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Preface to the second and third editions

Since the publication of the first edition, many students and lectur-
ers have communicated a number of minor typos and other corrections
to me. There was also some demand for a hardcover edition of the
texts. Because of this, the publishers and I have decided to incorporate
the corrections and issue a hardcover second edition of the textbooks.
The layout, page numbering, and indexing of the texts have also been
changed; in particular the two volumes are now numbered and indexed
separately. However, the chapter and exercise numbering, as well as the
mathematical content, remains the same as the first edition, and so the
two editions can be used more or less interchangeably for homework and
study purposes.

The third edition contains a number of corrections that were reported
for the second edition, together with a few new exercises, but is otherwise
essentially the same text.

X1



Preface to the first edition

This text originated from the lecture notes I gave teaching the honours
undergraduate-level real analysis sequence at the University of Califor-
nia, Los Angeles, in 2003. Among the undergraduates here, real anal-
ysis was viewed as being one of the most difficult courses to learn, not
only because of the abstract concepts being introduced for the first time
(e.g., topology, limits, measurability, etc.), but also because of the level
of rigour and proof demanded of the course. Because of this percep-
tion of difficulty, one was often faced with the difficult choice of either
reducing the level of rigour in the course in order to make it easier, or
to maintain strict standards and face the prospect of many undergradu-
ates, even many of the bright and enthusiastic ones, struggling with the
course material.

Faced with this dilemma, I tried a somewhat unusual approach to
the subject. Typically, an introductory sequence in real analysis assumes
that the students are already familiar with the real numbers, with math-
ematical induction, with elementary calculus, and with the basics of set
theory, and then quickly launches into the heart of the subject, for in-
stance the concept of a limit. Normally, students entering this sequence
do indeed have a fair bit of exposure to these prerequisite topics, though
in most cases the material is not covered in a thorough manner. For in-
stance, very few students were able to actually define a real number, or
even an integer, properly, even though they could visualize these num-
bers intuitively and manipulate them algebraically. This seemed to me
to be a missed opportunity. Real analysis is one of the first subjects
(together with linear algebra and abstract algebra) that a student en-
counters, in which one truly has to grapple with the subtleties of a truly
rigorous mathematical proof. As such, the course offered an excellent
chance to go back to the foundations of mathematics, and in particular

Xiii



xiv Preface to the first edition

the opportunity to do a proper and thorough construction of the real
numbers.

Thus the course was structured as follows. In the first week, I de-
scribed some well-known “paradoxes” in analysis, in which standard laws
of the subject (e.g., interchange of limits and sums, or sums and inte-
grals) were applied in a non-rigorous way to give nonsensical results such
as 0 = 1. This motivated the need to go back to the very beginning of the
subject, even to the very definition of the natural numbers, and check
all the foundations from scratch. For instance, one of the first homework
assignments was to check (using only the Peano axioms) that addition
was associative for natural numbers (i.e., that (a +b)+c=a+ (b+¢)
for all natural numbers a,b,c: see Exercise 2.2.1). Thus even in the
first week, the students had to write rigorous proofs using mathematical
induction. After we had derived all the basic properties of the natural
numbers, we then moved on to the integers (initially defined as formal
differences of natural numbers); once the students had verified all the
basic properties of the integers, we moved on to the rationals (initially
defined as formal quotients of integers); and then from there we moved
on (via formal limits of Cauchy sequences) to the reals. Around the
same time, we covered the basics of set theory, for instance demonstrat-
ing the uncountability of the reals. Only then (after about ten lectures)
did we begin what one normally considers the heart of undergraduate
real analysis - limits, continuity, differentiability, and so forth.

The response to this format was quite interesting. In the first few
weeks, the students found the material very easy on a conceptual level,
as we were dealing only with the basic properties of the standard num-
ber systems. But on an intellectual level it was very challenging, as one
was analyzing these number systems from a foundational viewpoint, in
order to rigorously derive the more advanced facts about these number
systems from the more primitive ones. One student told me how difficult
it was to explain to his friends in the non-honours real analysis sequence
(a) why he was still learning how to show why all rational numbers
are either positive, negative, or zero (Exercise 4.2.4), while the non-
honours sequence was already distinguishing absolutely convergent and
conditionally convergent series, and (b) why, despite this, he thought
his homework was significantly harder than that of his friends. Another
student commented to me, quite wryly, that while she could obviously
see why one could always divide a natural number n into a positive
integer ¢ to give a quotient a and a remainder r less than ¢ (Exercise
2.3.5), she still had, to her frustration, much difficulty in writing down
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a proof of this fact. (I told her that later in the course she would have
to prove statements for which it would not be as obvious to see that
the statements were true; she did not seem to be particularly consoled
by this.) Nevertheless, these students greatly enjoyed the homework, as
when they did perservere and obtain a rigorous proof of an intuitive fact,
it solidified the link in their minds between the abstract manipulations
of formal mathematics and their informal intuition of mathematics (and
of the real world), often in a very satisfying way. By the time they were
assigned the task of giving the infamous “epsilon and delta” proofs in
real analysis, they had already had so much experience with formalizing
intuition, and in discerning the subtleties of mathematical logic (such
as the distinction between the “for all” quantifier and the “there exists”
quantifier), that the transition to these proofs was fairly smooth, and we
were able to cover material both thoroughly and rapidly. By the tenth
week, we had caught up with the non-honours class, and the students
were verifying the change of variables formula for Riemann-Stieltjes in-
tegrals, and showing that piecewise continuous functions were Riemann
integrable. By the conclusion of the sequence in the twentieth week, we
had covered (both in lecture and in homework) the convergence theory of
Taylor and Fourier series, the inverse and implicit function theorem for
continuously differentiable functions of several variables, and established
the dominated convergence theorem for the Lebesgue integral.

In order to cover this much material, many of the key foundational
results were left to the student to prove as homework; indeed, this was
an essential aspect of the course, as it ensured the students truly ap-
preciated the concepts as they were being introduced. This format has
been retained in this text; the majority of the exercises consist of proving
lemmas, propositions and theorems in the main text. Indeed, I would
strongly recommend that one do as many of these exercises as possible
- and this includes those exercises proving “obvious” statements - if one
wishes to use this text to learn real analysis; this is not a subject whose
subtleties are easily appreciated just from passive reading. Most of the
chapter sections have a number of exercises, which are listed at the end
of the section.

To the expert mathematician, the pace of this book may seem some-
what slow, especially in early chapters, as there is a heavy emphasis
on rigour (except for those discussions explicitly marked “Informal”),
and justifying many steps that would ordinarily be quickly passed over
as being self-evident. The first few chapters develop (in painful detail)
many of the “obvious™ properties of the standard number systems, for
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instance that the sum of two positive real numbers is again positive (Ex-
ercise 5.4.1), or that given any two distinct real numbers, one can find
rational number between them (Exercise 5.4.5). In these foundational
chapters, there is also an emphasis on non-circularity - not using later,
more advanced results to prove earlier, more primitive ones. In partic-
ular, the usual laws of algebra are not used until they are derived (and
they have to be derived separately for the natural numbers, integers,
rationals, and reals). The reason for this is that it allows the students
to learn the art of abstract reasoning, deducing true facts from a lim-
ited set of assumptions, in the friendly and intuitive setting of number
systems; the payoff for this practice comes later, when one has to utilize
the same type of reasoning techniques to grapple with more advanced
concepts (e.g., the Lebesgue integral).

The text here evolved from my lecture notes on the subject, and
thus is very much oriented towards a pedagogical perspective; much
of the key material is contained inside exercises, and in many cases I
have chosen to give a lengthy and tedious, but instructive, proof in-
stead of a slick abstract proof. In more advanced textbooks, the student
will see shorter and more conceptually coherent treatments of this ma-
terial, and with more emphasis on intuition than on rigour; however,
I feel it is important to know how to do analysis rigorously and “by
hand” first, in order to truly appreciate the more modern, intuitive and
abstract approach to analysis that one uses at the graduate level and
beyond.

The exposition in this book heavily emphasizes rigour and formal-
ism; however this does not necessarily mean that lectures based on
this book have to proceed the same way. Indeed, in my own teach-
ing I have used the lecture time to present the intuition behind the
concepts (drawing many informal pictures and giving examples), thus
providing a complementary viewpoint to the formal presentation in the
text. The exercises assigned as homework provide an essential bridge
between the two, requiring the student to combine both intuition and
formal understanding together in order to locate correct proofs for a
problem. This I found to be the most difficult task for the students,
as it requires the subject to be genuinely learnt, rather than merely
memorized or vaguely absorbed. Nevertheless, the feedback I received
from the students was that the homework, while very demanding for
this reason, was also very rewarding, as it allowed them to connect the
rather abstract manipulations of formal mathematics with their innate
intuition on such basic concepts as numbers, sets, and functions. Of
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course, the aid of a good teaching assistant is invaluable in achieving this
connection.

With regard to examinations for a course based on this text, I would
recommend either an open-book, open-notes examination with problems
similar to the exercises given in the text (but perhaps shorter, with no
unusual trickery involved), or else a take-home examination that involves
problems comparable to the more intricate exercises in the text. The
subject matter is too vast to force the students to memorize the defini-
tions and theorems, so I would not recommend a closed-book examina-
tion, or an examination based on regurgitating extracts from the book.
(Indeed, in my own examinations I gave a supplemental sheet listing the
key definitions and theorems which were relevant to the examination
problems.) Making the examinations similar to the homework assigned
in the course will also help motivate the students to work through and
understand their homework problems as thoroughly as possible (as op-
posed to, say, using flash cards or other such devices to memorize mate-
rial), which is good preparation not only for examinations but for doing
mathematics in general.

Some of the material in this textbook is somewhat peripheral to
the main theme and may be omitted for reasons of time constraints.
For instance, as set theory is not as fundamental to analysis as are
the number systems, the chapters on set theory (Chapters 3, 8) can be
covered more quickly and with substantially less rigour, or be given as
reading assignments. The appendices on logic and the decimal system
are intended as optional or supplemental reading and would probably
not be covered in the main course lectures; the appendix on logic is
particularly suitable for reading concurrently with the first few chapters.
Also, Chapter 11.27 (on Fourier series) is not needed elsewhere in the
text and can be omitted.

For reasons of length, this textbook has been split into two volumes.
The first volume is slightly longer, but can be covered in about thirty
lectures if the peripheral material is omitted or abridged. The second
volume refers at times to the first, but can also be taught to students
who have had a first course in analysis from other sources. It also takes
about thirty lectures to cover.

I am deeply indebted to my students, who over the progression of
the real analysis course corrected several errors in the lectures notes
from which this text is derived, and gave other valuable feedback. I am
also very grateful to the many anonymous referees who made several
corrections and suggested many important improvements to the text.
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I also thank Biswaranjan Behera, Tai-Danae Bradley, Brian, Eduardo
Buscicchio, Carlos, EO, Florian, Gékhan Giiglii, Evangelos Georgiadis,
Ulrich Groh, Bart Kleijngeld, Erik Koelink, Wang Kuyyang, Matthis
Lehmkiihler, Percy Li, Ming Li, Jason M., Manoranjan Majji, Geoff
Mess, Pieter Naaijkens, Vineet Nair, Cristina Pereyra, David Radnell,
Tim Reijnders, Pieter Roffelsen, Luke Rogers, Marc Schoolderman, Kent
Van Vels, Daan Wanrooy, Yandong Xiao, Sam Xu, Luging Ye, and the
students of Math 401/501 and Math 402/502 at the University of New
Mexico for corrections to the first and second editions.

Terence Tao
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Chapter 1

Introduction

1.1 What is analysis?

This text is an honours-level undergraduate introduction to real analy-
sis: the analysis of the real numbers, sequences and series of real num-
bers, and real-valued functions. This is related to, but is distinct from,
complex analysis, which concerns the analysis of the complex numbers
and complex functions, harmenic analysis, which concerns the analy-
sis of harmonics (waves) such as sine waves, and how they synthesize
other functions via the Fourier transform, functional analysis, which fo-
cuses much more heavily on functions (and how they form things like
vector spaces), and so forth. Analysis is the rigorous study of such
objects, with a focus on trying to pin down precisely and accurately
the qualitative and quantitative behavior of these objects. Real analy-
sis is the theoretical foundation which underlies calculus, which is the
collection of computational algorithms which one uses to manipulate
functions.

In this text we will be studying many objects which will be familiar
to you from freshman calculus: numbers, sequences, series, limits, func-
tions, definite integrals, derivatives, and so forth. You already have a
great deal of experience of computing with these objects; however here
we will be focused more on the underlying theory for these objects. We
will be concerned with questions such as the following:

1. What is a real number? Is there a largest real number? After 0,
what is the “next” real number (i.e., what is the smallest positive
real number)? Can you cut a real number into pieces infinitely
many times? Why does a number such as 2 have a square root,
while a number such as -2 does not? If there are infinitely many

© Springer Science+Business Media Singapore 2016 and Hindustan Book Agency 2015 1
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2 1. Introduction

reals and infinitely many rationals, how come there are “more”
real numbers than rational numbers?

2. How do you take the limit of a sequence of real numbers? Which
sequences have limits and which ones don't? If you can stop a
sequence from escaping to infinity, does this mean that it must
eventually settle down and converge? Can you add infinitely many
real numbers together and still get a finite real number? Can you
add infinitely many rational numbers together and end up with a
non-rational number? If you rearrange the elements of an infinite
sum, is the sum still the same?

3. What is a function? What does it mean for a function to be
continuous? differentiable? integrable? bounded? Can you add
infinitely many functions together? What about taking limits of
sequences of functions? Can you differentiate an infinite series of
functions? What about integrating? If a function f(x) takes the
value 3 when z = 0 and 5 when z = 1 (i.e., f(0) =3 and f(1) = 5),
does it have to take every intermediate value between 3 and 5 when
2 goes between (0 and 17 Why?

You may already know how to answer some of these questions from
your calculus classes, but most likely these sorts of issues were only of
secondary importance to those courses; the emphasis was on getting you
to perform computations, such as computing the integral of z sin(z?)
from x = 0 to x = 1. But now that you are comfortable with these
objects and already know how to do all the computations, we will go
back to the theory and try to really understand what is going on.

1.2 Why do analysis?

It is a fair question to ask, “why bother?”, when it comes to analysis.
There is a certain philosophical satisfaction in knowing why things work,
but a pragmatic person may argue that one only needs to know how
things work to do real-life problems. The calculus training you receive in
introductory classes is certainly adequate for you to begin solving many
problems in physics, chemistry, biology, economics, computer science,
finance, engineering, or whatever else you end up doing - and you can
certainly use things like the chain rule, L’'Hopital’s rule, or integration
by parts without knowing why these rules work, or whether there are
any exceptions to these rules. However, one can get into trouble if



1.2. Why do analysis? 3

one applies rules without knowing where they came from and what the
limits of their applicability are. Let me give some examples in which
several of these familiar rules, if applied blindly without knowledge of
the underlying analysis, can lead to disaster.

Example 1.2.1 (Division by zero). This is a very familiar one to you:
the cancellation law ac = bc = a = b does not work when ¢ = 0. For
instance, the identity 1 x 0 = 2 x 0 is true, but if one blindly cancels the
0 then one obtains 1 = 2, which is false. In this case it was obvious that
one was dividing by zero; but in other cases it can be more hidden.

Example 1.2.2 (Divergent series). You have probably seen geometric
series such as the infinite sum

S—1+1+1+1+1+
- 2 4 8 16 7

You have probably seen the following trick to sum this series: if we call
the above sum S, then if we multiply both sides by 2, we obtain

111
28 =2+14-4+-+-+...=2+8
tlts+ gt +

and hence S = 2, so the series sums to 2. However, if you apply the
same trick to the series

S=14+2+44+8+16+...

one gets nonsensical results:

28=24+4+484+16+...=5-1 = S=-1.
So the same reasoning that shows that 1 + % + % + ... = 2 also gives
that 1+2+4+8+...=—1. Why is it that we trust the first equation

but not the second? A similar example arises with the series
S=1-14+1-14+1-1+...;
we can write
S=1-(1-141-1+..)=1-58
and hence that S = 1/2; or instead we can write

S=1-1)+(1-1)+(1-1)+...=0+0+...
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and hence that S = 0; or instead we can write
S=1+(-14+1)+(-1+1)+...=14+0+0+...

and hence that S = 1. Which one is correct? (See Exercise 7.2.1 for an
answer.)

Example 1.2.3 (Divergent sequences). Here is a slight variation of the
previous example. Let 2 be a real number, and let L be the limit

L= lim 2".
n— 0o

Changing variables n = m + 1, we have

L= lim 2= lim zxz"=2 lim 2™
m+1—oco m+1—o00 m+1—oo

But if m + 1 — oo, then m — oo, thus

lim 2= lim 2™ = lim 2" = L,
m+1—00 m—oo n—00
and thus
xL = L.

At this point we could cancel the L’s and conclude that x = 1 for an
arbitrary real number z, which is absurd. DBut since we are already
aware of the division by zero problem, we could be a little smarter and
conclude instead that either x = 1, or L = 0. In particular we seem to
have shown that

lim 2™ =0 for all x # 1.

n—oo

But this conclusion is absurd if we apply it to certain values of x, for
instance by specializing to the case x = 2 we could conclude that the
sequence 1,2.4,8, ... converges to zero, and by specializing to the case
2 = —1 we conclude that the sequence 1,—1,1, —1,... also converges to
zero. These conclusions appear to be absurd; what is the problem with
the above argument? (See Exercise 6.3.4 for an answer.)

Example 1.2.4 (Limiting values of functions). Start with the expres-
sion lim,_,o sin(z), make the change of variable = y + 7 and recall
that sin(y + n) = —sin(y) to obtain

S
Jan sin(@) = Jim_sinfy +7) = Jim,

(—sin(y)) = — Lm sin(y).
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Since limg, o0 sin(z) = lim, o sin(y) we thus have

lim sin(z) = — lim sin(x)
T—00 T—00

and hence

lim sin(z) = 0.

T—r00
If we then make the change of variables x = 7/2 4+ z and recall that
sin(m/2 + 2z) = cos(z) we conclude that

lim cos(z) = 0.
r—ro0o

Squaring both of these limits and adding we see that

lim (sin?(z) + cos?(z)) = 0% 4+ 02 = 0.

Tr—rCQO

On the other hand, we have sin?(z) + cos®*(x) = 1 for all z. Thus we
have shown that 1 = 0! What is the difficulty here?

Example 1.2.5 (Interchanging sums). Consider the following fact of
arithmetic. Consider any matrix of numbers, e.g.

1 2
4 5
78

O W

and compute the sums of all the rows and the sums of all the columns,
and then total all the row sums and total all the column sums. In both
cases you will get the same number - the total sum of all the entries in
the matrix:

1 2 3 6
4 5 6 15
7 8 9 24

12 15 18 45

To put it another way, if you want to add all the entries in an m x n
matrix together, it doesn’t matter whether you sum the rows first or
sum the columns first, you end up with the same answer. (Before the
invention of computers, accountants and book-keepers would use this
fact to guard against making errors when balancing their books.) In
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series notation, this fact would be expressed as

m n n

)SDILTED S

i=1 j=1 j=1i=1

if a;; denoted the entry in the i*" row and j* column of the matrix.
Now one might think that this rule should extend easily to infinite
series:

o0 o0 oo oo
DD a =3
i=1 j=1 j=1i=1

Indeed, if you use infinite series a lot in your work, you will find yourself
having to switch summations like this fairly often. Another way of saying
this fact is that in an infinite matrix, the sum of the row-totals should
equal the sum of the column-totals. However, despite the reasonableness
of this statement, it is actually false! Here is a counterexample:

1 0 0 0
-1 1 0 0
0 -1 1 0
0 0 -1 1
o 0 0 -1

If you sum up all the rows, and then add up all the row totals, you get
1; but if you sum up all the columns, and add up all the column totals,
you get 0! So, does this mean that summations for infinite series should
not be swapped, and that any argument using such a swapping should
be distrusted? (See Theorem 8.2.2 for an answer.)

Example 1.2.6 (Interchanging integrals). The interchanging of inte-
grals is a trick which occurs in mathematics just as commonly as the
interchanging of sums. Suppose one wants to compute the volume un-
der a surface z = f(x,y) (let us ignore the limits of integration for the
moment). One can do it by slicing parallel to the z-axis: for each fixed
value of y, we can compute an area [ f(z,y) dr, and then we integrate
the area in the y variable to obtain the volume

V—/[f(x,y)dxdy.
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Or we could slice parallel to the y-axis for each fixed x and compute an
area [ f(z,y) dy, and then integrate in the z-axis to obtain

V—//f(w,y)dyd:x.

This seems to suggest that one should always be able to swap integral

e | [ty dety= [ [ sa.y) dyda.

And indeed, people swap integral signs all the time, because sometimes
one variable is easier to integrate in first than the other. However, just as
infinite sums sometimes cannot be swapped, integrals are also sometimes
dangerous to swap. An example is with the integrand e™™¥ — zye™"Y.
Suppose we believe that we can swap the integrals:

ool 1 poo
f / (e7™ —xye™™) dy dx = f / (e7™ —xye ™) dx dy. (1.1)
0o Jo 0 Jo

Since
1
—ay Y _ —zyy=1 _ =
/ (7™ —aye ™) dy = ye ™| g =€ 7,
0

the left-hand side of (1.1) is [;* e * dao = —e *[§° = 1. But since
00
| e ey do = we = <o,
0

the right-hand side of (1.1) is _fol 0 dx = 0. Clearly 1 # 0, so there is an
error somewhere; but you won’t find one anywhere except in the step
where we interchanged the integrals. So how do we know when to trust
the interchange of integrals? (See Theorem 11.50.1 for a partial answer.)

Example 1.2.7 (Interchanging limits). Suppose we start with the plau-
sible looking statement

.2 2

lim lim 5 = lim lim
x—=0y—=0 2+ Yy y—=02x—0 2= 4+ y

. (1.2)

But we have
2 2

lim =1,

y—>0:1:2—l—y2 ::E2+02
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so the left-hand side of (1.2) is 1; on the other hand, we have

2 02

T
1. = =
208 22 T2 02442

)

so the right-hand side of (1.2) is 0. Since 1 is clearly not equal to zero,
this suggests that interchange of limits is untrustworthy. But are there
any other circumstances in which the interchange of limits is legitimate?
(See Exercise 11.9.9 for a partial answer.)

Example 1.2.8 (Interchanging limits, again). Consider the plausible
looking statement

lim lim z" = lim lim 2"

x—1— n—0 n—o0 p—1-
where the notation # — 17 means that = is approaching 1 from the
left. When 2 is to the left of 1, then lim,,_,. " = 0, and hence the
left-hand side is zero. But we also have lim,_,;- " = 1 for all n, and so
the right-hand side limit is 1. Does this demonstrate that this type of
limit interchange is always untrustworthy? (See Proposition 11.15.3 for
an answer.)

Example 1.2.9 (Interchanging limits and integrals). For any real num-
ber y, we have

[ e de = romta =i =5 - (45)
—————s de=arctan(z — Y)|pm oo = = — |5 ) =7
oo L4 (2 — )2 Y

Taking limits as y — oo, we should obtain

o 1 o 1
/ lim ———— dx = lim — —dx=m.
oo ¥ L4 (2 — )2 y=0 ) oo 1+ (z —y)?
But for every x, we have lim, . m = 0. So we seem to have

concluded that 0 = m. What was the problem with the above argument?
Should one abandon the (very useful) technique of interchanging limits
and integrals? (See Theorem 11.18.1 for a partial answer.)

Example 1.2.10 (Interchanging limits and derivatives). Observe that
if € > 0, then

d ( z? )33:2(£2+3:2)—23:4

dr \ 22 + 22 (g2 + x2)?
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and in particular that

d 1,3 -
G \Zya2) =0 =0

Taking limits as € — 0, one might then expect that

d .’I,’3
(== ) le=o =0
dx (O+x2)| 0

But the right-hand side is %m = 1. Does this mean that it is always
illegitimate to interchange limits and derivatives? (See Theorem 11.19.1
for an answer.)

Example 1.2.11 (Interchanging derivatives). Let! f(z,y) be the func-

tion f(x,y) := xfﬂﬂ . A common maneuvre in analysis is to interchange
two partial derivatives, thus one expects
0*f 0% f
(0,0) = (0,0).
dxdy dyox
But from the quotient rule we have
af (2.4) 3xy? 2zy?
—(x,y) = -
Ay Y= e (@2 +y?)?
and in particular
of 0 0
)= —— =~ =90
8y( 0) x?2 at
Thus o
I 0,00=0.
Bwﬁy( )
On the other hand, from the quotient rule again we have
af( ) Y3 2223
— — —
ar Y T gy y? (22 +y?)2
and hence of )
_y 0
%(O,ZJ) SR A

'One might object that this function is not defined at (x,y) = (0,0), but if we set
£(0,0) := (0,0) then this function becomes continuous and differentiable for all (x,y),
and in fact both partial derivatives % % are also continuous and differentiable for

all (z,y)!
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Thus
0 f
dydx
Since 1 # 0, we thus seem to have shown that interchange of deriva-
tives is untrustworthy. But are there any other circumstances in which
the interchange of derivatives is legitimate? (See Theorem 11.37.4 and
Exercise 11.37.1 for some answers.)

7 (0,0) = 1.

Example 1.2.12 (L’Hopital’s rule). We are all familiar with the beau-
tifully simple L'Hopital’s rule
fx)

lim —= = lim ,
xT—rao g x) xr—rx0 g’(a’,‘)

but one can still get led to incorrect conclusions if one applies it incor-
rectly. For instance, applying it to f(z) := x, g(x) :== 142, and 29 := 0

we would obtain )
li =lim-=1
a:l—% 1 +x x—0 1 '

but this is the incorrect answer, since lim, o 175 = % = 0. Of course,
all that is going on here is that L’Hopital’s rule is only applicable when
both f(x) and g(x) go to zero as x — xy, a condition which was violated
in the above example. But even when f(z) and g(z) do go to zero
as x — xg there is still a possibility for an incorrect conclusion. For
instance, consider the limit

i x? sin(a;*‘l).

x—0 €T

Both numerator and denominator go to zero as  — 0, so it seems pretty
safe to apply L’Hopital’s rule, to obtain

2 i (A civy (A .
< sin 2zsin(z™ %) — 4 -

. (%) Y rsin(x™*) — 4o~ cos(xz )

x—0 xr x—0 1

= lim 2z sin(z*) — lim 42> cos(x ).
x—0 x—0
The first limit converges to zero by the squeeze test (since the function
2z sin(x~*) is bounded above by 2|x| and below by —2|z|, both of which
go to zero at 0). But the second limit is divergent (because x~2 goes
to infinity as  — 0, and cos(z™*) does not go to zero). So the limit

2a sin(z~*)—4a~2 cos(a™

lim,_,o I ) diverges. One might then conclude using

a? sin(z~%)

L’Hoépital’s rule that lim, g also diverges; however we can



Chapter 2

Starting at the beginning: the natural numbers

In this text, we will review the material you have learnt in high school
and in elementary calculus classes, but as rigorously as possible. To do
so we will have to begin at the very basics - indeed, we will go back to the
concept of numbers and what their properties are. Of course, you have
dealt with numbers for over ten years and you know how to manipulate
the rules of algebra to simplify any expression involving numbers, but
we will now turn to a more fundamental issue, which is: why do the rules
of algebra work at all? For instance, why is it true that a(b+ c) is equal
to ab + ac for any three numbers a, b, ¢? This is not an arbitrary choice
of rule; it can be proven from more primitive, and more fundamental,
properties of the number system. This will teach you a new skill - how
to prove complicated properties from simpler ones. You will find that
even though a statement may be “obvious”, it may not be easy to prove;
the material here will give you plenty of practice in doing so, and in the
process will lead you to think about why an obvious statement really is
obvious. One skill in particular that you will pick up here is the use of
mathematical induction, which is a basic tool in proving things in many
areas of mathematics.

So in the first few chapters we will re-acquaint you with various
number systems that are used in real analysis. In increasing order of
sophistication, they are the natural numbers IN; the integers Z; the ra-
tionals Q, and the real numbers R. (There are other number systems
such as the complexr numbers C, but we will not study them until Sec-
tion 11.26.) The natural numbers {0,1,2,...} are the most primitive of
the number systems, but they are used to build the integers, which in
turn are used to build the rationals. Furthermore, the rationals are used
to build the real numbers, which are in turn used to build the complex
numbers. Thus to begin at the very beginning, we must look at the
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natural numbers. We will consider the following question: how does one
actually define the natural numbers? (This is a very different question
from how to use the natural numbers, which is something you of course
know how to do very well. It’s like the difference between knowing how
to use, say, a computer, versus knowing how to build that computer.)

This question is more difficult to answer than it looks. The basic
problem is that you have used the natural numbers for so long that
they are embedded deeply into your mathematical thinking, and you
can make various implicit assumptions about these numbers (e.g., that
a + b is always equal to b+ a) without even aware that you are doing
so; it is difficult to let go and try to inspect this number system as if it
is the first time you have seen it. So in what follows I will have to ask
you to perform a rather difficult task: try to set aside, for the moment,
everything you know about the natural numbers; forget that you know
how to count, to add, to multiply, to manipulate the rules of algebra,
etc. We will try to introduce these concepts one at a time and identify
explicitly what our assumptions are as we go along - and not allow our-
selves to use more “advanced” tricks such as the rules of algebra until we
have actually proven them. This may seem like an irritating constraint,
especially as we will spend a lot of time proving statements which are
“obvious”, but it is necessary to do this suspension of known facts to
avoid circularity (e.g., using an advanced fact to prove a more elemen-
tary fact, and then later using the elementary fact to prove the advanced
fact). Also, this exercise will be an excellent way to affirm the founda-
tions of your mathematical knowledge. Furthermore, practicing your
proofs and abstract thinking here will be invaluable when we move on
to more advanced concepts, such as real numbers, functions, sequences
and series, differentials and integrals, and so forth. In short, the results
here may seem trivial, but the journey is much more important than
the destination, for now. (Once the number systems are constructed
properly, we can resume using the laws of algebra etc. without having
to rederive them each time.)

We will also forget that we know the decimal system, which of course
is an extremely convenient way to manipulate numbers, but it is not
something which is fundamental to what numbers are. (For instance,
one could use an octal or binary system instead of the decimal system,
or even the Roman numeral system, and still get exactly the same set
of numbers.) Besides, if one tries to fully explain what the decimal
number system is, it isn’t as natural as you might think. Why is 00423
the same number as 423, but 32400 isn’t the same number as 3247 Why
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is 123.4444 ... a real number, while ...444.321 is not? And why do we
have to carry of digits when adding or multiplying? Why is 0.999 ... the
same number as 17 What is the smallest positive real number? Isn't
it just 0.00...0017 So to set aside these problems, we will not try to
assume any knowledge of the decimal system, though we will of course
still refer to numbers by their familiar names such as 1,2,3, etc. instead
of using other notation such as LILIIT or 04+, (04++)++, ((04++)++)++
(see below) so as not to be needlessly artificial. For completeness, we
review the decimal system in an Appendix (§B).

2.1 The Peano axioms

We now present one standard way to define the natural numbers, in
terms of the Peano axioms, which were first laid out by Guiseppe Peano
(1858-1932). This is not the only way to define the natural numbers.
For instance, another approach is to talk about the cardinality of finite
sets, for instance one could take a set of five elements and define 5 to be
the number of elements in that set. We shall discuss this alternate ap-
proach in Section 3.6. However, we shall stick with the Peano axiomatic
approach for now.

How are we to define what the natural numbers are? Informally, we
could say

Definition 2.1.1. (Informal) A natural number is any element of the
set
N:={0,1,2,3,4,...},

which is the set of all the numbers created by starting with 0 and then
counting forward indefinitely. We call N the set of natural numbers.

Remark 2.1.2. In some texts the natural numbers start at 1 instead of
0, but this is a matter of notational convention more than anything else.
In this text we shall refer to the set {1,2,3,...} as the positive integers
Z" rather than the natural numbers. Natural numbers are sometimes
also known as whole numbers.

In a sense, this definition solves the problem of what the natural
numbers are: a natural number is any element of the set’ N. However,

1Strictly speaking, there is another problem with this informal definition: we have
not yet defined what a “set” is, or what “element of” is. Thus for the rest of this
chapter we shall avoid mention of sets and their elements as much as possible, except
in informal discussion.
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it is not really that satisfactory, because it begs the question of what
N is. This definition of “start at 0 and count indefinitely” seems like
an intuitive enough definition of N, but it is not entirely acceptable,
because it leaves many questions unanswered. For instance: how do
we know we can keep counting indefinitely, without cycling back to 07
Also, how do you perform operations such as addition, multiplication,
or exponentiation?

We can answer the latter question first: we can define complicated
operations in terms of simpler operations. Exponentiation is nothing
more than repeated multiplication: 5% is nothing more than three fives
multiplied together. Multiplication is nothing more than repeated addi-
tion; 5 x 3 is nothing more than three fives added together. (Subtraction
and division will not be covered here, because they are not operations
which are well-suited to the natural numbers; they will have to wait for
the integers and rationals, respectively.) And addition? It is nothing
more than the repeated operation of counting forward, or incrementing.
If you add three to five, what you are doing is incrementing five three
times. On the other hand, incrementing seems to be a fundamental op-
eration, not reducible to any simpler operation; indeed, it is the first
operation one learns on numbers, even before learning to add.

Thus, to define the natural numbers, we will use two fundamental
concepts: the zero number 0, and the increment operation. In deference
to modern computer languages, we will use n++ to denote the increment
or successor of n, thus for instance 3++ = 4, (34++)++ = 5, etc. This
is a slightly different usage from that in computer languages such as C,
where n4++ actually redefines the value of n to be its successor; however
in mathematics we try not to define a variable more than once in any
given setting, as it can often lead to confusion; many of the statements
which were true for the old value of the variable can now become false,
and vice versa.

So, it seems like we want to say that IN consists of 0 and everything
which can be obtained from 0 by incrementing: IN should consist of the
objects

0, 04+, (04++)++, ((04++)++)++, ete.

If we start writing down what this means about the natural numbers,
we thus see that we should have the following axioms concerning (0 and
the increment operation ++:

Axiom 2.1. 0 is a natural number.
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Axiom 2.2. Ifn is a natural number, then n++ is also a natural num-
ber.

Thus for instance, from Axiom 2.1 and two applications of Axiom 2.2,
we see that (04++ )4+ is a natural number. Of course, this notation will
begin to get unwieldy, so we adopt a convention to write these numbers
in more familiar notation:

Definition 2.1.3. We define 1 to be the number 0-++, 2 to be the
number (04+)++, 3 to be the number ((04++)4++)++, etc. (In other
words, 1 := 0+, 2 := 14+, 3 := 24+, etc. In this text I use “z = y”
to denote the statement that x is defined to equal y.)

Thus for instance, we have
Proposition 2.1.4. 3 is a natural number.

Proof. By Axiom 2.1, 0 is a natural number. By Axiom 2.2, 0++ =1 is
a natural number. By Axiom 2.2 again, 14+4+ = 2 is a natural number.
By Axiom 2.2 again, 24+ = 3 is a natural number. O

It may seem that this is enough to describe the natural numbers.
However, we have not pinned down completely the behavior of IN:

Example 2.1.5. Consider a number system which consists of the num-
bers 0,1, 2,3, in which the increment operation wraps back from 3 to
0. More precisely 04+ is equal to 1, 14+ is equal to 2, 24+ is equal
to 3, but 34+ is equal to 0 (and also equal to 4, by definition of 4).
This type of thing actually happens in real life, when one uses a com-
puter to try to store a natural number: if one starts at 0 and performs
the increment operation repeatedly, eventually the computer will over-
flow its memory and the number will wrap around back to 0 (though
this may take quite a large number of incrementation operations, for
instance a two-byte representation of an integer will wrap around only
after 65,536 increments). Note that this type of number system obeys
Axiom 2.1 and Axiom 2.2, even though it clearly does not correspond
to what we intuitively believe the natural numbers to be like.

To prevent this sort of “wrap-around issue” we will impose another
axiom:

Axiom 2.3. 0 is not the successor of any natural number; i.e., we have
n++ # 0 for every natural number n.
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Axioms 2.1-2.5 are known as the Peano azioms for the natural num-
bers. They are all very plausible, and so we shall make

Assumption 2.6. (Informal) There exists a number system N, whose
elements we will call natural numbers, for which Azioms 2.1-2.5 are
true.

We will make this assumption a bit more precise once we have laid
down our notation for sets and functions in the next chapter.

Remark 2.1.12. We will refer to this number system N as the natural
number system. One could of course consider the possibility that there
is more than one natural number system, e.g., we could have the Hindu-
Arabic number system {0,1,2,3,...} and the Roman number system
{O, 1,11, I11,1V,V,VI,...}, and if we really wanted to be annoying we
could view these number systems as different. But these number systems
are clearly equivalent (the technical term is isomorphic), because one
can create a one-to-one correspondence 0 <+ O, 1 « I, 2 & I, etc.
which maps the zero of the Hindu-Arabic system with the zero of the
Roman system, and which is preserved by the increment operation (e.g.,
if 2 corresponds to 11, then 24+ will correspond to [7/++). For a more
precise statement of this type of equivalence, see Exercise 3.5.13. Since
all versions of the natural number system are equivalent, there is no
point in having distinct natural number systems, and we will just use a
single natural number system to do mathematics.

We will not prove Assumption 2.6 (though we will eventually include
it in our axioms for set theory, see Axiom 3.7), and it will be the only
assumption we will ever make about our numbers. A remarkable ac-
complishment of modern analysis is that just by starting from these five
very primitive axioms, and some additional axioms from set theory, we
can build all the other number systems, create functions, and do all the
algebra and calculus that we are used to.

Remark 2.1.13. (Informal) One interesting feature about the natural
numbers is that while each individual natural number is finite, the set of
natural numbers is infinite; i.e., N is infinite but consists of individually
finite elements. (The whole is greater than any of its parts.) There
are no infinite natural numbers; one can even prove this using Axiom
2.5, provided one is comfortable with the notions of finite and infinite.
(Clearly 0 is finite. Also, if n is finite, then clearly n++ is also finite.
Hence by Axiom 2.5, all natural numbers are finite.) So the natural



Index

++ (increment), 16, 49
on integers, 77
+C, 299
a-length, 292
g-adherent, 140, 213
continually z-adherent, 140
e-close
eventual, 101
functions, 220
local, 220
rationals, 87
reals, 126
sequences, 101, 128
e-steady, 96, 127
eventually e-steady, 97, 127

a posteriori, 18
a priori, 18
absolute convergence
for series, 166, 191
test, 167
absolute value
for rationals, 86
for reals, 112
absorption laws, 46
abstraction, 21-22
addition
long, 335
of cardinals, 72
of functions, 219

© Springer Science+Business Media Singapore 2016 and Hindustan Book Agency 2015
T. Tao, Analysis I, Texts and Readings in Mathematics 37,

DOI 10.1007/978-981-10-1789-6

of integers, 76
of natural numbers, 24
of rationals, 81
of reals, 104
adherent point
infinite, 249
of sequences: see limit
point of sequences
of sets, 213
alternating series test, 167
analysis, 1
and: see conjunction
antiderivative, 298
Archimedian property, 115
Aristotlean logic, 326
associativity
of addition in N, 26
of composition, 52, 53
of multiplication in N, 30
see also: ring, field, laws of
algebra
asymptotic discontinuity, 234
Axiom(s)
in mathematics, 21-22
of choice, 36, 65, 200
of comprehension: see
Axiom of universal
specification
of countable choice, 200
of equality, 329



340

of foundation: see Axiom
of regularity

of induction: see principle
of mathematical
induction

of infinity, 44

of natural numbers: see
Peano axioms

of pairwise union, 37

of power set, 58

of reflexivity, 329

of regularity, 47

of replacement, 43

of separation, 40

of set theory, 34, 36-37, 40,

43-44, 48, 58

of singleton sets and pair
sets, 36

of specification, 40

of substitution, 50, 329

of symmetry, 329

of the empty set, 36

of transitivity, 329

of union, 59

of universal specification,
46

bijection, 54
binomial formula, 164
Bolzano-Weierstrass theorem,
151
Boolean algebra, 42
Boolean logic, 320
bound variable, 156, 321, 328
bounded
from above and below, 235
function, 234
interval, 212
sequence, 99, 130

Index

sequence away from zero,
107, 111
set, 216

cancellation law
of addition in N, 26
of multiplication in N, 31
of multiplication in R, 110
of multiplication in Z, 80
Cantor’s theorem, 195
cardinality
arithmetic of, 71
of finite sets, 70
uniqueness of, 70
Cartesian product, 62
infinite, 199, 200
Cauchy criterion, 171
Cauchy sequence, 97, 127
chain rule, 256
chain: see totally ordered set
change of variables formula,
302-312
choice
arbitrary, 200
countable, 200
finite, 65
single, 36
closed
interval, 212
closure, 213
cluster point: see limit point
common refinement, 271
commutativity
of addition in N, 26
of multiplication in N, 30
comparison principle (or test)
for finite series, 157
for infinite series, 170
for sequences, 145
completeness



Index

of the reals, 146
composition of functions, 52
conjunction (and), 309
connectedness, 268
constant

function, 51, 272

sequence, 148
continuity, 227

and convergence, 222
continuum, 211

hypothesis, 197
contrapositive, 316
convergence

of a function at a point, 221

of sequences, 128

of series, 165
converse, 315
corollary, 25
countability, 181

of the integers, 185

of the rationals, 187

de Morgan laws, 43
decimal
negative integer, 335
non-uniqueness of
representation, 338
point, 335
positive integer, 335
real, 336
denumerable: see countable
derivative, 251
difference rule, 255
difference set, 42
differentiability
at a point, 251
digit, 332
direct sum
of functions, 63
discontinuity: see singularity

341

disjoint sets, 42
disjunction (or), 309
inclusive vs. exclusive, 310
distance
in Q, 87
in R, 126
distributive law
for natural numbers, 30
see also: laws of algebra
divergence
of sequences, 4
of series, 3, 165
see also: convergence
divisibility, 207
division
by zero, 3
formal (//), 82
of functions, 219
of rationals, 85
domain, 49
dominate: see majorize
dominated convergence: see
Lebesgue dominated
convergence theorem
doubly infinite, 212
dummy variable: see bound
variable

empty
Cartesian product, 64
function, 52
sequence, 64
series, 160
set, 36
equality, 329
for functions, 51
for sets, 35
of cardinality, 68
equivalence
of sequences, 101, 245



342

relation, 330
Euclidean algorithm, 31
exponentiation
of cardinals, 71
with base and exponent in
N, 32
with base in Q and
exponent in Z, 89, 90
with base in R and
exponent in Z, 122
with base in RT and
exponent in Q, 124
with base in R* and
exponent in R, 154
expression, 308
extended real number system
R* 119, 133
extremum: see maximum,
minimum

factorial, 164
family, 60
field, 84
ordered, 86
finite set, 70
fixed point theorem, 241
forward image: see image
free variable, 321
Fubini’s theorem
for finite series, 163
for infinite series, 188
see also: interchanging
integrals/sums with
integrals/sums
function, 49
implicit definition, 50
fundamental theorems of
calculus, 296, 298

geometric series, 165, 171

Index

formula, 171, 174
graph, 51, 66, 219
greatest lower bound: see least
upper bound

half-infinite, 212
half-open, 212
harmonic series, 173
Hausdorff maximality principle,
209
Heine-Borel theorem
for the real line, 216

identity map (or operator), 56
if: see implication
iff (if and only if), 27
ill-defined, 306, 309
image
inverse image, 56
of sets, b6
implication (if), 312
improper integral, 278
inclusion map, 56
inconsistent, 198, 199
index of summation: see
dummy variable
index set, 60
induction: see Principle of
mathematical
induction
infimum: see supremum
infinite
interval, 212
set, 70
injection: see one-to-one
function
integer part, 91, 116
integers Z
definition, 74



Index

identification with
rationals, 83
interspersing with
rationals, 91
integral test, 290
integration
by parts, 300-302
laws, 275, 280
piecewise constant, 273, 274
Riemann: see Riemann
integral
interchanging
derivatives with derivatives,
9
finite sums with finite
sums, 162, 163
integrals with integrals, 1
limits with derivatives, 8
limits with integrals, 8
limits with length, 11
limits with limits, 7, 8

sums with sums, 5, 188
intermediate value theorem, 238
intersection

pairwise, 41
interval, 212
inverse

function theorem, 262

image, 56

in logic, 316

of functions, 55
irrationality, 95

of v/2, 91, 120
isolated point, 215

jump discontinuity, 233
1Y 12,0, LY, L?, L™

see also: supremurn as
norm

343

L’Hopital’s rule, 10, 264
label, 60
laws of algebra
for integers, 78
for rationals, 84
for reals, 106
laws of exponentiation, 89, 90,
122, 125
least upper bound, 117
least upper bound
property, 117, 137
see also: supremum
Leibniz rule, 255
lemma, 25
length of interval, 269
limit
at infinity, 250
formal (LIM), 103, 130
laws, 131, 223
left and right, 231
limiting values of functions,
4, 220
of sequences, 129
uniqueness of, 128, 223
limit inferior, see limit superior
limit point
of sequences, 139
of sets, 215
limit superior, 141
linearity
of finite series, 161
of infinite series, 168
of integration, 274, 280
of limits, 131
Lipschitz constant, 260
Lipschitz continuous, 260
logical connective, 309
lower bound: see upper bound

majorize, 276
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Riemann sums (upper and
lower), 280
Riemann zeta function, 173
Riemann-Stieltjes integral, 294
ring, 78
commutative, 78
Rolle’s theorem, 259
root, 122
test, 178
Russell’s paradox, 46

scalar multiplication
of functions, 220
Schroder-Bernstein theorem,
198
sequence, 96
finite, 64
series
finite, 155, 157
formal infinite, 164
laws, 168, 192
on arbitrary sets, 192
on countable sets, 188
vs. sum, 156
set
axioms: see axioms of set
theory
informal definition, 34
signum function, 225
singleton set, 36
singularity, 234
square root, 50
Squeeze test
for sequences, 145
statement, 306
strict upper bound, 204
subsequence, 149
subset, 39
substitution: see rearrangement

Index

subtraction
formal (——), 76
of functions, 220
of integers, 80
sum rule, 255
supremum (and infimum)
of a set of extended reals,
136, 137
of a set of reals, 119, 121
of sequences of reals, 137
surjection: see onto

tangent: see trigonometric
function
telescoping series, 169
ten, 332
theorem, 25
totally ordered set, 40, 203
transformation: see function
triangle inequality
for finite series, 157, 161
in R, 87
trichotomy of order
for integers, 81
for natural numbers, 27
for rationals, 85
for reals, 112
of extended reals, 135
two-to-one function, 54

uncountability, 181

of the reals, 196
undecidable, 199
uniform continuity, 244
union, 59

pairwise, 37
universal set, 47
upper bound

of a partially ordered set,

204
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of a set of reals, 116
see also: least upper bound

variable, 320
vertical line test, 49, 66

well ordering principle
for arbitrary sets, 210
for natural numbers, 183

well-defined, 306
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well-ordered sets, 204

Zermelo-Fraenkel(-Choice)
axioms, 61
see also: axioms of set
theory
zero test
for sequences, 145
for series, 166
Zorn’s lemma, 206



