films,
but autonomous software agents have a starring role surprisingly often. Part of the
reason may be that agents are seen as an ‘embodiment’ of the artificial intelligence
dream, which has long been a subject for story makers. The computer Hal, in the
film 2001: A Space Odyssey is the best-known example. However, the kinds of issues
addressed in this book have also made other appearances in film and fiction. One of
the earliest mentions that [ am aware of was in Douglas Adams’ novel Mostly Harmless,
where he imagines software agents cooperating to try to control a damaged spacecraft:

Small modules of software — agents — surged through the logical pathways,
grouping, consulting, re-grouping. They quickly established that the ship’s
memory, all the way back to its central mission module, was in tatters.

Some authors like to play on the fact that the word ‘agent” has multiple meanings:
in the Wachowski brothers” Matrix trilogy of films, the character Neo must do battle in
a virtual world with ‘agents’ that are clearly intended to be of both the autonomous
software and the secret variety.

Michael Crichton’s novel Prey is based on the premise of agents, embodied in
nano-machines, going (badly!) wrong. He clearly did some research about multiagent
systems:

Basically, you can think of a multiagent environment as something like a
chessboard, the agents like chess pieces. The agents interact . . . to achieve a goal.
... The difference is that nobody is moving the agents. They interact on their own
to produce the outcome.

Finally, the main character of the David Lodge novel Thinks is an artificial
intelligence researcher, who has an affair with a student, who subsequently blackmails
him to publish her scientific paper — entitled ‘Modelling Learning Behaviours in
Autonomous Agents’! I am happy to report that, in my experience at least, this kind of
behaviour really is limited to fiction.

Isn’t it all just social science?

The social sciences are primarily concerned with understanding the behaviour of human
societies. Some social scientists are interested in (computational) multiagent systems
because they provide an experimental tool with which to model human societies. In
addition, an obvious approach to the design of multiagent systems — which are artificial
societies — is to look at how human societies function, and try to build the multiagent
system in the same way. (An analogy may be drawn here with the methodology of Al,
where it is quite common to study how humans achieve a particular kind of intelligent
capability, and then to attempt to model this in a computer program.) Is the multiagent
systems field therefore simply a subset of the social sciences?



16 PARTI Setting the Scene

Although we can usefully draw insights and analogies from human societies, it does
not follow that we should build artificial societies in the same way. It is notoriously hard
to model precisely the behaviour of human societies, simply because they are dependent
on so many different parameters. Moreover, although it is perfectly legitimate to design a
multiagent system by drawing upon and making use of analogies and metaphors from
human societies, it does not follow that this is going to be the best way to design a
multiagent system: there are other tools that we can use equally well (such as game theory -
see above).

It seems to me that multiagent systems and the social sciences have a lot to say to
each other. Multiagent systems provide a powerful and novel tool for modelling and
understanding societies, while the social sciences represent a rich repository of concepts for
understanding and building multiagent systems — but they are quite distinct disciplines.

Notes and Further Reading

There are now many introductions to intelligent agents and multiagent systems. [Ferber, 1999] is an
undergraduate textbook, although it was written in the early 1990s, and so (for example) does not
mention any issues associated with the Web. A first-rate collection of articles introducing agent and
multiagent systems is [Weifs, 1999]. Many of its articles address issues in much more depth than is
possible in this book. I would certainly recommend this volume for anyone with a serious interest
in agents, and it would make an excellent companion to the present volume for more detailed
reading.

Three collections of research articles provide a comprehensive introduction to the field of
autonomous rational agents and rnultiagent systems: Bond and Gasser’s 1988 collection, Readings in
Distributed Artificial Intelligence, introduces almost all the basic problems in the multiagent systems
field, and although some of the papers it contains are now rather dated, it remains essential reading
[Bond and Gasser, 1988]; Huhns and Singh’s more recent collection sets itself the ambitious goal of
providing a survey of the whole of the agent field, and succeeds in this respect very well [Huhns
and Singh, 1998]. Finally, [Bradshaw, 1997] is a collection of papers on software agents.

For a general introduction to the theory and practice of intelligent agents, see [Wooldridge and
Jennings, 1995], which focuses primarily on the theory of agents, but also contains an extensive
review of agent architectures and programming languages. A short but thorough roadmap of agent
technology was published as [Jennings et al., 1998].

Class reading: introduction to [Bond and Gasser, 1988]. This article is probably the
best survey of the problems and issues associated with multiagent systems research yet
published. Most of the issues it addresses are fundamentally still open, and it therefore
makes a useful preliminary to the current volume. It may be worth revisiting when the
course is complete.




17

CHAPTER 1 Introduction

reydeyod sy 105 dewr purpy 11 2an3ig

sjuefe 4590U819s [B120s Jsnl |[& }l J.usi
[euonendwoa Uo snooy am
suolos(go
wejshs ek
olwouooe Jo adA) msu e 4SoIWouda isnl ) Lusi

uolieindwod Jo Junosoe
oU )&} SUOIIN|OS JIWOLOOS

edeo jusbe uo pasnooy A|leuociiiped) _<In_< isnl ) Lusi

h sl

seoussejeld JO JUNCDJE BYE] ;swieslshs painquisip isnl 1 Lusi
},Uop swajshs peinguisip

slWwelshs olWouooe
painquisip Joj sjusbe

UoljEjUBLIO-UEWNY suoljoRISqE UBLWINY O}

SUON0BISAE BUIYOEW

;swalshs jusbenynw Aym

wolj Aeme aaow

S8l18100s UBWNY
Bulpueisiepun Joj sjuabe

Bunndwoa snoynbign

gaM JijuUBLWaS By}

BuussuiBus
alemyos Joj sjusbe

J1syyeboy sjuabe nd o) moy
1S3NSS|-040BW

juabe ue pjing o} Moy

:88NSS|-0.01W

Buissasoid uonewO)|

EEIETEN

uoiebe|sp

Bupndwos ajigow

TR RS ]

JEEE

suweishs peppequis

Aunbign

swa|gold omy

M| S,8100[



Copyrighted material



Chapter

Intelligent Agents

The aim of this chapter is to give you an understanding of what agents are, and some of
the issues associated with building them. In later chapters, we will see specific approaches
to building agents.

An obvious way to open this chapter would be by presenting a definition of the term
agent. After all, this is a book about multiagent systems — surely we must all agree on
what an agent is? Sadly, there is no universally accepted definition of the term agent, and
indeed there is much ongoing debate and controversy on this very subject. Essentially,
while there is a general consensus that autonomy is central to the notion of agency, there
is little agreement beyond this. Part of the difficulty is that various attributes associated
with agency are of differing importance for different domains. Thus, for some applications,
the ability of agents to learn from their experiences is of paramount importance; for other
applications, learning is not only unimportant, it is undesirable.!

Nevertheless, some sort of definition is important — otherwise, there is a danger that the
term will lose all meaning. The definition presented here is adapted from [Wooldridge and
Jennings, 1995].

An agent is a computer system that is situated in some environment, and that is
capable of autonomous action in this environment in order to meet its delegated
objectives.

Figure 2.1 gives an abstract view of an agent. In this diagram, we can see the action
output generated by the agent in order to affect its environment. In most domains of
reasonable complexity, an agent will not have complete control over its environment. It will
have at best partial control, in that it can influence it. From the point of view of the agent, this

Michael Georgeff, the main architect of the PRS agent system discussed in later chapters, gives the example
of an air-traffic control system he developed; the clients of the system would have been horrified at the prospect
of such a system modifying its behaviour at run-time.

AUTONOMY

SITUATED
AGENT
AUTONOMOUS
ACTION



22 PART IT Intelligent Autonomous Agents

sensars
c
il
2
@
" S
(@ -
c
(=]
@
(=]
@
=
c
o
| ~ s
o
o

effectors/
actuators

Figure 2.1: An agent in its environment (after [Russell and Norvig, 1995, p. 32]). The agent
takes sensory input from the environment, and produces, as output, actions that affect it.
The interaction is usually an ongoing, non-terminating one.

means that the same action performed twice in apparently identical circumstances might
appear to have entirely different effects, and in particular it may fail to have the desired
effect. Thus agents in all but the most trivial of environments must be prepared for the
possibility of failure.

Varieties of autonomy

We have been casually using the term ‘autonomy’ without digging too deeply into what
this means. Unfortunately, ‘autonomy’ is a very loaded word: it conveys a number of
different meanings to different people. For our purposes, we can understand autonomy
as follows.

The first thing to say is that autonomy is a spectrum. At one extreme on this spectrum are
fully realized human beings, like you and me. We have as much freedom as anybody does
with respect to our beliefs, our goals, and our actions. Of course, we do not have complete
freedom over beliefs, goals, and actions. For example, I do not believe I could choose to
believe that 2 + 2 = 5; nor could I choose to want to suffer pain. Our genetic makeup, our
upbringing, and indeed society itself have effectively conditioned us to restrict our possible
choices. For example, millions of years of evolution have conditioned my animal nature to
prevent me wanting to suffer pain. There are of course cases where individuals go outside
these bounds, and often society may forcibly restrict the behaviour of such individuals, for
their own good and that of society itself. Nevertheless, a human in the free world is just
about as autonomous as it gets: we can choose our beliefs, our goals, and our actions.

At the other end of the autonomy spectrum, we might think of a software service (such
as a public method provided by a Java object). Such services are not autonomous in any
meaningful sense: they simply do what they are told. Similarly, applications such as word



CHAPTER 2 Intelligent Agents 23

processors are not usefully thought of as being autonomous — for the most part, they do
things only because we tell them to.

However, there is a range of points between these two extremes. For example, we can
think of a system that acts in some environment under remote control, through remote
supervision (where we monitor the behaviour of an entity, and can intervene if necessary,
but otherwise the entity acts under its own direction). The point on the autonomy spectrum
that we will largely be interested in is an entity to which we can delegate goals in some
high-level way (i.e. not just by giving it a fully elaborated program to execute), and then
have this entity decide for itself how best to accomplish its goals. The entity here is not
quite autonomous in the sense that you and I are: it cannot simply choose what goals to
accomplish, except inasmuch as such ‘subgoals’ are in the furtherance of our delegated
goals. Thus ‘autonomy’, in the sense that we are interested in it, means the ability and
requirement to decide how to act so as to accomplish our delegated goals.

Sometimes, we may be cautious about unleashing an agent on the world. We may want
to build in some degree of limited autonomy, or more generally, equip the agent with some
type of adjustable autonomy [Scerri et al., 2003]. The basic idea with adjustable autonomy is
that control of decision-making is transferred from the agent to a person whenever certain
conditions are met, for example [Scerri et al., 2003, p. 211]:

e when the agent believes that the human will make a decision with a substantially
higher benefit

e when there is a high degree of uncertainty about the environment
e when the decision might cause harm, or
e when the agent lacks the capability to make the decision itself.

Of course, there is a difficult balance to be struck: an agent that always comes back to its user
or owner for help with decisions will be unhelpful, while one that never seeks assistance
will probably also be useless.

Decisions and actions

Normally, an agent will have a repertoire of actions available to it. This set of possible
actions represents the agent’s ability to modify its environments. Note that not all actions
can be performed in all situations. For example, an action ‘lift table’ is only applicable in
situations where the weight of the table is sufficiently small that the agent can lift it. Actions
therefore have preconditions associated with them, which define the possible situations in
which they can be applied.

The key problem facing an agent is that of deciding which of its actions it should perform
in order to best satisfy its design objectives. Agent architectures, of which we shall see many
examples later in this book, are really software architectures for decision-making systems
that are embedded in an environment. At this point, it is worth pausing to consider some
examples of agents (though not, as yet, intelligent agents).

ADJUSTABLE
AUTONOMY

AGENT
ARCHITECTURES



CONTROL
SYSTEMS

PHYSICALLY
EMBODIED
AGENT
SOFTWARE
AGENT

FUNCTIONAL
SYSTEM

24 PART IT Intelligent Autonomous Agents

Control systems

First, any control system can be viewed as an agent. A simple (and overused) example of
such a system is a thermostat. Thermostats have a sensor for detecting room temperature.
This sensor is directly embedded within the environment (i.e. the room), and it produces as
output one of two signals: one that indicates that the temperature is too low, and another
which indicates that the temperature is OK. The actions available to the thermostat are
‘heating on” or ‘heating off’. The action ‘heating on” will generally have the effect of raising
the room temperature, but this cannot be a guaranteed effect - if the door to the room is open,
for example, switching on the heater may have no effect. The (extremely simple) decision-
making component of the thermostat implements (often in electromechanical hardware)
the following rules:

too cold — heating on,

temperature OK — heating off.

More complex environment control systems, of course, have considerably richer decision
structures. Examples include autonomous space probes, fly-by-wire aircraft, nuclear reac-
tor control systems, and so on.

Software demons

Second, most software demons (such as background processes in the Unix operating
system), which monitor a software environment and perform actions to modify it, can be
viewed as agents. An example is the X Windows program xbiff. This utility continually
monitors a user’s incoming email, and indicates via a GUI icon whether or not they
have unread messages. Whereas our thermostat agent in the previous example inhabited
a physical environment — the physical world — the xbiff program inhabits a soffware
environment. It obtains information about this environment by carrying out software
functions (by executing system programs such as 1s, for example), and the actions it
performs are software actions (changing an icon on the screen, or executing a program).
The decision-making component is just as simple as our thermostat example.

To summarize, agents are simply computer systems that are capable of autonomous
action in some environment in order to meet their design objectives. An agent will typically
sense its environment (by physical sensors in the case of agents situated in part of the real
world, or by software sensors in the case of software agents), and will have available a
repertoire of actions that can be executed to modify the environment, which may appear to
respond non-deterministically to the execution of these actions.

Reactive and functional systems

Originally, software engineering concerned itself with what are known as ‘functional’ sys-
tems. A functional system is one that simply takes some input, performs some computation
over this input, and eventually produces some output. Such systems may formally be
viewed as functions f : I — O from a set I of inputs to a set O of outputs. The classic example



CHAPTER 2 Intelligent Agents 25

Environments

It is worth pausing at this point to discuss the general properties of the environments
that agents may find themselves in. Russell and Norvig suggest the following
classification of environment properties [Russell and Norvig, 1995, p. 46].

Accessible versus inaccessible An accessible environment is one in which the agent
can obtain complete, accurate, up-to-date information about the environment’s
state. Most real-world environments (including, for example, the everyday
physical world and the Internet) are not accessible in this sense.

Deterministic versus non-deterministic A deterministic environment is one in which
any action has a single guaranteed effect — there is no uncertainty about the state
that will result from performing an action.

Static versus dynamic A sfatic environment is one that can be assumed to remain
unchanged except by the performance of actions by the agent. In contrast, a
dynamic environment is one that has other processes operating on it, and which
hence changes in ways beyond the agent’s control. The physical world is a highly
dynamic environment, as is the Internet.

Discrete versus continuous An environment is discrete if there are a fixed, finite
number of actions and percepts in it.

In general, the most complex kind of environment is one that is inaccessible, non-
deterministic, dynamic, and continuous.

of such a system is a compiler, which can be viewed as a mapping from a set I of legal source
programs to a set O of corresponding object or machine-code programs.

Although the internal complexity of a functional system may be great (e.g. in the case of
a compiler for a complex programming language such as Ada), functional programs are, in
general, regarded as comparatively simple from the standpoint of software development.
Unfortunately, many computer systems that we desire to build are not functional in this
sense. Rather than simply computing a function of some input and then terminating, many
computer systems are reactive, in the following sense:

Reactive systems are systems that cannot adequately be described by the relational or
functional view. The relational view regards programs as functions ... from an initial
state to a terminal state. Typically, the main role of reactive systems is to maintain an
interaction with their environment, and therefore must be described (and specified) in
terms of their ongoing behaviour . .. [E]very concurrent system . . . must be studied by
behavioural means. This is because each individual module in a concurrent system is
a reactive subsystem, interacting with its own environment which consists of the other
modules.

[Pnueli, 1986]

Reactive systems are harder to engineer than functional ones. Perhaps the most im-
portant reason for this is that an agent engaging in a (conceptually) non-terminating

REACTIVE
SYSTEM



28 PART IT Intelligent Autonomous Agents

our agent to be able to react to the new situation, in time for the reaction to be of some use.
However, we do not want our agent to be continually reacting, and hence never focusing on
a goal long enough to actually achieve it.

On reflection, it should come as little surprise that achieving a good balance between
goal-directed and reactive behaviour is hard. After all, it is comparatively rare to find
humans that do this very well. This problem - of effectively integrating goal-directed and
reactive behaviour — is one of the key problems facing the agent designer. As we shall see,
a great many proposals have been made for how to build agents that can do this - but the
problem is essentially still open.

Finally, let us say something about social ability, the final component of flexible au-
tonomous action as defined here. In one sense, social ability is trivial: every day, millions of
computers across the world routinely exchange information with both humans and other
computers. But the ability to exchange bit streams is not really social ability. Consider that,
in the human world, comparatively few of our meaningful goals can be achieved without
the cooperation of other people, who cannot be assumed to share our goals —in other words,
they are themselves autonomous, with their own agenda to pursue. To achieve our goals
in such situations, we must negotinte and cooperate with others. We may be required to
understand and reason about the goals of others, and to perform actions (such as paying
them money) that we would not otherwise choose to perform, in order to get them to
cooperate with us, and achieve our goals. This type of social ability is much more complex,
and much less well understood than simply the ability to exchange binary information.
Social ability in general (and topics such as negotiation and cooperation in particular)
are dealt with elsewhere in this book, and will not therefore be considered here. In this
chapter, we will be concerned with the decision-making of individual intelligent agents in
environments which may be dynamic, unpredictable, and uncertain, but do not contain
other agents.

2.2 Agents and Objects

Programmers familiar with object-oriented languages such as Java, C++, or Smalltalk
sometimes fail to see anything novel in the idea of agents. When one stops to consider
the relative properties of agents and objects, this is perhaps not surprising.

There is a tendency ... to think of objects as ‘actors’” and endow them with human-
like intentions and abilities. It's tempting to think about objects ‘deciding” what to do
about a situation, [and] ‘asking” other objects for information. ... Objects are not passive
containers for state and behaviour, but are said to be the agents of a program’s activity.

[NeXT Computer Inc., 1993, p. 7]

Objects are defined as computational entities that enncapsulate some state, are able to perform
actions, or methods, on this state, and communicate by message passing. While there are
obvious similarities, there are also significant differences between agents and objects. The
first is in the degree to which agents and objects are autonomous. Recall that the defining
characteristic of object-oriented programming is the principle of encapsulation — the idea
that objects can have control over their own internal state. In programming languages like



CHAPTER 2 Intelligent Agents 29

Java, we can declare instance variables (and methods) to be private, meaning that they
are only accessible from within the object. (We can of course also declare them public,
meaning that they can be accessed from anywhere, and indeed we must do this for methods
so that they can be used by other objects. But the use of publicinstance variables is usually
considered poor programming style.) In this way, an object can be thought of as exhibiting
autonomy over its state: it has control over it. But an object does not exhibit control over
its behaviour. That is, if a method m is made available for other objects to invoke, then
they can do so whenever they wish — once an object has made a method public, then
it subsequently has no control over whether or not that method is executed. Of course, an
object must make methods available to other objects, or else we would be unable to build
a system out of them. This is not normally an issue, because if we build a system, then we
design the objects that go in it, and they can thus be assumed to share a ‘common goal".
But in many types of multiagent system (in particular, those that contain agents built by
different organizations or individuals), no such common goal can be assumed. It cannot
be taken for granted that an agent i will execute an action (method) a just because another
agent j wants it to — 2 may not be in the best interests of i. We thus do not think of agents
as invoking methods upon one another, but rather as requesting actions to be performed. If
j requests 1 to perform g, then i may perform the action or it may not. The locus of control
with respect to the decision about whether to execute an action is thus different in agent
and object systems. In the object-oriented case, the decision lies with the object that invokes
the method. In the agent case, the decision lies with the agent that receives the request. This
distinction between objects and agents has been nicely summarized in the following slogan.

Objects do it for free; agents do it because they want to.

Of course, there is nothing to stop us implementing agents using object-oriented tech-
niques. For example, we can build some kind of decision-making about whether to execute
a method into the method itself, and in this way achieve a stronger kind of autonomy for
our objects. The point is that autonomy of this kind is not a component of the basic object-
oriented model.

The second important distinction between object and agent systems is with respect to the
notion of flexible (reactive, proactive, social) autonomous behaviour. The standard object
model has nothing whatsoever to say about how to build systems that integrate these
types of behaviour. Again, one could object that we can build object-oriented programs
that do integrate these types of behaviour, but this argument misses the point, which is that
the standard object-oriented programming model has nothing to do with these types of
behaviour.

The third important distinction between the standard object model and our view of
agent systems is that agents are each considered to have their own thread of control —in the
standard object model, there is a single thread of control in the system. Of course, a lot of
work has recently been devoted to concurrency in object-oriented programming. For exam-
ple, the Java language provides built-in constructs for multithreaded programming. There
are also many programming languages available (most of them admittedly prototypes)
that were specifically designed to allow concurrent object-based programming. But such



30 PART IT Intelligent Autonomous Agents

languages do not capture the idea of agents as autonomous entities. Perhaps the closest that
the object-oriented community comes is in the idea of active objects.

An active object is one that encompasses its own thread of control. ... Active objects
are generally autonomous, meaning that they can exhibit some behaviour without being
operated upon by another object. Passive objects, on the other hand, can only undergo a
state change when explicitly acted upon.

[Booch, 1994, p. 91]

Thus active objects are essentially agents that do not necessarily have the ability to exhibit
flexible autonomous behaviour.

To summarize, the traditional view of an object and our view of an agent have at least
three distinctions:

e Agents embody a stronger notion of autonomy than objects, and, in particular, they
decide for themselves whether or not to perform an action on request from another
agent.

e Agents are capable of flexible (reactive, proactive, social) behaviour, and the standard
object model has nothing to say about such types of behaviour.

e A multiagent system is inherently multithreaded, in that each agent is assumed to
have at least one thread of control.

2.3 Agents and Expert Systems

Expert systems were the most important Al technology of the 1980s [Hayes-Roth et al.,
1983]. An expert system is one that is capable of solving problems or giving advice in some
knowledge-rich domain [Jackson, 1986]. A classic example of an expert system is MYCIN,
which was intended to assist physicians in the treatment of blood infections in humans.
MYCIN worked by a process of interacting with a user in order to present the system with
a number of (symbolically represented) facts, which the system then used to derive some
conclusion. MYCIN acted very much as a consultant: it did not operate directly on humans,
or indeed any other environment. Thus perhaps the most important distinction between
agents and expert systems is that expert systems like MYCIN are inherently disentbodied.
By this, I mean that they do not interact directly with any environment: they get their
information not via sensors, but through a user acting as middleman. In the same way,
they do not act on any environment, but rather give feedback or advice to a third party. In
addition, expert systems are not generally capable of cooperating with other agents.
In summary, the main differences between agents and expert systems are as follows:

e ‘Classic’ expert systems are disembodied — they are not coupled to any environment
in which they act, but rather act through a user as a ‘middleman’.

e Expertsystems are not generally capable of reactive, proactive behaviour.

e Expert systems are not generally equipped with social ability, in the sense of
cooperation, coordination, and negotiation.



CHAPTER 2 Intelligent Agents 31

Despite these differences, some expert systems (particularly those that perform real-time
control tasks) look very much like agents.

2.4 Agents as Intentional Systems

One common approach adopted when discussing agent systems is the intentional stance.
With this approach, we ‘endow’ agents with mental states: beliefs, desires, wishes, hopes,
and so on. The rationale for this approach is as follows. When explaining human activity,
it is often useful to make statements such as:

Janine took her umbrella because she belicved it was going to rain.
Michael worked hard because he wantfed to finish his book.

These statements make use of a folk psychology, by which human behaviour is predicted
and explained through the attribution of attitudes, such as believing and wanting (as in
the above examples), hoping, fearing, and so on (see, for example, [Stich, 1983, p. 1] for
a discussion of folk psychology). This folk psychology is well established: most people
reading the above statements would say they found their meaning entirely clear, and would
not give them a second glance.

The attitudes employed in such folk psychological descriptions are called the intentional
notions.? The philosopher Daniel Dennett has coined the term intentional system to describe
entities ‘whose behaviour can be predicted by the method of attributing belief, desires and
rational acumen’ [Dennett, 1987, p. 49]. Dennett identifies different ‘levels’ of intentional
system as follows.

A first-order intentional system has beliefs and desires (etc.) but no beliefs and desires
about beliefs and desires. . .. A second-order intentional system is more sophisticated; it
has beliefs and desires (and no doubt other intentional states) about beliefs and desires
(and other intentional states) — both those of others and its own.

[Dennett, 1987, p. 243]

One can, of course, carry on this hierarchy of intentionality. A moment’s reflection suggests
that humans do not use more than about three layers of the intentional stance hierarchy
when reasoning in everyday life (unless we are engaged in an artificially constructed
intellectual activity, such as solving a puzzle). One interesting aspect of the intentional
stance is that it seems to be a key ingredient in the way we coordinate our activities with
others on a day-by-day basis.

I call an old friend on the other coast and we agree to meet in Chicago at the entrance of
a bar in a certain hotel on a particular day two months hence at 7:45 p.m., and everyone

2Un fortunately, the word ‘intention” is used in several different ways in logic and the philosophy of mind. First,
there is the mentalistic usage, as in ‘I intended to kill him’. Second, an intentional notion is one of the attitudes, as
above, Finally, in logic, the word intension (with an ‘s’) means the internal content of a concept, as opposed to its
extension. In what follows, the intended meaning should always be clear from context.

INTENTIONAL
STANCE

MENTAL
STATE

FOLK
FSYCHOLOGY

INTENTIONAL
SYSTEM



32 PART IT Intelligent Autonomous Agents

who knows us predicts that on that day at that time we will meet up. And we do meet
up. ... The calculus behind this forecasting is intuitive psychology: the knowledge that
[ want to meet my friend and vice versa, and that each of us believes the other will be at a
certain place at a certain time and knows a sequence of rides, hikes, and flights that will
take us there. No science of mind or brain is likely to do better.

[Pinker, 1997, pp. 63—64]

The intentional stance, intuitively appealing though it is, is not universally accepted within
the philosophy of mind research community, and does not seem to sit comfortably with
ideas like the behavioural view of action. The behavioural view of action (most famously
associated with researchers such as B. F. Skinner) tried to give an explanation of human
behaviour in terms of learning stimulus-response behaviours, which are produced via
‘conditioning’ with positive and negative feedback.?

The stimulus-response theory turned out to be wrong. Why did Sally run out of the
building? Because she believed it was on fire and did not want to die. . . . What [predicts]
Sally’s behaviour, and predicts it well, is whether she believes herself to be in danger.
Sally’s beliefs are, of course, related to the stimuli impinging on her, but only in a
tortuous, circuitous way, mediated by all the rest of her beliefs about where she is and
how the world works.

[Pinker, 1997, pp. 62-63]

Now, we seem to be proposing to use phrases such as belief, desire, and intention to
talk about computer programs. An obvious question, therefore, is whether it is legitimate
or useful to attribute beliefs, desires, and so on to artificial agents. Is this not just
anthropomorphism? McCarthy, among others, has argued that there are occasions when
the intentional stance is appropriate as follows.

To ascribe beliefs, free will, intentions, consciousness, abilities, or wants to a machine is
legitimate when such an ascription expresses the same information about the machine
that it expresses about a person. It is useful when the ascription helps us understand the
structure of the machine, its past or future behaviour, or how to repair or improve it. It
is perhaps never logically required even for humans, but expressing reasonably briefly
what is actually known about the state of the machine in a particular situation may
require mental qualities or qualities isomorphic to them. Theories of belief, knowledge,
and wanting can be constructed for machines in a simpler setting than for humans,
and later applied to humans. Ascription of mental qualities is most straightforward for
machines of known structure such as thermostats and computer operating systems, but
is most useful when applied to entities whose structure is incompletely known.

[McCarthy, 1978] (The underlining is from [Shoham, 1990].)

What objects can be described by the intentional stance? As it turns out, almost any
automaton can. For example, consider a light switch as follows.

3Skinner was an interesting character, although I think it is fair to say that many are uncomfortable with his
more extreme views on behaviourism. My favourite story about Skinner is that he designed a guided missile
controller in which a group of pigeons in the nose cone of a missile would be shown a video feed image of the
missile’s progress, and would guide the missile by ‘pecking their way to the target’, so to speak.



CHAPTER 2 Intelligent Agents 35

A run, r, of an agent in an environment is thus a sequence of interleaved environment se~s
states and actions:

. % Lo &g &3 LT |
F:ég—€ —€) — €3 — -+ — €y.

Let
e R be the set of all such possible finite sequences (over E and Ac)
e R4 be the subset of these that end with an action
o RE be the subset of these that end with an environment state.

We will use r, 7/, . . . to stand for members of R.
In order to represent the effect that an agent’s actions have on an environment, we
introduce a state fransformer function (cf. [Fagin et al., 1995, p. 154]):

T RAC 5 9F,

Thus a state transformer function maps a run (assumed to end with the action of an agent)
to a set of possible environment states — those that could result from performing the action.

There are two important points to note about this definition. First, environments are
assumed to be history dependent. In other words, the next state of an environment is
not solely determined by the action performed by the agent and the current state of
the environment. The actions made earlier by the agent also play a part in determining
the current state. Second, note that this definition allows for non-determinism in the
environment. There is thus uncertainty about the result of performing an action in some
state.

If T(r) =@ (where r is assumed to end with an action), then there are no possible
successor states to r. In this case, we say that the system has ended its run. We will also
assume that all runs eventually terminate.

Formally, we say that an environment Env is a triple Env = (E, eg, T), where E is a set of
environment states, ¢y € E is an initial state, and 7 is a state transformer function.

We now need to introduce a model of the agents that inhabit systems. We model agents
as functions which map runs (assumed to end with an environment state) to actions
(cf. [Russell and Subramanian, 1995, pp. 580, 581]):

Ag: RE - Ac.

Thus an agent makes a decision about what action to perform based on the history of the
system that it has witnessed to date.

Notice that while environments are implicitly non-deterministic, agents are assumed to
be deterministic. Let .AAG be the set of all agents.

We say a system is a pair containing an agent and an environment. Any system will
have associated with it a set of possible runs; we denote the set of runs of agent Ag in
environment Env by R(Ag, Env). For simplicity, we will assume that R(Ag, Env) contains
only terminated runs, i.e. runs r such that r has no possible successor states: 7(r) = @.
(We will thus not consider infinite runs for now.)



PURELY REACTIVE
AGENT

TROPISTIC
AGENTS

36 PART IT Intelligent Autonomous Agents

Formally, a sequence

(FUI Xp, €1, &1, €2, - - )

represents a run of an agent Ag in environment Env = (E, eg, T) if
1. g is the initial state of Env;
2. ag = Ag(eg); and
3. forallu >0,
ew € T((eo, wo, - -+, @u-1)),

and
ay = Ag((eo, wo, . . ., €u)).

Two agents Ag, and Ag, are said to be behaviourally equivalent with respect to environ-
ment Env if and only if R(Ag,, Env) = R(Ag,, Env), and simply behaviourally equivalent
if and only if they are behaviourally equivalent with respect to all environments.

Notice that, so far, I have said nothing at all about how agents are actually implemented;
we will return to this issue later.

Purely reactive agents

Certain types of agents decide what to do without reference to their history. They base
their decision-making entirely on the present, with no reference at all to the past. We will
call such agents purely reactive, since they simply respond directly to their environment.
(Sometimes they are called fropistic agents [Genesereth and Nilsson, 1987]: tropism is the
tendency of plants or animals to react to certain stimulae.)

Formally, the behaviour of a purely reactive agent can be represented by a function

Ag:E — Ac.

It should be easy to see that, for every purely reactive agent, there is an equivalent
‘standard” agent, as discussed above; the reverse, however, is not generally the case.

Our thermostat agent is an example of a purely reactive agent. Assume, without loss of
generality, that the thermostat’s environment can be in one of two states — either too cold,
or temperature OK. Then the thermostat is simply defined as follows:

Ag(e) - heater off if e = temperature OK,
§ heater on otherwise.



CHAPTER 2 Intelligent Agents 37

( Agent
see action
-
\J
<

Environment

Figure 2.2: An agent that maintains state.

Agents with state

Viewing agents at this abstract level makes for a pleasantly simple analysis. However, it
does not help us to construct them. For this reason, we will now refine our abstract model of
agents, by breaking it down into subsystems in exactly the way that one does in standard
software engineering. As we refine our view of agents, we find ourselves making design
choices that mostly relate to the subsystems that go to make up an agent — what data and
control structures will be present. An agent architecture is essentially a map of the internals
of an agent — its data structures, the operations that may be performed on these data
structures, and the control flow between these data structures. Later in this book, we will
discuss a number of different types of agent architecture, with very different views on the
data structures and algorithms that will be present within an agent. For the purposes of
this chapter, we will ignore the content of an agent’s state, and simply consider the overall
role of state in an agent’s decision-making loop — see Figure 2.2.

Thus agents have some internal data structure, which is typically used to record
information about the environment state and history. Let I be the set of all internal states
of the agent. An agent’s decision-making process is then based, at least in part, on this
information.

The perception function see represents the agent’s ability to obtain information from its
environment. The see function might be implemented in hardware in the case of an agent
situated in the physical world: for example, it might be a video camera or an infrared sensor
on a mobile robot. For a software agent, the sensors might be system commands that obtain
information about the software environment, such as 1s, £inger, or suchlike. The output



PERCEPTS

TASK
SPECIFICATION

UTILITY

38 PART IT Intelligent Autonomous Agents

of the see function is a percept — ‘a perceptual input’. Let Per be a (non-empty) set of percepts.
Then see is a function
see: E — Per

The action-selection function action is defined as a mapping
action : I — Ac

from internal states to actions. An additional function next is introduced, which maps an
internal state and percept to an internal state:

next : I x Per — I.

The behaviour of a state-based agent can be summarized in the following way. The
agent starts in some initial internal state ip. It then observes its environment state e,
and generates a percept see(e). The internal state of the agent is then updated via the
next function, becoming set to next(ig, see(e)). The action selected by the agent is then
action(next(ig, see(e))). This action is then performed, and the agent enters another cycle,
perceiving the world via see, updating its state via next, and choosing an action to perform
via action.

It is worth observing that state-based agents as defined here are in fact no more
powerful than the standard agents we introduced earlier. In fact, they are identical in their
expressive power — every state-based agent can be transformed into a standard agent that
is behaviourally equivalent.

2.6 How to Tell an Agent What to Do

We do not (usually) build agents for no reason. We build them in order to carry out tasks
for us. In order to get the agent to do the task, we must somehow communicate the desired
task to the agent. This implies that the task to be carried out must be specified by us in
some way. An obvious question is how to specify these tasks: how to tell the agent what
to do. One way to specify the task would be simply to write a program for the agent to
execute. The obvious advantage of this approach is that we are left with no uncertainty
about what the agent will do. It will do exactly what we told it to, and no more. But the
very obvious disadvantage is that we have to think about exactly how the task will be
carried out ourselves, and if unforeseen circumstances arise, the agent executing the task
will be unable to respond accordingly. So, more usually, we want to tell our agent what to
do without telling it how to do it. One way of doing this is to define tasks indirectly, via some
kind of performance measure. There are several ways in which such a performance measure
can be defined. The first is to associate utilities with states of the environment.

Utility functions

A utility is a numeric value representing how ‘good” a state is: the higher the utility, the
better. The task of the agent is then to bring about states that maximize utility — we do not
specify to the agent how this is to be done. In this approach, a task specification would



CHAPTER 2 Intelligent Agents 39

simply be a function
u:E—R

which associates a real value with every environment state. Given such a performance
measure, we can then define the overall utility of an agent in some particular environment
in several different ways. One (pessimistic) way is to define the utility of the agent as the
utility of the worst state that might be encountered by the agent; another might be to define
the overall utility as the average utility of all states encountered. There is no right or wrong
way: the measure depends upon the kind of task you want your agent to carry out.

The main disadvantage of this approach is that it assigns utilities to local states; it is
difficult to specify a long-term view when assigning utilities to individual states. To get
around this problem, we can specify a task as a function which assigns a utility not to
individual states, but to runs themselves:

u:R—=R.

If we are concerned with agents that must operate independently over long periods of time,
then this approach appears more appropriate to our purposes. One well-known example
of the use of such a utility function is in the Tileworld [Pollack, 1990]. The Tileworld was
proposed primarily as an experimental environment for evaluating agent architectures. It is
a simulated two-dimensional grid environment on which there are agents, tiles, obstacles,
and holes. An agent can move in four directions, up, down, left, or right, and if it is
located next to a tile, it can push it. An obstacle is a group of immovable grid cells: agents
are not allowed to travel freely through obstacles. Holes have to be filled up with tiles
by the agent. An agent scores points by filling holes with tiles, the aim being to fill as
many holes as possible. The Tileworld is an example of a dyngmic environment: starting
in some randomly generated world state, based on parameters set by the experimenter,
it changes over time in discrete steps, with the random appearance and disappearance of
holes. The experimenter can set a number of Tileworld parameters, including the frequency
of appearance and disappearance of tiles, obstacles, and holes; and the choice between hard
bounds (instantaneous) or soft bounds (slow decrease in value) for the disappearance of
holes. In the Tileworld, holes appear randomly and exist for as long as their life expectancy,
unless they disappear because of the agent’s actions. The interval between the appearance
of successive holes is called the hole gestation time. The performance of an agent in the
Tileworld is measured by running the Tileworld testbed for a predetermined number of
time steps, and measuring the number of holes that the agent succeeds in filling. The
performance of an agent on some particular run is then defined as

number of holes filled in r

u(r)

~ humber of holes that appeared in 7’

This gives a normalized performance measure in the range 0 (the agent did not succeed
in filling even one hole) to 1 (the agent succeeded in filling every hole that appeared).
Experimental error is eliminated by running the agent in the environment a number of
times, and computing the average of the performance.

Despite its simplicity, the Tileworld allows us to examine several important capabilities
of agents. Perhaps the most important of these is the ability of an agent to react to changes



42 PART IT Intelligent Autonomous Agents

the set of all agents AG can be implemented on this machine. Again, any agent Ag that
required more than the available memory would not run.
Let us write AG,, to denote the subset of AG that can be implemented on n:

AGy = {Ag | Ag € AG and Ag can be implemented on m}.

Now, assume we have machine (i.e. computer) m, and we wish to place this machine in
environment Env; the task we wish m to carry out is defined by utility function 1: R — R.
Then we can replace Equation (2.1) with the following, which more precisely defines the
properties of the desired agent Ag,:

Agypt = arg max Y. u(r)P(r| Ag, Env). =
AgeAG,, reR(AgEnv)

The subtle but important change in Equation (2.2) is that we are no longer looking for our
agent from the set of all possible agents AG, but from the set AG,, of agents that can actually
be implemented on the machine that we have for the task.

Utility-based approaches to specifying tasks for agents have several disadvantages. The
most important of these is that it is very often difficult to derive an appropriate utility
function; the Tileworld is a useful environment in which to experiment with agents, but it
represents a gross simplification of real-world scenarios. The second is that usually we find
it more convenient to talk about tasks in terms of ‘goals to be achieved’ rather than utilities.

memcareasc 1 N1 leads us to what I call predicate task specifications.

SPECIFICATION

Predicate task specifications

Put simply, a predicate task specification is one where the utility function acts as a predicate
over runs. Formally, we will say that a utility function # : R — R is a predicate if the range
of u is the set {0, 1}, that is, if # guarantees to assign a run either 1 (“true’) or 0 (‘false’). A
run r € R will be considered to satisfy the specification u if u(r) = 1, and fails to satisfy the
specification otherwise.

We will use ¥ to denote a predicate specification, and write ¥(r) to indicate that run
r € R which satisfies ¥. In other words, ¥ (r) is true if and only if u(r) = 1. For the moment,
we will leave aside the questions of what form a predicate task specification might take.

Task environments
A task environment is defined to be a pair (Enov, ¥), where Env is an environment, and
¥:R—{0,1}

is a predicate over runs. Let 7¢& be the set of all task environments. A task environment
thus specifies:

e the properties of the system the agent will inhabit (i.e. the environment Env), and also

e the criteria by which an agent will be judged to have either failed or succeeded in its
task (i.e. the specification ¥).



CHAPTER 2 Intelligent Agents 43

Given a task environment (Env, ¥), we write Ry(Ag, Env) to denote the set of all runs of
the agent Ag in the environment Env that satisfy '¥. Formally,

Ry (Ag, Env) = {r|re R(Ag, Env) and ¥(r)}.
We then say that an agent Ag succeeds in task environment (Env, ¥) if
Ry (Ag, Env) = R(Ag, Env).

In other words, Ag succeeds in (Env, ¥) if every run of Ag in Env satisfies specification ¥,
i.e.if

Vr € R(Ag, Env) we have ¥ (r).
Notice that this is in one sense a pessimistic definition of success, as an agent is only deemed
to succeed if every possible run of the agent in the environment satisfies the specification.
An alternative, optimistic definition of success is that the agent succeeds if af least one run of
the agent satisfies ¥:

dr € R(Ag, Env) such that ¥ (r).

If required, we could easily modify the definition of success by extending the state
transformer function T to include a probability distribution over possible outcomes, and
hence induce a probability distribution over runs. We can then define the success of an
agent as the probability that the specification ¥ is satisfied by the agent. As before, let
P(r | Ag, Env) denote the probability that run r occurs if agent Ag is placed in environment
Env. Then the probability P(¥ | Ag, Env) that ¥ is satisfied by Ag in Env would simply be

P(Y | Ag, Env) = Y P(r|Ag, Env).
re Ry (Ag,Env)

Achievement and maintenance tasks

The notion of a predicate task specification may seem a rather abstract way of describing
tasks for an agent to carry out. In fact, it is a generalization of certain very common forms
of tasks. Perhaps the two most common types of tasks that we encounter are achievement
tasks and maintenance tasks.

Achievement tasks Those of the form ‘achieve state of affairs ¢’.

Maintenance tasks Those of the form ‘maintain state of affairs ¢".

Intuitively, an achievement task is specified by a number of goal states; the agent is required ™
to bring about one of these goal states (we do not care which one — all are considered
equally good). Achievement tasks are probably the most commonly studied form of task

in AL Many well-known Al problems (e.g. the Blocks World) are achievement tasks. A
task specified by a predicate ¥ is an achievement task if we can identify some subset G of
environment states E such that ¥ (r) is true just in case one or more of § occur in r; an agent

is successful if it is guaranteed to bring about one of the states G, that is, if every run of the
agent in the environment results in one of the states G.



MAINTENANCE
TASKS

AGENT
SYNTHESIS

44 PART IT Intelligent Autonomous Agents

Formally, the task environment (Env, ¥) specifies an achievement task if and only if
there is some set G C E such that for all » € R(Ag, Env), the predicate ¥(r) is true if and
only if there exists some e € G such that e € r. We refer to the set G of an achievement task
environment as the goal states of the task; we use (Env, G) to denote an achievement task
environment with goal states G and environment Eno.

A useful way to think about achievement tasks is as the agent playing a game against the
environment. In the terminology of game theory [Binmore, 1992], this is exactly what is
meant by a ‘game against nature”. The environment and agent both begin in some state; the
agent takes a turn by executing an action, and the environment responds with some state;
the agent then takes another turn, and so on. The agent ‘wins’ if it can force the environment
into one of the goal states G.

Just as many tasks can be characterized as problems where an agent is required to bring
about some state of affairs, so many others can be classified as problems where the agent
is required to avoid some state of affairs. As an extreme example, consider a nuclear reactor
agent, the purpose of which is to ensure that the reactor never enters a ‘meltdown’ state.
Somewhat more mundanely, we can imagine a software agent, one of the tasks of which is
to ensure that a particular file is never simultaneously open for both reading and writing.
We refer to such task environments as maintenance task environments.

A task environment with specification ¥ is said to be a maintenance task environment if
we can identify some subset B of environment states, such that ¥(r) is false if any member
of B occurs in 7, and true otherwise. Formally, (Env, ¥) is a maintenance task environment
if there is some B C E such that ¥(r) if and only if for all ¢ € B, we have e ¢ r for all r €
R(Ag, Env). We refer to B as the failure set. As with achievement task environments, we
write (Env, B) to denote a maintenance task environment with environment Env and failure
set B.

It is again useful to think of maintenance tasks as games. This time, the agent wins if it
manages to avoid all the states in B. The environment, in the role of opponent, is attempting
to force the agent into B; the agent is successful if it has a winning strategy for avoiding B.

More complex tasks might be specified by combinations of achievement and maintenance
tasks. A simple combination might be ‘achieve any one of states G while avoiding all
states B’. More complex combinations are of course also possible.

Synthesizing agents

Knowing that there exists an agent which will succeed in a given task environment is
helpful, but it would be more helpful if, knowing this, we also had such an agent to hand.
How do we obtain such an agent? The obvious answer is to ‘manually’ implement the agent
from the specification. However, there are at least two other possibilities (see [Wooldridge,
1997] for a discussion):

1. we can try to develop an algorithm that will automatically synthesize such agents for
us from task environment specifications, or

2. we can try to develop an algorithm that will directly execute agent specifications in
order to produce the appropriate behaviour.



CHAPTER 2 Intelligent Agents 45

In this section, I briefly consider these possibilities, focusing primarily on agent synthesis.

Agent synthesis is, in effect, automatic programming: the goal is to have a program
that will take as input a task environment, and from this task environment automatically
generate an agent that succeeds in this environment. Formally, an agent synthesis algorithm
syn can be understood as a function

syn: TE — (AGU{L}).

Note that the function syn can output an agent, or else output L — think of L as being like
null in Java. Now, we will say a synthesis algorithm is

sound if, whenever it returns an agent, this agent succeeds in the task environment that is
passed as input, and

complete if it is guaranteed to return an agent whenever there exists an agent that will
succeed in the task environment given as input.

Thus a sound and complete synthesis algorithm will only output L given input (Env, ¥)
when no agent exists that will succeed in (Env, ¥).
Formally, a synthesis algorithm syn is sound if it satisfies the following condition:

syn((Env, ¥)) = Agimplies R(Ag, Env) = Ry (Ag, Env).
Similarly, syn is complete if it satisfies the following condition:
JAg € AG s.t. R(Ag, Env) = Ry (Ag, Env) implies syn((Env, ¥)) # L.

Intuitively, soundness ensures that a synthesis algorithm always delivers agents that do
their job correctly, but may not always deliver agents, even where such agents are in
principle possible. Completeness ensures that an agent will always be delivered where
such an agent is possible, but does not guarantee that these agents will do their job
correctly. Ideally, we seek synthesis algorithms that are both sound and complete. Of the
two conditions, soundness is probably the more important; there is not much point in
complete synthesis algorithms that deliver ‘buggy” agents.

Notes and Further Reading

A view of artificial intelligence as the process of agent design is presented in [Russell and Norvig,
1995], and, in particular, Chapter 2 of [Russell and Norvig, 1995] presents much useful material.
The definition of agents presented here is based on [Wooldridge and Jennings, 1995], which also
contains an extensive review of agent architectures and programming languages. The question
of ‘what is an agent’ is one that continues to generate some debate; a collection of answers
may be found in [Miiller et al., 1997]. The relationship between agents and objects has not been
widely discussed in the literature, but see [Gasser and Briot, 1992]. Other interesting and readable
introductions to the idea of intelligent agents include [Kaelbling, 1986] and [Etzioni, 1993]. A
collection of papers exploring the notion of autonomy in software agents is [Hexmoor et al., 2003].

The abstract model of agents presented here is based on that given in [Genesereth and Nilsson,
1987, Chapter 13], and also makes use of some ideas from [Russell and Wefald, 1991] and [Russell



46 PART IT Intelligent Autonomous Agents

and Subramanian, 1995]. The properties of perception as discussed in this section lead to knowledge
theory, a formal analysis of the information implicit within the state of computer processes, which
has had a profound effect in theoretical computer science: this issue is discussed in Chapter 17.

The relationship between artificially intelligent agents and software complexity has been
discussed by several researchers: [Simon, 1981] was probably the first. More recently, [Booch, 1994]
gives a good discussion of software complexity and the role that object-oriented development has
to play in overcoming it. [Russell and Norvig, 1995] introduced classification of environments that
we presented in the sidebar, and distinguished between the ‘easy’ and ‘hard’ cases. [Kaelbling,
1986] touches on many of the issues discussed here, and [Jennings, 1999] also discusses the issues
associated with complexity and agents.

The relationship between agent and environment, and, in particular, the problem of
understanding how a given agent will perform in a given environment, has been studied
empirically by several researchers. [Pollack and Ringuette, 1990] introduced the Tileworld, an
environment for experimentally evaluating agents that allowed a user to experiment with various
environmental parameters (such as the rate at which the environment changes — its dynamism). We
discuss these issues in Chapter 4. An informal discussion on the relationship between agent and
environment is [Miiller, 1999].

The link between the goal-oriented view and the utility-oriented view of task specifications
has not received too much explicit attention in the literature. This is perhaps a little surprising,
given that, until the 1990s, the goal-oriented view was dominant in artificial intelligence, while this
century, the utility-oriented view has dominated. One nice discussion on the links between the two
views is [[Haddawy and Hanks, 1998].

More recently, there has been renewed interest by the artificial intelligence planning community
in decision theoretic approaches to planning [Blythe, 1999]. One popular approach involves
representing agents and their environments as ‘partially observable Markov decision processes’
(POMDPs) [Kaelbling et al., 1998]. Put simply, the goal of solving a POMDP is to determine an
optimal policy for acting in an environment in which there is uncertainty about the environment
state (cf. our visibility function), and which is non-deterministic. Work on POMDP approaches
to agent design is at an early stage, but shows promise for the future. The discussion on task
specifications is adapted from [Wooldridge, 2000a] and [Wooldridge and Dunne, 2000].

Class reading: [Franklin and Graesser, 1997]. This paper informally discusses various
different notions of agency. The focus of the discussion might be on a comparison with
the discussion in this chapter.




Chapter

Deductive Reasoning Agents

The ‘traditional” approach to building artificially intelligent systems, known as symbolic
Al, suggests that intelligent behaviour can be generated in a system by giving that system
a symbolic representation of its environment and its desired behaviour, and syntactically
manipulating this representation. In this chapter, we focus on the apotheosis of this
tradition, in which these symbolic representations are logical formulae, and the syntactic
manipulation corresponds to logical dediction, or theorem proving.

I will begin by giving an example to informally introduce the ideas behind deductive
reasoning agents. Suppose we have some robotic agent, the purpose of which is to navigate
around an office building picking up trash. There are many possible ways of implementing
the control system for such a robot — we shall see several in the chapters that follow — but
one way is to give it a description, or representation, of the environment in which it is to
operate. Figure 3.1 illustrates the idea (adapted from [Konolige, 1986, p. 15]).

In order to build such an agent, it seems we must solve two key problems.

The transduction problem The problem of translating the real world into an accurate,
adequate symbolic description of the world, in time for that description to be useful.

The representation/reasoning problem The problem of representing information symbol-
ically, and getting agents to manipulate/reason with it, in time for the results to be
useful.

The former problem has led to work on vision, speech understanding, learning, etc. The
latter has led to work on knowledge representation, automated reasoning, automated
planning, etc. Despite the immense volume of work that the problems have generated,
many people would argue that neither problem is anywhere near solved. Even seemingly
trivial problems, such as common-sense reasoning, have turned out to be extremely
difficult.

Despite these problems, the idea of agents as theorem provers is seductive. Suppose we
have some theory of agency — some theory that explains how an intelligent agent should
behave so as to optimize some performance measure (see Chapter 2). This theory might

SYMBOLIC Al

SYMBOLICT
REPRESENTATION



LOGICAL
SPECIFICATION

EXECUTABLE
SPECIFICATION

DELIBERATE
AGENTS

50 PARTII Intelligent Autonomous Agents

Door to room 2,5,

e
state:
Dist(me,d1)=5,
Door(d1)

i [ A

plan:
stop!

action:
brake!

oo

Figure 3.1: A robotic agent that contains a symbolic description of its environment.

explain, for example, how an agent generates goals so as to satisfy its design objective, how
it interleaves goal-directed and reactive behaviour in order to achieve these goals, and so
on. Then this theory ¢ can be considered as a specification for how an agent should behave.
The traditional approach to implementing a system that will satisfy this specification would
involve refining the specification through a series of progressively more concrete stages,
until finally an implementation was reached. In the view of agents as theorem provers,
however, no such refinement takes place. Instead, ¢ is viewed as an executable specification:
it is directly executed in order to produce the agent’s behaviour.

3.1 Agents as Theorem Provers

To see how such an idea might work, we shall develop a simple model of logic-based
agents, which we shall call deliberate agents [Genesereth and Nilsson, 1987, Chapter 13].
In such agents, the internal state is assumed to be a database of formulae of classical first-
order predicate logic. For example, the agent’s database might contain formulae such as

Open(valve221)
Temperature(reactord726,321)
Pressure(tank776, 28).



CHAPTER 3 Deductive Reasoning Agents 51

It is not difficult to see how formulae such as these can be used to represent the properties of
some environment. The database is the information that the agent has about its environment.
An agent’s database plays a somewhat analogous role to that of belief in humans. Thus a
person might have a belief that valve 221 is open — the agent might have the predicate
Open(valve221) in its database. Of course, just like humans, agents can be wrong. Thus I
might believe that valve 221 is open when it is in fact closed; the fact that an agent has
Open(valve221) in its database does not mean that valve 221 (or indeed any valve) is open.
The agent’s sensors may be faulty, its reasoning may be faulty, the information may be
out of date, or the interpretation of the formula Open(valve221) intended by the agent’s
designer may be something entirely different.

Let L be the set of formulae of classical first-order logic, and let D = 2L be the set of L
databases, i.e. the set of sets of L-formulae. The internal state of an agent is simply a set
of formulae, i.e. an element of D. We write DB, DBy, ... for members of D. An agent’s
decision-making process is modelled through a set of deduction rules, p. These are simply
rules of inference for the logic. We write DB -, ¢ if the formula ¢ can be proved from the
database DB using only the deduction rules p. An agent’s perception function see remains
unchanged:

see: S — Per.

Similarly, our next function has the form
next: D x Per — D.

It thus maps a database and a percept to a new database. However, an agent’s action
selection function, which has the signature

action : D — Ac,

is defined in terms of its deduction rules. The pseudo-code definition of this function is
given in Figure 3.2.

The idea is that the agent programmer will encode the deduction rules p and database
DB in such a way that if a formula Do(a) can be derived, where « is a term that denotes an
action, then « is the best action to perform. Thus, in the first part of the function (lines 3-7),
the agent takes each of its possible actions « in turn, and attempts to prove the formula
Do(w) from its database (passed as a parameter to the function) using its deduction rules p.
If the agent succeeds in proving Do(«), then a is returned as the action to be performed.

What happens if the agent fails to prove Do(«), for all actions a € Ac? In this case, it
attempts to find an action that is consistent with the rules and database, i.e. one that is not
explicitly forbidden. In lines 8-12, therefore, the agent attempts to find an action a € Ac
such that =Do(a) cannot be derived from its database using its deduction rules. If it can
find such an action, then this is returned as the action to be performed. If, however, the
agent fails to find an action that is at least consistent, then it returns a special action null (or
noop), indicating that no action has been selected.

In this way, the agent’s behaviour is determined by the agent’s deduction rules (its
‘program’) and its current database (representing the information the agent has about its
environment).

BELIEF
DATABASE

DEDUCTION
RULES



DOMAIN
FREDICATES

52 PART IT Intelligent Autonomous Agents

1. function action(DB:D) returns an action Ac
2. begin

3. for each a€ Ac do

4. if DBty Do(a) then
5. return «

6. end-if

7. end-for

8. for each a € Ac do

9. if DBV, -Do(a) then
10 return a

11 end-1if

12. end-for

13. return null

14. end function action

Figure 3.2: Action selection as theorem proving.

To illustrate these ideas, let us consider a small example (based on the vacuum cleaning
world example of [Russell and Norvig, 1995, p. 51]). The idea is that we have a small robotic
agent that will clean up a house. The robot is equipped with a sensor that will tell it whether
it is over any dirt, and a vacuum cleaner that can be used to suck up dirt. In addition, the
robot always has a definite orientation (one of north, south, east, or west). In addition to being
able to suck up dirt, the agent can move forward one ‘step” or turn right 90°. The agent
moves around a room, which is divided grid-like into a number of equally sized squares
(conveniently corresponding to the unit of movement of the agent). We will assume that
our agent does nothing but clean — it never leaves the room, and further, we will assume in
the interests of simplicity that the room is a 3 x 3 grid, and the agent always starts in grid
square (0, 0) facing north.

To summarize, our agent can receive a percept dirt (signifying that there is dirt beneath
it), or null (indicating no special information). It can perform any one of three possible
actions: forward, suck, or turn. The goal is to traverse the room continually searching for and
removing dirt. See Figure 3.3 for an illustration of the vacuum world.

First, note that we make use of three simple domain predicates in this exercise:

In(x,y) agent is at (x,y), (3.1)
Dirt(x,y) thereis dirt at (x, y), (3.2)
Facing(d) the agent is facing direction d. (3.3)

Now we specify our next function. This function must look at the perceptual information
obtained from the environment (either dirt or null), and generate a new database which
includes this information. But, in addition, it must remove old or irrelevant information,
and also, it must try to figure out the new location and orientation of the agent. We will
therefore specify the next function in several parts. First, let us write old(DB) to denote the
set of “old” information in a database, which we want the update function next to remove:

old(DB) = {P(ty, ..., tn) | P € {In, Dirt, Facing} and P(ty,...,t,) € DB}.



