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Preface

This book will take you through all of the main aspects of artificial intelligence:

e The theory of machine learning and deep learning
e Mathematical representations of the main Al algorithms
e Real life case studies

e Tens of opensource Python programs using TensorFlow, TensorBoard, Keras and
more

e Cloud AI Platforms: Google, Amazon Web Services, IBM Watson and IBM Q to
introduce you to quantum computing

¢ An Ubuntu VM containing all the opensource programs that you can run in one-
click

e Online videos

This book will take you to the cutting edge and beyond with innovations that show how to
improve existing solutions to make you a key asset as a consultant, developer, professor or
any person involved in artificial intelligence.

Who this book is for

This book contains the main artificial intelligence algorithms on the market today. Each
machine learning and deep learning solution is illustrated by a case study and an open
source program available on GitHub.

e ’roject managers and consultants: To understand how to manage Al input
datasets, make a solution choice (cloud platform or development), and use the
outputs of an Al system.

e Teachers, students, and developers: This book provides an overview of many key
ATl components, with tens of Python sample programs that run on Windows and
Linux. A VM is available as well.

e Anybody who wants to understand how Al systems are built and what they are
used for.



Preface

What this book covers

Chapter 1, Become an Adaptive Thinker, covers reinforcement learning through the Bellman
equation based on the Markov Decision Process (MDP). A case study describes how to
solve a delivery route problem with a human driver and a self-driving vehicle.

Chapter 2, Think like a Machine, demonstrates neural networks starting with the McCulloch-
Pitts neuron. The case study describes how to use a neural network to build the reward
matrix used by the Bellman equation in a warehouse environment.

Chapter 3, Apply Machine Thinking to a Human Problem, shows how machine evaluation
capacities have exceeded human decision-making. The case study describes a chess
position and how to apply the results of an Al program to decision-making priorities.

Chapter 4, Become an Unconventional Innovator, is about building a feedforward neural
network (FNN) from scratch to solve the XOR linear separability problem. The business
case describes how to group orders for a factory.

Chapter 5, Manage the Power of Machine Learning and Deep Learning, uses TensorFlow and
TensorBoard to build an FNN and present it in meetings.

Chapter 6, Don't Get Lost in Techniques — Focus on Optimizing Your Solutions, covers a K-
means clustering program with Lloyd's algorithm and how to apply to the optimization of
automatic guided vehicles in a warehouse.

Chapter 7, When and How to Use Artificial Intelligence, shows cloud platform machine
learning solutions. We use Amazon Web Services SageMaker to solve a K-means clustering
problem. The business case describes how a corporation can analyze phone call durations
worldwide.

Chapter 8, Revolutions Designed for Some Corporations and Disruptive Innovations for Small to
Large Companies, explains the difference between a revolutionary innovation and a
disruptive innovation. Google Translate will be described and enhanced with an innovative
opensource add-on.

Chapter 9, Getting Your Neurons to Work, describes convolutional neural networks (CNN)
in detail: kernels, shapes, activation functions, pooling, tlattening, and dense layers. The
case study illustrates the use of a CNN in a food processing company.

[2]
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Chapter 10, Applying Biomimicking to Artificial Intelligence, describes the difference between
neuroscience models and deep learning solutions when representing human thinking. A
TensorFlow MNIST classifier is explained component by component and displayed in
detail in TensorBoard. We cover images, accuracy, cross-entropy, weights, histograms, and
graphs.

chapter 11, Conceptual Representation Learning, explains Conceptual Representation
Learning (CRL), an innovative way to solve production flows with a CNN transformed into
a CRL Meta-model. The case study shows how to use a CRLMM for transfer and domain
learning, extending the model to scheduling and self-driving cars.

Chapter 12, Automated Planning and Scheduling, combines CNNs with MDPs to build a
DQN solution for automatic planning and scheduling with an optimizer. The case study is
the optimization of the load of sewing stations in an apparel system, such as Amazon's
production lines.

Chapter 13, Al and the Internet of Things (loT), covers Support Vector Machines (SVMs)
assembled with a CNN. The case study shows how self-driving cars can find an available
parking space automatically.

Chapter 14, Optimizing Blockchains with Al, is about mining blockchains and describes how
blockchains function. We use Naive Bayes to optimize the blocks of a Supply Chain
Management (SCM) blockchain by predicting transactions to anticipate storage levels.

Chapter 15, Cognitive NLP Chatbots, shows how to implement IBM Watson's chatbot with
intents, entities, and a dialog flow. We add scripts to customize the dialogs, add sentiment

analysis to give a human touch to the system, and use conceptual representation learning
meta-models (CRLMMSs) to enhance the dialogs.

Chapter 16, Improve the Emotional Intelligence Deficiencies of Chatbots, shows how to turn a
chatbot into a machine that has empathy by using a variety of algorithms at the same time
to build a complex dialog. We cover Restricted Boltzmann Machines (RBMs), CRLMM,
RNN, word to vector (word2Vec) embedding, and principal component analysis (PCA). A
Python program illustrates an empathetic dialog between a machine and a user.

Chapter 17, Quantum Compulers Thalt Think, describes how a quantum computer works,
with qubits, superposition, and entanglement. We learn how to create a quantum program
(score). A case study applies quantum computing to the building of MindX, a thinking
machine. The chapter comes with programs and a video.

Appendizx, Answers to the Questions, contains answers to the questions listed at the end of the
chapters.

[3]
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To get the most out of this book

Artificial intelligence projects rely on three factors:

e Subject Matter Experts (SMEs). This implies having a practical view of how
solutions can be used, not just developed. Find real-life examples around you to
extend the case studies presented in the book.

¢ Applied mathematics and algorithms. Do not skip the mathematical equations if
you have the energy to study them. Al relies heavily on mathematics. There are
plenty of excellent websites that explain the mathematics used in the book.

e Development and production.

An artificial intelligence solution can be directly used on a cloud platform machine learning
site (Google, Amazon, IBM, Microsoft, and others) online or with APIs. In the book,
Amazon, IBM, and Google are described. Try to create an account of your own to explore
cloud platforms.

Development still remains critical for artificial intelligence projects. Even with a cloud
platform, scripts and services are necessary. Also, sometimes, writing an algorithm is
mandatory because the ready-to-use online algorithms are insufficient for a given problem.
Explore the programs delivered with the book. They are open source and free.

Download the example code files

You can download the example code files for this book from your account at
www . packtpub. com. If you purchased this book elsewhere, you can visit
www . packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub. com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

= LN

[4]
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Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

¢ WIinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at nt tps://github.com/
PacktPublishing/Artificial-Intelligence-By-Example. We also have other code
bundles from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this

book. You can download it here:
http://www.packtpub.com/sites/default/files/downloads/ArtificiallintelligenceByE

xample_ColorImages.pdf.

Code In Action

Visit the following link to check out videos of the code being run:
https://goo.gl/MS5ACILY

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in

your system."
A block of code is set as follows:

MS1="full'’

MSZ="Tgspace'
I=["1",'"2","'3","4", '5",'6"]
for im in range(2):

[5]



Preface

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

Weights:

[[ 0.913269 -0.06843517 -1.13654324]
00969897 1.70999493 0.58441134]
.98644016 1.73355337 0.59234319]
.953465 0.08329804 -3.26016158]
10051951 -1.2227973 2.21361701]
20618461 0.30940653 2.59980058]
.98040128 -0.06023325 -3.00127746] ]

O O O MW

[
[
[
[_
[
[

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"For this example, click on Load data.”

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at guestions@packtpub. com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

[6]
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Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

authors.packtpub.com.

Reviews

[’lease leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub. com.

[7]



Become an Adaptive Thinker

In May 2017, Google revealed AutoML, an automated machine learning system that could
create an artificial intelligence solution without the assistance of a human engineer. IBM
Cloud and Amazon Web Services (AWS) offer machine learning solutions that do not
require Al developers. GitHub and other cloud platforms already provide thousands of
machine learning programs, reducing the need of having an Al expert at hand. These cloud
platforms will slowly but surely reduce the need for artificial intelligence developers.
Google Cloud's Al provides intuitive machine learning services. Microsoft Azure offers
user-friendly machine learning interfaces.

At the same time, Massive Open Online Courses (MOOC) are flourishing everywhere.
Anybody anywhere can pick up a machine learning solution on GitHub, follow a MOOC
without even going to college, and beat any engineer to the job.

Today, artificial intelligence is mostly mathematics translated into source code which
makes it difficult to learn for traditional developers. That is the main reason why Google,
IBM, Amazon, Microsoft, and others have ready-made cloud solutions that will require
fewer engineers in the future.

As you will see, starting with this chapter, you can occupy a central role in this new world
as an adaptive thinker. There is no time to waste. In this chapter, we are going to dive
quickly and directly into reinforcement learning, one of the pillars of Google Alphabet's
DeepMind asset (the other being neural networks). Reinforcement learning often uses the
Markov Decision Process (MDP). MDP contains a memoryless and unlabeled action-
reward equation with a learning parameter. This equation, the Bellman equation (often
coined as the Q function), was used to beat world-class Atari gamers.



Become an Adaptive Thinker Chapter 1

The goal here is not to simply take the easy route. We're striving to break complexity into
understandable parts and confront them with reality. You are going to find out right from
the start how to apply an adaptive thinker's process that will lead you from an idea to a
solution in reinforcement learning, and right into the center of gravity of Google's
DeepMind projects.

The following topics will be covered in this chapter:

e A three-dimensional method to implement Al, ML, and DL

e Reinforcement learning

e MDP

e Unsupervised learning

e Stochastic learning

¢ Memoryless learning

e The Bellman equation

e Convergence

e A Python example of reinforcement learning with the Q action-value function
e Applying reinforcement learning to a delivery example

Technical requirements

e Python 3.6x 64-bit from https://www.python.org/
¢ NumPy for Python 3.6x
¢ Program on Github, Chapter01 MDP.py

Check out the following video to see the code in action:

https://goo.gl/72t5xQ

How to be an adaptive thinker

Reinforcement learning, one of the foundations of machine learning, supposes learning
through trial and error by interacting with an environment. This sounds familiar, right?
That is what we humans do all our lives—in pain! Try things, evaluate, and then continue;
or try something else.

[9]



Become an Adaptive Thinker Chapter 1

In real life, you are the agent of your thought process. In a machine learning model, the
agent is the function calculating through this trial-and-error process. This

thought process in machine learning is the MDP. This form of action-value learning is
sometimes called Q.

To master the outcomes of MDP in theory and practice, a three-dimensional method is a
prerequisite.

The three-dimensional approach that will make you an artificial expert, in general terms,
means:

e Starting by describing a problem to solve with real-life cases
e Then, building a mathematical model
e Then, write source code and/or using a cloud platform solution

It is a way for you to enter any project with an adaptive attitude from the outset.

Addressing real-life issues before coding a
solution

In this chapter, we are going to tackle Markov's Decision Process (Q function) and apply it
to reinforcement learning with the Bellman equation. You can find tons of source code and
examples on the web. However, most of them are toy experiments that have nothing to do
with real life. For example, reinforcement learning can be applied to an e-commerce
business delivery person, self-driving vehicle, or a drone. You will find a program that
calculates a drone delivery. However, it has many limits that need to be overcome. You as
an adaptive thinker are going to ask some questions:

 What if there are 5,000 drones over a major city at the same time?
e [s a drone-jam legal? What about the noise over the city? What about tourism?

¢ What about the weather? Weather forecasts are difficult to make, so how is this
scheduled?

In just a few minutes, you will be at the center of attention, among theoreticians who know
more than you on one side and angry managers who want solutions they cannot get on the
other side. Your real-life approach will solve these problems.
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A foolproof method is the practical three-dimensional approach:

e Be a subject matter expert (SME): First, you have to be an SME. If a theoretician
geek comes up with a hundred Google DeepMind TensorFlow functions to solve
a drone trajectory problem, you now know it is going to be a tough ride if real-
life parameters are taken into account.
An SME knows the subject and thus can quickly identify the critical factors of a
given field. Artificial intelligence often requires finding a solution to a hard
problem that even an expert in a given field cannot express mathematically.
Machine learning sometimes means finding a solution to a problem that humans
do not know how to explain. Deep learning, involving complex networks, solves
even more difficult problems.

¢ Have enough mathematical knowledge to understand AI concepts: Once you
have the proper natural language analysis, you need to build your abstract
representation quickly. The best way is to look around at your everyday life and
make a mathematical model of it. Mathematics is not an option in Al, but a
prerequisite. The effort is worthwhile. Then, you can start writing solid source
code or start implementing a cloud platform ML solution.

e« Know what source code 1s about as well as its potential and limits: MDP is an
excellent way to go and start working in the three dimensions that will make you
adaptive: describing what is around you in detail in words, translating that into
mathematical representations, and then implementing the result in your source
code.

Step 1 — MDP in natural language

Step 1 of any artificial intelligence problem is to transpose it into something you know in
your everyday life (work or personal). Something you are an SME in. If you have a driver's
license, then you are an SME of driving. You are certified. If you do not have a driver's
license or never drive, you can easily replace moving around in a car by moving around on
foot.

Let's say you are an e-commerce business driver delivering a package in an area you do not
know. You are the operator of a self-driving vehicle. You have a GPS system with a
beautiful color map on it. The areas around you are represented by the letters A to F, as
shown in the simplified map in the following diagram. You are presently at F. Your goal is
to reach area C. You are happy, listening to the radio. Everything is going smoothly, and it
looks like you are going to be there on time. The following graph represents the locations
and routes that you can possibly cover.
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(O

Figure 1

The guiding system's state indicates the complete path to reach C. It is telling you that you
are going to go from F to B to D and then to C. It looks good!

To break things down further, let's say:

e The present state is the letter s.
e Your next action is the letter a (action). This action a is not location A.

e The next action a (not location A) is to go to location B. You look at your guiding
system,; it tells you there is no traffic, and that to go from your present state F to
your next state B will take you only a few minutes. Let's say that the next state B
is the letter B.

At this point, you are still quite happy, and we can sum up your situation with the
following sequence of events:

!
S,a, s

The letter s is your present state, your present situation. The letter a is the action you're
deciding, which is to go to the next area; there you will be in another state, s". We can say
that thanks to the action 4, you will go from s to s".

Now, imagine that the driver is not you anymore. You are tired for some reason. That is
when a self-driving vehicle comes in handy. You set your car to autopilot. Now you are not
driving anymore; the system is. Let's call that system the agent. At point F, you set your car
to autopilot and let the self-driving agent take over.

The agent now sees what you have asked it to do and checks its mapping environment,
which represents all the areas in the previous diagram from A to F.
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In the meantime, you are rightly worried. Is the agent going to make it or not? You are
wondering if its strategy meets yours. You have your policy P—your way of
thinking—which is to take the shortest paths possible. Will the agent agree? What's going
on in its mind? You observe and begin to realize things you never noticed before. Since this
is the first time you are using this car and guiding system, the agent is memoryless, which
is an MDP feature. This means the agent just doesn't know anything about what went on
before. It seems to be happy with just calculating from this state s at area F. It will use
machine power to run as many calculations as necessary to reach its goal.

Another thing you are watching is the total distance from F to C to check whether things
are OK. That means that the agent is calculating all the states from F to C.

In this case, state F is state 1, which we can simplify by writing s,. B is state 2, which we can
simplify by write s,. D is s; and Cis s,. The agent is calculating all of these possible states to
make a decision.

The agent knows that when it reaches D, C will be better because the reward will be higher
to go to C than anywhere else. Since it cannot eat a piece of cake to reward itself, the agent
uses numbers. Our agent is a real number cruncher. When it is wrong, it gets a poor reward
or nothing in this model. When it's right, it gets a reward represented by the letter R. This
action-value (reward) transition, often named the Q function, is the core of many
reinforcement learning algorithms.

When our agent goes from one state to another, it performs a transition and gets a reward.
For example, the transition can be from F to B, state 1 to state 2, or s, to s,

You are feeling great and are going to be on time. You are beginning to understand how the
machine learning agent in your self-driving car is thinking. Suddenly your guiding system
breaks down. All you can see on the screen is that static image of the areas of the last
calculation. You look up and see that a traffic jam is building up. Area D is still far away,
and now you do not know whether it would be good to go from D to Cor D to E to get a
taxi that can take special lanes. You are going to need your agent!

The agent takes the traffic jam into account, is stubborn, and increases its reward to get to
C by the shortest way. Its policy is to stick to the initial plan. You do not agree. You have
another policy.
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You stop the car. You both have to agree before continuing. You have your opinion and
policy; the agent does not agree. Before continuing, your views need to converge.
Convergence is the key to making sure that your calculations are correct. This is the kind of
problem that persons, or soon, self-driving vehicles (not to speak about drone air jams),
delivering parcels encounter all day long to get the workload done. The number of parcels
to delivery per hour is an example of the workload that needs to be taken into account
when making a decision.

To represent the problem at this point, the best way is to express this whole process
mathematically.

Step 2 - the mathematical representation of the Bellman
equation and MDP

Mathematics involves a whole change in your perspective of a problem. You are going
from words to functions, the pillars of source coding.

Expressing problems in mathematical notation does not mean getting lost in academic math
to the point of never writing a single line of code. Mathematics is viewed in the perspective
of getting a job done. Skipping mathematical representation will fast-track a few functions
in the early stages of an AI project. However, when the real problems that occur in all Al
projects surface, solving them with source code only will prove virtually impossible. The
goal here is to pick up enough mathematics to implement a solution in real-life companies.

It is necessary to think of a problem through by finding something familiar around us, such
as the delivery itinerary example covered before. It is a good thing to write it down with
some abstract letters and symbols as described betore, with a meaning an action

and s meaning a state. Once you have understood the problem and expressed the
parameters in a way you are used to, you can proceed further.

Now, mathematics well help clarify the situation by shorter descriptions. With the main
ideas in mind, it 1s time to convert them into equations.

From MDP to the Bellman equation

In the previous step 1, the agent went from F or state 1 or s to B, which was state 2 or s'.
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To do that, there was a strategy—a policy represented by P. All of this can be shown in one
mathematical expression, the MDP state transition function:

Pa(s,s')

P is the policy, the strategy made by the agent to go from F to B through action a. When
going from F to B, this state transition is called state transition function:

e g1is the action
e sisstate 1 (F) and s’ is state 2 (B)

This is the basis of MDP. The reward (right or wrong) is represented in the same way:
Ra(s,s")

That means R is the reward for the action of going from state s to state s'. Going from one
state to another will be a random process. This means that potentially, all states can go to
another state.

The example we will be working on inputs a reward matrix so that the program can choose
its best course of action. Then, the agent will go from state to state, learning the best
trajectories for every possible starting location point. The goal of the MDP is to go to C (line
3, column 3 in the reward matrix), which has a starting value of 100 in the following Python
code.

# Markov Decision Process (MDP) — The Bellman equations adapted to
# Reinforcement Learnling

# R is The Reward Matrix for each state

R =gl.matrix([ [0,0,0,0,1,0],

(0,0,0,1,0,11,
[0, 0,01,
[0,
11,
[0

Each line in the matrix in the example represents a letter from A to F, and each column
represents a letter from A to F. All possible states are represented. The 1 values represent
the nodes (vertices) of the graph. Those are the possible locations. For example, line 1
represents the possible moves for letter A, line 2 for letter B, and line 6 for letter F. On the
first line, A cannot go to C directly, so a 0 value is entered. But, it can go to E, so a 1 value is
added.
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Some models start with -1 for impossible choices, such as B going directly to C and 0 values
to define the locations. This model starts with 0 and 1 values. It sometimes takes weeks to
design functions that will create a reward matrix (see Chapter 2, Think like a Machine).

There are several properties of this decision process. A few of them are mentioned here:

e The Markov property: The process is applied when the past is not taken into
account. It is the memoryless property of this decision process, just as you doin a
car with a guiding system. You move forward to reach your goal. This is called
the Markov property.

¢ Unsupervised learning: From this memoryless Markov property, it is safe to say
that the MDP is not supervised learning. Supervised learning would mean that
we would have all the labels of the trip. We would know exactly what A means
and use that property to make a decision. We would be in the future looking at
the past. MDP does not take these labels into account. This means that this is
unsupervised learning. A decision has to be made in each state without knowing
the past states or what they signify. It means that the car, for example, was on its
own at each location, which is represented by each of its states.

e Stochastic process: In step 1, when state B was reached, the agent controlling the
mapping system and the driver didn't agree on where to go. A random choice
could be made in a trial-and-error way, just like a coin toss. It is going to be a
heads-or-tails process. The agent will toss the coin thousands of times and
measure the outcomes. That's precisely how MDP works and how the agent will
learn.

 Reinforcement learning: Repeating a trial and error process with feedback from
the agent’s environment.

e Markov chain: The process of going from state to state with no history in a
random, stochastic way is called a Markov chain.

To sum it up, we have three tools:

e P.(s,s'): A policy, P, or strategy to move from one state to another
e T.(s,s): AT, or stochastic (random) transition, function to carry out that action

e R,(s,5): An R, or reward, for that action, which can be negative, null, or positive

T'1s the transition function, which makes the agent decide to go from one point to another
with a policy. In this case, it will be random. That's what machine power is for, and that's
how reinforcement learning is often implemented.
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Randomness is a property of MDP.

The following code describes the choice the agent is going to make.

next_ _action = int (gl.random.choice (PossibleAction, 1))
return next action

Once the code has been run, a new random action (state) has been chosen.

The Bellman equation is the road to programming reinforcement learning.

Bellman's equation completes the MDP. To calculate the value of a state, let's use Q, for the
Q action-reward (or value) function. The pre-source code of Bellman's equation can be
expressed as follows for one individual state:

Q(s) = R(s) + T* max(s")

The source code then translates the equation into a machine representation as in the
following code:

# The Bellman egquation
Qlcurrent_state, action] = R[current_state, acticn] + gamma * MaxValue

The source code variables of the Bellman equation are as follows:

e O (s): Thisis the value calculated for this state—the total reward. In step 1 when
the agent went from F to B, the driver had to be happy. Maybe she/he had a
crunch in a candy bar to feel good, which is the human counterpart of the reward
matrix. The automatic driver maybe ate (reward matrix) some electricity,
renewable energy of course! The reward is a number such as 50 or 100 to show
the agent that it's on the right track. It's like when a student gets a good grade in
an exam.

e R (s): This is the sum of the values up to there. It's the total reward at that point.
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e Y =gamma: This is here to remind us that trial and error has a price. We're
wasting time, money, and energy. Furthermore, we don't even know whether the
next step is right or wrong since we're in a trial-and-error mode. Gamma is often
set to 0. 8. What does that mean? Suppose you're taking an exam. You study and
study, but you don't really know the outcome. You might have 80 out of 100 (0.8)
chances of clearing it. That's painful, but that's life. This is what makes Bellman's
equation and MDP realistic and efficient.

e max (s'):s' is one of the possible states that can be reached with P, (s,5"); max is
the highest value on the line of that state (location line in the reward matrix).

Step 3 - implementing the solution in Python

In step 1, a problem was described in natural language to be able to talk to experts and
understand what was expected. In step 2, an essential mathematical bridge was built
between natural language and source coding. Step 3 is the software implementation phase.

When a problem comes up—and rest assured that one always does—it will be possible to

go back over the mathematical bridge with the customer or company team, and even
further back to the natural language process if necessary.

This method guarantees success for any project. The code in this chapter is in Python 3.6. It
1s a reinforcement learning program using the Q function with the following reward
matrix:

import numpy as

m—

R = gl.matrix (]
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0 = gl.matrix(gl.zeros([6,6]))
gamma = 0.8

R is the reward matrix described in the mathematical analysis.
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0 inherits the same structure as R, but all values are set to 0 since this is a learning matrix.
It will progressively contain the results of the decision process. The gamma variable is a
double reminder that the system is learning and that its decisions have only an 80% chance
of being correct each time. As the following code shows, the system explores the possible
actions during the process.

agent_s_state = 1

# The possible "a" actions when the agent is in a given state
def possible_actions (state):

current state row = ER[state, ]

possible act = gl.where (current _state_row >0) [1]

return possible_act

# Get available actions 1n the current state
PossibleAction = pessible actions (agent_ s _state)

The agent starts in state 1, for example. You can start wherever you want because it's a
random process. Note that only values > 0 are taken into account. They represent the
possible moves (decisions).

The current state goes through an analysis process to find possible actions (next possible
states). You will note that there is no algorithm in the traditional sense with many rules. It's
a pure random calculation, as the following random. choice function shows.

def ActionChoice(available actions_range) :
next_acticn = 1nt (gl.random.choice (PossibleAction, 1))
return next action

# Sample next action to be performed
action = ActionCheoice (PossiblelAction)

Now comes the core of the system containing Bellman's equation, translated into the
following source code:

def reward (current_state, action, gamma) :
Max_ State = gl.where(Qlaction,] == gl.max(Qlaction,]))[1]

if Max_State.shape[0] > 1:

Max_State = int (gl.random.cholice (Max_State, size = 1))
else:

Max State = int (Max State)
MaxValue = Q[action, Max State]
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# O function
Q[current state, action] = R[current state, action] + gamma * MaxValue

# Rewarding Q matrix
reward(agent_s_state,actlon, gamma)

You can see that the agent looks for the maximum value of the next possible state chosen at
random.

The best way to understand this is to run the program in your Python environment and
print () the intermediate values. I suggest that you open a spreadsheet and note the

values. It will give you a clear view of the process.

The last part i1s simply about running the learning process 50,000 times, just to be sure that
the system learns everything there is to find. During each iteration, the agent will detect its
present state, choose a course of action, and update the 0 function matrix:

for i in range (50000) :
current_state = gl.random.randint (0, int (Q.shape[0]))
PossibleAction = possible_actions (current_state)
action = ActionChoice (PossibleAction)
reward (current_state,action, gamma)

# Displaving Q before the norm of Q phase

print ("Q :")

print (Q)

# Norm of Q
print ("Normed Q :")
print (Q/gl.max (Q)*100)

After the process is repeated and until the learning process is over, the program will print
the result in 0 and the normed result. The normed result is the process of dividing all
values by the sum of the values found. The result comes out as a normed percentage.

View the Python program at https://github.com/PacktPublishing/Artificial-
Intelligence-By-Example/blob/master/Chapter0l/MDP.py.

The lessons of reinforcement learning

Unsupervised reinforcement machine learning, such as MDP and Bellman's equation, will
topple traditional decision-making software in the next few years. Memoryless
reinforcement learning requires few to no business rules and thus doesn't require human
knowledge to run.
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Being an adaptive Al thinker involves three requisites—the effort to be an SME, working on
mathematical models, and understanding source code’s potential and limits:

e Lesson 1: Machine learning through reinforcement learning can beat human
intelligence in many cases. No use fighting! The technology and solutions are
already here.

e Lesson 2: Machine learning has no emotions, but you do. And so do the people
around you. Human emotions and teamwork are an essential asset. Become an
SME for your team. Learn how to understand what they're trying to say
intuitively and make a mathematical representation of it for them. This job will
never go away, even if you're setting up solutions such as Google's AutoML that
don't require much development.

Reinforcement learning shows that no human can solve a problem the way a machine does;
50,000 iterations with random searching is not an option. The days of neuroscience
imitating humans are over. Cheap, powerful computers have all the leisure it takes to
compute millions of possibilities and choose the best trajectories.

Humans need to be more intuitive, make a few decisions, and see what happens because
humans cannot try 50,000 ways of doing something. Reinforcement learning marks a new
era for human thinking by surpassing human reasoning power.

On the other hand, reinforcement learning requires mathematical models to function.
Humans excel in mathematical abstraction, providing powerful intellectual fuel to those
powerful machines.

The boundaries between humans and machines have changed. Humans' ability to build
mathematical models and every-growing cloud platforms will serve online machine
learning services.

Finding out how to use the outputs of the reinforcement learning program we just studied
shows how a human will always remain at the center of artificial intelligence.

How to use the outputs

The reinforcement program we studied contains no trace of a specific field, as in traditional
software. The program contains Bellman's equation with stochastic (random) choices based
on the reward matrix. The goal is to find a route to C (line 3, column 3), which has an
attractive reward (100):

# Markov Decision Process (MDP) - Bellman's eguations adapted to
# Reinforcement Learning with the Q action-value (reward) matrix
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R i1s The Reward Matrix for each state

= gl.matrix([ [0,0,0,0,1,0],
0,0,0,1,0,171,

,0,100,1,0,0],
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That reward matrix goes through Bellman's equation and produces a result in Python:

Q
[[ 0. 0. 0. 0. 258.44 0. ]
[ 0. 0. 0. 321.8 0. 207.752]
[ 0. 0. 500. 321.8 0. 0. ]
[ 0. 258.44 401. 0. 258.44 0. ]
[ 207.752 0. 0. 321.8 0. 0. ]
[ 0. 258.44 0. 0. 0. 0. ]]
Normed Q
[[ 0. 0. 0. 0. 51.688 0. ]
[ 0. 0. 0. 64.36 0. 41.5504]
[ 0. 0. 100. 64.36 0. 0. ]
[ 0. 51.688 80 0. 51.688 0. ]
[ 41.5504 0, 0., e4.36 0., 0. ]
[ 0. 51.688 0. 0. 0. 0. 1]

The result contains the values of each state produced by the reinforced learning process,
and also a normed ¢ (highest value divided by other values).

As Python geeks, we are overjoyed. We made something rather difficult to work,
namely reinforcement learning. As mathematical amateurs, we are elated. We know what
MDP and Bellman's equation mean.

However, as natural language thinkers, we have made little progress. No customer or user
can read that data and make sense of it. Furthermore, we cannot explain how we
implemented an intelligent version of his/her job in the machine. We didn't.

We hardly dare say that reinforcement learning can beat anybody in the company making
random choices 50,000 times until the right answer came up.

Furthermore, we got the program to work but hardly know what to do with the result
ourselves. The consultant on the project cannot help because of the matrix format of the
solution.

Being an adaptive thinker means knowing how to be good in all the dimensions of a
subject. To solve this new problem, let's go back to step 1 with the result.

[22 ]



Become an Adaptive Thinker

Chapter 1

By formatting the result in Python, a graphics tool, or a spreadsheet, the result that is
displayed as follows:

A

B

F

258.44(|-

- 321.8||-

207.752

500 ||321.8||-

258.44

258.44||-

207.752

- 321.8]|-

HEIIEIRIEE

256.44

Now, we can start reading the solution:

Choose a starting state. Take F for example.

The F line represents the state. Since the maximum value is 258.44 in the B

column, we go to state B, the second line.

The maximum value in state B in the second line leads us to the D state in the
fourth column.

The highest maximum of the D state (fourth line) leads us to the C state.

Note that if you start at the C state and decide not to stay at C, the D state becomes the
maximum value, which will lead you to back to C. However, the MDP will never do this

naturally. You will have to force the system to do it.

You have now obtained a sequence: F->B->D->C. By choosing other points of departure,

you can obtain other sequences by simply sorting the table.

The most useful way of putting it remains the normalized version in percentages. This
reflects the stochastic (random) property of the solution, which produces probabilities and

not certainties, as shown in the following matrix:

A B C D E F
All- - - - 51.68%||-
B |- - - 64.36%]||- 41.55%
Cll- - 100% |[|64.36%||- -
Di|- 51.68%||80.2%||- 51.68%]|-
E (|41.55%]|- - 64.36%!||- -
F||- 51.68%||- - - -
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Now comes the very tricky part. We started the chapter with a trip on a road. But I made no
mention of it in the result analysis.

An important property of reinforcement learning comes from the fact that we are working
with a mathematical model that can be applied to anything. No human rules are needed.
This means we can use this program for many other subjects without writing thousands of
lines of code.

Case 1: Optimizing a delivery for a driver, human or not
This model was described in this chapter.
Case 2: Optimizing warehouse flows

The same reward matrix can apply to going from point F to C in a warehouse, as shown in
the following diagram:

Figure 2

In this warehouse, the F->B->D->C sequence makes visual sense. It somebody goes from
point F to C, then this physical path makes sense without going through walls.

[t can be used for a video game, a factory, or any form of layout.
Case 3: Automated planning and scheduling (APS)

By converting the system into a scheduling vector, the whole scenery changes. We have left
the more comfortable world of physical processing of letters, faces, and trips. Though
fantastic, those applications are social media's tip of the iceberg. The real challenge of
artificial intelligence begins in the abstract universe of human thinking.
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Every single company, person, or system requires automatic planning and scheduling (see
Chapter 12, Automated Planning and Scheduling). The six A to F steps in the example of this
chapter could well be six tasks to perform in a given unknown order represented by the
following vector x:

rl
xr2
r3
x4
ro
rb

The reward matrix then reflects the weights of constraints of the tasks of vector x to
perform. For example, in a factory, you cannot assemble the parts of a product before
manufacturing them.

In this case, the sequence obtained represents the schedule of the manufacturing process.
Case 4 and more: Your imagination

By using physical layouts or abstract decision-making vectors, matrices, and tensors, you
can build a world of solutions in a mathematical reinforcement learning model. Naturally,
the following chapters will enhance your toolbox with many other concepts.

Machine learning versus traditional applications

Reinforcement learning based on stochastic (random) processes will evolve beyond
traditional approaches. In the past, we would sit down and listen to future users to
understand their way of thinking.

We would then go back to our keyboard and try to imitate the human way of thinking.
Those days are over. We need proper datasets and ML/DL equations to move forward.
Applied mathematics has taken reinforcement learning to the next level. Traditional
software will soon be in the museum of computer science.

An artificial adaptive thinker sees the world through applied mathematics translated into
machine representations.
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Use the Python source code example provided in this chapter in different
ways. Run it; try to change some parameters to see what happens. Play
around with the number of iterations as well. Lower the number from
50,000 down to where you find its best. Change the reward matrix a little
to see what happens. Design your own reward matrix trajectory. It can be
an itinerary or a decision-making process.

Summary

resently, artificial intelligence is predominantly a branch of applied mathematics, not of
neurosciences. You must master the basics of linear algebra and probabilities. That's a
difficult task for a developer used to intuitive creativity. With that knowledge, you will see
that humans cannot rival with machines that have CPU and mathematical functions. You
will also understand that machines, contrary to the hype around you, don't have emotions
although we can represent them to a scary point (See chapter 16, Improve the Emotional
Intelligence Deficiencies of Chatbots, and Chapter 17, Quantum Computers That Think) in
chatbots.

That being said, a multi-dimensional approach is a requisite in an AI/ML/DL project—first
talk and write about the project, then make a mathematical representation, and finally go
for software production (setting up an existing platform and/or writing code). In real-life,
Al solutions do not just grow spontaneously in companies like trees. You need to talk to the
teams and work with them. That part is the real fulfilling aspect of a project—imagining it

first and then implementing it with a group of real-life people.

MDP, a stochastic random action-reward (value) system enhanced by Bellman's equation,
will provide effective solutions to many Al problems. These mathematical tools fit perfectly
In corporate environments.

Reinforcement learning using the Q action-value function is memoryless (no past) and
unsupervised (the data is not labeled or classified). This provides endless avenues to solve
real-life problems without spending hours trying to invent rules to make a system work.

Now that you are at the heart of Google's DeepMind approach, it is time to go to Chapter
2, Think Like a Machine, and discover how to create the reward matrix in the first place
through explanations and source code.
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Become an Adaptive Thinker Chapter 1

Questions

The answers to the questions are in Appendix B, with more explanations.

[s reinforcement learning memoryless? (Yes | No)

Does reinforcement learning use stochastic (random) functions? (Yes | No)
Is MDP based on a rule base? (Yes | No)

[s the Q function based on the MDP? (Yes | No)

[s mathematics essential to artificial intelligence? (Yes | No)

1.
2.
3.
4,
D.
6.

Can the Bellman-MDP process in this chapter apply to many problems? (Yes |
No)

7. Is it impossible for a machine learning program to create another program by
itselt? (Yes | No)

8. Is a consultant required to enter business rules in a reinforcement learning
program? (Yes | No)

9. Is reinforcement learning supervised or unsupervised? (Supervised |
Unsupervised)

10. Can Q Learning run without a reward matrix? (Yes | No)

Further reading

Andrey Markov: https://www.britannica.com/biography/Andrey-Andreyevich-Markov

The Markov Process: https://www.britannica.com/science/Markov-process
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The first chapter described a reinforcement learning algorithm through the Q action-value
function used by DQN. The agent was a driver. You are at the heart of DeepMind's
approach to Al

DeepMind is no doubt one of the world leaders in applied artificial intelligence. Scientific,
mathematical, and applications research drives its strategy.

DeepMind was founded in 2010, was acquired by Google in 2014, and is now part of
Alphabet, a collection of companies that includes Google.

One of the focuses of DeepMind is on reinforcement learning. They came up with an
innovate version of reinforcement learning called DQN and referring to deep neural
networks using the Q function (Bellman's equation). A seminal article published in
February 2015 in Nature (see the link at the end of the chapter) shows how DON
outperformed other artificial intelligence research by becoming a human game tester itself.
DQN then went on to beat human game testers.

In this chapter, the agent will be an automated guided vehicle (AGV). An AGV takes over
the transport tasks in a warehouse. This case study opens promising perspectives for jobs
and businesses using DQN. Thousands upon thousands of warehouses require complex
reinforcement learning and customized transport optimization.

This chapter focuses on creating the reward matrix, which was the entry point of the
Python example in the first chapter. To do so, it describes how to add a primitive
McCulloch-Pitts neuron in TensorFlow to create an intelligent adaptive network and add
an N (network) to a Q model. It's a small N that will become a feedforward neural network
in Chapter 4, Become an Unconventional Innovator, and more in Chapter 12, Automated
Planning and Scheduling. The goal is not to copy DQN but to use the conceptual power of the
model to build a variety of solutions.



Think like a Machine Chapter 2

The challenge in this chapter will be to think literally like a machine. The effort is not to
imitate human thinking but to beat humans with machines. This chapter will take you very
far from human reasoning into the depth of machine thinking.

The following topics will be covered in this chapter:

AGV

The McCulloch-Pitts neuron
Creating a reward matrix
Logistic classifiers

The logistic sigmoid

The softmax function

The one-hot function

How to apply machine learning tools to real-life problems such as warehouse
management

Technical requirements

I’ytth 3.6x 64-bit from https://www.python.org/
NumPy for Python 3.6x

¢ TensorFlow from https://deepmind.com/ with TensorBoard

The following files:

https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/
blob/master/Chapter02/MCP.py

https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/
blob/master/Chapter02/SOFTMAX.pY

Check out the following video to see the code in action:

https://goo.gl/JMWLg8
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Designing datasets — where the dream stops
and the hard work begins

As In the previous chapter, bear in mind that a real-life project goes through a three-
dimensional method in some form or the other. First, it's important to just think and talk
about the problem to solve without jumping onto a laptop. Once that is done, bear in mind
that the foundation of machine learning and deep learning relies on mathematics. Finally,
once the problem has been discussed and mathematically represented, it is time to develop
the solution.

First, think of a problem in natural language. Then, make a mathematical
description of a problem. Only then, start the software implementation.

Designing datasets in natural language meetings

The reinforcement learning program described in the first chapter can solve a variety of
problems involving unlabeled classification in an unsupervised decision-making process.
The Q function can be applied indifferently to drone, truck, or car deliveries. It can also be
applied to decision-making in games or real life.

However, in a real-life case study problem (such as defining the reward matrix in a
warehouse for the AGV, for example), the difficulty will be to design a matrix that
everybody agrees with.

This means many meetings with the IT department to obtain data, the SME and
reinforcement learning experts. An AGV requires information coming from different
sources: daily forecasts and real-time warehouse flows.

At one point, the project will be at a standstill. It is simply too complicated to get the right
data for the reinforcement program. This is a real-life case study that I modified a little for
confidentiality reasons.

The warehouse manages thousands of locations and hundreds of thousands of inputs and
outputs. The Q function does not satisfy the requirement in itself. A small neural network is
required.
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In the end, through tough negotiations with both the IT department and the users, a dataset
format is designed that fits the needs of the reinforcement learning program and has
enough properties to satisfy the AGV.

Using the McCulloch-Pitts neuron

The mathematical aspect relies on finding a model for inputs for huge volumes in a
corporate warehouse.

In one mode, the inputs can be described as follows:

e Thousands of forecast product arrivals with a low priority weight: w1 = 10
e Thousands of confirmed arrivals with a high priority weight: w2 = 70

e Thousands of unplanned arrivals decided by the sales department: w3 = 75
e Thousands of forecasts with a high priority weight: w4 = 60

¢ Thousands of confirmed arrivals that have a low turnover and so have a low
weight: w5 =20

These weights represent vector w:

wl 10
w2 70
r=|wd| = |70
w4 60

| wd | 20 |

All of these products have to be stored in optimal locations, and the distance between
nearly 100 docks and thousands of locations in the warehouse for the AGV has to
be minimized.

Let's focus on our neuron. Only these weights will be used, though a system such as this
one will add up to more than 50 weights and parameters per neuron.

In the first chapter, the reward matrix was size 6x6. Six locations were described (A to F),
and now six locations (I1 to 16) will be represented in a warehouse.

A 6x6 reward matrix represents the target of the McCulloch-Pitts layer implemented for the
six locations.
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Also, this matrix was the input in the first chapter. In real life, and in real companies, you
will have to find a way to build datasets from scratch. The reward matrix becomes the
output of this part of the process. The following source code shows the input of the
reinforcement learning program used in the first chapter. The goal of this chapter describes
how to produce the following reward matrix.

# R 1s The Reward Matrix for each location 1n a warehouse (or any other
problem)

—

R = gl.matrix ([

For this warehouse problem, the McCulloch-Pitts neuron sums up the weights of the
priority vector described previously to fill in the reward matrix.

Hach location will require its neuron, with its weights.

INPUTS— > WEIGHTS — BIAS— > VALUES

e Inputs are the flows in a warehouse or any form of data
e Weights will be defined in this model

e Bias is for stabilizing the weights

e Values will be the output

There are as many ways as you can imagine to create reward matrices.
This chapter describes one way of doing it that works.

The McCulloch-Pitts neuron

The McCulloch-Pitts neuron dates back to 1943. It contains inputs, weights, and an
activation function. This is precisely where you need to think like a machine and forget
about human neuroscience brain approaches for this type of problem. Starting from
Chapter 8, Revolutions Designed for Some Corporations and Disruptive Innovations Small to
Large Companies, human cognition will be built on top of these models, but the foundations
need to remain mathematical.
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The following diagram shows the McCulloch-Pitts, neuron model.

Inputs Weights

W,

W
T cum ‘ Output
W.

I, ”’17/

This model contains a number of input x weights that are summed to either reach a
threshold which will lead, once transformed, to v = 0, or 1 output. In this model, y will be
calculated in a more complex way.

'I]
IE
‘{3

A Python-TensorFlow program, MCP . py will be used to illustrate the neuron.

When designing neurons, the computing performance needs to be taken into account. The
following source code configures the threads. You can fine-tune your model according to
your needs.

config = tf.ConfigProto
inter op parallelism threads=4,
intra_op_parallelism threads=4

)

In the following source code, the placeholders that will contain the input values (x), the
weights (w), and the bias (b) are initialized. A placeholder is not just a variable that you can
declare and use later when necessary. It represents the structure of your graph:

¥ = ti.placehclder(tf.fleocatiZ, shape=(1, 6), name='x')
w = tf.placeholder(tf.float3?, shape=(6, 1), name="w')
b = tf.placeholder(tf.float3iZ2, shape=(1), name='bh')

In the original McCulloch-Pitts artificial neuron, the inputs (x) were multiplied by the
following weights:

n
uhiﬂ%ﬂ--%ﬁﬂnmniz E W,
i=1
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The mathematical function becomes a one-line code with a logistic activation function
(sigmoid), which will be explained in the second part of the chapter. Bias (b) has been

added, which makes this neuron format useful even today shown as follows.

vy = tf.matmul (x, w) + b
s = tf.nn.sigmoid (y)

Before starting a session, the McCulloch-Pitts neuron (1943) needs an operator to directly
set its weights. That is the main difference between the McCulloch-Pitts neuron and the
perceptron (1957), which is the model of modern deep learning neurons. The perceptron
optimizes its weights through optimizing processes. Chapter 4, Become an
Unconventional Innovator, describes the modern perceptron.

The weights are now provided, and so are the quantities for each x stored at [, one of the
locations of the warehouse:

= = = =

wl 10
w2 70
r=|lwd| = |75
w4 60

| WO | 20

The weight values will be divided by 100, to represent percentages in terms of 0 to 1 values
of warehouse flows in a given location. The following code deals with the choice of one
location, /, only, its values, and parameters.

with tf.Session(config=config) as tfs:
tfs.run(tf.glcocbal variables initializer())

wt=T[[.1, .7, .75, .60, .20]]
x 1 = [[10, 2, 1., 6., 2.]]
b 1 = [1]
w_1 = np.transpose (w_1L)
value = tfs.runis,
feed dict={
x: x 1,
w: w_1,
b: b_1
}
)
print ('value for threshold calculation',value)
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The session starts; the weights (w_t) and the quantities (x_1) of the warehouse flow are
entered. Bias is set to 1 in this model. w_1 is transposed to fit x_1. The placeholders are
solicited with feed_dict, and the value of the neuron is calculated using the sigmoid
function.

The program returns the following value.

print ('value for threshold calculation',value)
value for threshold calculation [[ 0.99971133]1]

This value represents the activity of location [, at a given date and a given time. The higher the

value, the higher the probable saturation rate of this area. That means there is little space
left for an AGV that would like to store products. That is why the reinforcement learning
program for a warehouse is looking for the least loaded area for a given product in this
model.

Each location has a probable availability:
A = Availability =1 - load

The probability of a load of a given storage point lies between 0 and 1.

High values of availability will be close to 1, and low probabilities will be close to 0 as
shown in the following example:

>>>print ('Availability of 1x',l-value)
Availability of 1lx [[ 0.00028867]]

For example, the load of /, has a probable load of 0.99 and its probable availability is 0.002.
The goal of the AGV is to search and find the closest and most available location to
optimize its trajectories. [, is obviously not a good candidate at that day and time. Load is a
keyword in production activities as in the Amazon example in Chapter 12, Automated
Planning and Scheduling.

When all of the six locations’ availabilities has been calculated by the McCulloch-Pitts
neuron—each with its respective x quantity inputs, weights, and bias—a location vector of

the results of this system will be produced. This means that the program needs to be
implemented to run all six locations and not just one location:

A(L) = {a(l'l )fa(l?)f 3(13),3(14);3(15); d (lb)]
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The availability (1 - output value of the neuron) constitutes a six-line vector. The following
vector will be obtained by running the previous sample code on all six locations.

0.0002
0.2
0.9

0.0001
0.4
0.6

lv =

lv 1s the vector containing the value of each location for a given AGV to choose from. The
values in the vector represent availability. 0.0002 means little availability. 0.9 means high
availability. Once the choice is made, the reinforcement learning program presented in the
first chapter will optimize the AGV's trajectory to get to this specific warehouse location.

The lv is the result of the weighing function of six potential locations for the AGV. It is also
a vector of transformed inputs.

The architecture of Python TensorFlow

Implementation of the McCulloch-Pitts neuron can best be viewed with TensorBoard, as
shown in the following graph:

Sigmoid init
..;_l.
t
—
add
T~
) A
MatMul b
o)
P A
~ o
X W
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Chapter 2

This is obtained by adding the following TensorBoard code at the end of your session. This
data flow graph will help optimize a program when things go wrong.

# Tensorboard
#with tf.Session() as s
Writer =

Writer.close ()

def

import os

#tos.system('tensorboard —-logdir="' +
os.system('tensorboard ——logdir="' +
return

import threading

t = threading.Thread(target=launchTensocrBoard,

t.start ()

tfs.close ()

=

launchTensorBoard() :

=

oo
o

tf.summary.FileWriter ("directory on your machine",

'vour directory')
'vour directory')

args=([]))

#O0pen vour browser and go to http://localhost:6006
#Try the wvaricus options.

It 1is a wvery useful toocl.
#close the system window when your finished.

tfs.graph)

When you open the URL indicated in the code on your machine, you will see the following
TensorBoard data flow graph:

Main Graph

Sigmoid
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Logistic activation functions and classifiers

Now that the value of each location of L={I1,12,13,14,15,16} contains its availability in a vector,
the locations can be sorted from the most available to least available location. From there,
the reward matrix for the MDP process described in the first chapter can be built.

Overall architecture

At this point, the overall architecture contains two main components:

e Chapter 1: Become an Adaptive Thinker: A reinforcement learning program based
on the value-action Q function using a reward matrix that is yet to be calculated.
The reward matrix was given in the first chapter, but in real life, you'll often have
to build it from scratch. This could take weeks to obtain.

e Chapter 2: A set of six neurons that represent the flow of products at a given time
at six locations. The output is the availability probability from 0 to 1. The highest
value is the highest availability. The lowest value is the lowest availability.

At this point, there is some real-life information we can draw from these two main
functions:

¢ An AGV is moving in a warehouse and is waiting to receive its next location to
use an MDP, in order to calculate an optimal trajectory of its mission, as shown in
the first chapter.

e An AGV is using a reward matrix that was given in the first chapter, but it needs
to be designed in a real-life project through meetings, reports, and acceptance of
the process.

e A system of six neurons, one per location, weighing the real quantities and
probable quantities to give an availability vector [v has been calculated. It 1s
almost ready to provide the necessary reward matrix for the AGV.

To calculate the input values of the reward matrix in this reinforcement learning warehouse
model, a bridge function between [v and the reward matrix R is missing.

That bridge function is a logistic classifier based on the outputs of the y neurons.
At this point, the system:

e Took corporate data
e Used y neurons calculated with weights
e Applied an activation function
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The activation function in this model requires a logistic classifier, a commonly used one.

Logistic classifier

The logistic classifier will be applied to /v (the six location values) to find the best location
for the AGV. It is based on the output of the six neurons (input x weight + bias).

What are logistic functions? The goal of a logistic classifier is to produce a probability
distribution from 0 to 1 for each value of the output vector. As you have seen so far, Al
applications use applied mathematics with probable values, not raw outputs. In the
warehouse model, the AGV needs to choose the best, most probable location, /. Even in a
well-organized corporate warehouse, many uncertainties (late arrivals, product defects, or a
number of unplanned problems) reduce the probability of a choice. A

probability represents a value between 0 (low probability) and 1 (high probability). Logistic
functions provide the tools to convert all numbers into probabilities between 0 and 1 to
normalize data.

Logistic function

The logistic sigmoid provides one of the best ways to normalize the weight of a given
output. This will be used as the activation function of the neuron. The threshold is usually a
value above which the neuron has a y=1 value; or else it has y=0. In this case, the minimum
value will be 0 because the activation function will be more complex.

The logistic function is represented as follows.

1
l1+e*

e ¢represents Euler's number, or 2.71828, the natural logarithm.

e x is the value to be calculated. In this case, x is the result of the logistic sigmoid
function.

The code has been rearranged in the following example to show the reasoning process:

#For given variables:

x 1 = [[10, 2, 1., 6., 2.1] 4 the x inputs

w t = [[.1, .7, .75, .60, .20]] # the corresponding weights
b 1 = [1] # the bias

# A given total weight v 1s calculated

vy = tf.matmul (x, w) + b
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# then the logistic sigmoid 1is applied to v which represents the "x" in the
formal definition of the Logistic Sigmoid
s = tf.nn.sigmoid (y)

Thanks to the logistic sigmoid function, the value for the first location in the model comes
out as 0. 99 (level of saturation of the location).

To calculate the availability of the location once the 0.99 has been taken into account, we
subtract the load from the total availability, which is 1, as follows:

As seen previously, once all locations are calculated in this manner, a final availability
vector, lv, is obtained.

[ 0.0002 |
0.2

lv = -9 — [ 7]

0.0001
0.4

0.6

When analyzing [v, a problem has stopped the process. Individually, each line appears to
be fine. By applying the logistic sigmoid to each output weight and subtracting it from 1,
each location displays a probable availability between 0 and 1. However, the sum of the
lines in [v exceeds 1. That is not possible. Probability cannot exceed 1. The program needs to
fix that. In the source code, [v will be named v.

Each line produces a [0,1] solution, which fits the prerequisite of being a valid probability.

In this case, the vector [v contains more than one value and becomes a multiple distribution.
The sum of lv cannot exceed 1 and needs to be normalized.

The softmax function provides an excellent method to stabilize lv. Softmax is widely used in
machine learning and deep learning.

Bear in mind that these mathematical tools are not rules. You can adapt them to your problem
as much as you wish as long as your solution works.
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Softmax

The softmax function appears in many artificial intelligence models to normalize data. This
is a fundamental function to understand and master. In the case of the warehouse model,
an AGV needs to make a probable choice between six locations in the /v vector. However,
the total of the v values exceeds 1. [v requires normalization of the softmax function 5. In
this sense, the softmax function can be considered as a generalization of the logistic sigmoid
function. In the code, [v vector will be named v.

Eyi
S(yi) — Z;’I—l eYi

The following code used is SOFTMAX . py; v represents the [v vector in the following source
code.

# v 1s the wvector of the scores of the Iv wvector 1in the warehouse example:
y = |

U.DDGZ; 0.2; D.grO.GUGljD.‘qi'D.E']

e¥i is the exp(i) result of each value in y (v in the warehouse example), as follows:

v_exXp = [math.exp (i) for 1 1in v]

1
Y
=1 is the sum of €¥i iterations, as shown in the following code:

sum_exp vi = sum(y_exp)

Now, each value of the vector can be normalized in this type of multinomial distribution
stabilization by simply applying a division, as follows:

softmax = [round (i / sum_exp_vi, 3) for 1 in vy_exp]

#Vector to be stabhilized (2.0, 1.0, 0.1, 5.0, 6.0, 7.0]

#Stabilized vector ([0.004, 0.002, 0.001, 0.089, 0.243, 0.661]

[0.0002 | [0.111
0.2 0.135
B 273

lv = o softmax(lv) — 0.273

0.0001 0.111
0.4 0.165

06 0.202
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softmax(lv) provides a normalized vector with a sum equal to 1 and is shown in this
compressed version of the code. The vector obtained is often described as containing logits.

The following code details the process:

def softmax(x) :
return np.exp(x) / np.sum(np.exp(x), axis=0)

vl = [0.0002, 0.2, 0.9,0.0001,0.4,0.6]

print ("Staklized vector",softmax(vyl))

print ("sum of vector",sum(scoftmax(y1l)))

#t Stabilized vector [ 0.11119203 0.13578309 0.27343357 0.11118091
0.16584584 0.20256457]

# sum of vector 1.0

The softmax function can be used as the output of a classifier (pixels for example) or to
make a decision. In this warehouse case, it transforms [v into a decision-making process.

The last part of the softmax function requires softmax (1v) to be rounded to 0 or 1. The
higher the value in softmax (1v), the more probable it will be. In clear-cut transformations,
the highest value will be close to 1 and the others will be closer to 0. In a decision-making
process, the highest value needs to be found, as follows:

print ("highest value in transformed vy vector",max(softmax(yl)))
#thighest wvalue in normalized y wvector 0.273433565194

Once line 3 (value 0.273) has been chosen as the most probable location, it is set to 1 and
the other, lower values are set to 0. This is called a one-hot function. This one-hot function
is extremely helptul to encode the data provided. The vector obtained can now be applied
to the reward matrix. The value 1 probability will become 100 in the R reward matrix, as
follows.

[0.0002 | [0.111 0 0
0.2 0.135 0 0
lv = 0-9 » softmaz(lv) — 0273 sone —hot — | S| 5 R 100
0.0001 0.111 U U
0.4 0.165 0 0
06 [ 0.202 | 0] 0

The softmax function is now complete. Location [, or C is the best solution for the AGV. The
probability value is multiplied by 100 in the R function and the reward matrix described
can now receive the input.
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Before continuing, take some time to play around with the values in the
source code and run it to become familiar with softmax.

We now have the data for the reward matrix. The best way to understand the mathematical
aspect of the project is to go to a paperboard and draw the result using the actual
warehouse layout from locations A to F.

Locations={1-A, 1,-B, 1,-C, 1,-D, 1.-E, 1 -F}

Value of locations in the reward matrix={0,0,100,0,0,0} where C (the third value) is now the
target for the self-driving vehicle, in this case, an AGV in a warehouse.

State/values|A B C D E F
A i - - i 1 -
B - - - 1 - 1
C - - 100 1 - -
D - 1 1 - 1 -
E 1 : - 1 - .
F - 1 - - - -

This reward matrix is exactly the one used in the Python reinforcement learning program
using the Q function in the first chapter. The output of this chapter is the input of the R
matrix in the first chapter. The 0 values are there for the agent to avoid those values. This
program is designed to stay close to probability standards with positive values, as shown in
the following R matrix.

R = gl.matrix ([

L T s O e
N S
T T T
= = O O
T T
L A T e
e T T .
= e O
T T T
L0 A T e B
| M T S Ly E—)
C::."'!"‘ll
]

] ] ] ]

-
-
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(1,0,0,1,0,01,
[0,1,0,0,0,0] 1)

At this point, the building blocks are in place to begin evaluating the results of the
reinforcement learning program.

Summary

Using a McCulloch-Pitts neuron with a logistic activation function in a one-layer network
to build a reward matrix for reinforcement learning shows how to build real-life
applications with Al technology.

Processing real-life data often requires a generalization of a logistic sigmoid function
through a softmax function, and a one-hot function applied to logits to encode the data.

This shows that machine learning functions are tools that must be understood to be able to
use all or parts of them to solve a problem. With this practical approach to artificial
intelligence, a whole world of projects awaits you.

You can already use these first two chapters to present powerful trajectory models such as
Amazon warehouses and deliveries to your team or customers. Furthermore, Amazon,
Google, Facebook, Netflix, and many others are growing their data centers as we speak.
Each data center has locations with data flows that need to be calibrated. You can use the
ideas given in this chapter to represent the problems and real-time calculations required to
calibrate product and data flows.

This neuronal approach is the parent of the multi-layer perceptron that will be introduced
in chapter 5, Manage The Power of Machine Learning and Deep Learning. There, a shift from

machine learning to deep learning will be made.

However, before that, machine learning or deep learning requires evaluation functions. No
result can be validated without evaluation, as explained in chapter 3, Apply Machine
Thinking to a Human Problem. In the next chapter, the evaluation process will be illustrated
with chess and a real-life situation.
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Questions

1.
. Does a neuron require a threshold? (Yes | No)

Was the concept of using an artificial neuron discovered in 1990? (Yes | No)

A logistic sigmoid activation function makes the sum of the weights larger. (Yes |
No)

A McCulloch-Pitts neuron sums the weights of its inputs. (Yes | No)
A logistic sigmoid function is a log10 operation. (Yes | No)

A logistic softmax is not necessary if a logistic sigmoid function is applied to a
vector. (Yes | No)

A probability is a value between -1 and 1. (Yes | No)

Further reading

e Exploring DeepMind https://deepmind.com/

e The TensorFlow site, and support https://www.tensorflow.org/

e The original DQN article https://storage.googleapis.com/deepmind-media/

dgn/DQNNaturePaper.pdf

e Automated solutions in logistics https://www.logistics-systems.ie/

automated-sclutions—apm
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Apply Machine Thinking to a
Human Problem

[n the first chapter, the MDP reinforcement program produced a result as an output matrix.
In chapter 2, Think Like a Machine, the McCulloch-Pitts system of neurons produced an
imput reward matrix. However, the intermediate or final results of these two functions need
to be constantly measured. Good measurement solves a substantial part of a given problem
since decisions rely on them. Reliable decisions are made with reliable evaluations. The
goal of this chapter is to introduce measurement methods.

The key function of human intelligence, decision-making, relies on the ability to evaluate a
situation. No decision can be made without measuring the pros and cons and factoring the
parameters.

Mankind takes great pride in its ability to evaluate. However, in many cases, a machine can
do better. Chess represents the pride of mankind in thinking strategy. A chessboard is often
present in many movies to symbolize human intelligence.

Today, not a single chess player can beat the best chess engines. One of the extraordinary
core capacities of a chess engine is the evaluation function; it takes many parameters into
account more precisely than humans.

This chapter focuses on the main concepts of evaluation and measurement; they set the
path to deep learning gradient descent-driven models, which will be explained in the
following chapter.

The following topics will be covered in this chapter:

e Evaluation of the episodes of a learning session

¢ Numerical convergence measurements

e An introduction to the idea of cross-entropy convergence
e Decision tree supervised learning as an evaluation method
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Chapter 3

e Decision tree supervised learning as a predictive model

e How to apply evaluation tools to a real-life problem you build on your own

Technical requirements

e Python version 3.6 is recommended

¢ NumPy compatible with Python 3.6

e TensorFlow with TensorBoard

e Graphviz 2.28 for use in Python

Programs are available on GitHub, Chapter03:

® ) learning_convergence.py

¢ Decision_Tree Priority classifier.py

Check out the following video to see the code in action:

https://goo.gl/Yrgb3]

Determining what and how to measure

In Chapter 2, Think Like a Machine, the system of McCulloch-Pitts neurons generated a
vector with a one-hot function in the following process.

v =

0.2
0.9
0.0001
0.4
0.6

- 0.0002 |

— softmax(lv) —

(0.111 |
0.135
0.273
0.111
0.165

1 0.202 |

— one — hot —

o o o = o O

— R —

R, the reward vector, represents the input of the reinforcement learning program and needs

to be measured.
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This chapter deals with an approach designed to build a reward matrix based on the
company data. It relies on the data, weights, and biases provided. When deep learning
forward feedback neural networks based on perception are introduced (Chapter 4, Become
an Unconventional Innovator), a system cannot be content with a training set. Systems have a
natural tendency to learn training sets through backpropagation. In this case, one set of
company data is not enough.

In real-life company projects, a system will not be validated until tens of thousands of
results have been produced. In some cases, a corporation will approve the system only after
hundreds of datasets with millions of data samples have been tested to be sure that all
scenarios are accurate. Each dataset represents a scenario consultants can work on with
parameter scripts. The consultant introduces parameter scenarios that are tested by the
system and measured. In systems with up to 200 parameters per neuron, a consultant will
remain necessary for many years to come in an industrial environment. As of Chapter

4, Become an Unconventional Innovator, the system will be on its own without the help of a
consultant. Even then, consultants often are needed to manage the hyperparameters. In
real-life systems, with high financial stakes, quality control will always remain essential.

Measurement should thus apply to generalization more than simply applying to a single or
few datasets. Otherwise, you will have a natural tendency to control the parameters and
overfit your model in a too-good-to-be-true scenario.

Beyond the reward matrix, the reinforcement program in the first chapter had a learning
parameter A = 0. 8, as shown in the following code source.

# Gamma : It's a form of penalty or uncertainty for learning
# If the wvalue is 1 , the rewards would be too high.

# This way the system knows it is learning.

gamma = 0.8

The A learning parameter in itself needs to be closely monitored because it introduces
uncertainty into the system. This means that the learning process will always remain a
probability, never a certainty. One might wonder why this parameter is not just taken out.
[>aradoxically, that will lead to even more global uncertainty. The more the i learning
parameter tends to 1, the more you risk overfitting your results. Overfitting means that you
are pushing the system to think it's learning well when it isn't. It's exactly like a teacher
who gives high grades to everyone in the class all the time. The teacher would be
overfitting the grade-student evaluation process, and nobody would know whether the
students have learned something.
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The results of the reinforcement program need to be measured as they go through episodes.
The range of the learning process itselt must be measured. In the following code, the range
is set to 50,000 to make sure the learning process reaches its goal.

for i in range (50000) :

current state = gl.random.randint (0, int(Q.shape[0]))
FossibleAction = possible actions (current state)
action = ActionChoice (PossiblelAction)

reward (current_state, action, gamma)

All of these measurements will have a deep effect on the results obtained.

Convergence

Building the system was fun. Finding the factors that make the system go wrong is another
story.

The model presented so far can be summed up as follows:

10.0002 ] [0.111° 0 {
(.2 0.135 0 0
v = 0-9 » softmax(lv) — 0-273 » one — hot : » R — 1o » gamma —» () —» Resulls
0.0001 0.111 0 0
0.4 0.165 0 0
06 0.202 0 e

From [v to R, the process creates the reward matrix (Chapter 2, Think Like a Machine)
required for the reinforcement learning program (Chapter 1, Become an Adaptive Thinker),
which runs from reading R (reward matrix) to the results. Gamma is the learning
parameter, Q) is the Q learning function, and the results are the states of Q described in the
first chapter.

The parameters to be measured are as follows:

¢ The company's input data. The training sets found on the Web such as MNIST
are designed to be efficient. These ready-made datasets often contain some noise
(unreliable data) to make them realistic. The same process must be achieved with
raw company data. The only problem is that you cannot download a corporate dataset
from somewhere. You have to build the datasets.

e The weights and biases that will be applied.
e The activation function (a logistic function or other).
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e The choices to make after the one-hot process.
¢ The learning parameter.
e Episode management through convergence.

The best way to start relies on measuring the quality of convergence of the system, the last
step of the whole process.

If the system provides good convergence, it will avoid the headache of having to go back
and check everything,.

Implicit convergence

In the last part of Reinforcement Learning Q function.py in the first chapter, a range
of 50,000 is implemented.

The idea is to set the number of episodes at such a level that convergence is certain. In the
following code, the range (50000) is a constant.

for 1 in range (50000) :

current_state = gl.random.randint (0, int (Q.shape[(0]))
PossibleAction = possible_actions (current_state)
action = ActionChoice(Possiblelction)

reward (current _state,action,gamma)

Convergence, in this case, will be defined as the point at which no matter how long you run
the system, the Q result matrix will not change anymore.

By setting the range to 50000, you can test and verify this. As long as the reward matrices

remain homogeneous, this will work. If the reward matrices strongly vary from one
scenario to another, this model will produce unstable results.

Try to run the program with different ranges. Lower the ranges until you
see that the results are not optimal.

Numerical - controlled convergence

This approach can prove time-saving by using the target result, provided it exists
beforehand. Training the reinforcement program in this manner validates the process.
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In the following source code, an intuitive cross-entropy function is introduced (see Chapter
9, Getting Your Neurons to Work, tor more on cross-entropy).

Cross-entropy refers to energy. The main concepts are as follows:

e Energy represents the difference between one distribution and another

e [tis what makes the system continue to train

e When a lot of training needs to be done, there is a high level of energy

¢ When the training reaches the end of its cycles, the level of energy is low

e In the following code, cross-entropy value (CEV) measures the difference
between a target matrix and the episode matrix

e Cross-entropy is often measured in more complex forms when necessary (see
Chapter 9, Getting Your Neurons to Work, and Chapter 10, Applying Biomimicking
to Artificial Intelligence)

In the following code, a basic function provides sufficient results.

for 1 in range (50000) :
current state = gl.random.randint (0, int(Q.shape[0]))
PossibkbleAction = possible_actions (current_state)
action = ActionChoice (PossibleAction)
reward (current_state,action, gamma)
1f Q.sum{()>0:
fprint ("convergent episcode:",1i,"0.5um",Q.sum(), "numerical convergent
value e—1:",Q0.sum/()—sum)
fprint ("convergent episcde:", 1, "numerical convergent value:", ceg-
Q.sum())
CEV=—(math.log(Q.sum() ) —math.log(ceg))
print ("convergent episode:",1i, "numerical convergent wvalue:",CEV)
sum=Q.sum{()
1f(0Q.sum()—-3992==0) :
print ("Final convergent epilisode:",1,"numerical convergent
value:",ceg-Q.sum())
break; #break on average (the process is randcom) befcocre 50000

The previous program stops before 50,000 epochs. This is because, in the model described
in this chapter (see the previous code excerpt), the system stops when it reaches an
acceptable CEV convergence value.

convergent episode: 1573 numerical convergent value: -0.0
convergent episode: 1574 numerical convergent value: -0.0
convergent episode: 1575 numerical convergent value: —-0.0
convergent episode: 1576 numerical convergent wvalue: -0.0
convergent episode: 1577 numerical convergent wvalue: -0.0

(-
-

Final convergent episode: 1577 numerical convergent wvalue:
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The program stopped at episode 1577. Since the decision process is random, the same
number will not be obtained twice in a row. Furthermore, the constant 3992 was known in
advance. This is possible in closed environments where a pre-set goal has been set. This is
not the case often but was used to illustrate the concept of convergence. The following
chapters will explore better ways to reach convergence, such as gradient descent.

The Python program is available at:

https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/
master/Chapter03/Q learning convergence.py

Applying machine thinking to a human
problem

"An efficient manager has a high evaluation quotient. A machine has a better one, in chess
and a number of increasing fields. The problem now is to keep up with what the machines
are learning!”

-Denis Rothman

Evaluation is one of the major keys to efficient decision making in all fields: from chess,
production management, rocket launching, and self-driving cars to data center calibration,
software development, and airport schedules. Chess engines are not high-level deep-
learning-based software. They rely heavily on evaluations and calculations. They evaluate
much better than humans, and there is a lot to learn from them. The question now is to
know whether any human can beat a chess engine or not. The answer is no.

To evaluate a position in chess, you need to examine all the pieces, their quantitative value,
their qualitative value, cooperation between pieces, who owns each of the 64 squares, the
king's safety, bishop pairs, knight positioning, and many other factors.

Evaluating a position in a chess game

Evaluating a position in a chess game shows why machines will surpass humans in quite
some decision-making fields within the next few years.
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The following position is after move 23 in the Kramnik-Bluebaum 2017 game. It cannot be
correctly evaluated by humans. It contains too many parameters to analyze and too many
possibilities.

[t is white's turn to play, and a close analysis shows that both players are lost at this point.
In a tournament like this, they must each continue to keep a poker face. They often look at
the position with a confident face to hide their dismay. Some even shorten their thinking
time to make their opponent think they know where they are going.

These unsolvable positions for humans are painless to solve with chess engines, even
cheap, high-quality chess engines on a smartphone. This can be generalized to all human
activity that has become increasingly complex, unpredictable and chaotic. Decision-makers
will increasingly rely on artificial intelligence to help them make the right choices.

No human can play chess and evaluate the way a chess engine does by simply calculating
the positions of the pieces, their squares of liberty, and many other parameters. A chess
engine generates an evaluation matrix with millions of calculations. The following table is
the result of an evaluation of only one position among many others (real and potential).

Position

evaluated {3

White 34
In1t1+a_] position|Value Quality TotalValue
position Value

Pawn a2 a2 1 a2-b2 small pawn island 0,05 1,05

Pawn b2 b2 1 a2-b2 small pawn island 0,05 105
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Pawn 2 X 0 captured 0 0
Pawn d2 d4 1 occupies center,defends Beb 0,25 1,25
Pawn e2 e2 1 defends Qf3 0,25 1,25
Pawn 2 X 0 captured 0 0
Pawn g2 240 1 unattacked, attacking 2 squares 0,3 1,3
Pawn h2 h3 1 unattacked, defending g4 0,1 1,1
_ occupvying c-file, attacking b7 with
Rook al cl 5 Nd5—ljlj-§’e5 5 5 1 6
Knight bl d5 3 atta-::king Nb6, 8 squares 0,5 3,5
BishopDS 1 e5 3 ;‘:;flﬂn%”;“““’ 10 squares, 0,5 3,5
Queen d1 0 9 E.;:e;;r with Bg2, defending Ne5, X- 5 11
King el hl 0 X-rayed by Bbé on a7-gl diagonal  |-0,5 -0,5
BishopW$ (1 o 3 zlftEEErtmg QI3 in defense and 0.5 35
Knight gl X 0 captured 0 0
Rook hl X 0 captured 0 0
29 34
White:34
The value of the position of white is 34.
White 34
Black 33,7
::)nf;:ifilnn position|Value g;]ﬂ:}? TotalValue
Pawn a7 a7’ 1 a7-b7 small pawn island 0,05 1,05
Pawn b7 b7 1 a7-b7 small pawn 1sland 0,05 1,05
Pawn c/ X 0 captured 0 0
Pawn d7 X 0 captured 0 0
Pawn e/ 5 1 doubled, 2 squares 0 1
Pawn 7 {7 1 0 1
Pawn g?’ 86 1 defending 5 but abandnning KgS 0 1
Pawn h7 h5 1 well advanced with £5,g6 0,1 1,1
Rook a8 d8 5 semi-open d-file attacking Nd5 2 7
Knight b8 X 0 captured 0 0
BishopDS |c8 b6 3 attacking d4, 3 squares 0,5 3,5
Queen d8 e6 9 attacking d4,e5, a bit cramped 1,5 10,5
King e8 g8 0 f6,h6, g7,h8 attacked -1 -1
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BishopWS| 8 X 0 captured, White lost bishop pair 0,5 0,5
Knight g8 e8 3 defending c7,f6,g7 1 4
Rook h8 f8 5 out of play -2 3

31 27 Black:33,7

The value of black is 33.7.
So white is winning by 34-33.7 = 0.3.

The evaluation system can easily be represented with two McCulloch-Pitts neurons, one for
black and one for white. Each neuron would have 30 weights = {w1,w?2....w30/, as shown in
the previous table. The sum of both neurons requires an activation function that converts
the evaluation into 1/100th of a pawn, which is the standard measurement unit in chess.
Each weight will be the output of squares and piece calculations. Then the MDP can be
applied to Bellman's equation with a random generator of possible positions.

Present-day chess engines contain barely more intelligence than this type
of pure calculation approach. They don't need more to beat humans.

No human, not even world champions, can calculate this position with this accuracy. The
number of parameters to take into account overwhelms them each time they reach a
position like this. They then play more or less randomly with some kind of idea in mind. It
resembles a lottery sometimes. Chess expert annotators discover this when they run
human-played games with powerful chess engines to check the game. The players
themselves now tend to reveal their incapacity when questioned.

Now bear in mind that the position analyzed represents only one possibility. A chess
engine will test millions of possibilities. Humans can test only a few.

Measuring a result like this has nothing to do with natural human thinking. Only machines
can think like that. Not only do chess engines solve the problem, but also they are
impossible to beat.

At one point, there are problems humans face that only machines can
solve.
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Applying the evaluation and convergence
process to a business problem

What was once considered in chess as the ultimate proof of human intelligence has been
battered by brute-force calculations with great CPU/RAM capacity. Almost any human
problem requiring logic and reasoning can most probably be solved by a machine using
relatively elementary processes expressed in mathematical terms.

Let's take the result matrix of the reinforcement learning example of the first chapter. It can
also be viewed as a scheduling tool. Automated planning and scheduling have become a
crucial artificial intelligence field, as explained in chapter 12, Automated Planning and
Scheduling. In this case, evaluating and measuring the result goes beyond convergence
aspects.

In a scheduling process, the input of the reward matrix can represent the priorities of the
packaging operation of some products in a warehouse. It would determine in which order
customer products must be picked to be packaged and delivered. These priorities extend to
the use of a machine that will automatically package the products in a FIFO mode (first in,
first out). The systems provide good solutions, but, in real life, many unforeseen events
change the order of flows in a warehouse and practically all schedules.

In this case, the result matrix can be transformed into a vector of a scheduled packaging
sequence. The packaging department will follow the priorities produced by the system.

The reward matrix (see 0_learning_convergence.py) in this chapter is R (see the
following code).
R =qgl.matraix([ [-1,-1,-1,-1,0,-17,
l 1I_1f j— [:I 1r OJ:
[— l,—l,lDu o,-1,-17,
[ r r'DD:_-rDr_i]]r
[0 r—1,0,-1,-1],
[ r j—:lrlrl] ]]

Its visual representation is the same as in Chapter 1, Become an Adaptive Thinker. But the
values are a bit different for this application:

e Negative values (-1): The agent cannot go there
e 0 values: The agent can go there
e 100 values: The agent should favor these locations

[ 56 ]



Apply Machine Thinking to a Human Problem Chapter 3

The result is produced in a Q function early in the first section of the chapter, in a matrix
format, displayed as follows:

0. ]
0. 0. 0. 64.36 0. 41.5504]
0. 100. ©4.36 0. 0. ]
0. 51.688 80.2 0. 51.688 0. ]
41.5504 0. 0. &4.36 0. 0.
0. 51.688 0. 0. 0. 0. 1]

]

O
([ 0. 0. 0. 0. 258.44 0. ]
[ 0. 0. 0. 321.8 0. 207.752]
| 0. 0. 500. 321.8 0. 0. ]
[ 0. 258.44 401, 0. 258.44 0. ]
[ 207.752 0., 0. 321.8 0. 0. ]
[ 0. 258.44 0. 0. 0. 0. 1]
Normed Q :
[ [ O. 0. 0. 51.688 0.
[
l
[
[
[

From that result, the following packaging priority order matrix can be deduced.

Priorities |[O1 02 03 04 05 06

O1 - - i i 258.44 _

02 - - - 321.8 - 207.75
03 - - 500 321.8 - -

04 - 258.44 401 - 258.44 -

05 207.75 - - 321.8 - -

06 - 258.44 - - - -

The non-prioritized vector (npv) of packaging orders is np.

FO1
02
03
04
05
06

npv =

The npv contains the priority value of each cell in the matrix, which is not a location but an
order priority. Combining this vector with the result matrix, the results become priorities of
the packaging machine. They now need to be analyzed, and a final order must be decided
to send to the packaging department.
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Using supervised learning to evaluate result
quality

Having now obtained the npv, a more business-like measurement must be implemented.
A warehouse manager, for example, will tell you the following:

e Your reinforcement learning program looks satisfactory (Chapter 1, Become an
Adaptive Thinker)

e The reward matrix generated by the McCulloch-Pitts neurons works very well
(Chapter 2, Think Like a Machine)

e The convergence values of the system look nice
e The results on this dataset look satisfactory

But then, the manager will always come up with a killer question, How can you prove that
this will work with other datasets in the future?

The only way to be sure that this whole system works is to run thousands of datasets with
hundreds of thousands of product flows.

The idea now is to use supervised learning to create relationships between the input and
output data. It's not a random process like MDP. They are not trajectories anymore. They
are priorities. One method is to used decision trees. In chapter 4, Become an Unconventional
Innovator, the problem will be solved with a feedforward backpropagation network.

In this model, the properties of the customer orders are analyzed so that we can classify
them. This can be translated into decision trees depending on real-time data, to create a
distribution representation to predict future outcomes.

1. The first step is to represent the properties of the orders O1 to O6.
features = [ 'Pricrity/location', 'Volume', 'Flow_optimizer' ]
In this case, we will limit the model to three properties:

e Priority/location, which is the most important property in a
warehouse flow in this model

e Volumes to transport

e Optimizing priority—the financial and customer satisfaction

property
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2. The second step is to provide some priority parameters to the learning dataset:
Y = ['Low', 'Low', 'High', 'High', 'Low', 'Low

3. Step 3 is providing the dataset input matrix, which is the output matrix of the
reinforcement learning program. The values have been approximated but are
enough to run the model. This simulates some of the intermediate decisions and
transformations that occur during the decision process (ratios applied,
uncertainty factors added, and other parameters). The input matrix is x:

X = [ [456, 1
(320, 1
(500, 1
(400, 1
(320, 1
(256, 1

The features in step 1 apply to each column.
The values in step 2 apply to every line.

4. Step 4 is running a standard decision tree classifier. This classifier will distribute
the representations (distributed representations) into two categories:

e The properties of high-priority orders
e The properties of low-priority orders

There are many types of algorithms. In this case, a standard sklearn function is called to
do the job, as shown in the following source code.

classify = tree.DecislonTreeClassifier ()
classify = classify.fit (X,Y)

Applied to thousands of orders on a given day, it will help adapt to real-time unplanned
events that destabilize all scheduling systems: late trucks, bad quality products, robot
breakdowns, and absent personnel. This means that the system must be able to constantly
adapt to new situations and provide priorities to replan in real time.
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The program will produce the following graph, which separates the orders into priority
groups.

Pnonty/location <= 360.0
aun = 0.444
samples = 6

value = |2, 4]

Tm:/ \iﬁlr‘ie

gt = 0.0 guu = 0.0
samples = 4 samples = 2
value = [0, 4] value = [2, 0]

The goal now is to separate the best orders to replan among hundreds of thousands of
simulating orders. In this case, the learning dataset has the six values you have been
studying in the first two chapters from various angles.

e Priority/location<=360.0 is the division point between the most probable
optimized orders (high) and less interesting ones (low).

e Gini impurity. This would be the measure of incorrect labeling if the choice were
random. In this case, the dataset is stable.

¢ The talse arrow points out the two values that are not <=360, meaning they are
good choices, the optimal separation line of the representation. The ones that are
not classified as False are considered as don’t eliminate orders.
The True elements mean: eliminate orders as long as possible.

e The value result reads as [number of false elements, number of true elements] of the
dataset.

If you play around with the values in steps 1, 2, and 3, you'll obtain different separation
points and values. This sandbox program will prepare you for the more complex
scheduling problems of chapter 12, Automated Planning and Scheduling.

You can use this part of the source code to generate images of this decision tree-supervised
learning program:

# H.Producing visualization if necessary

info =

tree.export_graphviz(classify, feature_names=features,ocut_file=Ncne, fi1lled=F
alse, rounded=False)

graph = pydotplus.graph_from_ dot_data(info)

edges = collections.defaultdict (list)
for edge in graph.get_edge_list () :
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edges [edge.get _source ()] .append(int (edge.get _destination()))

for edge in edges:
edges [edge] .sort ()
for 1 in range(Z):
dest = graph.get_node(str (edges|(edge] [1])) [0]

graph.write_png('warehouse_example_decision_tree.png')
print ("Open the 1mage teo verify that the pricrity level prediction of the
results fits the reality of the reward matrix inputs")

The preceding information represents a small part of what it takes to manage a real-life
artificial intelligence program on premise.

A warehouse manager will want to run this supervised learning decision tree program on
top of the system described in chapter 2, Think Like a Machine, and Chapter 3, Apply
Machine Thinking to a Human Problem. This is done to generalize these distributed
representations directly to the warehouse data to improve the initial corporate data inputs.
With better-proven priorities, the system will constantly improve, week by week.

This way of scheduling shows that human thinking was not used nor necessary.

Contrary to the hype surrounding artificial intelligence, most problems can be solved with
no human intelligence involved and relatively little machine learning technology.

Human intelligence simply proves that intelligence can solve a problem.

Fortunately for the community of artificial intelligence experts, there are very ditficult
problems to solve that require more artificial intelligence thinking.

Such a problem will be presented and solved in Chapter 4, Become an Unconventional
Innovator.

TTEEnyhﬂn prﬁgrﬁﬁlﬁiaﬁaﬂabhfath:tps:ffgithub.CDmEEackt?ublishianﬂrtificial—
Intelligence-By-Example/blob/master/Chapter03/Decision_Tree Priority_

classifier.py.
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Summary

This chapter led artificial intelligence exploration one more step away from neuroscience to
reproduce human thinking. Solving a problem like a machine means using a chain of
mathematical functions and properties.

The further you get in machine learning and deep learning, the more you will find
mathematical functions that solve the core problems. Contrary to the astounding amount of
hype, mathematics relying on CPUs is replacing humans, not some form of alien
intelligence.

The power of machine learning with beyond-human mathematical reasoning is that
generalization to other fields is easier. A mathematical model, contrary to the complexity of
humans entangled in emotions, makes it easier to deploy the same model in many fields.
The models of the first three chapters can be used for self-driving vehicles, drones, robots in
a warehouse, scheduling priorities, and much more. Try to imagine as many fields you can
apply these to as possible.

Evaluation and measurement are at the core of machine learning and deep learning. The
key factor is constantly monitoring convergence between the results the system produces
and the goal it must attain. This opens the door to the constant adaptation of the weights of
the network to reach its objectives.

Machine evaluation for convergence through a chess example that has nothing to do with
human thinking proves the limits of human intelligence. The decision tree example can beat
most humans in classification situations where large amounts of data are involved.

Human intelligence is not being reproduced in many cases and has often been surpassed.
In those cases, human intelligence just proves that intelligence can solve a problem, nothing
more.

The next chapter goes a step further from human reasoning with self-weighting neural
networks and introduces deep learning.
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Questions

1. Can a human beat a chess engine? (Yes | No)

2. Humans can estimate decisions better than machines with intuition when it
comes to large volumes of data. (Yes | No)

3. Building a reinforcement learning program with a Q function is a feat in itself.
Using the results afterward is useless. (Yes | No)

4. Supervised learning decision tree functions can be used to verity that the result
of the unsupervised learning process will produce reliable, predictable
results. (Yes | No)

5. The results of a reinforcement learning program can be used as input to a
scheduling system by providing priorities. (Yes | No)
6. Can artificial Intelligence software think like humans? (Yes | No)

Further reading

e For more on decision trees: https://voutu.be/NsUgRe—9tb4

e For more on chess analysis by experts such as Zoran Petronijevic: https://
chessbookreviews.wordpress.com/tag/zoran—-petronijevic/
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Become an Unconventional
Innovator

[n corporate projects, there always comes the point when a problem that seems
impossible to solve hits you. At that point, you try everything you learned, but it doesn't
work for what's asked of you. Your team or customer begins to look elsewhere. It's time to
react.

In this chapter, an impossible-to-solve business case regarding material optimization will
be implemented successfully with an example of a feedforward neural network (FNN)
with backpropagation.

Feedforward networks are the building blocks of deep learning. The battle around the XOR
function perfectly illustrates how deep learning regained popularity in corporate
environments. The XOR FNN illustrates one of the critical functions of neural networks:
classification. Once information becomes classified into subsets, it opens the doors to
prediction and many other functions of neural networks, such as representation learning.

An XOR FNN network will be built from scratch to demystify deep learning from the start.
A vintage, start-from-scratch method will be applied, blowing the deep learning hype off
the table.

The following topics will be covered in this chapter:

e How to hand build an FNN
e Solving XOR with an FNN
e (lassification

e Backpropagation

e A cost function
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e Cost function optimization
e Error loss
e Convergence

Technical requirements

e Python 3.6x 64-bit from https://www.python.org/
¢ NumPy for Python 3.6x

Programs from GitHub Chapter04:

e FNN_XOR_vintage_tribute.py
e FFN_XOR_generalilzation.py

Check out the following video to see the code in action:

https://goo.gl/ASyLWz

The XOR limit of the original perceptron

Once the feedforward network for solving the XOR problem is built, it will be applied to a
material optimization business case. The material-optimizing solution will choose the best
combinations of dimensions among billions to minimize the use of a material with the
generalization of the XOR function. First, a solution to the XOR limitation of a perceptron
must be fully clarified.

XOR and linearly separable models

[n the academic world, like the private world, competition exists. Such a situation took
place in 1969. Minsky and Papert published Perceptrons. They proved mathematically that a
perceptron could rnot solve an XOR function. Fortunately, today the perceptron and its
neocognitron version form the core model for neural networking.

One might be tempted to think, So what? However, the entire field of neural networks relies
on solving problems such as this to classify patterns. Without pattern classification, images,
sounds, and words mean nothing to a machine.
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Linearly separable models

The McCulloch-Pitts 1943 neuron (see Chapter 2, Think Like a Machine) lead to Rosenblatt's
1957-1962 perceptron and the 1960 Widrow-Hoff adaptive linear element (Adaline).

These models are linear models based on f(x,w), requiring a line to separate results. A
perceptron cannot achieve this goal and thus cannot classify many objects it faces.

A standard linear function can separate values. Linear separability can be represented in
the following graph:

5 Linearly Separable Patterns
5 .
]
]
4 ff’
e o
- 8 o
T
3 e
e
\ .f'ﬁ b
1 o
7 _daf"'f--
T\
— - @
.fﬁ-_-
e
4 -
® ] ®
L L
]
0 w5 1 1.5 X 2 2.5 3 3.5

Imagine that the line separating the preceding dots and the part under it represent a picture
that needs to be represented by a machine learning or deep learning application. The dots
above the line represent clouds in the sky; the dots below the line represent frees on a hill.
The line represents the slope of that hill.

To be linearly separable, a function must be able to separate the clouds from the trees to
classity them. The prerequisite to classification is separability of some sort, linear or
nonlinear.
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The XOR limit of a linear model, such as the original
perceptron

A linear model cannot solve the XOR problem expressed as follows in a table:

Value of x,|[Value of x,||Output
1 1 0
0 0 0
1 0 1
0 1 1

The following graph shows the linear inseparability of the XOR function represented by
one perceptron:

Linearly Unseparable Patterns
1
0 D
0.9
0.8
0.7
0.6
-
0.5
0.4
0.3
0.2
0.1
o B )
0 0.1 0.2 0.3 0.4 0.5 X 0.6 0.7 0.8 0.9 1

The values of the table represent the Cartesian coordinates in this graph. The circle with a
cross at (1,1) and (0,0) cannot be separated from the circles at (1,0) and (0,11). That's a huge
problem. It means that Frank Rosenblatt’s f(x,w) perceptron cannot separate, and thus not
classity, these dots into clouds and trees; an object used to identify that requires linear
separability.

Having invented the most powerful concept of the 20th century—a neuron that can
learn—Frank Rosenblatt had to bear with this limitation through the 1960s.

Let's vindicate this injustice with a vintage solution.
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Building a feedforward neural network from
scratch

Let's get into a time machine. In nanoseconds, it takes us back to 1969. We have today's
knowledge but nothing to prove it. Minsky and Papert have just published their book,
Perceptrons. They've proven that a perceptron cannot implement the exclusive OR function
XOR.

We are puzzled. We know that deep learning will be a great success in the 21st century. We
want to try to change the course of history. Thanks to our time machine, we land in a small
apartment. It's comfortable, with a vinyl record playing the music we like! There is a
mahogany desk with a pad, a pencil, sharpener, and eraser waiting for us. We sit. A warm
cup of cotfee appears in a big mug. We're ready to solve the XOR problem from scratch. We
have to tfind a way to classify those dots with a neural network.

Step 1 — Defining a feedforward neural network

We look at our piece of paper. We don't have a computer. We're going to have to write
code; then we'll hopefully find a computer in a university or a corporation that has a 1960
state-of-the-art language to program in.

We have to be unconventional to solve this problem. First, we must ignore Minsky and
Papert's publication and also forget complicated words and theory of the 21st century. In
fact, we don't remember much anyway. Time travel made our future fuzzy!

A perceptron is usually represented by a graph. But that doesn't mean much right now.
After all, I can't compute circles and lines. In fact, beyond seeing circles and lines, we type
characters in computer languages, not circles. So, I decide to simply to write a layer in high-
school format. A hidden layer will simply be:

hlzm*w

Ok, now I have one layer. In fact, I just realized that a layer is merely a function. This
function can be expressed as:

f(z, w)
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In which x is the input value and w is some kind of value to multiply x by. I also realized
that hidden just means that it's the computation, just as x=2 and x+2 is the hidden layer that
leads to 4.

At this point, I've defined a neural network in three lines:

e Input x.

e Some kind of function that changes its value, like 2 x 2 = 4, which transformed 2.
That is a layer. And if the result is superior to 2, for example, then great! The
output is 1, meaning yes or true. Since we don't see the computation, this is the
hidden layer.

e An output.

Now that I know that basically any neural network is built with values transformed by an
operation to become an output of something, I need the logic to solve the XOR problem.

Step 2 - how two children solve the XOR problem
every day

Let's see how two children solve the XOR problem using a plain everyday example. I
strongly recommend this method. I have taken very complex problems, broken them down
into small parts to children's level, and often solved them in a few minutes. Then, you get
the sarcastic answer from others such as Is that all you did? But, the sarcasm vanishes when
the solution works over and over again in high-level corporate projects.

First, let's convert the XOR problem into a candy problem in a store. Two children go to the
store and want to buy candy. However, they only have enough money to buy one pack of
candy. They have to agree on a choice between two packs of different candy. Let's say pack
one is chocolate and the other is chewing gum. Then, during the discussion between these
two children, 1 means yes, 0 means no. Their budget limits the options of these two
children:

e Going to the store and not buying any of chocolate or chewing gum = no, no (0,0).
That's not an option for these children! So the answer is false.

e Going to the store and buying both chocolate and chewing gum = yes, yes (1,1).
That would be fantastic, but that's not possible. It's too expensive. So, the answer
is unfortunately false.

e Going to the store and either buying chocolate or chewing gum = (1,0 or 0,1) = yes
or no/no or yes. That's possible. So, the answer is true.
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Sipping my coffee in 1969, I imagine the two children. The eldest one is reasonable. The
younger one doesn't know really how to count yet and wants to buy both packs of candy.

I decide to write that down on my piece of paper:

e X, (eldest child's decision yes or no, 1 or 0) * w, (what the elder child thinks).
The elder child is thinking this, or:

r1 *w, or hy = x1 xw,

The elder child weighs a decision like we all do every day, such as purchasing a
car (x=0 or 1) multiplied by the cost (w1).

¢ X, (the younger child's decision yes or no, 1 or 0) * w, (what the younger child
thinks). The younger child is also thinking this, or:

To *x w3 or ho = X9 * ws
Theory: x, and x, are the inputs. h, and h, are neurons (the result of a

calculation). Since h, and h, contain calculations that are not visible during
the process, they are hidden neurons. h, and h, thus form a hidden layer.

Now I imagine the two children talking to each other.
Hold it a minute! This means that now each child is communicating with the other:

e x, (the elder child) says w, to the younger child. Thus w2 = this is what I think and
am telling you:

L1 * W9

¢ X, (the younger child) says please add my views to your decision, which is
represented by: w,

Lo * Wy

[70 ]
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I now have the first two equations expressed in high-school-level code. It's what one thinks +
what one says to the other asking the other to take that into account:

hl=(xl*wl)+(x2*wd) #II.A.weight of hidden neuron hl
hZ2=(x2*w3)+ (x1*w2) #I11.B.weight of hidden neuron hZ

h1 sums up what is going on in one child's mind: personal opinion + other child's opinion.

h2 sums up what is going on in the other child’'s mind and conversation: personal opinion +
other child's opinion.

Theory. The calculation now contains two input values and one hidden
layer. Since in the next step we are going to apply calculations to h1 and
h2, we are in a feedforward neural network. We are moving from the
input to another layer, which will lead us to another layer, and so on. This
process of going from one layer to another is the basis of deep learning.
The more layers you have, the deeper the network is. The reason h1 and
h2 form a hidden layer is that their output is just the input of another

layer.

[ don't have time to deal with complicated numbers in an activation function such as
logistic sigmoid, so I decide to simply decide whether the output values are less than 1 or

not:
if h,+h, >=1 then y,=1
if h,+h,<1 then y,=0

Theory: y, and y, form a second hidden layer. These variables can be
scalars, vectors, or matrices. They are neurons.

Now, a problem comes up. Who is right? The elder child or the younger child?
The only way seems to be to play around, with the weights W representing all the weights.

I decided that at this point, I liked both children. Why would I have to hurt one of them? So
from now on, w,=w,,w,=w,. After all, I don't have a computer and my time travel window is

consuming a lot of energy. I'm going to be pulled back soon.

Now, somebody has to be an influencer. Let's leave this hard task to the elder child. The
elder child, being more reasonable, will continuously deliver the bad news. You have to
subtract something from your choice, represented by a minus (-) sign.
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Each time they reach the point /1, the eldest child applies a critical negative view on
purchasing packs of candy. It's -w of everything comes up to be sure not to go over the
budget. The opinion of the elder child is biased, so let's call the variable a bias, b,. Since the
younger child's opinion is biased as well, let's call this view a bias too b,. Since the eldest
child’'s view is always negative, -b, will be applied to all of the eldest child's thoughts.

When we apply this decision process to their view, we obtain:

hi =y * —b
ha = Y2 * bo

Then, we just have to use the same result. If the result is >=1 then the threshold has been
reached. The threshold is calculated as shown in the following function.

y = hy + ho

Since I don't have a computer, I decide to start finding the weights in a practical manner,
starting by setting the weights and biases to 0.5, as follows:

wy = 0.5;’11!;3 — 0.5;3)1 = 0.5

wg = wo; Wy = wy; b = by

[t's not a full program yet, but its theory is done.

Only the communication going on between the two children is making the difference; I
focus on only modifying w, and b, after a first try. An hour later, on paper, it works!

I can't believe that this is all there is to it. I copy the mathematical process on a clean sheet
of paper:

Solution to the XOR implementaticon with
a feedforward neural network (FNN)

I.Setting the first weights to start the process
wl=0.5;w2=0.5;b1=0.5
wi=we;wid=wl;bZ2=bl

#II hidden layer #1 and 1its output
hl=(x1*wl)+(x2*wd) #IT1.A.weight of hidden neuron hl
h2=(x2*w3)+ (xl*w2) #II1.B.weight of hidden neuron h?Z2

#I1II.threshold I, hidden laver 2
if (hl>=1) :hl=1;
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(h1<1) :h1=0;
(hZ2>=1) :hZ=1
(h2<1) :h2=0
hl= hil * -bl
hz= hs * b

1 £
1t
if

IV.Threshold II and Final OUTPUT vy
v=hl+h2

if(y>=1):vy
if(y<l) 1y=

1

0

V. Change the critical weights and try again until a solution is found
wZ=w2+0.5
b1=bl1+0.5

I'm overexcited by the solution. I need to get this little sheet of paper to a newspaper to get
it published and change the course of history. I rush to the door, open it but find myself
back in the present! I jump and wake up in my bedroom sweating.

I rush to my laptop while this time-travel dream is fresh in my mind to get it into Python
for this book.

Why wasn't this deceiving simple solution found in 19697 Because it seems
simple today but wasn't so at that time like all inventions found by our genius
predecessors. Nothing is easy at all in artificial intelligence and
mathematics.

Implementing a vintage XOR solution in Python
with an FNN and backpropagation

I'm still thinking that implementing XOR with so little mathematics might not be that
simple. However, since the basic rule of innovating is to be unconventional, I write the
code.

To stay in the spirit of a 1969 vintage solution, I decide not to use NumPy, TensorFlow,
Theano, or any other high-level library. Writing a vintage FNN with backpropagation
written in high-school mathematics is fun.

This also shows that if you break a problem down into very elementary parts, you
understand it better and provide a solution to that specific problem. You don't need to use a

huge truck to transport a loaf of bread.
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Furthermore, by thinking through the minds of children, I went against running 20,000 or
more episodes in modern CPU-rich solutions to solve the XOR problem. The logic used
proves that, basically, both inputs can have the same parameters as long as one bias is
negative (the elder reasonable critical child) to make the system provide a reasonable
answer.

The basic Python solution quickly reaches a result in 3 to 10 iterations (epochs or episodes)
depending on how we think it through.

The top of the code simply contains a result matrix with four columns. Each represents the
status (1=correct, 0O=false) of the four predicates to solve:

#FEEDFORWARD NEURAL NETWORK (FNN) WITH BACK PROPAGATION SOLUTION FOR XOCR
result=[0,0,0,0] #trained result
train=4 #dataset size to train

The train variable is the number of predicates to solve: (0,0), (1,1),(1,0),(0,1). The variable of
the predicate to solve is pred.

The core of the program is practically the sheet of paper I wrote, as in the following code.

#I1 hidden layer 1 and its output

def hidden_layer_ vy (epoch,xl,x2,wl,w2,w3,wd,bl,bZ,pred, result) :
hl=(x1*wl)+(x2*wd) #II.A.weight of hidden neuron hl
hZ2=(x2*w3)+(x1l*w2) #I1I1.B.weight of hidden neuron hZ

#III.threshold I,a hidden laver 2 with bias
if (hl>=1) :hil=1;
1f{(hl<1l):h1=0;
if(h2>=1) :h2=1
1if(h2<1) :h2=0

hl= hl * -bil
h2= h2 * b2
#IV. threshold 11 and QUTPUT v
yv=hl+hZ
if(y<l and pred>=0 and pred<2) :
result [pred]=1

1f(y>=1 and pred>=2 and pred<4):
result[pred]=1
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pred is an argument of the function from 1 to 4. The four predicates can be represented in
the following table:

Predicate (pred)||x,||x,||Expected result
0 111 (|0
1 0 [|0 ][0
2 110 |1
3 0 (1|1

That is why y must be <1 for predicates 0 and 1. Then, y must be >=1 for predicates 2 and 3.

Now, we have to call the following function limiting the training to 50 epochs, which are
more than enough:

#1I Forward and backpropagation
for epoch in range (50) :
1f (epoch<l) :
wl=0.5;w2=0.5;b1=0.5
wi=ws;wid=wl;bZ=bl

At epoch 0, the weights and biases are all set to 0.5. No use thinking! Let the program do
the job. As explained previously, the weight and bias of x, are equal.

Now the hidden layers and y calculation function are called four times, one for each
predicate to train, as shown in the following code snippet:

#1.A forward propagation on epoch 1 and IV.backpropagation starting epoch 2
fcr t 1n range (4):

1 f (t==0):x1 = 1;%x2 = 1;pred=0
1f(t==1):x1 = 0;xZ2 = 0;pred=1
if(t==2):x1 = 1;x2 = 0;pred=2
if(t==3):x1 = 1;x2 = 0;pred=3

fforward propagation on epoch 1
hidden_ lavyer v (epoch,xl,x2,wl,wZ,w3,wd,bl,bZ,pred, result)

A simplified version of a cost function and gradient
descent

Now the system must train. To do that, we need to measure the number of predictions, 1 to
4, that are correct at each iteration and decide how to change the weights/biases until we
obtain proper results.
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A slightly more complex gradient descent will be described in the next chapter. In this
chapter, only a one-line equation will do the job. The only thing to bear in mind as an
unconventional thinker is: so what? The concept of gradient descent is minimizing loss or
errors between the present result and a goal to attain.

First, a cost function is needed.

There are four predicates (0-0, 1-1, 1-0, 0-1) to train correctly. We simply need to find out
how many are correctly trained at each epoch.

The cost function will measure the ditference between the training goal (4) and the result of
this epoch or training iteration (result).

When 0 convergence is reached, it means the training has succeeded.

result[0,0,0,0] contains a 0 for each value if none of the four predicates has been
trained correctly. result [1, 0,1, 0] means two out of four predicates are

correct. result[1,1,1, 1] means that all four predicates have been trained and that the
training can stop. 1, in this case, means that the correct training result was obtained. It can
be 0 or 1. The result array is the result counter.

The cost function will express this training by having a value of 4, 3, 2, 1, or 0 as the
training goes down the slope to 0.

Gradient descent measures the value of the descent to find the direction of the slope: up,
down, or 0. Then, once you have that slope and the steepness of it, you can optimize the
weights. A derivative is a way to know whether you are going up or down a slope.

In this case, I hijacked the concept and used it to set the learning rate with a one-line
function. Why not? It helped to solve gradient descent optimization in one line:

1f (convergence<() :w2+=0.05;bl=w2

By applying the vintage children buying candy logic to the whole XOR problem, I found that
only w2 needed to be optimized. That's why b1=w2. That's because b1 is doing the tough
job of saying something negative (-) all the time, which completely changes the course of
the resulting outputs.
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The rate is set at 0. 05, and the program finishes training in 10 epoch:s:
epoch: 10 optimization 0 wl: 0.5 w2: 1.0 w3: 1.0 wd: 0.5 bl: -1.0 bZ: 1.0

This is not a mathematical calculation problem but a logical one, a yes or no problem. The
way the network is built is pure logic. Nothing can stop us from using whatever training
rates we wish. In fact, that's what gradient descent is about. There are many gradient
descent methods. If you invent your own and it works for your solution, that is fine.

This one-line code is enough, in this case, to see whether the slope is going down. As long
as the slope is negative, the function is going downhill to cost = 0:

convergence=sum(result)-train s#estimating the direction of the slope
if (convergence>=—-0.00000001) : break

The following graph sums up the whole process:

Training through w2

Too simple? Well, it works, and that's all that counts in real-life development. If your code
is bug-free and does the job, then that's what counts.

Finding a simple development tool means nothing more than that. It's just another tool in
the toolbox. We can get this XOR function to work on a neural network and generate
income.
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Companies are not interested in how smart you are but how efficient (profitable)
you can be.

Linear separability was achieved

Bear in mind that the whole purpose of this feedforward network with backpropagation
through a cost function was to transform a linear non-separable function into a linearly
separable function to implement classification of features presented to the system. In this
case, the features had 0 or 1 value.

One of the core goals of a layer in a neural network is to make the input
make sense, meaning to be able to separate one kind of information from
another.

h1 and h2 will produce the Cartesian coordinate linear separability training axis, as
implemented in the following code:

hl= hl * —-bl
h2= h2Z * b2
print (hl,h2)

Running the program provides a view of the nonlinear input values once they have been
trained by the hidden layers. The nonlinear values then become linear values in a linearly
separable function:

linearly separability through cartesian training -1.0000000000000004
1.0000000000000004

linearly separability through cartesian training -0.0 0.0

linearly separability through cartesian training -0.0 1.0000000000000004

linearly separability through cartesian training —-0.0 1.0000000000000004

epoch: 10 optimization 0 wl: 0.5 wZ2: 1.0 w3: 1.0 wd: 0.5 bl: -1.0 b2: 1.0
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Chapter 4

The intermediate result and goal are not a bunch of numbers on a screen to show that the
program works. The result is a set of Cartesian values that can be represented in the

following linearly separated graph:
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We have now obtained a separation between the top values (empty circle) representing the
intermediate values of the 1,0 and 0,1 inputs, and the bottom values representing the 1,1
and 0,0 inputs. We now have clouds on top and trees below the line that separates them.

The layers of the neural network have transformed nonlinear values into linear separable
values, making classification possible through standard separation equations, such as the

one in the following code:

#IV. threshold II and OUTPUT vy
yv=hl+hZ # logical separation
1f(y<l and pred>=0 and pred<i) :

result [pred] =1

if(y>=1 and pred>=2 and pred<4):

result [pred]=1

The ability of a neural network to make non-separable information separable and classifiable
represents one of the core powers of deep learning. From this technique, many operations can be
performed on data, such as subset optimization.
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Applying the FNN XOR solution to a case
study to optimize subsets of data

The case study described here is a real-life project. The environment and functions have
been modified to respect confidentiality. But, the philosophy is the same one as that used
and worked on.

We are 7.5 billion people breathing air on this planet. In 2050, there will be about 2.5 billion
more. All of these people need to wear clothes and eat. Just those two activities involve
classifying data into subsets for industrial purposes. Grouping is a core concept for any
kind of production. Production relating to producing clothes and food requires grouping to
optimize production costs. Imagine not grouping and delivering one t-shirt at a time from
one continent to another instead of grouping t-shirts in a container and grouping many
containers (not just two on a ship). Let's focus on clothing, for example.

A brand of stores needs to replenish the stock of clothing in each store as the customers
purchase their products. In this case, the corporation has 10,000 stores. The brand produces
jeans, for example. Their average product is a faded jean. This product sells a slow 50 units
a month per store. That adds up to 10,000 stores x 50 units = 500,000 units or stock keeping
unit (SKU) per month. These units are sold in all sizes grouped into average, small, and
large. The sizes sold per month are random.

The main factory for this product has about 2,500 employees producing those jeans at

an output of about 25,000 jeans per day. The employees work in the following main fields:
cutting, assembling, washing, laser, packaging, and warehouse. See Chapter 12, Automated
Planning and Scheduling, for Amazon's patented approach to apparel production.

The first difficulty arises with the purchase and use of fabric. The fabric for this brand is not
cheap. Large amounts are necessary. Each pattern (the form of pieces of the pants to be
assembled) needs to be cut by wasting as little fabric as possible.

Imagine you have an empty box you want to fill up to optimize the volume. If you only put
soccer balls in it, there will be a lot of space. If you slip tennis balls in the empty spaces,
space will decrease. If on top of that, you fill the remaining empty spaces with ping pong
balls, you will have optimized the box.

Building optimized subsets can be applied to containers, warehouse flows and
storage, truckload optimizing, and almost all human activities.
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In the apparel business, if 1% to 10% of fabric is wasted while manufacturing jeans, the
company will survive the competition. At over 10%, there is a real problem to solve. Losing
20% on all the fabric consumed to manufacture jeans can bring the company down and
force it into bankruptcy.

The main rule is to combine larger pieces and smaller pieces to make optimized
cutting patterns.

Optimization of space through larger and smaller objects can be applied to cutting the
forms which are patterns of the jeans, for example. Once they are cut, they will be
assembled at the sewing stations.

The problem can be summed up as:

e Creating subsets of the 500,000 SKUs to optimize the cutting process for the
month to come in a given factory

e Making sure that each subset contains smaller sizes and larger sizes to minimize
loss of fabric by choosing six sizes per day to build 25,000 unit subsets per day

e Generating cut plans of an average of three to six sizes per subset per day for a
production of 25,000 units per day

In mathematical terms, this means trying to find subsets of sizes among 500,000 units for a
given day.

The task is to find six well-matched sizes among 500,000 units. This is calculated by the
following combination formula:

. 5000000 -
€)= o = 500000 6y 900

At this point, most people abandon the idea and just find some easy way out of this even if
it means wasting fabric. The problem was that in this project, I was paid on a percentage of
the fabric I would manage to save. The contract stipulated that I must save 3% of all fabric
consumption per month for the whole company to get paid a share of that. Or receive
nothing at all. Believe me, once I solved that, I kept that contract as a trophy and a tribute to
simplicity.

The first reaction we all have is that this is more than the number of stars in the universe
and all that hype!
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That's not the right way to look at it at all. The right way is to look exactly in the opposite
direction. The key to this problem is to observe the particle at a microscopic level, at the
bits of information level. This is a fundamental concept of machine learning and deep
learning. Translated into our field, it means that to process an image, ML and DL process
pixels. So, even if the pictures to analyze represent large quantities, it will come down to
small units of information to analyze:

yottabyte (YB)||10™||yobibyte (YiB)|[2"

Today, Google, Facebook, Amazon, and others have yottabytes of data to classify and make
sense of. Using the word big data doesn't mean much. It's just a lot of data, and so what?

You do not need to analyze individual positions of each data point in a dataset, but use the
probability distribution.

To understand that, let's go to a store to buy some jeans for a family. One of the parents
wants a pair of jeans, and so does a teenager in that family. They both go and try to find
their size in the pair of jeans they want. The parent finds 10 pairs of jeans in size x. All of
the jeans are part of the production plan. The parent picks one at random, and the teenager
does the same. Then they pay for them and take them home.

Some systems work fine with random choices: random transportation (taking jeans from
the store to home) of particles (jeans, other product units, pixels, or whatever is to be
processed) making up that fluid (a dataset).

Translated into our factory, this means that a stochastic (random) process can be introduced
to solve the problem.

All that was required is that small and large sizes were picked at random among the
500,000 units to produce. If six sizes from 1 to 6 were to be picked per day, the sizes could
be classified as follows in a table:

Smaller sizes= 5={1,2,3}

Larger sizes=L=[4,5,6}
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