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Preface to the second and third editions

Since the publication of the first edition, many students and lectur-
ers have communicated a number of minor typos and other corrections
to me. There was also some demand for a hardcover edition of the
texts. Because of this, the publishers and I have decided to incorporate
the corrections and issue a hardcover second edition of the textbooks.
The layout, page numbering, and indexing of the texts have also been
changed; in particular the two volumes are now numbered and indexed
separately. However, the chapter and exercise numbering, as well as the
mathematical content, remains the same as the first edition, and so the
two editions can be used more or less interchangeably for homework and
study purposes.

The third edition contains a number of corrections that were reported
for the second edition, together with a few new exercises, but is otherwise
essentially the same text.



Preface to the first edition

This text originated from the lecture notes I gave teaching the honours
undergraduate-level real analysis sequence at the University of Califor-
nia, Los Angeles, in 2003. Among the undergraduates here, real anal-
ysis was viewed as being one of the most difficult courses to learn, not
only because of the abstract concepts being introduced for the first time
(e.g., topology, limits, measurability, etc.), but also because of the level
of rigour and proof demanded of the course. Because of this percep-
tion of difficulty, one was often faced with the difficult choice of either
reducing the level of rigour in the course in order to make it easier, or
to maintain strict standards and face the prospect of many undergradu-
ates, even many of the bright and enthusiastic ones, struggling with the
course material.

Faced with this dilemma, I tried a somewhat unusual approach to
the subject. Typically, an introductory sequence in real analysis assumes
that the students are already familiar with the real numbers, with math-
ematical induction, with elementary calculus, and with the basics of set
theory, and then quickly launches into the heart of the subject, for in-
stance the concept of a limit. Normally, students entering this sequence
do indeed have a fair bit of exposure to these prerequisite topics, though
in most cases the material is not covered in a thorough manner. For in-
stance, very few students were able to actually define a real number, or
even an integer, properly, even though they could visualize these num-
bers intuitively and manipulate them algebraically. This seemed to me
to be a missed opportunity. Real analysis is one of the first subjects
(together with linear algebra and abstract algebra) that a student en-
counters, in which one truly has to grapple with the subtleties of a truly
rigorous mathematical proof. As such, the course offered an excellent
chance to go back to the foundations of mathematics, and in particular

X1



xii Preface to the first edition

the opportunity to do a proper and thorough construction of the real
numbers.

Thus the course was structured as follows. In the first week, I de-
scribed some well-known “paradoxes” in analysis, in which standard laws
of the subject (e.g., interchange of limits and sums, or sums and inte-
grals) were applied in a non-rigorous way to give nonsensical results such
as 0 = 1. This motivated the need to go back to the very beginning of the
subject, even to the very definition of the natural numbers, and check
all the foundations from scratch. For instance, one of the first homework
assignments was to check (using only the Peano axioms) that addition
was associative for natural numbers (i.e., that (a +b) +c=a+ (b+ ¢)
for all natural numbers a,b,c: see Exercise 2.2.1). Thus even in the
first week, the students had to write rigorous proofs using mathematical
induction. After we had derived all the basic properties of the natural
numbers, we then moved on to the integers (initially defined as formal
differences of natural numbers); once the students had verified all the
basic properties of the integers, we moved on to the rationals (initially
defined as formal quotients of integers); and then from there we moved
on (via formal limits of Cauchy sequences) to the reals. Around the
same time, we covered the basics of set theory, for instance demonstrat-
ing the uncountability of the reals. Only then (after about ten lectures)
did we begin what one normally considers the heart of undergraduate
real analysis - limits, continuity, differentiability, and so forth.

The response to this format was quite interesting. In the first few
weeks, the students found the material very easy on a conceptual level,
as we were dealing only with the basic properties of the standard num-
ber systems. But on an intellectual level it was very challenging, as one
was analyzing these number systems from a foundational viewpoint, in
order to rigorously derive the more advanced facts about these number
systems from the more primitive ones. One student told me how difficult
it was to explain to his friends in the non-honours real analysis sequence
(a) why he was still learning how to show why all rational numbers
are either positive, negative, or zero (Exercise 4.2.4), while the non-
honours sequence was already distinguishing absolutely convergent and
conditionally convergent series, and (b) why, despite this, he thought
his homework was significantly harder than that of his friends. Another
student commented to me, quite wryly, that while she could obviously
see why one could always divide a natural number n into a positive
integer ¢ to give a quotient a and a remainder r less than ¢ (Exercise
2.3.5), she still had, to her frustration, much difficulty in writing down
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a proof of this fact. (I told her that later in the course she would have
to prove statements for which it would not be as obvious to see that
the statements were true; she did not seem to be particularly consoled
by this.) Nevertheless, these students greatly enjoyed the homework, as
when they did perservere and obtain a rigorous proof of an intuitive fact,
it solidified the link in their minds between the abstract manipulations
of formal mathematics and their informal intuition of mathematics (and
of the real world), often in a very satisfying way. By the time they were
assigned the task of giving the infamous “epsilon and delta” proofs in
real analysis, they had already had so much experience with formalizing
intuition, and in discerning the subtleties of mathematical logic (such
as the distinction between the “for all” quantifier and the “there exists”
quantifier), that the transition to these proofs was fairly smooth, and we
were able to cover material both thoroughly and rapidly. By the tenth
week, we had caught up with the non-honours class, and the students
were verifying the change of variables formula for Riemann-Stieltjes in-
tegrals, and showing that piecewise continuous functions were Riemann
integrable. By the conclusion of the sequence in the twentieth week, we
had covered (both in lecture and in homework) the convergence theory of
Taylor and Fourier series, the inverse and implicit function theorem for
continuously differentiable functions of several variables, and established
the dominated convergence theorem for the Lebesgue integral.

In order to cover this much material, many of the key foundational
results were left to the student to prove as homework; indeed, this was
an essential aspect of the course, as it ensured the students truly ap-
preciated the concepts as they were being introduced. This format has
been retained in this text; the majority of the exercises consist of proving
lemmas, propositions and theorems in the main text. Indeed, I would
strongly recommend that one do as many of these exercises as possible
- and this includes those exercises proving “obvious” statements - if one
wishes to use this text to learn real analysis; this is not a subject whose
subtleties are easily appreciated just from passive reading. Most of the
chapter sections have a number of exercises, which are listed at the end
of the section.

To the expert mathematician, the pace of this book may seem some-
what slow, especially in early chapters, as there is a heavy emphasis
on rigour (except for those discussions explicitly marked “Informal”),
and justifying many steps that would ordinarily be quickly passed over
as being self-evident. The first few chapters develop (in painful detail)
many of the “obvious™ properties of the standard number systems, for
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instance that the sum of two positive real numbers is again positive (Ex-
ercise 5.4.1), or that given any two distinct real numbers, one can find
rational number between them (Exercise 5.4.5). In these foundational
chapters, there is also an emphasis on non-circularity - not using later,
more advanced results to prove earlier, more primitive ones. In partic-
ular, the usual laws of algebra are not used until they are derived (and
they have to be derived separately for the natural numbers, integers,
rationals, and reals). The reason for this is that it allows the students
to learn the art of abstract reasoning, deducing true facts from a lim-
ited set of assumptions, in the friendly and intuitive setting of number
systems; the payoff for this practice comes later, when one has to utilize
the same type of reasoning techniques to grapple with more advanced
concepts (e.g., the Lebesgue integral).

The text here evolved from my lecture notes on the subject, and
thus is very much oriented towards a pedagogical perspective; much
of the key material is contained inside exercises, and in many cases I
have chosen to give a lengthy and tedious, but instructive, proof in-
stead of a slick abstract proof. In more advanced textbooks, the student
will see shorter and more conceptually coherent treatments of this ma-
terial, and with more emphasis on intuition than on rigour; however,
I feel it is important to know how to do analysis rigorously and “by
hand” first, in order to truly appreciate the more modern, intuitive and
abstract approach to analysis that one uses at the graduate level and
beyond.

The exposition in this book heavily emphasizes rigour and formal-
ism; however this does not necessarily mean that lectures based on
this book have to proceed the same way. Indeed, in my own teach-
ing I have used the lecture time to present the intuition behind the
concepts (drawing many informal pictures and giving examples), thus
providing a complementary viewpoint to the formal presentation in the
text. The exercises assigned as homework provide an essential bridge
between the two, requiring the student to combine both intuition and
formal understanding together in order to locate correct proofs for a
problem. This I found to be the most difficult task for the students,
as it requires the subject to be genuinely learnt, rather than merely
memorized or vaguely absorbed. Nevertheless, the feedback I received
from the students was that the homework, while very demanding for
this reason, was also very rewarding, as it allowed them to connect the
rather abstract manipulations of formal mathematics with their innate
intuition on such basic concepts as numbers, sets, and functions. Of
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course, the aid of a good teaching assistant is invaluable in achieving this
connection.

With regard to examinations for a course based on this text, I would
recommend either an open-book, open-notes examination with problems
similar to the exercises given in the text (but perhaps shorter, with no
unusual trickery involved), or else a take-home examination that involves
problems comparable to the more intricate exercises in the text. The
subject matter is too vast to force the students to memorize the defini-
tions and theorems, so I would not recommend a closed-book examina-
tion, or an examination based on regurgitating extracts from the book.
(Indeed, in my own examinations I gave a supplemental sheet listing the
key definitions and theorems which were relevant to the examination
problems.) Making the examinations similar to the homework assigned
in the course will also help motivate the students to work through and
understand their homework problems as thoroughly as possible (as op-
posed to, say, using flash cards or other such devices to memorize mate-
rial), which is good preparation not only for examinations but for doing
mathematics in general.

Some of the material in this textbook is somewhat peripheral to
the main theme and may be omitted for reasons of time constraints.
For instance, as set theory is not as fundamental to analysis as are
the number systems, the chapters on set theory (Chapters 3, 8) can be
covered more quickly and with substantially less rigour, or be given as
reading assignments. The appendices on logic and the decimal system
are intended as optional or supplemental reading and would probably
not be covered in the main course lectures; the appendix on logic is
particularly suitable for reading concurrently with the first few chapters.
Also, Chapter 5 (on Fourier series) is not needed elsewhere in the text
and can be omitted.

For reasons of length, this textbook has been split into two volumes.
The first volume is slightly longer, but can be covered in about thirty
lectures if the peripheral material is omitted or abridged. The second
volume refers at times to the first, but can also be taught to students
who have had a first course in analysis from other sources. It also takes
about thirty lectures to cover.

I am deeply indebted to my students, who over the progression of
the real analysis course corrected several errors in the lectures notes
from which this text is derived, and gave other valuable feedback. I am
also very grateful to the many anonymous referees who made several
corrections and suggested many important improvements to the text.
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I also thank Biswaranjan Behera, Tai-Danae Bradley, Brian, Eduardo
Buscicchio, Carlos, EO, Florian, Gékhan Giiglii, Evangelos Georgiadis,
Ulrich Groh, Bart Kleijngeld, Erik Koelink, Wang Kuyyang, Matthis
Lehmkiihler, Percy Li, Ming Li, Jason M., Manoranjan Majji, Geoff
Mess, Pieter Naaijkens, Vineet Nair, Cristina Pereyra, David Radnell,
Tim Reijnders, Pieter Roffelsen, Luke Rogers, Marc Schoolderman, Kent
Van Vels, Daan Wanrooy, Yandong Xiao, Sam Xu, Luging Ye, and the
students of Math 401/501 and Math 402/502 at the University of New
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Chapter 1

Metric spaces

1.1 Definitions and examples

In Definition 6.1.5 we defined what it meant for a sequence (x,,)22, . of
real numbers to converge to another real number z; indeed, this meant
that for every £ > 0, there exists an N > m such that |z — z,| < ¢ for
all n > N. When this is the case, we write lim,_~c 2, = 2.

Intuitively, when a sequence (z,);2,, converges to a limit x, this
means that somehow the elements 2, of that sequence will eventually
be as close to x as one pleases. One way to phrase this more precisely
is to introduce the distance function d(x,y) between two real numbers
by d(z,y) := |x — y|. (Thus for instance d(3,5) = 2, d(5,3) = 2, and
d(3,3) = 0.) Then we have

Lemma 1.1.1. Let (2,)52,, be a sequence of real numbers, and let x
be another real number. Then (z,)5,, converges to x if and only if

lim,, 00 d(zn, 2) = 0.

Proof. See Exercise 1.1.1. O

One would now like to generalize this notion of convergence, so that
one can take limits not just of sequences of real numbers, but also se-
quences of complex numbers, or sequences of vectors, or sequences of
matrices, or sequences of functions, even sequences of sequences. One
way to do this is to redefine the notion of convergence each time we
deal with a new type of object. As you can guess, this will quickly get
tedious. A more efficient way is to work abstractly, defining a very gen-
eral class of spaces - which includes such standard spaces as the real
numbers, complex numbers, vectors, etc. - and define the notion of con-
vergence on this entire class of spaces at once. (A space is just the set

© Springer Science+Business Media Singapore 2016 and Hindustan Book Agency 2015 1
T. Tao, Analysis II, Texts and Readings in Mathematics 38,
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92 1. Metric spaces

of all objects of a certain type - the space of all real numbers, the space
of all 3 x 3 matrices, etc. Mathematically, there is not much distinction
between a space and a set, except that spaces tend to have much more
structure than what a random set would have. For instance, the space of
real numbers comes with operations such as addition and multiplication,
while a general set would not.)

It turns out that there are two very useful classes of spaces which do
the job. The first class is that of metric spaces, which we will study here.
There is a more general class of spaces, called topological spaces, which
is also very important, but we will only deal with this generalization
briefly, in Section 2.5.

Roughly speaking, a metric space is any space X which has a concept
of distance d(x,y) - and this distance should behave in a reasonable
manner. More precisely, we have

Definition 1.1.2 (Metric spaces). A metric space (X,d) is a space X
of objects (called points), together with a distance function or metric
d: X x X — [0,4+00), which associates to each pair x,y of points in X
a non-negative real number d(z,y) > 0. Furthermore, the metric must
satisfy the following four axioms:

(a) For any z € X, we have d(x,x) = 0.

(b) (Positivity) For any distinct x,y € X, we have d(z,y) > 0.
(¢
(d

) (Symmetry) For any =,y € X, we have d(z,y) = d(y, z).
) (Triangle inequality) For any x,y,z € X, we have d(x,z) <
d(z,y) + d(y, z).

In many cases it will be clear what the metric d is, and we shall abbre-
viate (X, d) as just X.

Remark 1.1.3. The conditions (a) and (b) can be rephrased as follows:
for any z,y € X we have d(z,y) = 0 if and only if z = y. (Why is this
equivalent to (a) and (b)7)

Example 1.1.4 (The real line). Let R be the real numbers, and let d :
R xR — [0,00) be the metric d(z, y) := |x — y| mentioned earlier. Then
(R, d) is a metric space (Exercise 1.1.2). We refer to d as the standard
metric on R, and if we refer to R as a metric space, we assume that the
metric is given by the standard metric d unless otherwise specified.
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Example 1.1.5 (Induced metric spaces). Let (X,d) be any metric
space, and let Y be a subset of X. Then we can restrict the metric
function d : X x X — [0,4+0c0) to the subset ¥ x ¥ of X x X to cre-
ate a restricted metric function dlyxy : Y x Y — [0,+00) of Y; this
is known as the metric on Y induced by the metric d on X. The pair
(Y,d|y«y) is a metric space (Exercise 1.1.4) and is known the subspace
of (X,d) induced by Y. Thus for instance the metric on the real line in
the previous example induces a metric space structure on any subset of
the reals, such as the integers Z, or an interval [a, b], etc.

Example 1.1.6 (Euclidean spaces). Let n > 1 be a natural number,
and let R™ be the space of n-tuples of real numbers:

R" = {(z1,22,..., ) 1 &1,..., 20 € R}

We define the Euclidean metric (also called the 12 metric) dp2 : R™ x
R" — R by

d12(($1, . ,.i'in), (y1, . ,y.n)) = \/(LIZ1 — y1)2 “+ ...+ (x.n — yn)Q

n 1/2
= (Z(UL? - yi)Q) :

i=1

Thus for instance, if n = 2, then d;2((1,6),(4,2)) = V3% + 42 = 5. This
metric corresponds to the geometric distance between the two points
(z1,22,...,%n), (y1,Y2,...,Yyn) as given by Pythagoras’ theorem. (We
remark however that while geometry does give some very important ex-
amples of metric spaces, it is possible to have metric spaces which have
no obvious geometry whatsoever. Some examples are given below.) The
verification that (R",d) is indeed a metric space can be seen geomet-
rically (for instance, the triangle inequality now asserts that the length
of one side of a triangle is always less than or equal to the sum of the
lengths of the other two sides), but can also be proven algebraically (see
Exercise 1.1.6). We refer to (R”,d;2) as the Fuclidean space of dimen-
ston n. Extending the convention from Example 1.1.4, if we refer to R"
as a metric space, we assume that the metric is given by the Euclidean
metric unless otherwise specified.

Example 1.1.7 (Taxi-cab metric). Again let n > 1, and let R" be
as before. But now we use a different metric dj1, the so-called taxicab
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metric (or I metric), defined by

d’ll((ml!x:Z-, .. 1$n):~ (yl:yQ-‘ .. 1yn)) = |I‘l - yl‘ + ...+ |'I1'n — yn|
n
= Z lzi — il
i=1

Thus for instance, if n = 2, then d;1((1,6),(4,2)) = 3+ 4 = 7. This
metric is called the taxi-cab metric, because it models the distance a
taxi-cab would have to traverse to get from one point to another if the
cab was only allowed to move in cardinal directions (north, south, east,
west) and not diagonally. As such it is always at least as large as the
Euclidean metric, which measures distance “as the crow flies”, as it were.
We claim that the space (R, d;1) is also a metric space (Exercise 1.1.7).
The metrics are not quite the same, but we do have the inequalities

dl2 (‘L y) < dll (‘Ly) < \/Edp(.’l,‘, y) (11)
for all z,y (see Exercise 1.1.8).

Remark 1.1.8. The taxi-cab metric is useful in several places, for in-
stance in the theory of error correcting codes. A string of n binary digits
can be thought of as an element of R", for instance the binary string
10010 can be thought of as the point (1,0,0,1,0) in R?. The taxi-cab
distance between two binary strings is then the number of bits in the
two strings which do not match, for instance d;1 (10010, 10101) = 3. The
goal of error-correcting codes is to encode each piece of information (e.g.,
a letter of the alphabet) as a binary string in such a way that all the
binary strings are as far away in the taxicab metric from each other as
possible; this minimizes the chance that any distortion of the bits due
to random noise can accidentally change one of the coded binary strings
to another, and also maximizes the chance that any such distortion can
be detected and correctly repaired.

Example 1.1.9 (Sup norm metric). Again let n > 1, and let R™ be as
before. But now we use a different metric dj~, the so-called sup norm
metric (or [°° metric), defined by

djoo((il’)l,.’lﬁg, s )wn)a (’ylaer . 'ayn)) = Sup{lwi - y." 01 S 7 S '”'}-

Thus for instance, if n = 2, then dj((1,6), (4,2)) = sup(3,4) = 4. The
space (R™, dj~) is also a metric space (Exercise 1.1.9), and is related to
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Similarly the sequence converges to (0,0) in the sup norm metric dj
(why?). However, the sequence (z(™)>_, does not converge to (0,0) in
the discrete metric dgis., since

lim dgise(z™, (0,0)) = lim 1 =1#0.

n—oQ n—oo

Thus the convergence of a sequence can depend on what metric one
1

uses.
In the case of the above four metrics - Euclidean, taxi-cab, sup norm,
and discrete - it is in fact rather easy to test for convergence.

Proposition 1.1.18 (Equivalence of [', I?, [*°). Let R" be a Buclidean
space, and let (m(k))oo be a sequence of points in R™. We write z*) =

k=m
(wgk),mgk),...,mgf)), ie., for j = 1,2,...,n, .’,USL) € R is the jt co-
ordinate of z*) € R". Let x = (21,...,2n) be a point in R™. Then the

following four statements are equivalent:

(222 converges to a with respect to the Euclidean metric dp.

k=m

)

) (2% N2 converges to x with respect to the taxzi-cab metric dj.

c) (m(k))‘f:m converges to x with respect to the sup norm metric dj .
)

d) For every 1 < j < n, the sequence (;L'J,(,-k))zo:m converges to ;.
(Notice that this is a sequence of real numbers, not of points in
R™.)

Proof. See Exercige 1.1.12. O

In other words, a sequence converges in the Euclidean, taxi-cab,
or sup norm metric if and only if each of its components converges
individually. Because of the equivalence of (a), (b) and (c), we say that
the Euclidean, taxicab, and sup norm metrics on R" are equivalent.
(There are infinite-dimensional analogues of the Euclidean, taxicab, and
sup norm metrics which are not equivalent, see for instance Exercise
1.1.15.)

YFor a somewhat whimsical real-life example, one can give a city an “automobile
metric”, with d(z,y) defined as the time it takes for a car to drive from z to y, or a
“pedestrian metric”, where d(x,y) is the time it takes to walk on foot from = to y.
(Let us assume for sake of argument that these metrics are symmetric, though this is
not always the case in real life.) One can easily imagine examples where two points
are close in one metric but not another.
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For the discrete metric, convergence is much rarer: the sequence
must be eventually constant in order to converge.

Proposition 1.1.19 (Convergence in the discrete metric). Let X be
any set, and let dgs. be the discrete metric on X. Let (m(”))fj;m be
a sequence of points in X, and let x be a point in X. Then (x(™)%
converges to x with respect to the discrete metric dgis. if and only if there

exists an N > m such that 2™ = z for alln > N.
Proof. See Exercise 1.1.13. O

We now prove a basic fact about converging sequences; they can only
converge to at most one point at a time.

Proposition 1.1.20 (Uniqueness of limits). Let (X,d) be a metric
space, and let ()2 be a sequence in X. Suppose that there are
two points x,x’ € X such that (.:t:("))‘,’f:m converges to x with respect to
d, and (x™)° also converges to x' with respect to d. Then we have
r=ua.

Proof. See Fxercise 1.1.14. O

Because of the above Proposition, it is safe to introduce the following
notation: if (z(™)2%  converges to x in the metric d, then we write
d — limy,—yeo 2™ = x, or simply limg,—ec 2™ = 2 when there is no
confusion as to what d is. For instance, in the example of (1, 1), we

have
11 11
djz — lim (—, —) =dp — lim (—, —) = (0,0),
n—oo \ N N n—roo \1n n

but dgise — limn_mo(%, %) is undefined. Thus the meaning of d —
lim,, 00 (™) can depend on what d is; however Proposition 1.1.20 assures
us that once d is fixed, there can be at most one value of d—lim,,_,o (™.
(Of course, it is still possible that this limit does not exist; some se-
quences are not convergent.) Note that by Lemma 1.1.1, this definition

of limit generalizes the notion of limit in Definition 6.1.8.

Remark 1.1.21. It is possible for a sequence to converge to one point
using one metric, and another point using a different metric, although
such examples are usually quite artificial. For instance, let X := [0, 1],
the closed interval from 0 to 1. Using the usual metric d, we have
d— limn_)oo% = 0. But now suppose we “swap” the points 0 and 1 in
the following manner. Let f : [0,1] — [0, 1] be the function defined by
f0):=1, f(1) := 0, and f(x) := x for all z € (0,1), and then define
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d'(x,y) :=d(f(x), f(y)). Then (X,d) is still a metric space (why?), but
now d' —lim,, % = 1. Thus changing the metric on a space can greatly
affect the nature of convergence (also called the topology) on that space;
see Section 2.5 for a further discussion of topology.

— Exercises —
Faxercise 1.1.1. Prove Lemma 1.1.1.

FExzercise 1.1.2. Show that the real line with the metric d(z, y) := |x—y| is indeed
a metric space. (Hint: you may wish to review your proof of Proposition 4.3.3.)

Ezercise 1.1.3. Let X be a set, and let d : X x X — [0,00) be a function.
(a) Give an example of a pair (X, d) which obeys axioms (bed) of Definition
1.1.2, but not (a). (Hint: modify the discrete metric.)
(b) Give an example of a pair (X, d) which obeys axioms (acd) of Definition

1.1.2, but not (b).

(¢) Give an example of a pair (X, d) which obeys axioms (abd) of Definition
1.1.2, but not (c).

(d) Give an example of a pair (X, d) which obeys axioms (abe) of Definition
1.1.2, but not (d). (Hint: try examples where X is a finite set.)

FEzercise 1.1.4. Show that the pair (Y, d|y xy ) defined in Example 1.1.5 is indeed
a metric space.

Exercise 1.1.5. Let n > 1, and let aq,as....,a, and by, ba, ..., b, be real num-
bers. Verify the identity

n 2 1 n n n n
(Som) #5323~ (et (32
i=1 i=1 j=1 i=1 j=1
and conclude the Cauchy-Schwarz inequality
n T 1/2 mn 1/2
> aib| < (Z a,f) > v . (1.3)
i=1 i=1 j=1

Then use the Cauchy-Schwarz inequality to prove the triangle inequality
1/2

n 1/2 n 1/2 n
(Z(ai + b,-)Q) < (Z af) + (> ov
i=1 j=1

i=1

FEzercise 1.1.6. Show that (R™,d;2) in Example 1.1.6 is indeed a metric space.
(Hint: use Exercise 1.1.5.)
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Exercise 1.1.7. Show that the pair (R™,d;:) in Example 1.1.7 is indeed a metric
space.

Exercise 1.1.8. Prove the two inequalities in (1.1). (For the first inequality,
square hoth sides. For the second inequality, use Exercise (1.1.5).

Ezercise 1.1.9. Show that the pair (R"™,dj~) in Example 1.1.9 is indeed a
metric space.

Ezercise 1.1.10. Prove the two inequalities in (1.2).

FEzercise 1.1.11. Show that the discrete metric (R", dgisc) in Example 1.1.11 is
indeed a metric space.

Exercise 1.1.12. Prove Proposition 1.1.18.

Ezxercise 1.1.13. Prove Proposition 1.1.19.

Exercise 1.1.14. Prove Proposition 1.1.20. (Hint: modify the proof of Propo-
sition 6.1.7.)

FExercise 1.1.15. Let

X = {(an)ff_o DY an| < oo}
n=0

be the space of absolutely convergent sequences. Define the I! and [* metrics
on this space by

dil((an)fzo:()a (bn);’zo:[)) = Z lan — byl;
n=0

di= ((an)pneqs (bn)nzo) = sup |a, — by|.
neN

Show that these are both metrics on X, but show that there exist sequences
w(l), ZL'(Q), ... of elements of X (i.e., sequences of sequences) which are conver-
gent with respect to the dj metric but not with respect to the djn metric.
Conversely, show that any sequence which converges in the dji metric auto-
matically converges in the d;~ metric.

Ezercise 1.1.16. Let (2,)°2, and (y,)°2, be two sequences in a metric space
(X,d). Suppose that (z,)72, converges to a point € X, and (y,)52, con-
verges to a point y € X. Show that lim, . d(@n, yn) = d(z,y). (Hint: use
the triangle inequality several times.)

1.2 Some point-set topology of metric spaces

Having defined the operation of convergence on metric spaces, we now
define a couple other related notions, including that of open set, closed
set, interior, exterior, boundary, and adherent point. The study of such
notions is known as point-set topology, which we shall return to in Sec-
tion 2.5.
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We first need the notion of a metric ball, or more simply a ball.

Definition 1.2.1 (Balls). Let (X, d) be a metric space, let ¢ be a point
in X, and let » > 0. We define the ball B(x g)(x0,7) in X, centered at
2, and with radius r, in the metric d, to be the set

Bxa)(zo,r) i={x € X :d(x,20) < r}.

When it is clear what the metric space (X,d) is, we shall abbreviate
Bix.a)(zo,7) as just B(xo,r).

Example 1.2.2. In R? with the Euclidean metric dj2, the ball
B(Rz\dﬁ)((ﬂ, 0),1) is the open disc

Br2.4,,)((0,0),1) = {(z,y) € R® : a® + ¢ < 1}.

However, if one uses the taxi-cab metric d;n instead, then we obtain a
diamond:

Bira g ((0.0),1) = {(z,y) € R? : |z +]y| < 1}.
If we use the discrete metric, the ball is now reduced to a single point:

B(stddisc)((o’ 0),1) = {(0,0)},

although if one increases the radius to be larger than 1, then the ball
now encompasses all of R%. (Why?)

Example 1.2.3. In R with the usual metric d, the open interval (3,7)
is also the metric ball Big 4)(5,2).

Remark 1.2.4. Note that the smaller the radius r, the smaller the ball
B(xo,7). However, B(xp,r) always contains at least one point, namely
the center z¢, as long as r stays positive, thanks to Definition 1.1.2(a).
(We don’t consider balls of zero radius or negative radius since they are
rather boring, being just the empty set.)

Using metric balls, one can now take a set F in a metric space X,
and classify three types of points in X: interior, exterior, and boundary
points of E.

Definition 1.2.5 (Interior, exterior, boundary). Let (X, d) be a metric
space, let £/ be a subset of X, and let x¢ be a point in X. We say
that xo is an interior point of E if there exists a radius 7 > 0 such that
B(xg,r) C E. We say that x is an exterior point of E if there exists a
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From the above two remarks we see that the notions of being open
and being closed are not negations of each other; there are sets that
are both open and closed, and there are sets which are neither open nor
closed. Thus, if one knew for instance that E was not an open set, it
would be erroneous to conclude from this that £ was a closed set, and
similarly with the roles of open and closed reversed. The correct rela-
tionship between open and closed sets is given by Proposition 1.2.15(e)
below.

Now we list some more properties of open and closed sets.

Proposition 1.2.15 (Basic properties of open and closed sets). Let
(X,d) be a metric space.

(a) Let E be a subset of X. Then E is open if and only if E = int(E).
In other words, E is open if and only if for every x € E, there
exists an r > 0 such that B(x,r) C E.

(b) Let E be a subset of X. Then E is closed if and only if E contains
all its adherent points. In other words, E is closed if and only if
Jor every convergent sequence (xy,)p—,, in E, the limit lim,_, =,
of that sequence also lies in E.

(¢) For any z9 € X and r > 0, then the ball B(xo,r) is an open
set. The set {x € X : d(x,z9) < r} is a closed set. (This set is
sometimes called the closed ball of radius r centered at xp.)

(d) Any singleton set {xo}, where zo € X, is automatically closed.

(e) If E is a subset of X, then E is open if and only if the complement
X\E:={xe X :xd E} is closed.

(f) If Eq,...,E, are a finite collection of open sets in X, then E; N
Ean...NnE, is also open. If F,...,F, is a finite collection of
closed sets in X, then Fy U Iy U ... UF, is also closed.

(9) If {Ea}tacr is a collection of open sets in X (where the index
set I could be finite, countable, or uncountable), then the union
User Ea == {2z € X : x € E, for some a € 1} is also open. If
{F.}taer is a collection of closed sets in X, then the intersection
Nacr Fa:={r € X :x € F, for all « € I} is also closed.

(h) If E is any subset of X, then int(E) is the largest open set which
is contained in E; in other words, int(E) is open, and given any
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other open set V. C FE, we have V C int(E). Similarly E is the
smallest closed set which contains E; in other words, E is closed,
and given any other closed set K D E, K D F.

Proof. See Exercise 1.2.3. O

Exercises
Exercise 1.2.1. Verify the claims in Example 1.2.8.

Ezercise 1.2.2. Prove Proposition 1.2.10. (Hint: for some of the implications
one will need the axiom of choice, as in Lemma 8.4.5.)

FEzercise 1.2.3. Prove Proposition 1.2.15. (Hint: you can use earlier parts of
the proposition to prove later ones.)

Ezercise 1.2.4. Let (X,d) be a metric space, zg be a point in X, and » > 0.
Let B be the open ball B := B(wzg,r) = {z € X : d(x,®0) < r}, and let C be
the closed ball C:= {z € X : d(x,x¢) < r}.

(a) Show that B C C.

(b) Give an example of a metric space (X, d), a point xg, and a radius r > 0
such that B is not equal to C.

1.3 Relative topology

When we defined notions such as open and closed sets, we mentioned
that such concepts depended on the choice of metric one uses. For
instance, on the real line R, if one uses the usual metric d(x,y) = |z —1y|,
then the set {1} is not open, however if instead one uses the discrete
metric dgjse, then {1} is now an open set (why?).

However, it is not just the choice of metric which determines what
is open and what is not - it is also the choice of ambient space X. Here
are some examples.

Example 1.3.1. Consider the plane R? with the Euclidean metric dj2.
Inside the plane, we can find the z-axis X := {(2,0) : x € R}. The
metric djz can be restricted to X, creating a subspace (X, dp2|xxx) of
(R?,d;2). (This subspace is essentially the same as the real line (R, d)
with the usual metric; the precise way of stating this is that (X, dj2|x < x)
is isometric to (R,d). We will not pursue this concept further in this
text, however.) Now consider the set

E:={(z,0): 1<z <1}



