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1
What 1s Mathematics?

The question of the ultimate foundations and the ultimate meaning
of mathematics remains open; we do not know in what direction it
will find its final solution or whether a final objective answer may be
expected at all. “Mathematizing” may well be a creative activity of
man, like language or music, of primary originality, whose historical
decisions defy complete objective rationalization. (Weyl)

1.1 Introduction

We start out by giving a very brief idea of the nature of mathematics and
the role of mathematics in our society.

1.2 The Modern World: Automatized Production
and Computation

The mass consumption of the industrial society is made possible by the au-
tomatized mass production of material goods such as food, clothes, housing,
TV-sets, CD-players and cars. If these items had to be produced by hand,
they would be the privileges of only a select few.

Analogously, the emerging information society is based on mass con-
sumption of automatized computation by computers that is creating a new
“virtual reality” and is revolutionizing technology, communication, admin-
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Fig. 1.1. First picture of book printing technique (from Danse Macabre, Lyon
1499)

istration, economy, medicine, and the entertainment industry. The infor-
mation society offers immaterial goods in the form of knowledge, infor-
mation, fiction, movies, music, games and means of communication. The
modern PC or lap-top is a powerful computing device for mass produc-
tion/consumption of information e.g. in the form of words, images, movies
and music.

Key steps in the automatization or mechanization of production were:
Gutenbergs’s book printing technique (Germany, 1450), Christoffer Pol-
hem’s automatic machine for clock gears (Sweden, 1700), The Spinnning
Jenny (England, 1764), Jacquard’s punched card controlled weaving loom
(France, 1801), Ford’s production line (USA, 1913), see Fig. 1.1, Fig. 1.2,
and Fig. 1.3.

Key steps in the automatization of computation were: Abacus (Ancient
Greece, Roman Empire), Slide Rule (England, 1620), Pascals Mechanical
Calculator (France, 1650), Babbage’s Difference Machine (England, 1830),
Scheutz’ Difference Machine (Sweden, 1850), ENIAC Electronic Numer-
ical Integrator and Computer (USA, 1945), and the Personal Computer
PC (USA, 1980), see Fig. 1.5, Fig. 1.6, Fig. 1.7 and Fig. 1.8. The Dif-
ference Machines could solve simple differential equations and were used
to compute tables of elementary functions such as the logarithm. ENIAC
was one of the first modern computers (electronic and programmable),
consisted of 18.000 vacuum tubes filling a room of 50 x 100 square feet
with a weight of 30 tons and energy consuming of 200 kilowatts, and
was used to solve the differential equations of ballistic firing tables as
an important part of the Allied World War II effort. A modern laptop
at a cost of $2000 with a processor speed of 2 GHz and internal mem-
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Fig. 1.2. Christoffer Polhem’s machine for clock gears (1700), Spinning Jenny
(1764) and Jaquard’s programmable loom (1801)
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Fig. 1.3. Ford assembly line (1913)

ory of 512 Mb has the computational power of hundreds of thousands of
ENIACs.

Automatization (or automation) is based on frequent repetition of a cer-
tain algorithm or scheme with new data at each repetition. The algorithm
may consist of a sequence of relatively simple steps together creating a more
complicated process. In automatized manufacturing, as in the production
line of a car factory, physical material is modified following a strict repeti-
tive scheme, and in automatized computation, the 1s and 0s of the micro-
processor are modified billions of times each second following the computer
program. Similarly, a genetic code of an organism may be seen as an al-
gorithm that generates a living organism when realized in interplay with
the environment. Realizing a genetic code many times (with small varia-
tions) generates populations of organisms. Mass-production is the key to
increased complexity following the patterns of nature: elementary particle
— atom — molecule and molecule — cell — organism — population, or
the patterns of our society: individual — group — society or computer —
computer network — global net.

1.3 The Role of Mathematics

Mathematics may be viewed as the language of computation and thus lies
at the heart of the modern information society. Mathematics is also the lan-
guage of science and thus lies at the heart of the industrial society that grew
out of the scientific revolution in the 17th century that began when Leibniz
and Newton created Calculus. Using Calculus, basic laws of mechanics and
physics, such as Newton's law, could be formulated as mathematical mod-
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Fig. 1.5. Classical computational tools: Abacus (300 B.C.-), Galileo’s Compass
(1597) and Slide Rule (1620-)
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Fig. 1.7. Odhner’s mechanical calculator made in Géteborg, Sweden, 1919-1950

Fig. 1.8. ENIAC Electronic Numerical Integrator and Calculator (1945)
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1.4 Design and Production of Cars

In the car industry, a model of a component or complete car can be made
using Computer Aided Design CAD. The CAD-model describes the ge-
ometry of the car through mathematical expressions and the model can
be displayed on the computer screen. The performance of the component
can then be tested in computer simulations, where differential equations
are solved through massive computation, and the CAD-model is used as
input of geometrical data. Further, the CAD data can be used in automa-
tized production. The new technique is revolutionizing the whole industrial
process from design to production.

1.5 Navigation: From Stars to GPS

A primary force behind the development of geometry and mathematics
since the Babylonians has been the need to navigate using information from
the positions of the planets, stars, the Moon and the Sun. With a clock and
a sextant and mathematical tables, the sea-farer of the 18th century could
determine his position more or less accurately. But the results depended
strongly on the precision of clocks and observations and it was easy for
large errors to creep in. Historically, navigation has not been an easy job.

During the last decade, the classical methods of navigation have been
replaced by GPS, the Global Positioning System. With a GPS navigator
in hand, which we can buy for a couple of hundred dollars, we get our
coordinates (latitude and longitude) with a precision of 50 meters at the
press of a button. GPS is based on a simple mathematical principle known
already to the Greeks: if we know our distance to three point is space with
known coordinates then we can compute our position. The GPS uses this
principle by measuring its distance to three satellites with known positions,
and then computes its own coordinates. To use this technique, we need to
deploy satellites, keep track of them in space and time, and measure rele-
vant distances, which became possible only in the last decades. Of course,
computers are used to keep track of the satellites, and the microprocessor
of a hand-held GPS measures distances and computes the current coordi-
nates.

The GPS has opened the door to mass consumption in navigation, which
was before the privilege of only a few.

1.6 Medical Tomography

The computer tomograph creates a pictures of the inside of a human body
by solving a certain integral equation by massive computation, with data
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The Global Positioning System

Measurements of code-phase arrival times from at least four satellites are used to estimate four
quantities: pesition in three dimensions (X, Y, Z) and GPS time (T).

P.H. Dana 51088

Fig. 1.9. GPS-system with 4 satellites

coming from measuring the attenuation of very weak X-rays sent through
the body from different directions. This technique offers mass consump-
tion of medical imaging, which is radically changing medical research and
practice.

1.7 Molecular Dynamics and Medical Drug Design

The classic way in which new drugs are discovered is an expensive and time-
consuming process. First, a physical search is conducted for new organic
chemical compounds, for example among the rain forests in South America.
Once a new organic molecule is discovered, drug and chemical companies
license the molecule for use in a broad laboratory investigation to see if the
compound is useful. This search is conducted by expert organic chemists
who build up a vast experience with how compounds can interact and which
kind of interactions are likely to prove useful for the purpose of controlling
a disease or fixing a physical condition. Such experience is needed to reduce
the number of laboratory trials that are conducted, otherwise the vast range
of possibilities is overwhelming.

The use of computers in the search for new drugs is rapidly increasing.
One use is to makeup new compounds so as to reduce the need to make
expensive searches in exotic locations like southern rain forests. As part of
this search, the computer can also help classify possible configurations of
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Fig. 1.10. Medical tomograph

molecules and provide likely ranges of interactions, thus greatly reducing
the amount of laboratory testing time that is needed.

1.8 Weather Prediction and Global Warming

Weather predictions are based on solving differential equations that de-
scribe the evolution of the atmosphere using a super computer. Reasonably
reliable predictions of daily weather are routinely done for periods of a few
days. For longer periods. the reliability of the simulation decreases rapidly,
and with present day computers daily weather predictions for a period of
two weeks are impossible.

However, forecasts over months of averages of temperature and rainfall
are possible with present day computer power and are routinely performed.

Long-time simulations over periods of 20-50 years of yearly temperature-
averages are done today to predict a possible global warming due to the use
of fossil energy. The reliability of these simulations are debated.

1.9 Economy: Stocks and Options

The Black-Scholes model for pricing options has created a new market of
so called derivative trading as a complement to the stock market. To cor-
rectly price options is a mathematically complicated and computationally
intensive task, and a stock broker with first class software for this purpose
(which responds in a few seconds), has a clear trading advantage.
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The ants in a group of ants or bees in a bees hive also have a language
for communication. In fact in modern biology, the interaction between cells
or proteins in a cell is often described in terms of entities ”talking to each
other”.

It appears that we as human beings use our language when we think. We
then seem to use the language as a model in our head, where we try various
possibilities in simulations of the real world: “If that happens, then I'll do
this, and if instead that happens, then I will do so and so...”. Planning our
day and setting up our calender is also some type of modeling or simulation
of events to come. Simulations by using our language thus seems to go on
in our heads all the time.

There are also other languages like the language of musical notation
with its notes, bars, scores, et cetera. A musical score is like a model of
the real music. For a trained composer, the model of the written score
can be very close to the real music. For amateurs, the musical score may
say very little, because the score is like a foreign language which is not
understood.

1.11 Mathematics as the Language of Science

Mathematics has been described as the language of science and technology
including mechanics, astronomy, physics, chemistry, and topics like fluid
and solid mechanics, electromagnetics et cetera. The language of mathe-
matics is used to deal with geometrical concepts like position and form and
mechanical concepts like velocity, force and field. More generally, mathe-
matics serves as a language in any area that includes quantitative aspects
described in terms of numbers, such as economy, accounting, statistics et
cetera. Mathematics serves as the basis for the modern means of electronic
communication where information is coded as sequences of 0’s and 1’s and
is transferred, manipulated or stored.

The words of the language of mathematics often are taken from our usual
language, like points, lines, circles, velocity, functions, relations, transfor-
mations, sequences, equality, inequality et cetera.

A mathematical word, term or concept is supposed to have a specific
meaning defined using other words and concepts that are already defined.
This is the same principle as is used in a Thesaurus, where relatively compli-
cated words are described in terms of simpler words. To start the definition
process, certain fundamental concepts or words are used, which cannot be
defined in terms of already defined concepts. Basic relations between the
fundamental concepts may be described in certain arioms. Fundamental
concepts of Euclidean geometry are point and line, and a basic Euclidean
axiom states that through each pair of distinct points there is a unique
line passing. A theorem is a statement derived from the axioms or other
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1.13 What Is Science?

The theoretical kernel of natural science may be viewed as having two
components

¢ formulating equations (modeling),
¢ solving equations (computation).

Together, these form the essence of mathematical modeling and computa-
tional mathematical modeling. The first really great triumph of science and
mathematical modeling is Newton’s model of our planetary system as a set
of differential equations expressing Newton’s law connecting force, through
the inverse square law, and acceleration. An algorithm may be seen as
a strategy or constructive method to solve a given equation via computa-
tion. By applying the algorithm and computing, it is possible to simulate
real phenomena and make predictions.

Traditional techniques of computing were based on symbolic or numer-
ical computation with pen and paper, tables, slide ruler and mechanical
calculator. Automatized computation with computers is now opening new
possibilities of simulation of real phenomena according to Natures own
principle of massive repetition of simple operations, and the areas of appli-
cations are quickly growing in science, technology, medicine and economics.

Mathematics is basic for both steps (i) formulating and (ii) solving equa-
tion. Mathematics is used as a language to formulate equations and as a set
of tools to solve equations.

Fame in science can be reached by formulating or solving equations. The
success is usually manifested by connecting the name of the inventor to the
equation or solution method. Examples are legio: Newton’s method, Euler’s
equations, Lagrange’s equations, Poisson’s equation, Laplace’s equation,
Navier’s equation, Navier-Stokes’ equations, Boussinesq’s equation, Ein-
stein’s equation, Schrodinger’s equation, Black-Scholes formula..., most
of which we will meet below.

1.14 What Is Conscience?

The activity of the brain is believed to consist of electrical/chemical sig-
nals/waves connecting billions of synapses in some kind of large scale com-
putation. The question of the nature of the conscience of human beings has
played a central role in the development of human culture since the early
Greek civilization, and today computer scientists seek to capture its evasive
nature in various forms of Artificial Intelligence AIl. The idea of a division
of the activity of the brain into a (small) conscious “rational” part and
a (large) unconscious “irrational” part, is widely accepted since the days of
Freud. The rational part has the role of “analysis” and “control” towards
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some “purpose” and thus has features of Soul, while the bulk of the “com-
putation” is Body in the sense that it is “just” electrical/chemical waves.
We meet the same aspects in numerical optimization, with the optimization
algorithm itself playing the role of Soul directing the computational effort
towards the goal, and the underlying computation is Body.

We have been brought up with the idea that the conscious is in control
of the mental “computation”, but we know that this is often not the case.
In fact, we seem to have developed strong skills in various kinds of after-
rationalization: whatever happens, unless it is an “accident” or something
“unexpected”, we see it as resulting from a rational plan of ours made up
in advance, thus turning a posteriori observations into a priori predictions.

1.15 How to Come to Grips with the Difliculties
of Understanding the Material of this Book
and Eventually Viewing it as a Good Friend

We conclude this introductory chapter with some suggestions intended to
help the reader through the most demanding first reading of the book and
reach a state of mind viewing the book as a good helpful friend, rather than
the opposite. From our experience of teaching the material of this book,
we know that it may evoke quite a bit of frustration and negative feelings,
which is not very productive.

Mathematics Is Difficult: Choose Your OQwn Level of Ambition

First, we have to admit that mathematics is a difficult subject, and we see
no way around this fact.Secondly, one should realize that it is perfectly
possible to live a happy life with a career in both academics and industry
with only elementary knowledge of mathematics. There are many examples
including Nobel Prize Winners. This means that it is advisable to set a level
of ambition in mathematics studies which is realistic and fits the interest
profile of the individual student. Many students of engineering have other
prime interests than mathematics, but there are also students who really
like mathematics and theoretical engineering subjects using mathematics.
The span of mathematical interest thus may be expected to be quite wide
in a group of students following a course based on this book, and it seems
reasonable that this would be reflected in the choice of level of ambition.

Advanced Material: Keep an Open Mind and Be Confident

The book contains quite a bit of material which is “advanced” and not
usually met in undergraduate mathematics, and which one may bypass and
still be completely happy. It is probably better to be really familiar with
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and understand a smaller set of mathematical tools and have the ability to
meet new challenges with some self-confidence, than repeatedly failing to
digest too large portions. Mathematics is so rich, that even a life of fully-
time study can only cover a very small part. The most important ability
must be to meet new material with an open mind and some confidence!

Some Parts of Mathematics Are Fasy

On the other hand, there are many aspects of mathematics which are not so
difficult, or even “simple”, once they have been properly understood. Thus,
the book contains both difficult and simple material, and the first impres-
sion from the student may give overwhelming weight to the former. To
help out we have collected the most essential nontrivial facts in short sum-
maries in the form of Calculus Tool Bag I and II, Linear Algebra Tool Bag,
Differential Equations Tool Bag, Applications Tool Bag, Fourier Analysis
Tool Bag and Analytic Functions Tool Bag. The reader will find the tool
bags surprisingly short: just a couple pages, altogether say 15-20 pages. If
properly understood, this material carries a long way and is “all” one needs
to remember from the math studies for further studies and professional ac-
tivities in other areas. Since the book contains about 1200 pages it means
50-100 pages of book text for each one page of summary. This means that
the book gives more than the absolute minimum of information and has
the ambition to give the mathematical concepts a perspective concerning
both history and applicability today. So we hope the student does not get
turned off by the quite a massive number of words, by remembering that
after all 15-20 pages captures the essential facts. During a period of study
of say one year and a half of math studies, this effectively means about one
third of a page each week!

Increased/Decreased Importance of Mathematics

The book reflects both the increased importance of mathematics in the
information society of today, and the decreased importance of much of the
analytical mathematics filling the traditional curriculum. The student thus
should be happy to know that many of the traditional formulas are no
longer such a must, and that a proper understanding of relatively few basic
mathematical facts can help a lot in coping with modern life and science.

Which Chapters Can I Skip in a First Reading?

We indicate by * certain chapters directed to applications, which one may
by-pass in a first reading without loosing the main thread of the presenta-
tion, and return to at a later stage if desired.
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Chapter 1 Problems

1.1. Find out which Nobel Prize Winners got the prize for formulating or solving
equations.

1.2. Reflect about the nature of “thinking” and “computing”.

1.3. Find out more about the topics mentioned in the text.

1.4. (a) Do you like mathematics or hate mathematics, or something in between?
Explain your standpoint. (b) Specify what you would like to get out of your

studies of mathematics.

1.5. Present some basic aspects of science.

Fig. 1.12. Left person: “Isn’t it remarkable that one can compute the distance
to stars like Cassiopeja, Aldebaran and Sirius?”. Right person: “I find it even
more remarkable that one may know their names!” (Assar by Ulf Lundquist)
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2.2 Math Experience

Math Experience is a collection of Matlab GUI software designed to of-
fer a deeper understanding of important mathematical concepts and ideas
such as, for example, convergence, continuity, linearization, differentiation,
Taylor polynomials, integration, etc. The idea is to provide on-screen com-
puter “labs” in which the student, by himself guided by a number of well
designed questions, can seek to fully understand (a) the concepts and ideas
as such and (b) the mathematical formulas and equations describing the
concepts, by interacting with the lab environment in different ways. For
example, in the Taylor lab (see Fig. 2.1) it is possible to give a function, or
pick one from a gallery, and study its Taylor polynomial approximation of
different degrees, how it depends on the point of focus by mouse-dragging
the point, how it depends on the distance to the point by zooming in and
out etc. There is also a movie where the terms in the Taylor polynomial are
added one at a time. In the MultiD Calculus lab (see Fig. 2.2) it is possible
to define a function u(x, r2) and compute its integral over a given curve or
a given domain, to view its gradient field, contour plots, tangent planes etc.
One may also study vector fields (u,v), view their divergence and rotation,
compute the integrals of these quantities to verify the fundamental theo-
rems of vector calculus, view the (u,v) mapped domain and the Jacobian
of the map etc, etc.
The following labs are available from the book web page:

e Func lab - about relations and functions, inverse function etc.

e Graph Gallery — elementary functions and their parameter depen-
dence.

e Cauchy lab — about sequences & convergence

e Lipschitz lab — the concept of continuity

¢ Root lab — about bisection and fixed point iteration
e Linearization and the derivative

e Newtons lab — illustrating Newton’s method

e Taylor lab — polynomials

e Opti lab - elementary optimization

e Piecewise polynomial lab — about piecewise polynomial approxima-
tion

e Integration lab — Euler and Riemann summation, adaptive integra-
tion
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Fig. 2.2. The MultiD Calculus lab



3
Introduction to Modeling

The best material model of a cat is another, or preferably the same,
cat. (Rosenblueth/Wiener in Philosophy of Science 1945)

3.1 Introduction

We start by giving two basic examples of the use of mathematics for de-
scribing practical situations. The first example is a problem in household
economy and the second is a problem in surveying, both of which have
been important fields of application for mathematics since the time of the
Babylonians. The models are very simple but illustrate fundamental ideas.

3.2 The Dinner Soup Model

You want to make a soup for dinner together with your roommate, and
following a recipe you ask your roommate to go to the grocery store and buy
10 dollars worth of potatoes, carrots, and beef according to the proportions
3:2:1 by weight. In other words, your roommate has 10 dollars to spend on
the ingredients, which should be bought in the amounts so that by weight
there are three times as much potatoes as beef and two times as much
carrots as beef. At the grocery store, your roommate finds that potatoes
are 1 dollar per pound, carrots are 2 dollars per pound, and beef is 8 dollars
per pound. Your roommate thus faces the problem of figuring out how much
of each ingredient to buy to use up the 10 dollars.
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One way to solve the problem is by trial and error as follows: Your
roommate could take quantities of the ingredients to the cash register in
the proportions of 3:2:1 and let the clerk check the price, repeating until
a total of 10 dollars is reached. Of course, both your roommate and the
clerk could probably think of better ways to spend the afternoon. Another
possibility would be to make a mathematical model of the situation and
then seek to find the correct amounts to buy by doing some computations.
The basic idea would be to use brains and pen and paper or a calculator,
instead of labor intensive brute physical work.

The mathematical model may be set up as follows: Recalling that we
want to determine the amounts of ingredients to buy, we notice that it is
enough to determine the amount of beef, since we’ll buy twice as much
carrots as beef and three times as much potatoes as beef. Let’s give a name
to the quantity to determine. Let xr denote the amount of meat in pounds
to buy. The symbol x here represents an unknown quantity, or unknown,
that we are seeking to determine by using available information.

If the amount of meat is z pounds, then the price of the meat to buy is
8x dollars by the simple computation

dollars
cost of meat in dollars = x pounds x 8 = 8x dollars.
pound

Since there should be three times as much potatoes as meat by weight,
the amount of potatoes in pounds is 3r and the cost of the potatoes is
3x dollars since the price of potatoes is one dollar per pound. Finally, the
amount of carrots to buy is 2r and the cost is 2 times 2x = 4z dollars,
since the price is 2 dollars per pound. The total cost of meat, potatoes and
carrots is found by summing up the cost of each

8 + 3z + 4x = 15=.
Since we assume that we have 10 dollars to spend, we get the relation
15z = 10, (3.1)

which expresses the equality of total cost and available money. This is an
equation involving the unknown r and data determined by the physical
situation. From this equation, your roommate can figure out how much
beef to buy. This is done by dividing both sides of (3.1) by 15, which gives
r = 10/15 = 2/3 =~ 0.67 pounds of meat. The amount of carrots should
then be 2x2/3 = 4/3 ~ 1.33, and finally the amount of potatoes 3x2/3 = 2
pounds.

The mathematical model for this situation is 15x = 10, where z is the
amount of meat, 15x is the total cost and 10 is the available money. The
modeling consists in expressing the total cost of the ingredients 15z in terms
of the amount of beef r. Note that in this model, we only take into account
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what is essential for the current purpose of buying potatoes, carrots and
meat for the Dinner Soup, and we did not bother to write down the prices
of other items, like ice cream or beer. Determining the useful information is
an important, and sometimes difficult, part of the mathematical modeling.

A nice feature of mathematical models is that they can be reused to
simulate different situations. For example, if you have 15 dollars to spend,
then the model 15x = 15 arises with solution z = 1. If you have 25 dollars
to spend, then the model is 15z = 25 with solution z = 25/15 = 5/3. In
general, if the amount of money y is given, then the model is 15z = y. In
this model we use the two symbols z and y, and assume that the amount
of money y is given and the amount of beef x is an unknown quantity to be
determined from the equation (152 = y) of the model. The roles could shift
around: you may think of the amount of beef x as being given and the total
cost or expenditure y to be determined (according to the formula y = 15z).
In the first case, we would think of the amount of beef x as a function of
the expenditure y and in the second the expenditure y as a function of z.

Assigning symbols to relevant quantities, known or unknown, is an im-
portant step in setting up a mathematical model of something. The idea of
assigning symbols for unknown quantities was used already by the Baby-
lonians (who had frequent use of models like the Dinner Soup model in
organizing the feeding of the many people working on their irrigation sys-
tems).

Suppose that we could not solve the equation 15z = 10, because of a lack
of skill in solving equations (we may have forgotten the trick of dividing by
15 that we learned in school). We could then try to get a solution by some
kind of trial and error strategy as follows. First we assume that z = 1. We
then find that the total cost is 15 dollars, which is too much. We then try
with a smaller quantity of meat, say z = 0.6, and compute the total cost
to 9 dollars, which is too little. We then try with something between 0.6
and 1, say x = 0.7 and find that the cost would be 10.5 dollars, which is
a little too much. We conclude that the right amount must be somewhere
between 0.6 and 0.7, probably closer 0.7. We can continue in the same way
to find as many decimals of x as we like. For instance we check next in
the same way that r must be some where between 0.66 and 0.67. In this
case we know the exact answer x = % = 0.66666 . ... The trial and error
strategy just described is a model of the process of bringing food to the
counter and letting the cashier compute the total prize. In the model we
compute the prize ourselves without having to physically collect the items
and bring them to the counter, which simplifies the trial and error process.
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V2, whatever it is, is between 1 and 2. Next we can check 1.12 = 1.21,
1.22 = 1.44, 1.3 = 1.69, 1.4% = 1.96, 1.5° = 2.25, 1.6% = 2.56, 1.7% = 2.89,
1.82 = 3.24, 1.9%2 = 3.61. Apparently /2 is between 1.4 and 1.5. Next we
can try to fix the third decimal. Now we find that 1.41% = 1.9881 while
1.422 = 2.0164. So apparently v/2 is between 1.41 and 1.42 and likely
closer to 1.41. It appears that proceeding in this way, we can determine as
many decimal places of /2 as we like, and we may consider the problem of
computing how much drain pipe to buy to be solved!

Below we will meet many equations that have to be solved by using
some variation of a trial and error strategy. In fact, most mathematical
equations cannot be solved exactly by some algebraic manipulations, as we
could do (if we were sufficiently clever) in the case of the Dinner Soup model
(3.1). Consequently, the trial and error approach to solving mathematical
equations is fundamentally important in mathematics. We shall also see
that trying to solve equations such as 2 = 2 carries us directly into the very
heart of mathematics, from Pythagoras and Euclid through the quarrels on
the foundations of mathematics that peaked in the 1930s and on into the
present day of the modern computer.

3.4 A System of Equations: The Dinner Soup/Ice
Cream Model

Suppose you would like to finish off the Dinner Soup with some ice cream
dessert at the cost of 3 dollars a pound, still at the total expense of 10
dollars. How much of each item should now be bought?

Well, if the amount ice cream is y pounds, the total cost will be 15z + 3y
and thus we have the equation 15z + 3y = 10 expressing that the total cost
is equal to the available money. We now have two unknowns z and y, and
we need one more equation. So far, we would be able to set x = 0 and solve
for y = —15‘1 spending all the money on ice cream. This would go against
some principle we learned as small kids. The second equation needed could
come from some idea of balancing the amount of ice cream (junk food) to
the amount of carrots (healthy food), for example according to the formula
2r = y+ 1, or 2r — y = 1. Altogether, we would thus get the following

system of two equations in the two unknowns z and y:

15z + 3y = 10,
2r —y = 1.

Solving for y in the second equation, we get y = 2x — 1, which inserted into
the first equation gives

13

15z +6x —3 =10, thatis 2lz =13, thatis, z = TR
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Chapter 3 Problems

3.1. Suppose that the grocery store sells potatoes for 40 cents per pound, carrots
for 80 cents per pound, and beef for 40 cents per ounce. Determine the model
relation for the total price.

3.2. Suppose that you change the soup recipe to have equal amounts of carrots
and potatoes while the weight of these combined should be six times the weight
of beef. Determine the model relation for the total price.

3.3. Suppose you go all out and add onions to the soup recipe in the proportion of
2 : 1 to the amount of beef, while keeping the proportions of the other ingredients
the same. The price of onions in the store is $1 per pound. Determine the model
relation for the total price.

3.4. While flying directly over the airport in a holding pattern at an altitude of
1 mile, you see your high rise condominium from the window. Knowing that the
airport is 4 miles from your condominium and pretending that the condominium
has height 0, how far are you from home and a cold beer?

3.5. Devise a model of the draining of a yard that has three sides of approximately
the same length 2 assuming that we drain the yard by laying a pipe from one
corner to the midpoint of the opposite side. What quantity of pipe do we need?

3.6. A father and his child are playing with a teeter-totter which has a seatboard
12 feet long. If the father weighs 170 pounds and the child weighs 45 pounds,
construct a model for the location of the pivot point on the board in order for
the teeter-totter to be in perfect balance? Hint: recall the principle of the lever
which says that the products of the distances from the fulcrum to the masses on
each end of a lever must be equal for the lever to be in equilibrium.
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A Very Short Calculus Course

Mathematics has the completely false reputation of yielding infallible
conclusions. Its infallibility is nothing but identity. Two times two is
not four, but it is just two times two, and that is what we call four
for short. But four is nothing new at all. And thus it goes on in its

conclusions, except that in the height the identity fades out of sight.
(Goethe)

4.1 Introduction

Following up on the general idea of science as a combination of formulating
and solving equations, we describe the bare elements of this picture from
a mathematical point of view. We want to give a brief glimpse of the main
themes of Calculus that will be discovered as we work through the volumes
of this book. In particular, we will encounter the magical words of function,
derivative, and integral. If you have some idea of these concepts already,
you will understand some of the outline. If you have no prior acquaintance
with these concepts, you can use this section to just get a first taste of
what Calculus is all about without expecting to understand the details at
this point. Keep in mind that this is just a glimpse of the actors behind
the curtain before the play begins!

We hope the reader can use this chapter to get a grip on the essence of
Calculus by reading just a couple of pages. But this is really impossible in
some sense because calculus contains so many formulas and details that it
is easy to get overwhelmed and discouraged. Thus, we urge the reader to
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browse through the following couple of pages to get a quick idea and then
return later and confirm with an “of course”.

On the other hand, the reader may be surprised that something that is
seemingly explained so easily in a couple of pages, actually takes several
hundred pages to unwind in this book (and other books). We don’t seem
to be able give a good explanation of this “contradiction” indicating that
“what looks difficult may be easy” and vice versa. We also present short
summaries of Calculus in Chapter Calculus Tool Bag I and Calculus Tool
Bag II, which support the idea that a distilled essence of Calculus indeed
can be given in a couple of pages.

4.2 Algebraic Equations

We will consider algebraic equations of the form: find z such that

f(z) =0, (4.1)

where f(x) is a function of z. Recall that f(x) is said to be a function of
z if for each number z there is a number y = f(x) assigned. Often, f(x)
is given by some algebraic formula: for example f(z) = 15z — 10 as in the
Dinner Soup model, or f(z) = % — 2 as in the Muddy Yard model.

We call  a root of the equation f(x) = 0 if f(z) = 0. The root of
the equation 15z — 10 =01is Z = -g- The positive root T of the equation

r? — 2 = 0 is equal to V2 ~ 1.41. We will consider different methods to
compute a root T satisfying f(z) = 0, including the trial and error method
briefly presented above in the context of the Muddy Yard Model.

We will also meet systems of algebraic equations, where we seek to de-
termine several unknowns satisfying several equations, as for the Dinner
Soup/Ice cream model above.

4.3 Difterential Equations

We will also consider the following differential equation: find a function z(t)
such that for all ¢

z'(t) = f(t), (4.2)

where f(t) is a given function, and z’(t) is the derivative of the function z(t).
This equation has several new ingredients. First, we seek here a function
z(t) with a set of different values z(t) for different values of the variable
t, and not just one single value of z like the root the algebraic equation
r* = 2 considered above. In fact, we met this already in the Dinner Soup
problem in case of a variable amount of money y to spend, leading to the
equation 15z = y with solution z = % depending on the variable y, that is,
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