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Foundations

Before giving the definition of a category, we must briefly (and somewhat informally) discuss a
notion from the foundations of mathematics. In category theory, one often wishes to speak of
“the category of (all) sets” or “the category of (all) groups.” However, it is well known that these
descriptions cannot be made precise within the context of sets alone.

In particular, not all “collections” that one can define informally through the use of the
English language, or even formally through the use of the language of set theory, can be
considered sets without producing some well-known logical paradoxes, such as the Russell
paradox of 1901 (discovered by Zermelo a year earlier). More specifically, if ¢(z) is a well-
formed formula of set theory, then the collection

X = {sets x| o(x) is true}

cannot always be viewed as a set. For example, the family of all sets, or of all groups, cannot be
considered a set. Nonetheless, it is desirable to be able to apply some of the operations of sets,
such as union and cartesian product, to such families. One way to achieve this goal is through
the notion of a class. Every set is a class and the classes that are not sets are called proper
classes. Now we can safely speak of the class of all sets, or the class of all groups. Classes have
many of the properties of sets. However, while every set is an element of another set, no class
can be an element of another class. We can now state that the family X defined above is a class
without apparent contradiction.

Another way to avoid the problems posed by the logical paradoxes is to use the concept of
a set {{ called a universe. The elements of I{ are called small sets. Some authors refer to
the subsets of {{ as sets and some use the term classes. In order to carry out “ordinary
mathematics” within the universe I, it is assumed to be closed under the basic operations of
set theory, such as the taking of ordered pairs, power sets and unions.

These two approaches to the problem of avoiding the logical paradoxes result in essentially
the same theory and so we will generally use the language of sets and classes, rather than
universes.

The Definition

We can now give the definition of a category.
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= Definition

A category C consists of the following:

1) (Objects) A class Obj(C) whose elements are called the objects. It is customary to write
A e Cin place of A € Obj(C).

2) (Morphisms) For each (not necessarily distinct) pair of objects A, B € C, a sethomg(A, B),
called the hom-set for the pair (A, B). The elements of hom¢(A, B) are called morphisms,
maps or arrows from A to B. If f € hom¢(A, B), we also write

fiA—= B or fup

The object A = dom(f) is called the domain of f and the object B = codom( f) is called the
codomain of f.

3) Distinct hom-sets are disjoint, that is, hom¢ (A, B) and hom¢(C, D) are disjoint unless
A=Cand B=D.

4) (Composition) For f € homg(A, B) and g € hom¢ (B, C') there is a morphism
go f € homg(A, ), called the composition of g with f. Moreover, composition
is associative:

felgoh)=(fog)oh

whenever the compositions are defined.
5) (Identity morphisms) For each object A € C there is a morphism 1,4 € homg(A, A), called
the identity morphism for A, with the property that if f ,, € home(A, B) then

Ipofap=1Ffap and fapola= fap
The class of all morphisms of C is denoted by Mor(C). O

A variety of notations are used in the literature for hom-sets, including

(A,B), [A,B], C(A,B) and Mor(A,B)

(We will drop the subscript C in hom¢ when no confusion will arise.)

We should mention that not all authors require property 3) in the definition of a category.
Also, some authors permit the hom-sets to be classes. In this case, the categories for which the
hom-classes are sets is called a locally small category. Thus, all of our categories are locally
small. A category C for which both the class Obj(C) and the class Mor(C) are sets is called a
small category. Otherwise, C is called a large category.

Two arrows belonging to the same hom-set hom(A, B) are said to be parallel. We use the
phrase “f is a morphism leaving A” to mean that the domain of fis A and “f is a morphism
entering B” to mean that the codomain of fis B.

When we speak of a composition g o f, it is with the tacit understanding that the
morphisms are compatible, that is, dom(g) = codom( f).

The concept of a category is very general. Here are some examples of categories. In most
cases, composition is the “obvious” one. We suggest that you just skim this list of examples at
this point. If you are not familiar with some of the concepts in these example (such as smooth
manifolds), not to worry. The purpose of this list is to give you a general idea of the wide range
of categories in mathematics.
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= Example 1
The Category Set of Sets
Obj is the class of all sets.
hom(A, B) is the set of all functions from A to B.

The Category Mon of Monoids
Obj is the class of all monoids.
hom(A, B) is the set of all monoid homomorphisms from A to B.

The Category Grp of Groups
Obj is the class of all groups.
hom(A, B) is the set of all group homomorphisms from A to B.

The Category AbGrp of Abelian Groups
Obj is the class of all abelian groups.
hom(A, B) is the set of all group homomorphisms from A to B.

The Category Mod; of R-modules, where R is a ring
Obj is the class of all R-modules.
hom(A, B) is the set of all R-maps from A to B.

The Category Vecty of Vector Spaces over a Field I
Obj is the class of all vector spaces over F.
hom(A, B) is the set of all linear transformations from A to B.

The Category Rng of Rings
Ob;j is the class of all rings (with unit).
hom(A, B) is the set of all ring homomorphisms from A to B.

The Category CRng of Commutative Rings with identity
Obj is the class of all commutative rings with identity.
hom(A, B) is the set of all ring homomorphisms from A to B.

The Category Field of Fields
Obj is the class of all fields.
hom(A, B) is the set of all ring embeddings from A to B.

The Category Poset of Partially Ordered Sets
Obj is the class of all partially ordered sets.
hom(A, B) is the set of all monotone functions from A to B, that is, functions f:P — @

satisfying

p<q = [flp)<[flqg)
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The Category Rel of relations
Obj is the class of all sets,
hom(A, B) is the set of all binary relations from A to B, that is, subsets of the cartesian
product A x B.

The Category Top of Topological Spaces
Obj is the class of all topological spaces.
hom(A, B) is the set of all continuous functions from A to B.

The Category SmoothMan of Manifolds with Smooth Maps
Obj is the class of all manifolds.
hom(A, B) is the set of all smooth maps from A to B. O

= Example 2

The category of all categories does not exist, on foundational grounds. The well-known Russell
paradox shows that the set of all sets does not exist and an analogous argument has been
constructed to show that the category of all categories does not exist. However, the argument is
a bit involved and is not really in the spirit of this introductory book, so we will not go into the
details. On the other hand, the class S of all small categories does form the objects of another
category, whose morphisms are called functors, to be defined a bit later in the chapter. |

Here are some slightly more unusual categories.

= Example 3

Let F be a field. The category Matr of matrices over F' has objects equal to the set Z*
of positive integers. For m, n € 77, the hom-set hom(m, n) is the set of all n % m matrices
over F, composition being matrix multiplication. Why do we reverse the roles of m and n?
Well, if M € hom(m, n) and N € hom(n, k), then M has size n x m and N has size k x n
and so the product NA makes sense and has size k x m, that is, it belongs to hom(m, k), as
required. Incidentally, this is a case in which the category is named after its morphisms, rather
than its objects. O

= Example 4

A single monoid M defines a category with a single object M, where each element is a
morphism. We define the composition a o b to be the product ab. This example applies to
other algebraic structures, such as groups. All that is required is that there be an identity
element and that the operation be associative. |

= Example 5
Let (P, <) be a partially ordered set. The objects of the category Poset( P, <) are the elements of
P. Also, hom(a, b) is empty unless a < b, in which case hom(a, b) contains a single element,
denoted by ab. Note that the hom-sets specify the relation < on P. As to composition, there is
really only one choice: If ab: @ — b and be: b — ¢ then it follows thata < b < candsoa < ¢,
which implies that hom(a, ¢) # (). Thus, we set bc © ab = ac. The hom-set hom(a, a) contains
only the identity morphism for the object a.

As a specific example, you may recall that each positive natural numbern € N is defined to
be the set of all natural numbers that preceed it:

n={0,1,....n— 1}
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and the natural number 0 is defined to be the empty set. Thus, natural numbers are ordered by
membership, that is, m < n if and only if m € n and so n is the set of all natural numbers less
than n. Each natural number n defines a category whose objects are its elements and whose
morphisms describe this order relation. The category n is sometimes denoted by bold face .0

= Example 6
A category for which there is at most one morphism between every pair of (not necessarily
distinct) objects is called a preordered category (some authors use the term thin category). If
C is a thin category, then we can use the existence of a morphism to define a binary relation on
the objects of C, namely, A < B if there exists a morphism from A to B. It is clear that this
relation is reflexive and transitive. Such relations are called preorders. (The term preorder is
used in a different sense in combinatorics.)

Conversely, any preordered class (P, =) is a category, where the objects are the elements of
P and there is a morphism fsp from A to B if and only if A < B (and there are no other
morphisms). Reflexivity provides the identity morphisms and transitivity provides the
composition.

More generally, if C is any category, then we can use the existence of a morphism to define
a preorder on the objects of C, namely, A < B if there is at least one morphism from A to B.O0

= Example 7

Consider a deductive logic system, such as the propositional calculus. We can define two
different categories as follows. In both cases, the well-formed formulas (wffs) of the system are
the objects of the category. In one case, there is one morphism from the wff o to the wff 3 if and
only if we can deduce /3 given cv. In the other case, we define a morphism from « to 3 to be a
specific deduction of 3 from «, that is, a specific ordered list of wifs starting with & and ending
with 3 for which each wif in the list is either an axiom of the system or is deducible from the
previous wifs in the list using the rules of deduction of the system. |

The Categorical Perspective

The notion of a category is extremely general. However, the definition is precisely what is

needed to set the correct stage for the following two key tenets of mathematics:

1) Morphisms (e.g. linear transformations, group homomorphisms, monotone maps) play an
essentially equal role alongside the mathematical structures that they morph (e.g. vector
spaces, groups, partially ordered sets).

2) Many mathematical notions are best described in terms of morphisms between structures
rather than in terms of the individual elements of these structures.

In order to implement the second tenet, one must grow accustomed to the idea of focusing
on the appropriate maps between mathematical structures and not on the elements of these
structures. For example, as we will see in due course, such important notions as a basis for a
vector space, a direct product of vector spaces, the field of fractions of an integral domain and
the quotient of a group by a normal subgroup can be described using maps rather than
elements. In fact, many of the most important properties of these notions follow from their
morphism-based descriptions.

Note also that one of the consequences of the second tenet is that important mathematical
notions tend to be defined only up to isomorphism, rather than uniquely.
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An immediate example seems in order, even though it may take some time (and further
reading) to place in proper perspective.
= Example 8

Let Vand W be vector spaces over a field F. The external direct product of Vand W is usually
defined in elementary linear algebra books as the set of ordered pairs

VxW={(v,w)|veV,weW}
with componentwise operations:
(v,w) + (v, w') = (v+ v w+ w')
and
r(v,w) = (rv, rw)
for r € F. One then defines the projection maps

prVxW -V and p: VW W

pi(v,w) =v and  p;(v,w) = w

However, the importance of these projection maps is not always made clear, so let us do
this now.

Figure 1

As shown in Figure 1, the ordered triple (V' x W, py; pw) has the following universal
property: Given any vector space X over F'and any “projection-like” pair of linear trans-
formations

o X—=V and oy X —- W
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from X to Vand W, respectively, there is a unique linear transformation 7: X — V' x W for
which

preT=o01 and p,oT =03

Indeed, these two equations uniquely determine 7(z) for any x € X because
(@) = (py(1(2)), po((2))) = (1 (), 72(x))

It remains only to show that 7 is linear, which follows easily from the fact that o; and o, are
linear. Now, the categorical perspective is that this universal property is the essence of the direct
product, at least up to isomorphism. In fact, it is not hard to show that if an ordered triple

(U, A: U=V, 2:U—=W)

has the universal property described above, that is, if for any vector space X over F and any
pair of linear transformations

o X—=V and o X —-W
there is a unique linear transformation 7: X — U for which

A]OTZO'I and /\20T:G'2

then U and V' x W are isomorphic as vector spaces. Indeed, in some more advanced treatments
of linear algebra, the direct product of vector spaces is defined as any triple that satisfies this
universal property. Note that, using this definition, the direct product is defined only up to
isomorphism.

If this example seems to be a bit overwhelming now, don’t be discouraged. It can take
a while to get accustomed to the categorical way of thinking. It might help to redraw Figure 1
a few times without looking at the book. O

Functors

If we are going to live by the two main tenets of category theory described above, we should
discuss morphisms between categories! Structure-preserving maps between categories are
called functors. At this time, however, there is much to say about categories as individual
entities, so we will briefly describe functors now and return to them in detail in a later chapter.

The unabridged dictionary defines the term functor, from the New Latin functus (past
participle of fungi: to perform) as “something that performs a function or operation.” The term
functor was apparently first used by the German philosopher Rudolf Carnap (1891-1970) to
represent a special type of function sign. In category theory, the term functor was introduced by
Samuel Eilenberg and Saunders Mac Lane in their paper Natural Isomorphisms in Group
Theory [8].
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Since the structure of a category consists of both its objects and its morphisms, a functor

should map objects to objects and morphisms to morphisms. This requires two different maps.
Also, there are two versions of functors: covariant and contravariant.

Definition

Let C and D be categories. A functor F': C = D is a pair of functions (as is customary, we use
the same symbol F for both functions):

D

2)

3)

The object part of the functor

F: Obj(C) — Obj(D)

maps objects in C to objects in D
The arrow part

F: Mor(C) — Mor(D)

maps morphisms in C to morphisms in D as follows:
a) For a covariant functor,

F':homg(A, B) — homp(FA, FB)
forall A, B € C, that is, F maps a morphism f: A — B in C to @ morphism Ff: FA — FB
in D,
b) For a contravariant functor,
F:home(A, B) — homp(FB, FA)
forall A, B € C, that is, F maps a morphism f: A — B inC to a morphism Ff: FB — FA
in D. (Note the reversal of direction).

We will refer to the restriction of F to hom¢(A, B) as a local arrow part of F.
Identity and composition are preserved, that is,

Fly=1pa
and for a covariant functor,
Flgef)=FgoFf
and for a contravariant functor,
F(gof) = FfoFg
whenever all compositions are defined. |

As is customary, we use the same symbol F for both the object part and the arrow part of a

functor. We will also use a double arrow notation for functors. Thus, the expression F: C = D
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implies that C and D are categories and is read “F'is a functor from C to D.” (For readability’s
sake in figures, we use a thick arrow to denote functors.)

A functor F: C = C from C to itself is referred to as a functor on C. A functor F: C = Set
is called a set valued functor. We say that functors F,G:C = D with the same domain
and the same codomain are parallel and functors of the form F: C = D and G: D = C are
antiparallel.

The term covariant appears to have been first used in 1853 by James Joseph Sylvester (who
was quite fond of coining new terms) as follows: “Covariant, a function which stands in the
same relation to the primitive function from which it is derived as any of its linear transforms
do to a similarly derived transform of its primitive.” In plainer terms, an operation is covariant
if it varies in a way that preserves some related structure or operation. In the present context, a
covariant functor preserves the direction of arrows and a contravariant functor reverses the
direction of arrows.

One way to view the concept of a functor is to think of a (covariant) functor F: C = Dasa
mapping of one-arrow diagrams in C,

A—B
to one-arrow diagrams in D,
Fr

FA—SFB

with the property that “identity loops” and “triangles” are preserved, as shown in Figure 2.

F
AQM _ FQuA: F1,
f

A——>B FA— " >Fp
g F
gof l FgoFf=F(gof) l J
C FC

Figure 2

A similar statement holds for contravariant functors.

Composition of Functors

Functors can be composed in the “obvious” way. Specifically, if F': C = D and G: D = £ are
functors, then G o F: C = £ is defined by

(G o F)(4) = G(FA)
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for A € C and
(G o F)(f)=G(Ff)

for f € hom¢(A, B). We will often write the composition G o Fas GF.

Special Types of Functors

= Definition

Let F: C = D be a functor.

1) Fis full if all of its local arrow parts are surjective.

2) F'is faithful if all of its local arrow parts are injective.

3) F'is fully faithful (i.e., full and faithful) if all of its local arrow parts are bijective.

4) F'is an embedding of C in D if it is fully faithful and the object part of F'is injective. O

We should note that the term embedding, as applied to functors, is defined differently by
different authors. Some authors define an embedding simply as a full and faithful functor.
Other authors define an embedding to be a faithful functor whose object part is injective. We
have adopted the strongest definition, since it applies directly to the important Yoneda lemma
(coming later in the book).

Note that a faithful functor F: C = D need not be an embedding, for it can send two
morphisms from different hom sets to the same morphism in D. For instance, if FA = FA" and
FB = FB' then it may happen that

Ffap=Foup

which does not violate the condition of faithfulness. Also, a full functor need not be surjective
on Mor(C).

A Couple of Examples

Here are a couple of examples of functors. We will give more examples in the next chapter.

= Example 9

The power set functor §: Set = Set sends a set A to its power set §2(A) and sends each set
function f: A — B to the induced function f: £(A) — $(B) that sends X to fX. (It is
customary to use the same notation for the function and its induced version.) It is easy to see
that this defines a faithful but not full covariant functor.

Similarly, the contravariant power set functor F': Set = Set sends a set A to its power set
#(A) and a set function f: A — B to the induced inverse function f ': o(B) — $(A) that
sends X C Bto f 'X C A. The fact that Fis contravariant follows from the well known fact
that

(fog) '=g'of O
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Concrete Categories

= Example 10

The following situation is quite common. Let C be a category. Suppose that D is another
category with the property that every object in C is an object in D and every morphism
f: A— BinC is a morphism f: A — Bin D.

For instance, every object in Grp is also an object in Set: we simply ignore the group
operation. Also, every group homomorphism is a set function. Similarly, every ring can be
thought of as an abelian group by ignoring the ring multiplication and every ring map can be
thought of as a group homomorphism.

We can then define a functor I': C = D by sending an object A € C to itself, thought of as
an object in D and a morphism f: A — B in C to itself, thought of as a morphism in D.

Functors such as these that “forget” some structure are called forgetful functors. In
general, these functors are faithful but not full. For example, distinct group homomorphisms
f»g: A — B are also distinct as functions, but not every set function between groups is a group
homomorphism.

For any category C whose objects are sets, perhaps with additional structure and whose
morphisms are set functions, also perhaps with additional structure, the “most forgetful”
functor is the one that forgets all structure and thinks of an object simply as a set
and a morphism simply as a set function. This functor is called the underlying-set functor
U:C = Seton C. |

The Category of All Small Categories

As mentioned earlier, it is tempting to define the category of all categories, but this does not
exist on foundational grounds. On the other hand, the category SmCat of all small categories
does exist. Its objects are the small categories and its morphisms are the covariant functors
between categories. Of course, SmCat is a large category.

Concrete Categories

Despite the two main tenets of category theory described earlier, most common categories do
have the property that their objects are sets whose elements are “important” and whose
morphisms are ordinary set functions on these elements, usually with some additional struc-
ture (such as being group homomorphisms or linear transformations). This leads to the
following definition.

= Definition

A category C is concrete if there is a faithful functor I': C = Set. Put more colloquially, C is

concrete if the following hold:

1) Each object A of C can be thought of as a set F'A (which is often A itself). Note that distinct
objects may be thought of as the same set.

2) Each distinct morphism f: A — B inC can be thought of as a distinct set function Fif: FA —
I'B (which is often f itself).

3) The identity 1 4 morphism can be thought of as the identity set function F1: FA — FA and
the composition f o g inC can be thought of as the composition F'f o Fg of the corresponding
set functions. m|
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Categories that are not concrete are called abstract categories. Many concrete categories
have the property that F'A is A and F'f is f. This applies, for example, to most of the previously
defined categories, such as Grp, Rng, Vect and Poset. The category Rel is an example of a
category that is not concrete.

In fact, the subject of which categories are concrete and which are abstract can be rather
involved and we will not go into it in this introductory book, except to remark that all small
categories are concrete, a fact which follows from Yoneda’s lemma, to be proved later in
the book.

Subcategories

Subcategories are defined as follows.

= Definition

Let C be a category. A subcategory D of C is a category for which consists of a nonempty subclass
Obj(D) of Obj(C) and a nonempty subclass Mor(D) of Mor(C) with the following properties:
1) Obj(D) C Obj(C), as classes.

2) Forevery A,B € D,

homp(A, B) C homg(A, B)
and the identity map 14 in D is the identity map 14 in C, that is,
(La)p = (14)¢
3) Composition in D is the composition from C, that is, if

ffA—B and ¢g.B—C

are morphisms in D, then the C-composite g o [ is the D-composite g o [.
If equality holds in part 2) for all A, B € D, then the subcategory D is full. O

= Example 11
The category AbGrp of abelian groups is a full subcategory of the category Grp, since the
definition of group morphism is independent of whether or not the groups involved are
abelian. Put another way, a group homomorphism between abelian groups is just a group
homomorphism.

However, the category AbGrp of abelian groups is a nonfull subcategory of the category
Rng of rings, since not all additive group homomorphisms f: R — S between rings are ring
maps. Similarly, the category of differential manifolds with smooth maps is a nonfull subcate-
gory of the category Top, since not all continuous maps are smooth. |
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Subcategories

The Image of a Functor
Note that if F': C = D, then the image FC of C under the functor F} that is, the set

{FA|Aec}
of objects and the set
{Ff|fe€home(A, B)}

of morphisms need not form a subcategory of D. The problem is illustrated in Figure 3.

X
Fff/ Qg)oF(f)
Y —> 27

F(9)
D

Figure 3

In this case, the composition F'(g) o F'(f) is not in the image FC. The only way that this
can happen is if the composition g o f does not exist because f and g are not compatible for
composition. For if g o f exists, then

F(g)o F(f) = F(ge f) € FC

Note that in this example, the object part of F'is not injective, since F{A) = F(C) = X. This is
no coincidence.

= Theorem 12
If the object part of a functor F: C = D is injective, then FC is a subcategory of D, under the
composition inherited from D.

= Proof
The only real issue is whether the D-composite Fg o Ff of two morphisms in FC, when it
exists, is also in F°C. But this composite exists if and only if

Ff:FA— FB and Fg:FB— FC
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and so the injectivity of F on objects implies that

ffA—=B and ¢g:B—-C

Hence, g o f exists in C and so

F(g)e F(f)=F(ge f) € FC

Diagrams

The purpose of a diagram is to describe a portion of a category C. By “portion” we mean one or
more objects of C along with some of the arrows connecting these objects.

Informally, we can say that a diagram in C consists of a class of points (or nodes) in the
plane, each labeled with an object of C and for each pair (A, B) of nodes a collection of arcs
from the node labeled A to the node labeled B, each of which is labeled with a morphism from
Ato B.

The simplest way to form a diagram is with a functor—any functor.

= Definition
Let J and C be categories. A J -diagram (or just diagram) in C with index category J is a
functor J: T = C. i

Since the image J(/7) is indexed by the objects and morphisms of the index category 7, the
objects in 7 are often denoted by lower case letters such as m, n, p, q. Figure 4 illustrates this
definition.

Figure 4

Observe that, as in this example, the image J(7) need not be a subcategory of C. In this
example, .J sends n and p to the same object in C but since o and /3 are not compatible for
composition, the image of ./ need not contain the composition .J3 o .Jev. Thus, the image of a
functor simply contains some objects of C as well as some morphisms between these objects.

It is worth emphasizing that any functor F': 7 = Cis a diagram and so we have introduced
nothing new other than a point of view and some concomitant terminology.
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= Definition

Let C be a category.

1) A morphism f: A — B is right-invertible if there is a morphism fr: B — A, called a right
inverse of f, for which

2) A morphism f: A — B is left-invertible if there is a morphism fr: A — B, called a left
inverse of f, for which

frof=1a

3) A morphism f: A — B is invertible or an isomorphism if there is a morphism f': B — A,
called the (two-sided) inverse of f, for which

flef=14 and fof'=1p
In this case, the objects A and B are isomorphic and we write A ~ B. O

Note that the categorical term isomorphism says nothing about injectivity or surjectivity, for
it must be defined in terms of morphisms only!

In fact, this leads to an interesting observation. For categories whose objects are sets and
whose morphisms are set functions, we can define an isomorphism in two ways:
1) (Categorical definition) An isomorphism is a morphism with a two-sided inverse.
2) (Non categorical definition) An isomorphism is a bijective morphism.

In most cases of algebraic structures, such as groups, rings or vector spaces, these
definitions are equivalent. However, there are cases where only the categorical definition is
correct.

Figure 9

For example, as shown in Figure 9, let P = {a, b} be a poset in which a and b are
incomparable and let Q = {0, 1} be the poset with 0 < 1. Let f: P — @ be defined by fa =
0 and fb = 1. Then f is a bijective morphism of posets, that is, a bijective monotone map.
However, it is not an isomorphism of posets!

Proof of the following familiar facts about inverses is left to the reader.
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New Categories From Old Categories

3) If a category C has I1°%, then it also has p°" (abbreviated I1°F = p°P).

The fact that
M= p iff TP = p°

is called the principle of duality for categories. Note that if IT is self-dual, that is, if [T = IT°F,
then the principle of duality becomes

M= p iff = p®

Of course, the empty set of properties is self-dual. Moreover, the condition () = p means that all
categories possess property p. Hence, we deduce that

if all categories possess a property p,then all categories also possess any

dual property p°?
For example, all categories possess the property that initial objects (when they exist) are

isomorphic. Hence, the principle of duality implies that all terminal objects (when they exist)
are isomorphic.

New Categories From Old Categories

There are many ways to define new categories from old categories. One of the simplest ways is
to take the Cartesian product of the objects in two categories. There are also several important
ways to turn the morphisms of one category into the objects of another category.

The Product of Categories

If B and C are categories, we may form the product category 5 x C, in the expected way.
Namely, the objects of B x C are the ordered pairs (B, C), where B is an object of 5 and C
is an object of C. A morphism from B x C'to B' x ' is a pair (f, g) of morphisms, where
f: B— B’ and g: C — C'. Composition is done componentwise:

(f.g) o (hk) = (foh,gok)

A functor F: A x B =-C from a product category A x B to another category is called a
bifunctor.

The Category of Arrows

Given a category C, we can form the category of arrows C~ of C by taking the objects of C™
to be the morphisms of C.
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Index of Symbols

S. Roman, An Introduction to the Language of Category Theory, Compact Textbooks
in Mathematics, DOI 10.1007/978-3-319-41917-6, © The Author(s) 2017

= Functor

— Bijection

— Natural transformation

<> Natural bijection

Isomorphism

Natural isomorphism

Left adjoint

- Right adjoint

1, Identity morphism

(A — C) Comma category of arrows leaving A
(C — A) Comma category of arrows entering A
(A — G) Comma category of arrows leaving A entering G
(G — A) Comma category of arrows entering A leaving G
A(v,w) Set of arcs between v and w in a digraph
B x C Product category

C°® Opposite category

C.D,E Categories

C " Category of arrows

Conec(F') or Conec(ID) Category of cones

D, E, F, etc. Diagrams

D(F: J = C) Diagram in C with functor F'and index category
dia;(C) Category of diagrams

D¢ Functor category

f~ Follow by f

f~ Preceed by f

hom¢(A, B) Hom-set

hom¢(A, —) Hom-set category

home(A, -) Hom-set functor

K, L Cones and cocones

Mor(C) Morphisms of C

Obj(C) Objects of C

V(D) Vertex class of a digraph

I

T 1 Q.
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Index
Entering, 2
Cone i -
A h 58 Epic, 19
- morphism, Equalizer, 93
- over, 87

AbGrp, 3, 12, 101

Abstract categories, 12

Adjoint functor theorem, 135, 138
Adjunction, 120

Antiparallel, 9

Arcs, 15

Arrow part, 8

Arrows, 2

- entering, 25

- leaving, 24

Base I, 87
Basic fusion formulas, 121
Binatural, 120

C

Canonical projection, 97
Categorical construction, 80
Category, 2

Category of arrows, 23
Category of elements Elts(F), 28
C has binary products, 99-100
C has finite products, 100
Class, 1

Cocomplete, 109

Cocone, 88

Coequalizer, 95

Colimit, 90

Comediating morphisms, 83, 84, 120
- map, 83

Comma

- category, 26

- objects, 24, 26
Commutative diagram, 17
Commutativity rule, 44
Commute, 17

Commuting diagram, 17
Compatible, 2

Component, 44

Composition, 2

Concrete, 11

Constant diagram, 91

Constant-diagram functor, 92

Contravariant functor, 8

Contravariant hom functor, 42

Contravariant power set functor, 10

Coordinate map, 49-51

Coslice category, 25

Counits, 123

Couniversal mapping property
(CMP), 83

Covariant functor, 8

Covariant hom functor, 42

Covariant representable functors, 42

CRng, 3, 21, 101

Currying, 106

D

Degree, 15
Determinant, 44-45
Diagonal functor, 131
Digraph version, 15
Directed

- graph, 15

- path, 15

Direct Fusion formula, 84, 120
Distinguished submodules, 78
Domain, 2

- functor, 37
Double-dual, 46, 47
- space, 47
Down-set, 37

- functor, 37

Dual category, 21
Dual functor, 48
Dually equivalent, 54
Dual property, 22
Dual space, 46

Dual statement, 22

E

Embedding, 10

Evaluation, 47, 107
- function, 106
Exponential, 107

F

(S, u)-factorization, 136
Faithful, 10

Field, 3, 30, 101

Field of quotients, 78
Finlnner, 48, 49

Finite diagram, 109
Finitely complete, 109
Forgetful functors, 11
Free Groups, 77-78, 127-128
Full, 10, 12

Fully faithful, 10
Functor, 7, 8

Fusion formula, 84

G

Grp, 3, 11, 12, 20, 30, 95,
97,101, 108, 109

H

Hom-set, 2

Identity morphisms, 2

In-degree, 15

Index category, 14

Initial, 20

IntDom, 78

Inverse Fusion formula,
76,120

Invertible, 18

Isomorphic, 18

Isomorphism, 18



