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Preface

Before | speak, | have something important to say.
—Groucho (attributed)

When meeting new people at a party, it is customary, out of
politeness, to ask what one does. When it happens, | usually
mumble that | am a doctor, but not the real kind, just the academic
kind. Then, if further questioned, | admit that | am mathematician,
but not the real kind, just the applied kind. Then, the dreadful
question comes: what is applied mathematics? In desperation, |
use one of the usual witty platitudes (‘lt is like mathematics but
useful and more fun’, "‘We are the social kind, we look at other
people’s shoes’, ‘Applied mathematics is to pure mathematics,
what pop music is to classical music’). After the awkward pause
that sums up most of my human interactions, | look for the closest
exit, convinced that further contact would inevitably deepen my
existentialist crisis. As | walk out | ask myself if | could really make
an honest statement about my own field of study that has also
become my way of life. Why is applied mathematics so different
from scientific disciplines and so clearly unlike pure mathematics?
How could | possibly explain the constant excitement and fun that it
brings to my intellectual life?

The decision to write a Very Short Introduction for applied
mathematics is an attempt to answer this single question: what is
applied mathematics? Rather than giving an encyclopaedic
description, my aim here is to give a feeling for the problems that
applied mathematicians face every day and how they shape their
views of the world. In most cases, | use historical perspectives to
tell the story of how certain scientific or mathematical problems
develop into modern mathematical theories and how these theories



are still active fields of research with outstanding challenges.

Unavoidably, | introduce a few equations. It is always a danger but |
do not apologize for it. You can hardly expect to open a book about
French Literature and not expect to find a few French words.
Equations are the language of mathematics. In the proper context,
equations sum up concisely simple self-evident truths. The reader
not familiar with such expressions should not unduly worry and can
safely skip the technical parts. Equations are included as their
absence would make them mythical quantities and their invocation
without explicit mention would border on esotericism.

When | started writing this book, | still hoped that my sons could be
convinced to study applied mathematics. How could they possibly
resist the pressure of a perfect argument so nicely illustrated by so
many examples? | certainly managed to convince myself that
applied mathematics was indeed the queen of all sciences.
However, it became clear that they are not likely to follow in my
footsteps and that forcing them to read my writings isa form of cruel
and unusual punishment. Yet, | have not given up hope that other
mathematically inclined readers may learn about the topic and be
charmed by its endless possibilities. There is great beauty In
mathematics and there is great beauty in the world around us.
Applied mathematics brings the two together in a way that it is not
always beautiful but that is always interesting and exciting.

Reading playlist

Pure mathematics is often associated with classical music for its
beauty and construction. When | work, | usually listen to classical
music, but when | write | enjoy something with a little more energy
and fun. Here are a few suggestions that are naturally associated
with this book:

‘Should | stay or should | go?’ (The Clash)

‘What's so funny ‘bout peace, love & understanding?’ (Elvis Costello)
‘Do you want to know a secret?’ (The Beatles)

‘Do you believe in magic?’ (The lovin’ spoonful)

‘Do you know the way to San Jose?’ (Dionne Warwick)

‘What's the frequency, Kenneth?’ (R.E.M.)



‘Can you picture that?’ (Dr Teeth and the Electric Mayhem)
‘War, (what is it good for?)’ (Edwin Starr)
‘Where are we going?’ (Marvin Gaye)

‘Can you please crawl out your window?’ (Bob Dylan)

Oxford, UK
May 2017
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Chapter 1

What’s so funny ‘bout
applied mathematics?
Modelling, theory, and
methods

Please accept my resignation. | don’t want to belong to any club that
will accept me as a member.

—Groucho

The modern world of mathematics is divided into different
categories and if you are so lucky as to meet real-life
mathematicians and engage them in a conversation, they will
typically tell you that they are either mathematicians or applied
mathematicians. You have probably heard of mathematics, but
what is applied mathematics? A quick look on the Internet will give
you conflicting definitions. It will also reveal that applied
mathematics has found its place in modern academia. As such it is
recognized by international scientific societies, journals, and the
usual conferences. What is so special about applied mathematics?

How is it different from mathematics, or any other scientific
discipline?

Mathematics



Let us start with mathematics itself. Whereas philosophers still
ponder the best definition, most scientists and mathematicians
agree that modern mathematics is an intellectual discipline whose
aim is to study idealized objects and their relationships, based on
formal logic. Mathematics stands apart from scientific disciplines
because It is not restricted by reality. It proceeds solely through
logic and is only restricted by our imagination. Indeed, once
structures and operations have been defined in a formal setting, the
possibilities are endless. You can think of it as a game with very
precise rules. Once the rules are laid out, the game of proving or
disproving a statement proceeds.

For example, mathematicians have enjoyed numbers for millennia.
Take, for instance, the natural numbers (0,1,2, ...) and the familiar
multiplication operation (x). If we take two numbers p and q
together, we obtain a third one as n = p x q. A simple question is
then to do the reverse operation: given a number n can we find two
numbers p and q such that n = p x g? The simple answer is: of
course! Take p =1 and g = n. If this is the only possible way that a
natural number n larger than 1 can be written as a product of two
numbers, then n is called a prime number. Mathematicians love
prime numbers and their wonderful, and oftentimes, surprising
properties. We can now try to prove or disprove statements about
these numbers. Let us start with simple ones. We can prove that
there exist prime numbers by showing that the natural numbers 2,
3, and 5 have all the required properties to be prime numbers. We
can disprove the naive statement that all odd numbers are prime by
showing that 9 = 3 x 3. A more interesting statement is that there
are infinitely many prime numbers. This was first investigated ¢.300
BC by Euclid who showed that new larger prime numbers can
always be constructed from the list of all known prime numbers up
to a certain value. As we construct new prime numbers the list of
prime numbers increases indefinitely. Prime numbers have
beautiful properties and play a central role in number theory and
pure mathematics. Mathematicians are still trying to establish
simple relationships between them. For instance, most
mathematicians believe there are infinitely many pairs of prime
numbers that differ by 2, the so-called twin prime conjecture (a
conjecture is a statement believed to be true but still unconfirmed).
For example, (5,7), (11,13), and (18369287,18369289) are all pairs
of primes separated by 2, and many more such pairs are known.
The burning question is: are there infinitely many such pairs?
Mathematicians do believe that it is the case but demonstrating this
seemingly simple property is so difficult that it has not yet been



proved or disproved. However, at the time of writing, a recent
breakthrough has taken place. It was established that there exist
Infinitely many pairs of prime numbers that differ by 246. This result
shook the mathematical community and the subject is now a hot
topic of modern mathematics.

Through centuries of formalization and generalization, mathematics
has evolved into a unified field with clear rules. The rules have
been systematically codified by the introduction of formal ideas
such as the notions of definition, axiom, proposition, lemma,
theorem, and conjecture. These, In turn, are the guidelines through
which a stated truth may be systematically verified, step by step,
given enough time and patience. Nowadays, mathematics presents
itself as a well-organized discipline with well-defined sub-
disciplines, some of which may even have familiar names. For
iInstance, number theory, algebra, and geometry are all accepted
branches of mathematics. Mathematics is sometimes referred to as
pure mathematics to further reinforce its ethereal quality. Pure
mathematics has reigned supreme in the pantheon of human
Intellectual constructs for more than 2,000 years. As the Greek
philosopher Aristotle said: ‘The mathematical sciences particularly
exhibit order, symmetry, and limitation; and these are the greatest
forms of the beautiful.

A Study in Contrast

| wish | could stand on the shoulders of 2,000 years of history and
intellectual achievement, and affirm with pride that | am a
mathematician in the tradition of the ancient Greeks. Unfortunately,
the situation is not so pristine when it comes to mathematics’
oxymoronic sibling: applied mathematics. Applied mathematics is
an intellectual bastard, born from an illicit relationship between the
grand noble discipline of mathematics and its plebeian neighbour,
the natural sciences; it is the illegitimate offspring of pure rationality
and empirical wisdom. This misbegotten hybrid belongs in neither
world. It lives in limbo, between the two, in a mathematical and
scientific purgatory. Due to its unfortunate heritage, it is difficult to
find a universal definition of applied mathematics, even among its
practitioners and forebears. Richard Courant, who founded one of
the first centres of applied mathematics, the Courant Institute at
New York University, once said:

Applied mathematics is not a definable scientific field but a human



attitude. The attitude of the applied scientist is directed towards
finding clear cut answers which can stand the test of empirical
observations.

The distinction between pure and applied mathematics is a
relatively new concept. It will come as no surprise to the reader that
mathematics’ origins, not unlike society’s nobility, can be traced to
modest origins. Indeed, most branches of modern mathematics
arose from earthly and human concerns. Arithmetic and numbers
were developed for the purpose of trade and tax collection. Many
ideas of geometry originated in problems related to measuring
distances and making maps. The field of analysis is connected to
physical or engineering problems related to mundane concerns
such as the design of pendulum clocks, pipe flows, steam engines,
or the construction of bridges. The great mathematicians of the
past like Descartes, Newton, Euler, Gauss, Kovalevskaya, Maxwell,
and Kelvin are all pure and applied mathematicians. Indeed, their
work has been of equal importance to mathematics, physics, and
engineering. The distinction between sciences and mathematics is
a modern construct born from our eagerness to draw borders
around disciplines and place ourselves into well-defined boxes.
Before the 20th century, scientists or mathematicians were known
simply as natural philosophers.

Natural philosophy is the general study of mathematics, nature, and
the physical universe. It promotes a unified view of the sciences
through mathematics, and the development of new mathematics
through science that is still dear to many modern applied
mathematicians.

Rather than engage in futile epistemological discussions, | will take
a pragmatic approach. | will argue that applied mathematics
iIncludes the modelling of natural phenomena and human
endeavours, the study of mathematical ideas originating from these
models, and the systematic development of theoretical and
computational tools to probe models, handle data, and gain insight
into any problem that has been properly quantified (with special
emphasis on properly and quantified, as there are many abuses of
mathematics in areas where problems are neither quantified nor
properly defined).

Applied mathematics is best characterized by three intertwined
areas: modelling, theory, and methods.



Modelling refers to the intellectual steps that start with a question,
phenomenon, set of data, or any process that attracts our curiosity;
then, through suitable assumptions, identifies the key elements (the
variables) that can be described mathematically, and derives the
relations that these variables satisfy (the equations). In the best
situations, modelling provides us with a well-defined mathematical
problem from which one can hope to make predictions, extract
information, or simply gain insight.

Theory is the conceptual framework that provides a systematic way
to endow data and equations with a clear meaning based on
fundamental or phenomenological principles. It includes
mathematics itself as its central organizing language and logical
framework as well as the theory of statistics that provides precise
meaning to data. The formulation of mathematical models also
relies on scientific and engineering theories that have been
developed over past centuries.

Methods are the tools necessary to extract useful information from
equations or data. It includes both the theoretical tools that help us
solve equations, as well as the algorithms and computational
techniques that are used to solve equations and manipulate data.

Any work in applied mathematics fits in one of these three
categories or combines them judiciously. To illustrate these
different aspects, let us briefly consider an example.

Burning Candles

In the 19th century the great English scientist Michael Faraday
made fundamental contributions to electromagnetism and
electrochemistry. He was also known as a gifted lecturer. In 1825,
he initiated the Royal Institution Christmas Lectures, a series of
public lectures that are still held every year (see Figure 1). In ‘'The
Chemical History of a Candle’, he begins:
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1. Faraday and his lectures at the Royal Institution are celebrated
on the Series E of the £20 British note, in circulation between
1991 and 2001.

There is no better, there is no more open door by which you can
enter into the study of natural philosophy than by considering the
physical phenomena of a candle. There is not a law under which any
part of this universe is governed which does not come into play, and
IS not touched upon, in these phenomena. | trust, therefore, | shall
not disappoint you in choosing this for my subject rather than any
newer topic, which could not be better, were it even so good.

Following in Faraday’s footsteps and hoping that | shall not
disappoint the reader, | shall enter the study of applied
mathematics with the humble candle rather than any newer topic
and ask a simple question: how quickly does a candle burn?

| know from experience that the candles we use on birthday cakes
burn so quickly that it is hard to light eighty of them before the first
one is completely consumed. | have also seen large pillar candles
iIn churches burning for days. We could perform a number of
experiments with candles of different sizes and obtain a fairly good
understanding of the relationship between a candle’s size
(estimated from its diameter) and flame velocity (defined as the
height of candle consumed per unit time). This empirical estimate
will be useful but it would not give me insight into the underlying
mechanism and | would remain forever curious about the beautiful
phenomenon of flames.



Modelling the burning of a candle is surprisingly difficult. It requires
a knowledge of fluid dynamics, combustion, and chemistry.
However, simple mathematical reasoning can be applied to partially
answer the question. To model a burning candle, we need to
identify the key variables. But what are they? Many effects could
play a role: the diameter of the candle, its composition, the width of
the wick, the atmospheric pressure, the size of the room, its
temperature, and so on. The crucial step in modelling is to retain
Important effects, and, as a first step, ignore minor contributions.
We can therefore make the following assumptions:

» The candles are all placed in the same large chamber at the same
atmospheric pressure and temperature. A candle is cylindrical with radius R
and height H, measured in centimetres. We also assume that they all have
the same wick’s type and size.

» For comparison, candles are made of the same wax. So, the chemical energy
density, E, stored in the wax is independent of the candle size and type. The
variable E is defined as the energy per unit volume, let's say in joules per

cubic centimetre. This means that a candle has volume mR4H cubic

centimetres and contains EnRijouIes that can be eaten by the flame and
transformed into heat and light.

» The rate of energy dissipation, that is how fast energy is lost, is independent of
the candle height and radius. We call this quantity P and it denotes the rate at
which energy is consumed through light and heat emission, say in joules per
minute. We assume that all candles, big or small, have the same wick and
release the same amount of energy per unit time. A lit candle dissipates PT
joules during T minutes.

Calling on basic physics, we can model the flame dynamics as a
process between the two flows of energy. Let T be the time taken
for a candle of size H to be consumed. In that time, the candle

consumes EHTR? joules and releases PT joules: the energy goes
from wax to flame. The balance of these two processes leads to an

equation:

PT =EHzR".

Since a candle of height H burns in a time T, the flame velocity is u
= H/T and using this model, we can express this velocity as

H P 1
PR — R

T =zE R*



This simple model does not tell us much about the velocity of the
flame since we do not know P and E and, at first sight, it looks like
we have replaced the unknown velocity by two unknown and
mysterious quantities. Nevertheless, it provides interesting
information when we realize that P and E are independent of the
size of the candle. Therefore, we can extract information about the
scaling of the process. We know that the velocity depends on the
inverse of the radius squared, which implies that a candle of twice
the diameter would burn four times slower; a candle ten times the
diameter would burn a hundred times slower, and so on.

How good is this prediction? It is fairly easy to run a series of
experiments with candles of different sizes and measure both the
velocity and radius for each candle as shown in Figure 2. This
figure is a log-log plot, a particular way to plot data that transforms
any power relationship into a straight line as detailed in Chapter 2.
The only important thing to know at this point is that if the data is
close to a line of gradient -2, the candle follows our model. A look
at the figure tells us that our prediction is quite good for large
candles but not so good for smaller ones where other effects may
be playing a role (the wick may be smaller, the wax may be melting
away, ...). Nevertheless, this model helps us understand candle
flame propagation as a basic energy conversion problem. It also
provides a simple law that we can test. This approach is often
referred to as a back of the envelope computation:. a simple
computation that aims to understand the basic mechanisms
involved in a physical process. Other examples will be studied in
Chapter 2.



