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Foreword

first time it will provide a broad view of what is now known and practiced. For the experi-
enced professional, it will provide concrete examples and techniques that can be put into
practice. For the researcher, it will provide a structured view of the important prior work
and of the open challenges facing the field.

February 2020 David Garlan
Professor, School of Computer Science
Carnegie Mellon University
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xx | Introduction

Introducing self-adaptive systems is challenging given the diversity of research topics,
engineering methods, and application domains that are part of this field. To tackle this
challenge, this text is based on six pillars.

First, we lay a foundation for what constitutes a self-adaptive system by introducing two
generally acknowledged, but complementary basic principles. These two principles enable
us to characterize self-adaptive systems and distinguish them from other related types of
systems. From the basic principles, a conceptual model of a self-adaptive system is derived,
which offers a basic vocabulary that we use throughout the text.

Second, the core of the text, which focuses on how self-adaptive systems are engineered,
is partitioned into convenient chunks driven by research and engineering efforts over time.
In particular, the text approaches the engineering of self-adaptive systems in seven waves.
These waves put complementary aspects of engineering self-adaptive systems in focus that
synergistically have contributed to the current body of knowledge in the field. Each wave
highlights a trend of interest in the research community. Some of the earlier waves have
stabilized now and resulted in common knowledge in the community. Other more recent
waves are still very active and the subject of debate; the knowledge of these waves has not
been fully consolidated yet.

Third, throughout the text we use a well-thought-out set of applications to illustrate the
material with concrete examples. We use a simple service-based application to illustrate the
basic principles and the conceptional model of self-adaptive systems. Before the core part
of the text that zooms in on the seven waves of research on engineering self-adaptive sys-
tems, we introduce a practical Internet-of-Things application that we use as the main case
to illustrate the characteristics of the different waves. In addition, we use a variety of cases
from different contemporary domains to illustrate the material, including a client-server
system, a mobile service, a geo-localization service, unmanned vehicles, video compression,
different Web applications, and a Cloud system.

Fourth, each core chapter of the book starts with a list of learning outcomes at differ-
ent orders of thinking (from understanding to synthesis) and concludes with a series of
exercises. The exercises are defined at four different levels of complexity, characterized by
four letters that refer to the expected average time required for solving the exercises. Level H
requires a basic understanding of the material of the chapter; the exercises should be solv-
able in a number of person-hours. Level D requires in depth understanding of the material
of the chapter; these exercises should be solvable within person-days. Level W requires the
study of some additional material beyond the material in the chapter; these exercises should
be solvable within person-weeks. Finally, level M requires the development of novel solu-
tions based on the material provided in the corresponding chapter; these exercises require
an effort of person-months. The final chapter discusses the maturity of the field and out-
lines open challenges for research in self-adaptation, which can serve as further inspiration
for future research endeavors, for instance as a start point for PhD projects.

Fifth, each chapter concludes with bibliographic notes. These notes point to foundational
research papers of the different parts of the chapter. In addition, the notes highlight some
characteristic work and provide pointers to background material. The material referred to
in the bibliographic notes is advised for further reading.

Sixth, supplementary material is freely available for readers, students, and teachers at the
book website: https://introsas.cs.kuleuven.be/. The supplementary material includes
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slides for educational purposes, selected example solutions of exercises, models and code
that can be used for the exercises, and complementary material that elaborates on specific
material from the book.

As such, this manuscript provides a starting point for students, researchers, and engineers
that want to familiarize themselves with the field of self-adaptation. The text aims to offer a
solid basis for those who are interested in self-adaptation to obtain the required skill set to
understand the fundamental principles and engineering methods of self-adaptive systems.

The principles of self-adaptation have their roots in software architecture, model-based
engineering, formal specification languages, and principles of control theory and machine
learning. It is expected that readers are familiar with the basics of these topics when starting
with our book, although some basic aspects are introduced in the respective chapters.

XXi






1

Basic Principles of Self-Adaptation and Conceptual Model

Modern software-intensive systems' are expected to operate under uncertain conditions,
without interruption. Possible causes of uncertainties include changes in the operational
environment, dynamics in the availability of resources, and variations of user goals. Tradi-
tionally, it is the task of system operators to deal with such uncertainties. However, such
management tasks can be complex, error-prone, and expensive. The aim of self-adaptation
is to let the system collect additional data about the uncertainties during operation in order
to manage itself based on high-level goals. The system uses the additional data to resolve
uncertainties and based on its goals re-configures or adjusts itself to satisfy the changing
conditions.

Consider as an example a simple service-based health assistance system as shown in
Figure 1.1. The system takes samples of vital parameters of patients; it also enables patients
to invoke a panic button in case of an emergency. The parameters are analyzed by a medical
service that may invoke additional services to take actions when needed; for instance, a drug
service may need to notify a local pharmacy to deliver new medication to a patient. Each ser-
vice type can be realized by one of multiple service instances provided by third-party service
providers. These service instances are characterized by different quality properties, such as
failure rate and cost. Typical examples of uncertainties in this system are the patterns that
particular paths in the workflow are invoked by, which are based on the health conditions
of the users and their behavior. Other uncertainties are the available service instances, their
actual failure rates and the costs to use them. These parameters may change over time, for
instance due to the changing workloads or unexpected network failures.

Anticipating such uncertainties during system development, or letting system operators
deal with them during operation, is often difficult, inefficient, or too costly. Moreover, since
many software-intensive systems today need to be operational 24/7, the uncertainties nec-
essarily need to be resolved at runtime when the missing knowledge becomes available.
Self-adaptation is about how a system can mitigate such uncertainties autonomously or
with minimum human intervention.

The basic idea of self-adaptation is to let the system collect new data (that was miss-
ing before deployment) during operation when it becomes available. The system uses the

1 A software-intensive system is any system where software dominates to a large extent the design,
construction, deployment, operation, and evolution of the system. Some examples include mobile
embedded systems, unmanned vehicles, web service applications, wireless ad-hoc systems,
telecommunications, and Cloud systems.

An Introduction to Self-Adaptive Systems: A Contemporary Software Engineering Perspective,
First Edition. Danny Weyns.
© 2021 John Wiley & Sons Ltd. Published 2021 by John Wiley & Sons Ltd.
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Figure 1.1 Architecture of a simple service-based health assistance system

additional data to resolve uncertainties, to reason about itself, and based on its goals to
reconfigure or adjust itself to maintain its quality requirements or, if necessary, to degrade
gracefully.

In this chapter, we explain what a self-adaptive system is. We define two basic principles
that determine the essential characteristics of self-adaptation. These principles allow us
to define the boundaries of what we mean by a self-adaptive system in this book, and to
contrast self-adaptation with other approaches that deal with changing conditions during
operation. From the two principles, we derive a conceptual model of a self-adaptive system
that defines the basic elements of such a system. The conceptual model provides a basic
vocabulary for the remainder of this book.

LEARNING OUTCOMES

¢ To explain the basic principles of self-adaptation.

¢ To understand how self-adaptation relates to other adaptation approaches.
¢ To describe the conceptual model of a self-adaptive system.

o To explain and illustrate the basic concepts of a self-adaptive system.

¢ To apply the conceptual model to a concrete self-adaptive application.

1.1 Principles of Self-Adaptation

There is no general agreement on a definition of the notion of self-adaptation. However,
there are two common interpretations of what constitutes a self-adaptive system.



1.4 Conceptual Model of a Self-Adaptive System

which a self-aware system uses to reason at runtime, enabling it to act in accordance with
higher-level goals.

1.3 Scope of Self-Adaptation

Autonomous systems, multi-agent systems, self-organizing systems, and context-aware
systems are families of systems that apply classical approaches to deal with change at
runtime. However, these approaches do not align with the combined basic principles of
self-adaptation. In particular, none of these approaches comply with the second principle,
which makes an explicit distinction between a part of the system that handles domain
concerns and a part that handles adaptation concerns. However, the second principle
of self-adaptation can be applied to each of these approaches - i.e. these systems can be
enhanced with a feedback loop that deals with a set of adaptation concerns. This book is
concerned with self-adaptation as a property of a computing system that is compliant with
the two basic principles of self-adaptation.

Furthermore, self-adaptation can be applied at different levels of the software stack of
computing systems, from the underlying resources and low-level computing infrastructure
to middleware services and application software. The challenges of self-adaptation at these
different levels are different. For instance, the space of adaptation options of higher-level
software entities is often multi-dimensional, and software qualities and adaptation goals
usually have a complex interplay. These characteristics are less applicable to the adapta-
tion of lower-level resources, where there is often a more straightforward relation between
adaptation actions and software qualities. In this book, we consider self-adaptation applied
at different levels of the software stack of computing systems, from virtualized resources up
to application software.

1.4 Conceptual Model of a Self-Adaptive System

Starting from the two basic principles of self-adaptation, we define a conceptual model for
self-adaptive systems that describes the basic elements of such systems and the relationship
between them. The basic elements are intentionally kept abstract and general, but they are
compliant with the basic principles of self-adaptation. The conceptual model introduces
a basic vocabulary for the field of self-adaptation that we will use throughout this book.
Figure 1.2 shows the conceptual model of a self-adaptive system.

The conceptual model comprises four basic elements: environment, managed system,
feedback loop, and adaptation goals. The feedback loop together with the adaptation goals
form the managing system. We discuss the elements one by one and illustrate them for the
service-based health assistance application.

1.4.1 Environment

The environment refers to the part of the external world with which a self-adaptive system
interacts and in which the effects of the system will be observed and evaluated. The environ-
ment can include users as well as physical and virtual elements. The distinction between

5
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the environment and the self-adaptive system is made based on the extent of control. The
environment can be sensed and effected through sensors and effectors, respectively. How-
ever, as the environment is not under the control of the software engineer of the system,
there may be uncertainty in terms of what is sensed by the sensors or what the outcomes
will be of the effectors.



1.4 Conceptual Model of a Self-Adaptive System

Applied to the service-based health assistance system example, the environment includes
the patients that make use of the system; the application devices with the sensors that
measure vital parameters of patients and the panic buttons; the service providers with the
services instances they offer; and the network connections used in the system, which may
all affect the quality properties of the system.

1.4.2 Managed System

The managed system comprises the application software that realizes the functions of the
system to its users. Hence, the concerns of the managed system are concerns over the
domain, i.e. the environment of the system. Different terminology has been used to refer to
the managed system, such as managed element, system layer, core function, base-level sys-
tem, and controllable plant. In this book, we systematically use the term managed system. To
realize its functions to the users, the managed system senses and effects the environment.
To support adaptations, the managed system needs to be equipped with sensors to enable
monitoring and effectors (also called actuators) to execute adaptation actions. Safely execut-
ing adaptations requires that actions applied to the managed systems do not interfere with
the regular system activity. In general, they may affect ongoing activities of the system - for
instance, scaling a Cloud system might require bringing down a container and restarting it.

A classic approach to realizing safe adaptations is to apply adaptation actions only when a
system (or the parts that are subject to adaptation) is in a quiescent state. A quiescent state is
a state where no activity is going on in the managed system or the parts of it that are subject
to adaptation so that the system can be safely updated. Support for quiescence requires an
infrastructure to deal with messages that are invoked during adaptations; this infrastructure
also needs to handle the state of the adapted system or the relevant parts of it to ensure its
consistency before and after adaptation. Handling such messages and ensuring consistency
of state during adaptations are in general difficult problems. However, numerous infrastruc-
tures have been developed to support safe adaptations for particular settings. A well-known
example is the OSGi (Open Service Gateway Initiative) Java framework, which supports
installing, starting, stopping, and updating arbitrary components (bundles in OSGi termi-
nology) dynamically.

The managed system of the service-based health assistance system consists of a service
workflow that realizes the system functions. In particular, a medical service receives mes-
sages from patients with values of their vital parameters. The service analyzes the data and
either invokes a drug service to notify a local pharmacy to deliver new medication to the
patient or change the dose of medication, or it invokes an alarm service in case of an emer-
gency to notify medical staff to visit the patient. The alarm service can also be invoked
directly by a patient via a panic button. To support adaptation, the workflow infrastructure
offers sensors to track the relevant aspects of the system and the characteristics of service
instances (failure rate and cost). The infrastructure allows the selection and use of con-
crete instances of the different types of services that are required by the system. Finally, the
workflow infrastructure needs to provide support to change service instances in a consis-
tent manner by ensuring that a service is only removed and replaced when it is no longer
involved in any ongoing service invocation of the health assistance system.

7
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1.4.3 Adaptation Goals

Adaptation goals represent concerns of the managing system over the managed system;
adaptation goals relate to quality properties of the managed system. In general, four princi-
pal types of high-level adaptation goals can be distinguished: self-configuration (i.e. systems
that configure themselves automatically), self-optimization (systems that continually seek
ways to improve their performance or reduce their cost), self-healing (systems that detect,
diagnose, and repair problems resulting from bugs or failures), and self-protection (systems
that defend themselves from malicious attacks or cascading failures).

Since the system uses the adaptation goals to reason about itself during operation, the
goals need to be represented in a machine-readable format. Adaptation goals are often
expressed in terms of the uncertainty they have to deal with. Example approaches are the
specification of quality of service goals using probabilistic temporal logics that allow for
probabilistic quantification of properties, the specification of fuzzy goals whose satisfaction
isrepresented through fuzzy constraints, and a declarative specification of goals (in contrast
to enumeration) allowing the introduction of flexibility in the specification of goals. Adapta-
tion goals can be subject to change themselves, which is represented in Figure 1.2 by means
of the evolve interface. Adding new goals or removing goals during operation will require
updates of the managing system, and often also require updates of probes and effectors.

In the health assistance application, the system dynamically selects service instances
under changing conditions to keep the failure rate over a given period below a required
threshold (self-healing goal), while the cost is minimized (optimization goal). Stakeholders
may change the threshold value for the failure rate during operation, which may require
just a simple update of the corresponding threshold value. On the other hand, adding a
new adaptation goal, for instance to keep the average response time of invocations of the
assistance service below a required threshold, would be more invasive and would require
an evolution of the adaptation goals and the managing system.

1.44 Feedback Loop

The adaptation of the managed system is realized by the managing system. Different terms
are used in the literature for the concept of managing system, such as autonomic manager,
adaptation engine, reflective system, and controller. Conceptually, the managing system
realizes a feedback loop that manages the managed system. The feedback loop comprises
the adaptation logic that deals with one or more adaptation goals. To realize the adaptation
goals, the feedback loop monitors the environment and the managed system and adapts the
latter when necessary to realize the adaptation goals. With a reactive policy, the feedback
loop responds to a violation of the adaptation goals by adapting the managed system to a
new configuration that complies with the adaptation goals. With a proactive policy, the feed-
back loop tracks the behavior of the managed system and adapts the system to anticipate a
possible violation of the adaptation goals.

An important requirement of a managing system is ensuring that fail-safe operating
modes are always satisfied. When such an operating mode is detected, the managing
system can switch to a fall-back or degraded mode during operation. An example of an
operating mode that may require the managing system to switch to a fail-safe configuration
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is the inability to find a new configuration to adapt the managed system to that achieves
the adaptation goals within the time window that is available to make an adaptation
decision. Note that instead of falling back to a fail-safe configuration in the event that the
goals cannot be achieved, the managing system may also offer a stakeholder the possibility
to decide on the action to take.

The managing system may consist of a single level that conceptually consists of one feed-
back loop with a set of adaptation goals, as shown in Figure 1.2. However, the managing
system may also have a layered structure, where each layer conceptually consists of a feed-
back loop with its own goals. In this case, each layer manages the layer beneath - i.e. layer n
manages layer n-1, and layer 1 manages the managed system. In practice, most self-adaptive
systems have a managing system that consists of just one layer. In systems where additional
layers are applied, the number of additional layers is usually limited to one or two. For
instance, a managing system may have two layers: the bottom layer may react quickly to
changes and adapts the managed system when needed, while the top layer may reason over
long term strategies and adapt the underlying layer accordingly.

The managing system can operate completely automatically without intervention of
stakeholders, or stakeholders may be involved in support for certain functions realized by
the feedback loop; this is shown in Figure 1.2 by means of the generic support interface.
We already gave an example above where a stakeholder could support the system with
handling a fail-safe situation. Another example is a managing system that detects a possible
threat to the system. Before activating a possible reconfiguration to mitigate the threat, the
managing system may check with a stakeholder whether the adaptation should be applied
or not.

The managing system can be subject to change itself, which is represented in Figure 1.2
with the evolve interface. On-the-fly changes of the managing systems are important for two
main reasons: (i) to update a feedback loop to resolve a problem or a bug (e.g. add or replace
some functionality), and (ii) to support changing adaptation goals, i.e. change or remove an
existing goal or add a new goal. The need for evolving the feedback loop model is triggered
by stakeholders either based on observations obtained from the executing system or because
stakeholders want to change the adaptation goals.

The managing system of the service-based health assistance system comprises a feedback
loop that is added to the service workflow. The task of the feedback loop is to ensure that the
adaptation goals are realized. To that end, the feedback loop monitors the system behavior
and the quality properties of service instances, and tracks that the system is not violating
the adaptation goals. For a reactive policy, the feedback loop will select alternative service
instances that ensure the adaptation goals are met in the event that goal violations are
detected. If no configuration can be found that complies with the adaptation goals within
a given time (fail-safe operating mode), the managing system may involve a stakeholder to
decide on the adaptation action to take. The feedback loop that adapts the service instances
to ensure that the adaptation goals are realized may be extended with an extra level that
adapts the underlying method that makes the adaptation decisions. For instance, this extra
level may track the quality properties of service instances over time and identify patterns.
The second layer can then use this knowledge to instruct the underlying feedback loop to
give preference to selecting particular service instances or to avoid the selection of certain
instances. For instance, services that expose a high level of failures during particular periods
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managed system comprises the application software that realizes the domain concerns for
the users. To support adaptation, the managed system needs to provide probes and effectors
and support safe adaptations. The adaptation goals represent concerns over the managed
system, which refer to qualities of the system. The feedback loop realizes the adaptation
goals by monitoring and adapting the managed system. The feedback loop with the adap-
tation goals form the managing system. The managing system can be subject to on-the-fly
evolution, either to update some functionality of the adaptation logic or to change the adap-
tation goals.

1.7 Exercises

1.1

1.2

1.3

Conceptual model pipe and filter system: level H

Consider a pipe and filter system that has to perform a series of tasks for a user.
Different instances of the filters are offered by third parties. These filter instances
provide different quality of service in terms of processing time and service cost that
may change over time. Explain how you would make this a self-adaptive system that
ensures that the average throughput of tasks remains under a given threshold while
the cost is minimized. Draw the conceptual model that shows your solution to this
adaptation problem.

Conceptual model Znn.com news service: level H

Setting. Consider Znn.com, a news service that serves multimedia news content
to customers. Architecturally, Znn.com is set up as a Web-based client-server
system that serves clients from a pool of servers. Customers of Znn.com expect a
reasonable response time, while the system owner wants to keep the cost of the
server pool within a certain operating budget. In normal operating circumstances,
the appropriate trade-offs can be made at design-time. However, from time to time,
due to highly popular events, Znn.com experiences spikes in news requests that are
not within the originally designed parameters. This means that the clients will not
receive content in a timely manner. To the clients, the site will appear to be down,
so they may not use the service anymore, resulting in lost revenue. The challenge
for self-adaptation is to enable the system to still provide content at peak times.
There are several ways to deal with this, such as serving reduced content, increasing
the number of servers serving content, and choosing to prioritize serving paying
customers.

Task. Enhance Znn.com with self-adaptation to deal with the challenge of the news
service. Identify the basic concepts of the self-adaptive system (environment, man-
aged system, feedback loop, adaptation goals) and describe the responsibilities of each
element. Draw the conceptual model that shows your solution to this adaptation
problem.

Additional material. See the Znn artifact website [53].

Conceptual model video encoder: level H
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Setting. Consider a video encoder that takes a stream of video frames (for instance
from an mp4 video) and compresses the frames such that the video stream fits a given
communication channel. While compressing frames, the encoder should maintain a
required quality of the manipulated frames compared to the original frames, which
is expressed as a similarity index. To achieve these conflicting goals, the encoder can
change three parameters for each frame: the quality of the encoding and the setting
of a sharpening filter and the setting of a noise reduction filter that are both applied
to the image. The quality parameter that relates to a compression factor for the image
has a value between 1 and 100, where 100 preserves all frame details and 1 pro-
duces the highest compression. However, the relationship between quality and size
depends on the frame content, which is difficult to predict upfront. The sharpening
filter and the noise reduction filter modify certain pixels of the imagine, for instance
to remove elements that appear after compressing the original frame. The sharpening
filter has a parameter with a value that ranges between 0 and 5, where 0 indicates no
sharpening and 5 maximum sharpening. The noise reduction filter has a parameter
that specifies the size of the applied noise reduction filter, which also varies between
0and 5.

Task. Enhance the video encoder with self-adaptation capabilities to deal with the
conflicting goals of compressing frames and ensuring a required level of quality. Iden-
tify the basic concepts of the self-adaptive system (environment, managed system,
feedback loop, adaptation goals) and describe the responsibilities of each element.
Draw the conceptual model that shows your solution to this adaptation problem.
Additional material. See the Self-Adaptive Video Encoder artifact website [136].

Implementation feedback loop Tele-Assistance System: level D

Setting. TAS, short for Tele-Assistance System, is a Java-based artifact that supports
research and experimentation on self-adaptation. TAS simulates a health assistance
service for elderly and chronically sick people, similar to the health assistance ser-
vice used in this chapter. TAS uses a combination of sensors embedded in a wearable
device and remote third-party services from medical analysis, pharmacy and emer-
gency service providers. The TAS workflow periodically takes measurements of the
vital parameters of a patient and employs a medical service for their analysis. The
result of an analysis may trigger the invocation of a pharmacy service to deliver new
medication to the patient or to change their dose of medication, or, in a critical situa-
tion, the invocation of an alarm service that will send a medical assistance team to the
patient. The same alarm service can be invoked directly by the patient by using a panic
button on the wearable device. In practice, the TAS service will be subject to a variety
of uncertainties: services may fail, service response times may vary, or new services
may become available. Different types of adaptations can be applied to deal with these
uncertainties, such as switching to equivalent services, simultaneously invoking sev-
eral services for equivalent operations, or changing the workflow architecture.
Task. Download the source code of TAS. Read the developers guide that is part of the
artifact distribution, and prepare Eclipse to work with the artifact. Execute the TAS
artifact and get familiar with it. Now design a feedback loop that deals with service
failures. The first adaptation goal is a threshold goal that requires that the average
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number of service failures should not exceed 10% of the invocations over 100 service
invocations. The second adaptation goal is to minimize the cost for service invoca-
tions over 100 service invocations. Implement your design and test it. Evaluate your
solution and assess.

Additional material. For the TAS artifact, see [201]. The latest version of TAS can
be downloaded from the TAS website [212]. For background information about TAS,
see [200].

1.8 Bibliographic Notes

The external principle of self-adaptation is grounded in the description of what constitutes a
self-adaptive system provided in a roadmap paper on engineering self-adaptive system [50].
Y. Brun et al. complemented this description and motivated the “self” prefix indicating that
the system decides autonomously [35]. The internal principle of self-adaptation is grounded
in the pioneering work of P. Oreizy et al. that stressed the need for a systematic approach
to deal with software modification at runtime (as opposed to ad-hoc “patches™) [150]. In
their seminal work on Rainbow, D. Garlan et al. contrasted internal mechanisms to adapt
a system (for instance using exceptions) with external mechanisms that enhance a system
with an external feedback loop that is responsible for handling adaptation [81].

Back in 1948, N. Wiener published a book that coined the term “cybernetics™ to refer to
self-regulating mechanisms. This work laid the theoretical foundation for several fields in
autonomous systems. M. Wooldridge provided a comprehensive and readable introduction
to the theory and practice of the field of multi-agent systems [215]. F. Heylighen reviewed
the most important concepts and principles of self-organization [97]. Based on these princi-
ples, V. Dyke Parunak et al. demonstrated how digital pheromones enable robust coordina-
tion between unmanned vehicles [190]. T. De Wolf and T. Holvoet contrast self-organization
with emergent behavior [60].

B. Schilit et al. defined the notion of context-aware computing and described different cat-
egories of context-aware applications [172]. In the context of autonomic systems, Hinchey
and Sterritt referred to self-awareness as the capability of a system to be aware of its states
and behaviors [98]. M. Parashar and S. Hariri referred to self-awareness as the ability of a
system to be aware of its operational environment [153]. P. Gandodhar et al. reported the
results of a survey on context-awarenss [79], and C. Perera et al. surveyed context-aware
computing in the area of the Internet-of-Things [154]. S. Kounev et al. defined self-aware
computing systems and outlined a taxonomy for these types of systems [119].

Several authors have provided arguments for why engineering self-adaptation at different
levels of the technology stack poses different challenges. Among these are the growing com-
plexity of the adaptation space from lower-level resources up to higher-level software [ 5, 36],
and the increasingly complex interplay between system qualities on the one hand and adap-
tation options at higher levels of the software stack on the other hand [72].

M. Jackson contrasted the notion of environment, which is not under the control of a
designer, and the system, which is controllable [106]. J. Kramer and J. Magee introduced the
notion of quiescence [120]. A quiescent state of a software element is a state where no activ-
ity is going on in the element so that it can be safely updated. Such a state may be reached
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spontaneously or it may need to be enforced. J. Zhang and B. Cheng created the A-LTL
specification language to specify the semantics of adaptive programs [218], underpinning
safe adaptations. The OSGi framework [2] offers a modular service platform for Java that
implements a dynamic component model that allows components (so called bundles) to be
installed, started, stopped, updated, and uninstalled without requiring a reboot.

J. Kephart and D. Chess identified the primary types of higher-level adaptation
goals [112]: self-configuration, self-optimization, self-healing, and self-protection.

M. Salehie and L. Tahvildari referred to self-adaptive software as software that embodies
a closed-loop mechanism in the form of an adaptation loop [170]. Similarly, Dobson et al.
referred to an autonomic control loop, which includes processes to collect and analyze data,
and decide and act upon the system [65]. Y. Brun et al. argued for making feedback loops
first-class entities in the design and operation of self-adaptive systems [35].

J. Camara et al. elaborated on involving humans in the feedback loop to support
different self-adaptation functions, including the decision-making process [44]. Weyns
et al. presented a set of architectural patterns for decentralizing control in self-adaptive
systems [209].

The service-based health assistance system used in this book is based on the
Tele-Assistance System (TAS) exemplar [200]. TAS offers a prototypical application
that can be used to evaluate and compare new methods, techniques, and tools for research
on self-adaptation in the domain of service-based systems. The service-based health
assistance system was originally introduced in [15].
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Figure 2.1 Seven waves of research on engineering self-adaptive systems

The fourth wave, Requirements-driven Adaptation, is triggered by the need to consider
requirements of self-adaptive systems as first-class citizens (from waves one and two) and
link the requirements to feedback loop designs (from wave three). The fourth wave puts the
emphasis on the requirements that need to be solved by the managing system and how these
requirements drive the design of the managing system. A distinction can be made between
requirements that accommodate the adaptation concerns (and need to be translated to
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operational adaptation goals) and requirements about the functionality of the managing
system, in particular its correct realization.

The fifth wave, Guarantees Under Uncertainty, is triggered by the need to deal with uncer-
tainty as a first-class citizen when engineering self-adaptive systems (from wave four) and
how to mitigate this uncertainty and guarantee the adaptation goals (from wave three). The
fifth wave is concerned with providing trustworthiness for self-adaptive systems that need
to operate under uncertainty. An important aspect of this wave is the collection of evidence
that a self-adaptive system has realized its adaptation goals. This evidence can be provided
offline (i.e. not directly controlled by the running system) and complemented online (i.e.
under control of the running system).

The sixth wave, Control-based Software Adaptation, is triggered by the complexity
of providing assurances (from wave five) and the need for a theoretical framework for
self-adaptation (from wave two). The sixth wave is concerned with exploiting the math-
ematical basis of control theory for designing self-adaptive systems and analyzing and
guaranteeing key properties. Central aspects of this wave are the definition of adaptation
goals, the selection of a controller, and the identification of a model of the managed system
that is used by the controller. A particular challenge is understanding the relationship
between quality requirements, adaptation goals, and traditional controller properties,
which is important for providing guarantees for self-adaptive systems.

Wave seven, Learning from Experience, is triggered by the growing scale of systems and
increasingly complex levels of uncertainty (from wave five). The seventh wave is concerned
with exploiting machine learning techniques to support different functions that need to be
realized by a managing system. Examples are the use of learning techniques to keep a run-
time model up-to-date, to reduce very large search spaces of adaptation options, learning to
determine the impact of adaptation decisions on the goals of systems, and sorting adapta-
tion options by predicting the values of their quality properties in order to support efficient
decision-making for adaptation.

2.2 Contributions Enabled by the Waves

Table 2.1 summarizes the relevant aspects of the state-of-the-art before each wave with a
motivation for the wave, the topic that is studied in each wave, and the contributions that
are enabled by each of the waves.

The table summarizes how the subsequent waves have triggered each other, contribut-
ing complementary knowledge on the engineering of self-adaptive systems. At the time
of writing, waves W1 to W4 are relatively stable and have contributed a substantial body
of knowledge to the field. Wave W5 is in an active stage, but this wave has already pro-
duced substantial consolidated knowledge. Waves W6 and W7 are relatively new, and the
knowledge consolidated in these waves is still limited.

2.3 Waves Over Time with Selected Work

Figure 2.2 gives a schematic overview of when each of the seven waves of research in the
field of self-adaptive systems emerged over time. The time window per wave represents
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Table 2.1 Summary of the state-of-the-art before each wave with motivation, topic of each wave,
and the contributions enabled by each wave (or expected to be enabled for active waves).

State of the art before
wave and motivation

Contributions (to be)

Wave for the wave Topic of the wave enabled by the wave
w1 System management done Automation of Systems manage
by human operators is a management tasks themselves based on
complex and error prone high-level objectives;
process understanding of the basic
functions of
self-adaptation
w2 Motivation for Architecture perspective Architecture as driver for
self-adaptation on self-adaptation the engineering of
acknowledged; need for a self-adaptive systems;
principled engineering central role of
perspective to define architectural models to
self-adaptive systems and reason about adaptation at
reason about adaptation at runtime
runtime
W3 Architecture principles of Model-driven approach Different types of runtime
self-adaptive systems extended to runtime to models as key elements to
understood; concrete realize self-adaptation define feedback loops and
realization is complex support runtime
decision-making
W4 Design of feedback loops Requirements for Languages and formalisms
well understood; self-adaptive systems to specify requirements for
requirements problem self-adaptive systems and
they intend to solve is their operationalization
implicit
W5 Mature solutions for The role of uncertainty in Use of formal techniques
engineering self-adaptive self-adaptive systems and (at runtime) to guarantee
systems, but uncertainty how to mitigate it adaptation goals under
handled in ad-hoc manner uncertainty
Wé Engineering of Applying principles from Control theory as a basis
MAPE-based self-adaption control theory to realize for the design and formal
well understood, but self-adaptation analysis of self-adaptive
solutions are often systems
complex
W7 Growing scale of systems The use of learning Learning techniques used

and increasingly complex
levels of uncertainty they
face

techniques to support
self-adaptation

to support the
effectiveness of different
adaptation functions
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Figure 2.2 Main periods of activity of each wave over time with representative research papers.

the main period of research activity during a wave. The papers associated with each wave
are either a key paper that triggered the research of the wave or papers that characterize
the research for that wave. For Waves 6 and 7, which are still in an early stage, there were
important precursor papers a few years before the research activities of these waves effec-
tively took off.

2.4 Summary

Over the past two decades, the research in the field of self-adaptation went through seven
waves. These waves put complementary aspects of engineering self-adaptive systems into
focus. The waves highlight trends of interest in the community that together have produced
the current body of knowledge in the field.

The root wave, Automating Tasks, deals with delegating complex management tasks of
software-intensive systems from human operators to machines. Architecture-based Adap-
tation laid the basis for a systematic engineering approach for self-adaptive systems and the
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