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PROLOGUE:

Computers seem to be getting smarter at an alarming rate, but one thing they still
can’t do is appreciate irony. That’s what was on my mind a few years ago, when, on my
way to a discussion about artificial intelligence (Al), I got lost in the capital of
searching and finding - the Googleplex, Google’s world headquarters in Mountain
View, California. What’s more, I was lost inside the Google Maps building. Irony
squared.

The Maps building itself had been easy to find. A Google Street View car was parked
by the front door, a hulking appendage crowned by a red-and-black soccer ball of a
camera sticking up from its roof. However, once inside, with my prominent ‘Visitor’
badge assigned by security, I wandered, embarrassed, among warrens of cubicles
occupied by packs of Google workers, headphones over ears, intently typing on Apple
desktops. After some (map-less) random search, I finally found the conference room
assigned for the day-long meeting and joined the group gathered there.

The meeting, in May 2014, had been organized by Blaise Agiiera y Arcas, a young
computer scientist who had recently left a top position at Microsoft to help lead
Google’s machine intelligence effort. Google started out in 1998 with one ‘product’: a
website that used a novel, extraordinarily successful method for searching the web.
Over the years, Google has evolved into the world’s most important tech company and
now offers a vast array of products and services, including Gmail, Google Docs, Google
Translate, YouTube, Android, many more that you might use every day, and some that
you've probably never heard of.

Google’s founders, Larry Page and Sergey Brin, have long been motivated by the idea
of creating artificial intelligence in computers, and this quest has become a major
focus at Google. In the last decade, the company has hired a profusion of Al experts,
most notably Ray Kurzweil, a well-known inventor and a controversial futurist who
promotes the idea of an Al ‘Singularity’, a time in the near future when computers will
become smarter than humans. Google hired Kurzweil to help realize this vision. In
2011, Google created an internal Al research group called Google Brain; since then, the
company has also acquired an impressive array of Al start-up companies with equally
optimistic names: Applied Semantics, DeepMind and Vision Factory, among others.

In short, Google is no longer merely a web-search portal - not by a long shot. It is
rapidly becoming an applied Al company. Al is the glue that unifies the diverse
products, services and blue-sky research efforts offered by Google and its parent
company, Alphabet. The company’s ultimate aspiration is reflected in the original



mission statement of its DeepMind group: ‘Solve intelligence and use it to solve
everything else.””

Al and GEB

[ was pretty excited to attend an Al meeting at Google. I had been working on various
aspects of Al since graduate school in the 1980s and had been tremendously impressed
by what Google had accomplished. I also thought I had some good ideas to contribute.
But [ have to admit that I was there only as a tag-along. The meeting was happening so
that a group of select Google Al researchers could hear from and converse with
Douglas Hofstadter, a legend in Al and the author of a famous book cryptically titled
Godel, Escher, Bach: an Eternal Golden Braid, or more succinctly, GEB (pronounced ‘gee-ee-
bee’). If you're a computer scientist, or a computer enthusiast, you’ve probably never
heard of it, or read it, or tried to read it.

Written in the 1970s, GEB was an outpouring of Hofstadter’s many intellectual
passions - mathematics, art, music, language, humour and wordplay, all brought
together to address the deep questions of how intelligence, consciousness and the
sense of self-awareness that each human experiences so fundamentally can emerge
from the non-intelligent, nonconscious substrate of biological cells. It’s also about how
intelligence and self-awareness might eventually be attained by computers. It’s a
unique book; I don’t know of any other book remotely like it. It’s not an easy read, and
yet it became a bestseller and won both the Pulitzer Prize and the National Book
Award. Without a doubt, GEB inspired more young people to pursue Al than any other
book. I was one of those young people.

In the early 1980s, after graduating from college with a maths degree, I was living in
New York City, teaching maths in a prep school, unhappy, and casting about for what I
really wanted to do in life. I discovered GEB after reading a rave review in Scientific
American. 1 went out and bought the book immediately. Over the next several weeks, I
devoured it, becoming increasingly convinced that not only did I want to become an Al
researcher but I specifically wanted to work with Douglas Hofstadter. I had never
before felt so strongly about a book, or a career choice.

At the time, Hofstadter was a professor in computer science at Indiana University,
and my quixotic plan was to apply to the computer science PhD programme there,
arrive, and then persuade Hofstadter to accept me as a student. One minor problem
was that I had never taken even one computer science course. I had grown up with
computers; my father was a hardware engineer at a 1960s tech start-up company, and
as a hobby he built a mainframe computer in our family’s den. The refrigerator-sized
Sigma 2 machine wore a magnetic button proclaiming, ‘I pray in FORTRAN,  and as a
child I was half-convinced it did, quietly at night, while the rest of the family was
asleep. Growing up in the 1960s and '70s, I learned a bit of each of the popular
languages of the day: FORTRAN, then BASIC, then Pascal, but I knew next to nothing
about proper programming techniques, not to mention anything else an incoming
computer science graduate student needs to know.

To speed along my plan, I quit my teaching job at the end of the school year, moved
to Boston and started taking introductory computer science courses to prepare for my
new career. A few months into my new life, I was on the campus of the Massachusetts
Institute of Technology, waiting for a class to begin, and I caught sight of a poster
advertising a lecture by Douglas Hofstadter, to take place in two days on that very
campus. I did a double take; I couldn’t believe my good fortune. I went to the lecture,
and after a long wait for my turn in a crowd of admirers I managed to speak to
Hofstadter. It turned out he was in the middle of a year-long sabbatical at MIT, after
which he was moving from Indiana to the University of Michigan in Ann Arbor.



To make a long story short, after some persistent pursuit on my part, I persuaded
Hofstadter to take me on as a research assistant, first for a summer, and then for the
next six years as a graduate student, after which I graduated with a doctorate in
computer science from Michigan. Hofstadter and I have kept in close touch over the
years and have had many discussions about Al He knew of my interest in Google’s Al
research and was nice enough to invite me to accompany him to the Google meeting.

Chess and the First Seed of Doubt

The group in the hard-to-locate conference room consisted of about twenty Google
engineers (plus Douglas Hofstadter and myself), all of whom were members of various
Google Al teams. The meeting started with the usual going around the room and
having people introduce themselves. Several noted that their own careers in Al had
been spurred by reading GEB at a young age. They were all excited and curious to hear
what the legendary Hofstadter would say about Al Then Hofstadter got up to speak. ‘1
have some remarks about Al research in general, and here at Google in particular.’ His
voice became passionate. ‘I am terrified. Terrified.’

Hofstadter went on.”_ He described how, when he first started working on Al in the
1970s, it was an exciting prospect but seemed so far from being realized that there was
no ‘danger on the horizon, no sense of it actually happening’. Creating machines with
humanlike intelligence was a profound intellectual adventure, a long-term research
project whose fruition, it had been said, lay at least ‘one hundred Nobel prizes away’.>
Hofstadter believed Al was possible in principle: ‘The “enemy” were people like John
Searle, Hubert Dreyfus, and other sceptics, who were saying it was impossible. They did
not understand that a brain is a hunk of matter that obeys physical law and the
computer can simulate anything ... the level of neurons, neurotransmitters, et cetera.
In theory, it can be done.’ Indeed, Hofstadter’s ideas about simulating intelligence at
various levels - from neurons to consciousness - were discussed at length in GEB and
had been the focus of his own research for decades. But in practice, until recently, it
seemed to Hofstadter that general ‘human-level’ Al had no chance of occurring in his
(or even his children’s) lifetime, so he didn’t worry much about it.

Near the end of GEB, Hofstadter had listed ‘Ten Questions and Speculations’ about
artificial intelligence. Here’s one of them: ‘Will there be chess programs that can beat
anyone?’ Hofstadter’s speculation was ‘no’. ‘There may be programs which can beat
anyone at chess, but they will not be exclusively chess players. They will be programs
of general intelligence.”

At the Google meeting in 2014, Hofstadter admitted that he had been ‘dead wrong’.
The rapid improvement in chess programs in the 1980s and 90s had sown the first
seed of doubt in his appraisal of Al's short-term prospects. Although the Al pioneer
Herbert Simon had predicted in 1957 that a chess program would be world champion
‘within 10 years’, by the mid-1970s, when Hofstadter was writing GEB, the best
computer chess programs played only at the level of a good (but not great) amateur.
Hofstadter had befriended Eliot Hearst, a chess champion and psychology professor
who had written extensively on how human chess experts differ from computer chess
programs. Experiments showed that expert human players rely on quick recognition of
patterns on the chessboard to decide on a move rather than the extensive brute-force
look-ahead search that all chess programs use. During a game, the best human players
can perceive a configuration of pieces as a particular ‘kind of position’ that requires a
certain ‘kind of strategy’. That is, these players can quickly recognize particular
configurations and strategies as instances of higher-level concepts. Hearst argued that
without such a general ability to perceive patterns and recognize abstract concepts,



chess programs would never reach the level of the best humans. Hofstadter was
persuaded by Hearst’s arguments.

However, in the 1980s and ’90s, computer chess saw a big jump in improvement,
mostly due to the steep increase in computer speed. The best programs still played in a
very unhuman way: performing extensive look-ahead to decide on the next move. By
the mid-1990s, IBM’s Deep Blue machine, with specialized hardware for playing chess,
had reached the Grandmaster level, and in 1997 the program defeated the reigning
world chess champion, Garry Kasparov, in a six-game match. Chess mastery, once seen
as a pinnacle of human intelligence, had succumbed to a brute-force approach.

Music: The Bastion of Humanity

Although Deep Blue’s win generated a lot of hand-wringing in the press about the rise
of intelligent machines, ‘true’ Al still seemed quite distant. Deep Blue could play chess,
but it couldn’t do anything else. Hofstadter had been wrong about chess, but he still
stood by the other speculations in GEB, especially the one he had listed first:

Question: Will a computer ever write beautiful music? Speculation: Yes, but not
soon.

Hofstadter continued,

Music is a language of emotions, and until programs have emotions as complex
as ours, there is no way a program will write anything beautiful. There can be
‘forgeries’ - shallow imitations of the syntax of earlier music - but despite what
one might think at first, there is much more to musical expression than can be
captured in syntactic rules ... To think ... that we might soon be able to
command a preprogrammed mass-produced mail-order twenty-dollar desk-
model ‘music box’ to bring forth from its sterile circuitry pieces which Chopin
or Bach might have written had they lived longer is a grotesque and shameful
misestimation of the depth of the human spirit.>

Hofstadter described this speculation as ‘one of the most important parts of GEB - 1
would have staked my life on it’.

In the mid-1990s, Hofstadter’s confidence in his assessment of Al was again shaken,
this time quite profoundly, when he encountered a program written by a musician,
David Cope. The program was called Experiments in Musical Intelligence, or EMI
(pronounced ‘Emmy’). Cope, a composer and music professor, had originally developed
EMI to aid him in his own composing process by automatically creating pieces in
Cope’s specific style. However, EMI became famous for creating pieces in the style of
classical composers such as Bach and Chopin. EMI composes by following a large set of
rules, developed by Cope, that are meant to capture a general syntax of composition.
These rules are applied to copious examples from a particular composer’s opus in
order to produce a new piece ‘in the style’ of that composer.

Back at our Google meeting, Hofstadter spoke with extraordinary emotion about his
encounters with EMI:

I sat down at my piano and I played one of EMI's mazurkas ‘in the style of
Chopin’. It didn’t sound exactly like Chopin, but it sounded enough like Chopin,
and like coherent music, that I just felt deeply troubled.

Ever since I was a child, music has thrilled me and moved me to the very
core. And every piece that I love feels like it’s a direct message from the
emotional heart of the human being who composed it. It feels like it is giving



me access to their innermost soul. And it feels like there is nothing more human
in the world than that expression of music. Nothing. The idea that pattern
manipulation of the most superficial sort can yield things that sound as if they
are coming from a human being’s heart is very, very troubling. I was just
completely thrown by this.

Hofstadter then recounted a lecture he gave at the prestigious Eastman School of
Music, in Rochester, New York. After describing EMI, Hofstadter had asked the
Eastman audience - including several music theory and composition faculty - to guess
which of two pieces a pianist played for them was a (little-known) mazurka by Chopin
and which had been composed by EMI. As one audience member described later, ‘The
first mazurka had grace and charm, but not “true-Chopin” degrees of invention and
large-scale fluidity ... The second was clearly the genuine Chopin, with a lyrical
melody; large-scale, graceful chromatic modulations; and a natural, balanced form.”®
Many of the faculty agreed and, to Hofstadter’s shock, voted EMI for the first piece and
‘real-Chopin’ for the second piece. The correct answers were the reverse.

In the Google conference room, Hofstadter paused, peering into our faces. No one
said a word. At last he went on. ‘I was terrified by EML Terrified. I hated it, and was
extremely threatened by it. It was threatening to destroy what I most cherished about
humanity. I think EMI was the most quintessential example of the fears that I have
about artificial intelligence.’

Google and the Singularity

Hofstadter then spoke of his deep ambivalence about what Google itself was trying to
accomplish in Al - self-driving cars, speech recognition, natural-language
understanding, translation between languages, computer-generated art, music
composition, and more. Hofstadter’s worries were underlined by Google’s embrace of
Ray Kurzweil and his vision of the Singularity, in which AI, empowered by its ability to
improve itself and learn on its own, will quickly reach, and then exceed, human-level
intelligence. Google, it seemed, was doing everything it could to accelerate that vision.
While Hofstadter strongly doubted the premise of the Singularity, he admitted that
Kurzweil’s predictions still disturbed him. ‘I was terrified by the scenarios. Very
skeptical, but at the same time, I thought, maybe their timescale is off, but maybe
they’re right. We’ll be completely caught off guard. we’ll think nothing is happening
and all of a sudden, before we know it, computers will be smarter than us.’

If this actually happens, ‘we will be superseded. We will be relics. We will be left in
the dust.

‘Maybe this is going to happen, but I don’t want it to happen soon. I don’t want my
children to be left in the dust.’

Hofstadter ended his talk with a direct reference to the very Google engineers in
that room, all listening intently: ‘I find it very scary, very troubling, very sad, and I find
it terrible, horrifying, bizarre, baffling, bewildering, that people are rushing ahead
blindly and deliriously in creating these things.’

Why is Hofstadter Terrified?

I looked around the room. The audience appeared mystified, embarrassed even. To
these Google Al researchers, none of this was the least bit terrifying. In fact, it was old
news. When Deep Blue beat Kasparov, when EMI started composing Chopin-like
mazurkas, and when Kurzweil wrote his first book on the Singularity, many of these
engineers had been in high school, probably reading GEB and loving it, even though its



Al prognostications were a bit out of date. The reason they were working at Google was
precisely to make Al happen - not in a hundred years, but now, as soon as possible.
They didn’t understand what Hofstadter was so stressed out about.

People who work in Al are used to encountering the fears of people outside the field,
who have presumably been influenced by the many science fiction movies depicting
superintelligent machines that turn evil. Al researchers are also familiar with the
worries that increasingly sophisticated Al will replace humans in some jobs, that Al
applied to big data sets could subvert privacy and enable subtle discrimination, and
that ill-understood Al systems allowed to make autonomous decisions have the
potential to cause havoc.

Hofstadter’s terror was in response to something entirely different. It was not about
Al becoming too smart, too invasive, too malicious, or even too useful. Instead, he was
terrified that intelligence, creativity, emotions, and maybe even consciousness itself
would be too easy to produce - that what he valued most in humanity would end up
being nothing more than a ‘bag of tricks’, that a superficial set of brute-force
algorithms could explain the human spirit.

As GEB made abundantly clear, Hofstadter firmly believes that the mind and all its
characteristics emerge wholly from the physical substrate of the brain and the rest of
the body, along with the body’s interaction with the physical world. There is nothing
immaterial or incorporeal lurking there. The issue that worries him is really one of
complexity. He fears that Al might show us that the human qualities we most value are
disappointingly simple to mechanize. As Hofstadter explained to me after the meeting,
here referring to Chopin, Bach, and other paragons of humanity, ‘If such minds of
infinite subtlety and complexity and emotional depth could be trivialized by a small
chip, it would destroy my sense of what humanity is about.’

| Am Confused

Following Hofstadter’s remarks, there was a short discussion, in which the nonplussed
audience prodded Hofstadter to further explain his fears about Al and about Google in
particular. But a communication barrier remained. The meeting continued, with
project presentations, group discussion, coffee breaks, the usual - none of it really
touching on Hofstadter’s comments. Close to the end of the meeting, Hofstadter asked
the participants for their thoughts about the near-term future of Al Several of the
Google researchers predicted that general human-level Al would probably emerge
within the next thirty years, in large part due to Google’s own advances on the brain-
inspired method of ‘deep learning’.

I left the meeting scratching my head in confusion. I knew that Hofstadter had been
troubled by some of Kurzweil’s Singularity writings, but I had never before appreciated
the degree of his emotion and anxiety. I also had known that Google was pushing hard
on Al research, but I was startled by the optimism several people there expressed
about how soon Al would reach a general ‘human’ level. My own view had been that Al
had progressed a lot in some narrow areas but was still nowhere close to having the
broad, general intelligence of humans, and it would not get there in a century, let
alone thirty years. And I had thought that people who believed otherwise were vastly
underestimating the complexity of human intelligence. I had read Kurzweil’s books
and had found them largely ridiculous. However, listening to all the comments at the
meeting, from people I respected and admired, forced me to critically examine my own
views. While assuming that these Al researchers underestimated humans, had I in turn
underestimated the power and promise of current-day AI?

Over the months that followed, I started paying more attention to the discussion
surrounding these questions. I started to notice the slew of articles, blog posts, and



entire books by prominent people suddenly telling us we should start worrying, right
now, about the perils of ‘superhuman’ Al In 2014, the physicist Stephen Hawking
proclaimed, ‘The development of full artificial intelligence could spell the end of the
human race.”_In the same year, the entrepreneur Elon Musk, founder of the Tesla and
SpaceX companies, said that artificial intelligence is probably ‘our biggest existential
threat’ and that ‘with artificial intelligence we are summoning the demon.’®
Microsoft’s co-founder Bill Gates concurred: ‘I agree with Elon Musk and some others
on this and don’t understand why some people are not concerned.””_ The philosopher
Nick Bostrom’s book Superintelligence, on the potential dangers of machines becoming
smarter than humans, became a surprise bestseller, despite its dry and ponderous
style.

Other prominent thinkers were pushing back. Yes, they said, we should make sure
that Al programs are safe and don’t risk harming humans, but any reports of near-
term superhuman Al are greatly exaggerated. The entrepreneur and activist Mitchell
Kapor advised, ‘Human intelligence is a marvelous, subtle, and poorly understood
phenomenon. There is no danger of duplicating it anytime soon.”’°_ The roboticist (and
former director of MIT’s Al Lab) Rodney Brooks agreed, stating that we ‘grossly
overestimate the capabilities of machines - those of today and of the next few
decades’.!’ The psychologist and Al researcher Gary Marcus went so far as to assert
that in the quest to create ‘strong Al - that is, general human-level Al - ‘there has been
almost no progress.’'*.

I could go on and on with duelling quotations. In short, what I found is that the field
of Al is in turmoil. Either a huge amount of progress has been made, or almost none at
all. Either we are within spitting distance of ‘true’ Al, or it is centuries away. Al will
solve all our problems, put us all out of a job, destroy the human race, or cheapen our
humanity. It’s either a noble quest or ‘summoning the demon’.

What This Book is About

This book arose from my attempt to understand the true state of affairs in artificial
intelligence - what computers can do now, and what we can expect from them over the
next decades. Hofstadter’s provocative comments at the Google meeting were
something of a wake-up call for me, as were the Google researchers’ confident
responses about Al’s near-term future. In the chapters that follow, I try to sort out how
far artificial intelligence has come, as well as elucidate its disparate - and sometimes
conflicting - goals. In doing so, I consider how some of the most prominent Al systems
actually work, and investigate how successful they are and where their limitations lie. I
look at the extent to which computers can now do things that we believe to require
high levels of intelligence - beating humans at the most intellectually demanding
games, translating between languages, answering complex questions, navigating
vehicles in challenging terrain. And I examine how they fare at the things we take for
granted, the everyday tasks we humans perform without conscious thought:
recognizing faces and objects in images, understanding spoken language and written
text, and using the most basic common sense.

I also try to make sense of the broader questions that have fuelled debates about Al
since its inception: What do we actually mean by ‘general human’ or even
‘superhuman’ intelligence? Is current Al close to this level, or even on a trajectory to
get there? What are the dangers? What aspects of our intelligence do we most cherish,
and to what extent would human-level AI challenge how we think about our own
humanness? To use Hofstadter’s terms, how terrified should we be?

This book is not a general survey or history of artificial intelligence. Rather, it is an
in-depth exploration of some of the Al methods that probably affect your life, or will



soon, as well as the Al efforts that perhaps go furthest in challenging our sense of
human uniqueness. My aim is for you to share in my own exploration and, like me, to
come away with a clearer sense of what the field has accomplished and how much
further there is to go before our machines can argue for their own humanity.



PART ONE
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CHAPTER 1

Two Months and Ten Men at Dartmouth

The dream of creating an intelligent machine - one that is as smart as or smarter than
humans - is centuries old but became part of modern science with the rise of digital
computers. In fact, the ideas that led to the first programmable computers came out of
mathematicians’ attempts to understand human thought - particularly logic - as a
mechanical process of ‘symbol manipulation’. Digital computers are essentially symbol
manipulators, pushing around combinations of the symbols 0 and 1. To pioneers of
computing like Alan Turing and John von Neumann, there were strong analogies
between computers and the human brain, and it seemed obvious to them that human
intelligence could be replicated in computer programs.

Most people in artificial intelligence trace the field’s official founding to a small
workshop in 1956 at Dartmouth College organized by a young mathematician named
John McCarthy.

In 1955, McCarthy, aged twenty-eight, joined the mathematics faculty at Dartmouth.
As an undergraduate, he had learned a bit about both psychology and the nascent field
of ‘automata theory’ (later to become computer science) and had become intrigued
with the idea of creating a thinking machine. In graduate school in the mathematics
department at Princeton, McCarthy had met a fellow student, Marvin Minsky, who
shared his fascination with the potential of intelligent computers. After graduating,
McCarthy had short-lived stints at Bell Labs and IBM, where he collaborated,
respectively, with Claude Shannon, the inventor of information theory, and Nathaniel
Rochester, a pioneering electrical engineer. Once at Dartmouth, McCarthy persuaded
Minsky, Shannon and Rochester to help him organize ‘a 2 month, 10 man study of
artificial intelligence to be carried out during the summer of 1956’.2_ The term artificial
intelligence was McCarthy’s invention; he wanted to distinguish this field from a related
effort called cybernetics.2. McCarthy later admitted that no one really liked the name -
after all, the goal was genuine, not ‘artificial’, intelligence - but ‘T had to call it
something, so I called it “Artificial Intelligence”.”>

The four organizers submitted a proposal to the Rockefeller Foundation asking for
funding for the summer workshop. The proposed study was, they wrote, based on ‘the



conjecture that every aspect of learning or any other feature of intelligence can be in
principle so precisely described that a machine can be made to simulate it’.? The
proposal listed a set of topics to be discussed - natural-language processing, neural
networks, machine learning, abstract concepts and reasoning, creativity - that have
continued to define the field to the present day.

Even though the most advanced computers in 1956 were about a million times
slower than today’s smartphones, McCarthy and colleagues were optimistic that Al was
in close reach: ‘We think that a significant advance can be made in one or more of
these problems if a carefully selected group of scientists work on it together for a
summer.”_

Obstacles soon arose that would be familiar to anyone organizing a scientific
workshop today. The Rockefeller Foundation came through with only half the
requested amount of funding. And it turned out to be harder than McCarthy had
thought to persuade the participants to actually come and then stay, not to mention
agree on anything. There were lots of interesting discussions but not a lot of
coherence. As usual in such meetings, ‘Everyone had a different idea, a hearty ego, and
much enthusiasm for their own plan.’_ However, the Dartmouth summer of Al did
produce a few very important outcomes. The field itself was named, and its general
goals were outlined. The soon-to-be ‘big four’ pioneers of the field - McCarthy, Minsky,
Allen Newell and Herbert Simon - met and did some planning for the future. And for
whatever reason, these four came out of the meeting with tremendous optimism for
the field. In the early 1960s, McCarthy founded the Stanford Artificial Intelligence
Project, with the ‘goal of building a fully intelligent machine in a decade’.” Around the
same time, the future Nobel laureate Herbert Simon predicted, ‘Machines will be
capable, within twenty years, of doing any work that a man can do.”®_Soon after,
Marvin Minsky, founder of the MIT Al Lab, forecasted that ‘within a generation ... the
problems of creating “artificial intelligence” will be substantially solved.”?_

Definitions, and Getting On with It

None of these predicted events have yet come to pass. So how far do we remain from
the goal of building a ‘fully intelligent machine’? Would such a machine require us to
reverse engineer the human brain in all its complexity, or is there a shortcut, a clever
set of yet-unknown algorithms, that can produce what we recognize as full
intelligence? What does ‘full intelligence’ even mean?

‘Define your terms ... or we shall never understand one another.”’°_ This admonition
from the eighteenth-century philosopher Voltaire is a challenge for anyone talking
about artificial intelligence, because its central notion - intelligence - remains so ill-
defined. Marvin Minsky himself coined the phrase ‘suitcase word’!!_for terms like
intelligence and its many cousins, such as thinking, cognition, consciousness and emotion.
Each is packed like a suitcase with a jumble of different meanings. Artificial intelligence
inherits this packing problem, sporting different meanings in different contexts.

Most people would agree that humans are intelligent and specks of dust are not.
Likewise, we generally believe that humans are more intelligent than worms. As for
human intelligence, 1Q is measured on a single scale, but we also talk about the
different dimensions of intelligence: emotional, verbal, spatial, logical, artistic, social,
and so forth. Thus, intelligence can be binary (something is or is not intelligent), on a
continuum (one thing is more intelligent than another thing), or multidimensional
(someone can have high verbal intelligence but low emotional intelligence). Indeed,
the word intelligence is an over-packed suitcase, zip on the verge of breaking.

For better or worse, the field of Al has largely ignored these various distinctions.
Instead, it has focused on two efforts: one scientific and one practical. On the scientific



side, Al researchers are investigating the mechanisms of ‘natural’ (that is, biological)
intelligence by trying to embed it in computers. On the practical side, Al proponents
simply want to create computer programs that perform tasks as well as or better than
humans, without worrying about whether these programs are actually thinking in the
way humans think. When asked if their motivations are practical or scientific, many Al
people joke that it depends on where their funding currently comes from.

In a recent report on the current state of Al, a committee of prominent researchers
defined the field as ‘a branch of computer science that studies the properties of
intelligence by synthesizing intelligence’.!?_ A bit circular, yes. But the same
committee also admitted that it’s hard to define the field, and that may be a good
thing: ‘The lack of a precise, universally accepted definition of Al probably has helped
the field to grow, blossom, and advance at an ever-accelerating pace.””> Furthermore,
the committee notes, ‘Practitioners, researchers, and developers of Al are instead
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guided by a rough sense of direction and an imperative to “get on with it”.

An Anarchy of Methods

At the 1956 Dartmouth workshop, different participants espoused divergent opinions
about the correct approach to take to develop Al Some people - generally
mathematicians - promoted mathematical logic and deductive reasoning as the
language of rational thought. Others championed inductive methods in which
programs extract statistics from data and use probabilities to deal with uncertainty.
Still others believed firmly in taking inspiration from biology and psychology to create
brain-like programs. What you may find surprising is that the arguments among
proponents of these various approaches persist to this day. And each approach has
generated its own panoply of principles and techniques, fortified by speciality
conferences and journals, with little communication among the subspecialities. A
recent Al survey paper summed it up: ‘Because we don’t deeply understand
intelligence or know how to produce general Al rather than cutting off any avenues of
exploration, to truly make progress we should embrace Al’s “anarchy of methods”.’1*

But since the 2010s, one family of Al methods - collectively called deep learning (or
deep neural networks) - has risen above the anarchy to become the dominant Al
paradigm. In fact, in much of the popular media, the term artificial intelligence itself has
come to mean ‘deep learning’. This is an unfortunate inaccuracy, and I need to clarify
the distinction. Al is a field that includes a broad set of approaches, with the goal of
creating machines with intelligence. Deep learning is only one such approach. Deep
learning is itself one method among many in the field of machine learning, a subfield of
Al in which machines ‘learn’ from data or from their own ‘experiences’. To better
understand these various distinctions, it’s important to understand a philosophical
split that occurred early in the Al research community: the split between so-called
symbolic and subsymbolic AL

Symbolic Al

First let’s look at symbolic Al. A symbolic Al program’s knowledge consists of words or
phrases (the ‘symbols’), typically understandable to a human, along with rules by
which the program can combine and process these symbols in order to perform its
assigned task.

I'll give you an example. One early Al program was confidently called the General
Problem Solver,’>_or GPS for short. (Sorry about the confusing acronym; the General
Problem Solver pre-dated the Global Positioning System.) GPS could solve problems
such as the ‘Missionaries and Cannibals’ puzzle, which you might have tackled yourself



as a child. In this well-known conundrum, three missionaries and three cannibals all
need to cross a river, but their boat holds only two people. If at any time the (hungry)
cannibals outnumber the (tasty-looking) missionaries on one side of the river ... well,
you probably know what happens. How do all six get across the river intact?

The creators of the General Problem Solver, the cognitive scientists Herbert Simon
and Allen Newell, had recorded several students ‘thinking out loud’ while solving this
and other logic puzzles. Simon and Newell then designed their program to mimic what
they believed were the students’ thought processes.

[ won’t go into the details of how GPS worked, but its symbolic nature can be seen by
the way the program’s instructions were encoded. To set up the problem, a human
would write code for GPS that looked something like this:

CURRENT STATE:
LEFT-BANK = [3 MISSIONARIES, 3 CANNIBALS, 1 BOAT]
RIGHT-BANK = [EMPTY]

DESIRED STATE:
LEFT-BANK = [EMPTY]
RIGHT-BANK = [3 MISSIONARIES, 3 CANNIBALS, 1 BOAT]

In English, these lines represent the fact that initially the left bank of the river
‘contains’ three missionaries, three cannibals and one boat, whereas the right bank
doesn’t contain any of these. The desired state represents the goal of the program - get
everyone to the right bank of the river.

At each step in its procedure, GPS attempts to change its current state to make it
more similar to the desired state. In its code, the program has ‘operators’ (in the form
of subprograms) that can transform the current state into a new state and ‘rules’ that
encode the constraints of the task. For example, there is an operator that moves some
number of missionaries and cannibals from one side of the river to the other:

MOVE (#MISSIONARIES, #CANNIBALS, FROM-SIDE, TO-SIDE)

The words inside the parentheses are called arguments, and when the program runs, it
replaces these words with numbers or other words. That is, #MISSIONARIES is replaced
with the number of missionaries to move, #CANNIBALS with the number of cannibals
to move, and FROM-SIDE and TO-SIDE are replaced with ‘LEFT-BANK’ or ‘RIGHT-BANK’,
depending on which riverbank the missionaries and cannibals are to be moved from.
Encoded into the program is the knowledge that the boat is moved along with the
missionaries and cannibals.

Before being able to apply this operator with specific values replacing the
arguments, the program must check its encoded rules; for example, the maximum
number of people that can move at a time is two, and the operator cannot be used if it
will result in cannibals outnumbering missionaries on a riverbank.

While these symbols represent human-interpretable concepts such as missionaries,
cannibals, boat and left bank, the computer running this program of course has no
knowledge of the meaning of these symbols. You could replace all occurrences of
‘MISSIONARIES’ with ‘Z372B’ or any other nonsense string, and the program would
work in exactly the same way. This is part of what the term General refers to in General
Problem Solver. To the computer, the ‘meaning’ of the symbols derives from the ways in
which they can be combined, related to one another and operated on.

Advocates of the symbolic approach to Al argued that to attain intelligence in
computers, it would not be necessary to build programs that mimic the brain. Instead,
the argument goes, general intelligence can be captured entirely by the right kind of



symbol-processing program. Agreed, the workings of such a program would be vastly
more complex than the Missionaries and Cannibals example, but it would still consist
of symbols, combinations of symbols, and rules and operations on symbols. Symbolic
Al of the kind illustrated by GPS ended up dominating the field for its first three
decades, most notably in the form of expert systems, in which human experts devised
rules for computer programs to use in tasks such as medical diagnosis and legal
decision-making. There are several active branches of Al that still employ symbolic Al;
I'll describe examples of it later, particularly in discussions of Al approaches to
reasoning and common sense.

Subsymbolic Al: Perceptrons

Symbolic Al was originally inspired by mathematical logic as well as by the way people
described their conscious thought processes. In contrast, subsymbolic approaches to Al
took inspiration from neuroscience and sought to capture the sometimes unconscious
thought processes underlying what some have called fast perception, such as
recognizing faces or identifying spoken words. Subsymbolic Al programs do not
contain the kind of human-understandable language we saw in the Missionaries and
Cannibals example above. Instead, a subsymbolic program is essentially a stack of
equations - a thicket of often hard-to-interpret operations on numbers. As I'll explain
shortly, such systems are designed to learn from data how to perform a task.

An early example of a subsymbolic, brain-inspired Al program was the perceptron,
invented in the late 1950s by the psychologist Frank Rosenblatt.’® The term
‘perceptron’ may sound a bit 1950s science-fiction-y to our modern ears (as we’ll see, it
was soon followed by the ‘cognitron’ and the ‘neocognitron’), but the perceptron was
an important milestone in Al and was the influential great-grandparent of modern AI’s
most successful tool, deep neural networks.

Rosenblatt’s invention of perceptrons was inspired by the way in which neurons
process information. A neuron is a cell in the brain that receives electrical or chemical
input from other neurons that connect to it. Roughly speaking, a neuron sums up all
the inputs it receives from other neurons, and if the total sum reaches a certain
threshold level, the neuron fires. Importantly, different connections (synapses) from
other neurons to a given neuron have different strengths; in calculating the sum of its
inputs, the given neuron gives more weight to inputs from stronger connections than
inputs from weaker connections. Neuroscientists believe that adjustments to the
strength of connections between neurons is a key part of how learning takes place in
the brain.

To a computer scientist (or, in Rosenblatt’s case, a psychologist), information
processing in neurons can be simulated by a computer program - a perceptron - that
has multiple numerical inputs and one output. The analogy between a neuron and a
perceptron is illustrated in figure 1. Figure 1a shows a neuron, with its branching
dendrites (fibres that carry inputs to the cell), cell body and axon (that is, output
channel) labelled. Figure 1b shows a simple perceptron. Analogous to the neuron, the
perceptron adds up its inputs, and if the resulting sum is equal to or greater than the
perceptron’s threshold, the perceptron outputs the value 1 (it ‘fires’); otherwise it
outputs the value 0 (it ‘does not fire’). To simulate the different strengths of
connections to a neuron, Rosenblatt proposed that a numerical weight be assigned to
each of a perceptron’s inputs; each input is multiplied by its weight before being added
to the sum. A perceptron’s threshold is simply a number set by the programmer (or, as
we'll see, learned by the perceptron itself).
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a, a neuron in the brain; b, a simple perceptron
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Figure 2

Examples of handwritten digits

In short, a perceptron is a simple program that makes a yes-or-no (1 or 0) decision
based on whether the sum of its weighted inputs meets a threshold value. You
probably make some decisions like this in your life. For example, you might get input
from several friends on how much they liked a particular movie, but you trust some of
those friends’ taste in movies more than others’. If the total amount of ‘friend
enthusiasm’ - giving more weight to your more trusted friends - is high enough (that
is, greater than some unconscious threshold), you decide to go to the movie. This is
how a perceptron would decide about movies, if only it had friends.

Inspired by networks of neurons in the brain, Rosenblatt proposed that networks of
perceptrons could perform visual tasks such as recognizing faces and objects. To get a
flavour of how that might work, let’s explore how a perceptron might be used for a
particular visual task: recognizing handwritten digits like those in figure 2.

In particular, let’s design a perceptron to be an 8 detector - that is, to output a 1 if
its inputs are from an image depicting an 8, and to output a 0 if the image depicts some
other digit. Designing such a detector requires us to (1) figure out how to turn an
image into a set of numerical inputs, and (2) determine numbers to use for the
perceptron’s weights and threshold, so that it will give the correct output (1 for 8s, 0
for other digits). I'll go into some detail here because many of the same ideas will arise
later in my discussions of neural networks and their applications in computer vision.
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An illustration of a perceptron that recognizes handwritten 8s. Each pixel in the 18 x 18-pixel
image corresponds to an input to the perceptron, yielding 324 (= 18 x 18) inputs.



Our Perceptron’s Inputs

Figure 3a shows an enlarged handwritten 8. Each grid square is a pixel with a
numerical ‘intensity’ value: white squares have an intensity of 0, black squares have an
intensity of 1 and grey squares are in between. Let’s assume that the images we give to
our perceptron have been adjusted to be the same size as this one: 18 x 18 pixels. Figure
3b illustrates a perceptron for recognizing 8s. This perceptron has 324 (that is, 18 x 18)
inputs, each of which corresponds to one of the pixels in the 18 x 18 grid. Given an
image like the one in figure 3a, each of the perceptron’s inputs is set to the
corresponding pixel’s intensity. Each of the inputs would have its own weight value
(not shown in the figure).

Learning the Perceptron’s Weights and Threshold

Unlike the symbolic General Problem Solver system that I described earlier, a
perceptron doesn’t have any explicit rules for performing its task; all of its ‘knowledge’
is encoded in the numbers making up its weights and threshold. In his various papers,
Rosenblatt showed that given the correct weight and threshold values, a perceptron
like the one in figure 3b can perform fairly well on perceptual tasks such as
recognizing simple handwritten digits. But how, exactly, can we determine the correct
weights and threshold for a given task? Again, Rosenblatt proposed a brain-inspired
answer: the perceptron should learn these values on its own. And how is it supposed to
learn the correct values? Like the behavioural psychology theories popular at the time,
Rosenblatt’s idea was that perceptrons should learn via conditioning. Inspired in part by
the behaviourist psychologist B. F. Skinner, who trained rats and pigeons to perform
tasks by giving them positive and negative reinforcement, Rosenblatt’s idea was that
the perceptron should similarly be trained on examples: it should be rewarded when it
fires correctly and punished when it errs. This form of conditioning is now known in Al
as supervised learning. During training, the learning system is given an example, it
produces an output, and it is then given a ‘supervision signal’, which tells how much
the system’s output differs from the correct output. The system then uses this signal to
adjust its weights and threshold.

The concept of supervised learning is a key part of modern Al, so it’s worth
discussing in more detail. Supervised learning typically requires a large set of positive
examples (for instance, a collection of 8s written by different people) and negative
examples (for instance, a collection of other handwritten digits, not including 8s). Each
example is labelled by a human with its category - here, 8 or not-8. This label will be
used as the supervision signal. Some of the positive and negative examples are used to
train the system; these are called the training set. The remainder - the test set - is used
to evaluate the system’s performance after it has been trained, to see how well it has
learned to answer correctly in general, not just on the training examples.

Perhaps the most important term in computer science is algorithm, which refers to a
‘recipe’ of steps a computer can take in order to solve a particular problem. Frank
Rosenblatt’s primary contribution to Al was his design of a specific algorithm, called
the perceptron-learning algorithm, by which a perceptron could be trained from
examples to determine the weights and threshold that would produce correct answers.
Here’s how it works. Initially, the weights and threshold are set to random values
between -1 and 1. In our example, the weight on the first input might be set to 0.2, the
weight on the second input set to -0.6, and so on, and the threshold set to 0.7. A
computer program called a random-number generator can easily generate these initial
values.



Now we can start the training process. The first training example is given to the
perceptron; at this point, the perceptron doesn’t see the correct category label. The
perceptron multiplies each input by its weight, sums up all the results, compares the
sum with the threshold, and outputs either 1 or 0. Here, the output 1 means a guess of
8, and the output 0 means a guess of not-8. Now, the training process compares the
perceptron’s output with the correct answer given by the human-provided label (that
is, 8 or not-8). If the perceptron is correct, the weights and threshold don’t change. But
if the perceptron is wrong, the weights and threshold are changed a little bit, making
the perceptron’s sum on this training example closer to producing the right answer.
Moreover, the amount each weight is changed depends on its associated input value;
that is, the blame for the error is meted out depending on which inputs had the most
impact. For example, in the 8 of figure 3a, the higher-intensity (here, black) pixels
would have the most impact, and the pixels with 0 intensity (here, white) would have
no impact. (For interested readers, I have included some mathematical details in the
Notes.!”

The whole process is repeated for the next training example. The training process
goes through all the training examples multiple times, modifying the weights and
threshold a little bit each time the perceptron makes an error. Just as the psychologist
B. F. Skinner found when training pigeons, it’s better to learn gradually over many
trials; if the weights and threshold are changed too much on any one trial, then the
system might end up learning the wrong thing (such as an overgeneralization that ‘the
bottom and top halves of an 8 are always equal in size’). After many repetitions on each
training example, the system eventually (we hope) settles on a set of weights and a
threshold that result in correct answers for all the training examples. At that point, we
can evaluate the perceptron on the test examples to see how it performs on images it
hasn’t been trained on.

An 8 detector is useful if you care only about 8s. But what about recognizing other
digits? It’s fairly straightforward to extend our perceptron to have ten outputs, one for
each digit. Given an example handwritten digit, the output corresponding to that digit
should be 1, and all the other outputs should be 0. This extended perceptron can learn
all of its weights and thresholds using the perceptron-learning algorithm; the system
just needs enough examples.

Rosenblatt and others showed that networks of perceptrons could learn to perform
relatively simple perceptual tasks; moreover, Rosenblatt proved mathematically that
for a certain, albeit very limited, class of tasks, perceptrons with sufficient training
could, in principle, learn to perform these tasks without error. What wasn’t clear was
how well perceptrons could perform on more general Al tasks. This uncertainty didn’t
seem to stop Rosenblatt and his funders at the Office of Naval Research from making
ridiculously optimistic predictions about their algorithm. Reporting on a press
conference Rosenblatt held in July 1958, The New York Times featured this recap:

The Navy revealed the embryo of an electronic computer today that it expects
will be able to walk, talk, see, write, reproduce itself, and be conscious of its
existence. Later perceptrons will be able to recognize people and call out their
names and instantly translate speech in one language to speech and writing in
another language, it was predicted.’®

Yes, even at its beginning, Al suffered from a hype problem. I'll talk more about the
unhappy results of such hype shortly. But for now, I want to use perceptrons to
highlight a major difference between symbolic and subsymbolic approaches to Al
The fact that a perceptron’s ‘knowledge’ consists of a set of numbers - namely, the
weights and threshold it has learned - means that it is hard to uncover the rules the
perceptron is using in performing its recognition task. The perceptron’s rules are not



symbolic; unlike the General Problem Solver’s symbols, such as LEFT-BANK,
#MISSIONARIES and MOVE, a perceptron’s weights and threshold don’t stand for
particular concepts. It’s not easy to translate these numbers into rules that are
understandable by humans. The situation gets much worse with modern neural
networks that have millions of weights.

One might make a rough analogy between perceptrons and the human brain. If I
could open up your head and watch some subset of your hundred billion neurons
firing, I would probably not get any insight into what you were thinking or the ‘rules’
you used to make a particular decision. However, the human brain has given rise to
language, which allows you to use symbols (words and phrases) to tell me - often
imperfectly - what your thoughts are about or why you did a certain thing. In this
sense, our neural firings can be considered subsymbolic, in that they underlie the
symbols our brains somehow create. Perceptrons, as well as more complicated
networks of simulated neurons, have been dubbed ‘subsymbolic’ in analogy to the
brain. Their advocates believe that to achieve artificial intelligence, language-like
symbols and the rules that govern symbol processing cannot be programmed directly,
as was done in the General Problem Solver, but must emerge from neural-like
architectures similar to the way that intelligent symbol processing emerges from the
brain.

The Limitations of Perceptrons

After the 1956 Dartmouth meeting, the symbolic camp dominated the Al landscape. In
the early 1960s, while Rosenblatt was working avidly on the perceptron, the big four
‘founders’ of Al, all strong devotees of the symbolic camp, had created influential - and
well-funded - Al laboratories: Marvin Minsky at MIT, John McCarthy at Stanford, and
Herbert Simon and Allen Newell at Carnegie Mellon. (Remarkably, these three
universities remain to this day among the most prestigious places to study Al.) Minsky,
in particular, felt that Rosenblatt’s brain-inspired approach to Al was a dead end, and
moreover was stealing away research dollars from more worthy symbolic Al efforts.®
In 1969, Minsky and his MIT colleague Seymour Papert published a book, Perceptrons,”
in which they gave a mathematical proof showing that the types of problems a
perceptron could solve perfectly were very limited and that the perceptron-learning
algorithm would not do well in scaling up to tasks requiring a large number of weights
and thresholds.

Minsky and Papert pointed out that if a perceptron is augmented by adding a ‘layer’
of simulated neurons, the types of problems that the device can solve is, in principle,
much broader.?! A perceptron with such an added layer is called a multilayer neural
network. Such networks form the foundations of much of modern AI; I'll describe them
in detail in the next chapter. But for now, I'll note that at the time of Minsky and
Papert’s book, multilayer neural networks were not broadly studied, largely because
there was no general algorithm, analogous to the perceptron-learning algorithm, for
learning weights and thresholds.

The limitations Minsky and Papert proved for simple perceptrons were already
known to people working in this area.”?_Frank Rosenblatt himself had done extensive
work on multilayer perceptrons and recognized the difficulty of training them.?* It
wasn’t Minsky and Papert’s mathematics that put the final nail in the perceptron’s
coffin; rather, it was their speculation on multilayer neural networks:

[The perceptron] has many features to attract attention: its linearity; its
intriguing learning theorem; its clear paradigmatic simplicity as a kind of
parallel computation. There is no reason to suppose that any of these virtues



carry over to the many-layered version. Nevertheless, we consider it to be an
important research problem to elucidate (or reject) our intuitive judgment that
the extension is sterile.?*

Ouch. In today’s vernacular that final sentence might be termed ‘passive-aggressive’.
Such negative speculations were at least part of the reason that funding for neural
network research dried up in the late 1960s, at the same time that symbolic Al was
flush with government dollars. In 1971, at the age of forty-three, Frank Rosenblatt died
in a boating accident. Without its most prominent proponent, and without much
government funding, research on perceptrons and other subsymbolic Al methods
largely halted, except in a few isolated academic groups.

Al Winter

In the meantime, proponents of symbolic Al were writing grant proposals promising
impending breakthroughs in areas such as speech and language understanding,
commonsense reasoning, robot navigation and autonomous vehicles. By the mid-1970s,
while some very narrowly focused expert systems were successfully deployed, the
more general Al breakthroughs that had been promised had not materialized.

The funding agencies noticed. Two reports, solicited respectively by the Science
Research Council in the UK and the Department of Defense in the United States,
reported very negatively on the progress and prospects for Al research. The UK report
in particular acknowledged that there was promise in the area of specialized expert
systems - ‘programs written to perform in highly specialized problem domains, when
the programming takes very full account of the results of human experience and
human intelligence within the relevant domain’ - but concluded that the results to
date were ‘wholly discouraging about general-purpose programs seeking to mimic the
problem-solving aspects of human [brain] activity over a rather wide field. Such a
general-purpose program, the coveted long-term goal of Al activity, seems as remote
as ever.””_This report led to a sharp decrease in government funding for Al research
in the UK; similarly, the Department of Defense drastically cut funding for basic Al
research in the United States.

This was an early example of a repeating cycle of bubbles and crashes in the field of
Al The two-part cycle goes like this. Phase 1: New ideas create a lot of optimism in the
research community. Results of imminent Al breakthroughs are promised, and often
hyped in the news media. Money pours in from government funders and venture
capitalists for both academic research and commercial start-ups. Phase 2: The
promised breakthroughs don’t occur, or are much less impressive than promised.
Government funding and venture capital dry up. Start-up companies fold, and Al
research slows. This pattern became familiar to the Al community: ‘Al spring’, followed
by overpromising and media hype, followed by ‘Al winter’. This has happened, to
various degrees, in cycles of five to ten years. When I got out of graduate school in
1990, the field was in one of its winters and had garnered such a bad image that I was
even advised to leave the term ‘artificial intelligence’ off my job applications.

Easy Things are Hard

The cold Al winters taught practitioners some important lessons. The simplest lesson
was noted by John McCarthy, fifty years after the Dartmouth conference: ‘Al was
harder than we thought.”” Marvin Minsky pointed out that in fact Al research had
uncovered a paradox: ‘Easy things are hard.” The original goals of Al - computers that
could converse with us in natural language, describe what they saw through their



camera eyes, learn new concepts after seeing only a few examples - are things that
young children can easily do, but, surprisingly, these ‘easy things” have turned out to
be harder for Al to achieve than diagnosing complex diseases, beating human
champions at chess and Go, and solving complex algebraic problems. As Minsky went
on, ‘In general, we're least aware of what our minds do best.’”””_ The attempt to create
artificial intelligence has, at the very least, helped elucidate how complex and subtle
are our own minds.



CHAPTER 2

Spoiler alert: Multilayer neural networks - the extension of perceptrons that was
dismissed by Minsky and Papert as likely to be ‘sterile’ - have instead turned out to
form the foundation of much of modern artificial intelligence. Because they are the
basis of several of the methods I'll describe in later chapters, I'll take some time here to
describe how these networks work.

Multilayer Neural Networks

A network is simply a set of elements that are connected to one another in various
ways. We're all familiar with social networks, in which the elements are people, and
computer networks, in which the elements are, naturally, computers. In neural
networks, the elements are simulated neurons akin to the perceptrons I described in
the previous chapter.

In figure 4, I've sketched a simple multilayer neural network, designed to recognize
handwritten digits. The network has two rows (layers) of perceptron-like simulated
neurons (circles). For simplicity (and probably to the relief of any neuroscientists
reading this), I'll use the term unit instead of simulated neuron to describe the elements
of this network. Like the 8-detecting perceptron from chapter 1, the network in figure
4 has 324 (18 x 18) inputs, each of which is set to the intensity value of the
corresponding pixel in the input image. But unlike the perceptron, this network has a
layer of three so-called hidden units, along with its layer of ten output units. Each
output unit corresponds to one of the possible digit categories.
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Figure 4
A two-layer neural network for recognizing handwritten digits



The arrows signify that each input has a weighted connection to each hidden unit,
and each hidden unit has a weighted connection to each output unit. The mysterious-
sounding term hidden unit comes from the neural network literature; it simply means a
non-output unit. A better name might have been interior unit.

Think of the structure of your brain, in which some neurons directly control
‘outputs’ such as your muscle movements but most neurons simply communicate with
other neurons. These could be called the brain’s hidden neurons.

The network shown in figure 4 is referred to as ‘multilayered’ because it has two
layers of units (hidden and output) instead of just an output layer. In principle, a
multilayer network can have multiple layers of hidden units; networks that have more
than one layer of hidden units are called deep networks. The ‘depth’ of a network is
simply its number of hidden layers. I'll have much more to say about deep networks in
upcoming chapters.

Similar to perceptrons, each unit here multiplies each of its inputs by the weight on
that input’s connection and then sums the results. However, unlike in a perceptron, a
unit here doesn’t simply ‘fire’ or ‘not fire’ (that is, produce 1 or 0) based on a threshold;
instead, each unit uses its sum to compute a number between 0 and 1 that is called the
unit’s ‘activation’. If the sum that a unit computes is low, the unit’s activation is close
to 0; if the sum is high, the activation is close to 1. (For interested readers, I've included
some of the mathematical details in the Notes.! )

To process an image such as the handwritten 8 in figure 4, the network performs its
computations layer by layer, from top to bottom. Each hidden unit computes its
activation value; these activation values then become the inputs for the output units,
which then compute their own activations. In the network of figure 4, the activation of
an output unit can be thought of as the network’s confidence that it is ‘seeing’ the
corresponding digit; the digit category with the highest confidence can be taken as the
network’s answer - its classification.

In principle, a multilayer neural network can learn to use its hidden units to
recognize more abstract features (for example, visual shapes, such as the top and
bottom ‘circles’ on a handwritten 8) than the simple features (for example, pixels)
encoded by the input. In general, it’s hard to know ahead of time how many layers of
hidden units are needed, or how many hidden units should be included in a layer, for a
network to perform well on a given task. Most neural network researchers use a form
of trial and error to find the best settings.

Learning via Back-Propagation

In their book Perceptrons, Minsky and Papert were sceptical that a successful algorithm
could be designed for learning the weights in a multilayer neural network. Their
scepticism (along with doubts from others in the symbolic Al community) was largely
responsible for the sharp decrease in funding for neural network research in the 1970s.
But despite the chilling effect of Minsky and Papert’s book on the field, a small core of
neural network researchers persisted, especially in Frank Rosenblatt’s own field of
cognitive psychology. And by the late 1970s and early ’80s, several of these groups had
definitively rebutted Minsky and Papert’s speculations on the ‘sterility’ of multilayer
neural networks by developing a general learning algorithm - called back-propagation
- for training these networks.

As its name implies, back-propagation is a way to take an error observed at the
output units (for example, a high confidence for the wrong digit in the example of
figure 4) and to ‘propagate’ the blame for that error backwards (in figure 4, this would
be from bottom to top) so as to assign proper blame to each of the weights in the
network. This allows back-propagation to determine how much to change each weight




in order to reduce the error. Learning in neural networks simply consists in gradually
modifying the weights on connections so that each output’s error gets as close to 0 as
possible on all training examples. While the mathematics of back-propagation is
beyond the scope of my discussion here, I've included some details in the Notes.?

Back-propagation will work (in principle at least) no matter how many inputs,
hidden units or output units your neural network has. While there is no mathematical
guarantee that back-propagation will settle on the correct weights for a network, in
practice it has worked very well on many tasks that are too hard for simple
perceptrons. For example, I trained both a perceptron and a two-layer neural network,
each with 324 inputs and 10 outputs, on the handwritten-digit-recognition task, using
sixty thousand examples, and then tested how well each was able to recognize ten
thousand new examples. The perceptron was correct on about 80 per cent of the new
examples, whereas the neural network, with 50 hidden units, was correct on a
whopping 94 per cent of those new examples. Kudos to the hidden units! But what
exactly has the neural network learned that allowed it to soar past the perceptron? I
don’t know. It’s possible that I could find a way to visualize the neural network’s 16,700
weights®_to get some insight into its performance, but I haven’t done so, and in
general it’s not at all easy to understand how these networks make their decisions.

It’s important to note that while I've used the example of handwritten digits, neural
networks can be applied not just to images but to any kind of data. Neural networks
have been applied in areas as diverse as speech recognition, stock-market prediction,
language translation and music composition.

Connectionism

In the 1980s, the most visible group working on neural networks was a team at the
University of California at San Diego headed by two psychologists, David Rumelhart
and James McClelland. What we now call neural networks were then generally referred
to as connectionist networks, where the term connectionist refers to the idea that
knowledge in these networks resides in weighted connections between units. The team
led by Rumelhart and McClelland is known for writing the so-called bible of
connectionism - a two-volume treatise, published in 1986, called Parallel Distributed
Processing. In the midst of an Al landscape dominated by symbolic Al, the book was a
pep talk for the subsymbolic approach, arguing that ‘people are smarter than today’s
computers because the brain employs a basic computational architecture that is more
suited to ... the natural information-processing tasks that people are so good at,’ for
example, ‘perceiving objects in natural scenes and noting their relations ...
understanding language, and retrieving contextually appropriate information from
memory’.* The authors speculated that ‘symbolic systems such as those favored by
Minsky and Papert’_ would not be able to capture these humanlike abilities.

Indeed, by the mid-1980s, expert systems - symbolic Al approaches that rely on
humans to create rules that reflect expert knowledge of a particular domain - were
increasingly revealing themselves to be brittle: that is, error-prone and often unable to
generalize or adapt when presented with new situations. In analysing the limitations
of these systems, researchers were discovering how much the human experts writing
the rules actually rely on subconscious knowledge - what you might call common
sense — in order to act intelligently. This kind of common sense could not easily be
captured in programmed rules or logical deduction, and the lack of it severely limited
any broad application of symbolic Al methods. In short, after a cycle of grand
promises, immense funding and media hype, symbolic Al was facing yet another Al
winter.



CHAPTER 3

Spring Fever

Have you ever taken a video of your cat and uploaded it to YouTube? If so, you are not
alone. More than a billion videos have been uploaded to YouTube, and a lot of them
feature cats. In 2012, an Al team at Google constructed a multilayer neural network
with over a billion weights that ‘viewed’ millions of random YouTube videos while it
adjusted these weights in order to successively compress, and then decompress,
selected frames from the videos. The Google researchers didn’t tell the system to learn
about any particular objects, but after a week of training, when they probed the
innards of the network, what did they find? A ‘neuron’ (unit) that seemed to encode
cats.>_ This self-taught cat-recognition machine was one of a series of impressive Al
feats that have captured the public’s attention over the last decade. Most of these
achievements rely on a set of neural network algorithms known as deep learning.

Until recently, AI's popular image came largely from the many movies and TV shows
in which it played a starring role; think 2001: A Space Odyssey or The Terminator. Real-
world Al wasn'’t very noticeable in our everyday lives or mainstream media. If you
came of age in the 1990s or earlier, you might recall frustrating encounters with
customer service speech-recognition systems, the robotic word-learning toy Furby, or
Microsoft’s annoying and ill-fated Clippy, the paper-clip virtual assistant. Full-blown
Al didn’t seem imminent.

Maybe this is why so many people were shocked and upset when, in 1997, IBM’s
Deep Blue chess-playing system defeated the world chess champion Garry Kasparov.
This event so stunned Kasparov that he accused the IBM team of cheating; he assumed
that for the machine to play so well, it must have received help from human experts.
(In a nice bit of irony, during the 2006 World Chess Championship matches the tables
were turned, with one player accusing the other of cheating by receiving help from a
computer chess program.’ )

Our collective human angst over Deep Blue quickly receded. We accepted that chess
could yield to brute-force machinery; playing chess well, we allowed, didn’t require
general intelligence after all. This seems to be a common response when computers
surpass humans on a particular task; we conclude that the task doesn’t actually require
intelligence. As John McCarthy lamented, ‘As soon as it works, no one calls it Al any
more.*



However, by the mid-2000s and beyond, a more pervasive succession of Al
accomplishments started sneaking up on us and then proliferating at a dizzying pace.
Google launched its automated language-translation service, Google Translate. It
wasn’t perfect, but it worked surprisingly well, and it has since improved significantly.
Shortly thereafter, Google’s self-driving cars showed up on the roads of Northern
California, careful and timid, but commuting on their own in full traffic. Virtual
assistants such as Apple’s Siri and Amazon’s Alexa were installed on our phones and in
our homes and could deal with many of our spoken requests. YouTube started
providing impressively accurate automated subtitles for videos, and Skype offered
simultaneous translation between languages in video calls. Suddenly Facebook could
recognize your face eerily well in uploaded photos, and the photo-sharing website
Flickr began automatically labelling photos with text describing their content.

In 2011, IBM’s Watson program roundly defeated human champions on television’s
Jeopardy! game show, adroitly interpreting pun-laden clues and prompting its
challenger Ken Jennings to ‘welcome our new computer overlords’. Just five years
later, millions of internet viewers were introduced to the complex game of Go, a long-
time grand challenge for Al, when a program called AlphaGo stunningly defeated one
of the world’s best players in four out of five games.

The buzz over artificial intelligence was quickly becoming deafening, and the
commercial world took notice. All of the largest technology companies have poured
billions of dollars into Al research and development, either hiring Al experts directly
or acquiring smaller start-up companies for the sole purpose of grabbing (‘acqui-
hiring’) their talented employees. The potential of being acquired, with its promise of
instant millionaire status, has fuelled a proliferation of start-ups, often founded and
run by former university professors, each with his or her own twist on Al As the
technology journalist Kevin Kelly observed, ‘The business plans of the next 10,000
startups are easy to forecast: Take X and add AL And, crucially, for nearly all of these
companies, Al has meant ‘deep learning’.

Al spring is once again in full bloom.

Al: Narrow and General, Weak and Strong

Like every Al spring before it, our current one features experts predicting that ‘general
Al’ - Al that equals or surpasses humans in most ways - will be here soon. ‘Human level
Al will be passed in the mid-2020s,®_ predicted Shane Legg, co-founder of Google
DeepMind, in 2016. A year earlier, Facebook’s CEO Mark Zuckerberg declared, ‘One of
our goals for the next five to 10 years is to basically get better than human level at all
of the primary human senses: vision, hearing, language, general cognition.””_ The Al
philosophers Vincent Miiller and Nick Bostrom published a 2013 poll of Al researchers
in which many assigned a 50 per cent chance of human-level Al by the year 2040.%

While much of this optimism is based on the recent successes of deep learning, these
programs - like all instances of Al to date - are still examples of what is called ‘narrow’
or ‘weak’ Al. These terms are not as derogatory as they sound; they simply refer to a
system that can perform only one narrowly defined task (or a small set of related
tasks). AlphaGo is possibly the world’s best Go player, but it can’t do anything else; it
can’t even play checkers, tic-tac-toe or Candy Land. Google Translate can render an
English movie review into Chinese, but it can’t tell you if the reviewer liked the movie
or not, and it certainly can’t watch and review the movie itself.

The terms narrow and weak are used to contrast with strong, human-level, general or
full-blown Al (sometimes called AGI, or artificial general intelligence) - that is, the Al
that we see in movies, that can do most everything we humans can do, and possibly
much more. General Al might have been the original goal of the field, but achieving it



has turned out to be much harder than expected. Over time, efforts in Al have become
focused on particular well-defined tasks - speech recognition, chess playing,
autonomous driving, and so on, Creating machines that perform such functions is
useful and often lucrative, and it could be argued that each of these tasks individually
requires ‘intelligence’. But no Al program has been created yet that could be called
intelligent in any general sense. A recent appraisal of the field stated this well: ‘A pile
of narrow intelligences will never add up to a general intelligence. General intelligence
isn’t about the number of abilities, but about the integration between those abilities.”

But wait. Given the rapidly increasing pile of narrow intelligences, how long will it
be before someone figures out how to integrate them and produce all of the broad,
deep and subtle features of human intelligence? Do we believe the cognitive scientist
Steven Pinker, who thinks all this is business as usual? ‘Human-level Al is still the
standard fifteen to twenty-five years away, just as it always has been, and many of its
recently touted advances have shallow roots,” Pinker declared.!®_ Or should we pay
more attention to the Al optimists, who are certain that this time around, this Al
spring, things will be different?

Not surprisingly, in the Al research community there is considerable controversy
over what human-level Al would entail. How can we know if we have succeeded in
building such a ‘thinking machine’? Would such a system be required to have
consciousness or self-awareness in the way humans do? Would it need to understand
things in the same way a human understands them? Given that we’re talking about a
machine here, would we be more correct to say it is ‘simulating thought’, or could we
say it is truly thinking?

Could Machines Think?

Such philosophical questions have dogged the field of Al since its inception. Alan
Turing, the British mathematician who in the 1930s sketched out the first framework
for programmable computers, published a paper in 1950 asking what we might mean
when we ask, ‘Can machines think?’ After proposing his famous ‘imitation game’ (now
called the Turing test - more on this in a bit), Turing listed nine possible objections to
the prospect of a machine actually thinking, all of which he tried to refute. These
imagined objections range from the theological - ‘Thinking is a function of man’s
immortal soul. God has given an immortal soul to every man and woman, but not to
any other animal or to machines. Hence no animal or machine can think’ - to the
parapsychological, something along the lines of ‘Humans can use telepathy to
communicate while machines cannot.” Strangely enough, Turing judged this last
argument as ‘quite a strong one’, because ‘the statistical evidence, at least for
telepathy, is overwhelming.’

From the vantage of many decades, my own vote for the strongest of Turing’s
possible arguments is the ‘argument from consciousness’, which he summarizes by
quoting the neurologist Geoffrey Jefferson:

Not until a machine can write a sonnet or compose a concerto because of
thoughts and emotions felt, and not by the chance fall of symbols, could we
agree that machine equals brain - that is, not only write it but know that it had
written it. No mechanism could feel (and not merely artificially signal, an easy
contrivance) pleasure at its successes, grief when its valves fuse, be warmed by
flattery, be made miserable by its mistakes, be charmed by sex, be angry or
depressed when it cannot get what it wants.!'

Note that this argument is saying the following: (1) Only when a machine feels things
and is aware of its own actions and feelings - in short, is conscious - could we consider



it actually thinking, and (2) No machine could ever do this. Ergo, no machine could ever
actually think.

I think it’s a strong argument, even though I don’t agree with it. It resonates with
our intuitions about what machines are and how they are limited. Over the years, I've
talked with any number of friends, relatives and students about the possibility of
machine intelligence, and this is the argument many of them stand by. For example, I
was recently talking with my mother, a retired lawyer, after she had read a New York
Times article about advances in the Google Translate program:

Mom: The problem with people in the field of Al is that they anthropomorphize
so much!

Me: What do you mean, anthropomorphize?

Mom: The language they use implies that machines might be able to actually
think, rather than to just simulate thinking.

Me: What's the difference between ‘actually thinking’ and ‘simulating
thinking’?

Mom: Actual thinking is done with a brain, and simulating is done with
computers.

Me: What's so special about a brain that it allows ‘actual’ thinking? What’s
missing in computers?

Mom: I don’t know. I think there’s a human quality to thinking that can’t ever
be completely mimicked by computers.

My mother isn’t the only one who has this intuition. In fact, to many people it seems so
obvious as to require no argument. And like many of these people, my mother would
claim to be a philosophical materialist; that is, she doesn’t believe in any nonphysical
‘soul’ or ‘life force’ that imbues living things with intelligence. It’s just that she doesn’t
think machines could ever have the right stuff to ‘actually think’.

In the academic realm, the most famous version of this argument was put forth by
the philosopher John Searle. In 1980, Searle published an article called ‘Minds, Brains,
and Programs™?_ in which he vigorously argued against the possibility of machines
actually thinking. In this widely read, controversial piece, Searle introduced the
concepts of ‘strong’ and ‘weak’ Al in order to distinguish between two philosophical
claims made about Al programs. While many people today use the phrase strong Al to
mean ‘Al that can perform most tasks as well as a human’ and weak Al to mean the kind
of narrow Al that currently exists, Searle meant something different by these terms.
For Searle, the strong AI claim would be that ‘the appropriately programmed digital
computer does not just simulate having a mind; it literally has a mind.’*3_In contrast,
in Searle’s terminology, weak AI views computers as tools to simulate human
intelligence and does not make any claims about them ‘literally’ having a mind.**
We're back to the philosophical question I was discussing with my mother: Is there a
difference between ‘simulating a mind’ and ‘literally having a mind’? Like my mother,
Searle believes there is a fundamental difference, and he argued that strong Al is
impossible even in principle.'®

The Turing Test

Searle’s article was spurred in part by Alan Turing’s 1950 paper, ‘Computing Machinery
and Intelligence’, which had proposed a way to cut through the Gordian knot of
‘simulated’ versus ‘actual’ intelligence. Declaring that ‘the original question “Can a
machine think?” is too meaningless to deserve discussion,” Turing proposed an
operational method to give it meaning. In his ‘imitation game’, now called the Turing
test, there are two contestants: a computer and a human. Each is questioned separately



by a (human) judge who tries to determine which is which. The judge is physically
separated from the two contestants so cannot rely on visual or auditory cues; only
typed text is communicated.

Turing suggested the following: ‘The question, “Can machines think?” should be
replaced by “Are there imaginable digital computers which would do well in the
imitation game?” In other words, if a computer is sufficiently humanlike to be
indistinguishable from humans, aside from its physical appearance or what it sounds
like (or smells or feels like, for that matter), why shouldn’t we consider it to actually
think? Why should we require an entity to be created out of a particular kind of
material (for example, biological cells) to grant it ‘thinking’ status? As the computer
scientist Scott Aaronson put it bluntly, Turing’s proposal is ‘a plea against meat
chauvinism’.*¢_

The devil is always in the details, and the Turing test is no exception. Turing did not
specify the criteria for selecting the human contestant and the judge, or stipulate how
long the test should last, or what conversational topics should be allowed. However, he
did make an oddly specific prediction: ‘I believe that in about 50 years’ time it will be
possible to programme computers ... to make them play the imitation game so well
that an average interrogator will not have more than 70 per cent chance of making the
right identification after five minutes of questioning.” In other words, in a five-minute
session, the average judge will be fooled 30 per cent of the time.

Turing’s prediction has turned out to be pretty accurate. Several Turing tests have
been staged over the years, in which the computer contestants are chatbots -
programs specifically built to carry on conversations (they can’t do anything else). In
2014, the Royal Society in London was host to a Turing test demonstration featuring
five computer programs, thirty human contestants and thirty human judges of
different ages and walks of life, including computer experts and non-experts, as well as
native and non-native English speakers. Each judge conducted several rounds of five-
minute conversations in which he or she conversed (by typing) in parallel with a pair
of contestants - one human and one machine - after which the judge had to guess
which was which. A chatbot named ‘Eugene Goostman’, created by a group of Russian
and Ukrainian programmers, won the competition by fooling ten (or 33.3 per cent) of
the judges. The competition organizers, following Turing’s ‘more than 30 per cent
fooled in five minutes’ criterion, quickly flooded the media with reports that the
Turing test had finally been passed.

The Eugene Goostman chatbot works in much the same way as most other chatbots.
It stores a large set of sentence templates that can be filled in based on a set of
programmed rules that are applied to the input text it gets from its conversation
partner. The chatbot’s programmers have given it linguistic rules that allow it to
pinpoint key information in its input and to store that information for later use. In
addition, the chatbot stores a database of ‘commonsense knowledge’, encoded by
human programmers, along with some logic rules; these would presumably allow it to
answer questions like ‘What colour is the sky over Vladivostok?” with the human-
sounding ‘Blue, I suppose, unless it’s a cloudy day.” If none of the chatbot’s rules apply
to an input, it just changes the subject. The system'’s rules also encode its ‘personality’
- in this case, a thirteen-year-old Ukrainian boy whose English is good but
(conveniently) not perfect. Here is a sample of Eugene Goostman’s conversation with
one of the judges who was fooled:

junce: what is your gender
EUGENE: I'm a young boy, if you care to know. And not very ugly, by the way!
junce: what are you aware of at this moment



sages usually do) won the game. The king asked the sage to name his reward. The sage,
who enjoyed mathematics, said, ‘All I ask for is that you take this chessboard, put two
grains of rice on the first square, four grains on the second square, eight grains on the
third, and so on, doubling the number of grains on each successive square. After you
complete each row, package up the rice on that row and ship it to my village.” The
mathematically naive king laughed. ‘Is that all you want? I will have my men bring in
some rice and fulfil your request post-haste.’

The king’s men brought in a large bag of rice. After several minutes they had
completed the first eight squares of the board with the requisite grains of rice: 2 on the
first square, 4 on the second, 8 on the third, and so on, with 256 grains on the eighth
square. They put the collection of grains (511, to be exact) in a tiny bag and sent it off
by horseback to the sage’s village. They then proceeded on to the second row, with 512
grains on the first square of that row, 1,024 grains on the next square, and 2,048 grains
on the following. Each pile of rice no longer fit on a chessboard square, so it was
counted into a large bowl instead. By the end of the second row, the counting of grains
was taking far too much time, so the court mathematicians started estimating the
amounts by weight. They calculated that for the sixteenth square, 65,536 grains -
about a kilogram (just over two pounds) - were required. The bag of rice shipped off
for the second row weighed about two kilograms.

The king’s men started on the third row. The seventeenth square required 2 kilos,
the eighteenth required 4, and so on; by the end of the third row (square 24), 512 kilos
were needed. The king’s subjects were conscripted to bring in additional giant bags of
rice. The situation had become dire by the second square of the fourth row (square 26),
when the mathematicians calculated that 2,048 kilos (over two tons) of rice were
required. This would exhaust the entire rice harvest of the kingdom, even though the
chessboard was not even half completed. The king, now realizing the trick that had
been played on him, begged the sage to relent and save the kingdom from starvation.
The sage, satisfied that the rice already received by his village would be enough,
agreed.

Figure 5a plots the number of kilos of rice required on each chess square, up to the
twenty-fourth square. The first square, with two rice grains, has a scant fraction of a
kilo. Similarly, the squares up through 16 have less than 1 kilo. But after square 16, you
can see the plot shoot up rapidly, due to the doubling effect. Figure 5b shows the values
for the twenty-fourth through the sixty-fourth chess square, going from 512 kilos to
more than 30 trillion kilos.

The mathematical function describing this graph is y = 2, where x is the chess
square (numbered from 1 to 64) and y is the number of rice grains required on that
square. This is called an exponential function, because x is the exponent of the number
2. No matter what scale is plotted, the function will have a characteristic point at
which the curve seems to change from slow to explosively fast growth.



Exponential Progress in Computers

For Ray Kurzweil, the computer age has provided a real-world counterpart to the
exponential fable. In 1965, Gordon Moore, co-founder of Intel Corporation, identified a
trend that has come to be known as Moore’s law: the number of components on a
computer chip doubles approximately every one to two years. In other words, the
components are getting exponentially smaller (and cheaper), and computer speed and
memory are increasing at an exponential rate.

Kurzweil’s books are full of graphs like the ones in figure 5, and extrapolations of
these trends of exponential progress, along the lines of Moore’s law, are at the heart of
his forecasts for Al. Kurzweil points out that if the trends continue (as he believes they
will), a $1,000 computer will ‘achieve human brain capability (1016 calculations per
second) ... around the year 2023".2%_ At that point, in Kurzweil’s view, human-level Al
will just be a matter of reverse engineering the brain.

Neural Engineering

Reverse engineering the brain means understanding enough about its workings in
order to duplicate it, or at least to use the brain’s underlying principles to replicate its
intelligence in a computer. Kurzweil believes that such reverse engineering is a
practical, near-term approach to creating human-level Al. Most neuroscientists would
vehemently disagree, given how little is currently known about how the brain works.
But Kurzweil’s argument again rests on exponential trends - this time in
advancements in neuroscience. In 2002 he wrote, ‘A careful analysis of the requisite
trends shows that we will understand the principles of operation of the human brain
and be in a position to re-create its powers in synthetic substances well within thirty
years.””?

Few if any neuroscientists agree on this optimistic prediction for their field. But
even if a machine operating on the brain’s principles can be created, how will it learn
all the stuff it needs to know to be considered intelligent? After all, a newborn baby has
a brain, but it doesn’t yet have what we’d call human-level intelligence. Kurzweil
agrees: ‘Most of [the brain’s] complexity comes from its own interaction with a
complex world. Thus, it will be necessary to provide an artificial intelligence with an
education just as we do with a natural intelligence.”**

Of course, providing an education can take many years. Kurzweil thinks that the
process can be vastly speeded up. ‘Contemporary electronics is already more than ten
million times faster than the human nervous system'’s electrochemical information
processing. Once an Al masters human basic language skills, it will be in a position to
expand its language skills and general knowledge by rapidly reading all human
literature and by absorbing the knowledge contained on millions of web sites.”!

Kurzweil is vague on how all this will happen but assures us that to achieve human-
level Al ‘we will not program human intelligence link by link as in some massive
expert system. Rather, we will set up an intricate hierarchy of self-organizing systems,
based largely on the reverse engineering of the human brain, and then provide for its
education ... hundreds if not thousands of times faster than the comparable process for

humans.”?%

Singularity Sceptics and Adherents

Responses to Kurzweil’s books The Age of Spiritual Machines (1999) and The Singularity is
Near (2005) are often one of two extremes: enthusiastic embrace or dismissive
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