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Preface

We are at an interesting juncture in the evolution of the digital age, where there is an
enormous amount of computing power and data in the hands of everyone. There has been
an exponential growth in the amount of data we now have in digital form. While being
associated with data-related technologies for more than 6 years, we have seen a rapid shift
towards enterprises that are willing to leverage data assets initially for insights and
eventually for advanced analytics. What sounded like hype initially has become a reality in
a very short period of time. Most companies have realized that data is the most important
asset needed to stay relevant. As practitioners in the big data analytics industry, we have
seen this shift very closely by working with many clients of various sizes, across regions
and functional domains. There is a common theme evolving toward open distributed open
source computing to store data assets and perform advanced analytics to predict future
trends and risks for businesses.

This book is an attempt to share the knowledge we have acquired over time to help new
entrants in the big data space to learn from our experience. We realize that the field of
artificial intelligence is vast and it is just the beginning of a revolution in the history of
mankind. We are going to see Al becoming mainstream in everyone’s life and
complementing human capabilities to solve some of the problems that have troubled us for
a long time. This book takes a holistic approach into the theory of machine learning and Al,
starting from the very basics to building applications with cognitive intelligence. We have
taken a simple approach to illustrate the core concepts and theory, supplemented by
illustrative diagrams and examples.

[t will be encouraging for us for readers to benefit from the book and fast-track their
learning and innovation into one of the most exciting fields of computing so they can create
a truly intelligent system that will augment our abilities to the next level.



Preface

Who this book is for

This book is for anyone with a curious mind who is exploring the fields of machine
learning, artificial intelligence, and big data analytics. This book does not assume that you
have in-depth knowledge of statistics, probability, or mathematics. The concepts are
illustrated with easy-to-follow examples. A basic understanding of the Java programming
language and the concepts of distributed computing frameworks (Hadoop/Spark) will be an
added advantage. This book will be useful for data scientists, members of technical staff in
IT products and service companies, technical project managers, architects, business
analysts, and anyone who deals with data assets.

What this book covers

Chapter 1, Big Data and Artificial Intelligence Systems, will set the context for the convergence
of human intelligence and machine intelligence at the onset of a data revolution. We have
the ability to consume and process volumes of data that were never possible before. We will
understand how our quality of life is the result of our decisive power and actions and how
it translates into the machine world. We will understand the paradigm of big data along
with its core attributes before diving into the basics of Al. We will conceptualize the big
data frameworks and see how they can be leveraged for building intelligence into machines.
The chapter will end with some of the exciting applications of Big Data and Al.

Chapter 2, Ontology for Big Data, introduces semantic representation of data into
knowledge assets. A semantic and standardized view of the world is essential if we want to
implement artificial intelligence, which fundamentally derives knowledge from data and
utilizes contextual knowledge for insights and meaningful actions in order to augment
human capabilities. This semantic view of the world is expressed as ontologies.

Chapter 3, Learning from Big Data, shows broad categories of machine learning

as supervised and unsupervised learning, and we understand some of the fundamental
algorithms that are very widely used. In the end, we will have an overview of the Spark
programming model and Spark's Machine Learning library (Spark MLIib).

chapter 4, Neural Networks for Big Data, explores neural networks and how they have
evolved with the increase in computing power with distributed computing frameworks.
Neural networks get their inspiration from the human brain and help us solve some very
complex problems that are not feasible with traditional mathematical models.

[2]



Preface

Chapter 5, Deep Big Data Analytics, takes our understanding of neural networks to the next
level by exploring deep neural networks and the building blocks of deep learning: gradient
descent and backpropagation. We will review how to build data preparation pipelines, the
implementation of neural network architectures, and hyperparameter tuning. We will also
explore distributed computing for deep neural networks with examples using the DL4]
library.

Chapter 6, Natural Language Processing, introduces some of the fundamentals of Natural
Language Processing (NLP). As we build intelligent machines, it is imperative that the
interface with the machines should be as natural as possible, like day-to-day human
interactions. NLP is one of the important steps towards that. We will be learning about text
preprocessing, techniques for extraction of relevant features from natural language text,
application of NLP techniques, and the implementation of sentiment analysis with NLP.

chapter 7, Fuzzy Systems, explains that a level of fuzziness is essential if we want to build
intelligent machines. In the real-world scenarios, we cannot depend on exact mathematical
and quantitative inputs for our systems to work with, although our models (deep neural
networks, for example) require actual inputs. The uncertainties are more frequent and, due
to the nature of real-world scenarios, are amplitied by incompleteness of contextual
information, characteristic randomness, and ignorance of data. Human reasoning are
capable enough to deal with these attributes of the real world. A similar level of fuzziness is
essential for building intelligent machines that can complement human capabilities in a real
sense. In this chapter, we are going to understand the fundamentals of fuzzy logic, its
mathematical representation, and some practical implementations of fuzzy systems.

Chapter 8, Genetic Programming, big data mining tools need to be empowered by
computationally efficient techniques to increase the degree of efficiency. Genetic algorithms
over data mining create great, robust, computationally efficient, and adaptive systems. In
fact, with the exponential explosion of data, data analytics techniques go on to take more
time and inversely affect the throughput. Also due to their static nature, complex hidden
patterns are often lett out. In this chapter, we want to show how to use genes to mine data
with great efficiency. To achieve this objective, we’ll introduce the basics of genetic

programming and the fundamental algorithms.

Chapter 9, Swarm Intelligence, analyzes the potential of swarm intelligence for solving big
data analytics problems. Based on the combination of swarm intelligence and data mining
techniques, we can have a better understanding of the big data analytics problems and
design more effective algorithms to solve real-world big data analytics problems. In this
chapter, we’ll show how to use these algorithms in big data applications. The basic theory

and some programming frameworks will be also explained.

[3]
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Chapter 10, Reinforcement Learning, covers reinforcement learning as one of the categories
of machine learning. With reinforcement learning, the intelligent agent learns the right
behavior based on the reward it receives as per the actions it takes within a specific
environmental context. We will understand the fundamentals of reinforcement learning,
along with mathematical theory and some of the commonly used techniques for
reinforcement learning.

Chapter 11, Cyber Security, analyzes the cybersecurity problem for critical infrastructure.
Data centers, data base factories, and information system factories are continuously under
attack. Online analysis can detect potential attacks to ensure infrastructure security. This
chapter also explains Security Information and Event Management (SIEM). It emphasizes
the importance of managing log files and explains how they can bring benefits.
Subsequently, Splunk and ArcSight ESM systems are introduced.

Chapter 12, Cognitive Computing, introduces cognitive computing as the next level in the
development of artificial intelligence. By leveraging the five primary human senses along
with mind as the sixth sense, a new era of cognitive systems can begin. We will see the
stages of Al and the natural progression towards strong Al, along with the key enablers for
achieving strong Al. We will take a look at the history of cognitive systems and see how
that growth is accelerated with the availability of big data, which brings large data volumes
and processing power in a distributed computing framework.

To get the most out of this book

The chapters in this book are sequenced in such a way that the reader can progressively
learn about Artificial Intelligence for Big Data starting from the fundamentals and eventually
move towards cognitive intelligence. chapter 1, Big Data and Artificial Intelligence Systems,
to chapter 5, Deep Big Data Analytics, cover the basic theory of machine learning and
establish the foundation for practical approaches to Al. Starting from chapter 6, Natural
Language Processing, we conceptualize theory into practical implementations and possible
use cases. To get the most out of this book, it is recommended that the first five chapters are
read in order. From chapter 6, Natural Language Processing, onward, the reader can choose
any topic of interest and read in whatever sequence they prefer.

[4]
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Download the example code files

You can download the example code files for this book from your account at
www .packtpub. com. If you purchased this book elsewhere, you can visit
www . packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.
Select the SUPPORT tab.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
Instructions.

Ll S

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WIinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
o 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Artificial-Intelligence-for-Big-Data. We also
have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/files/

-

downloads/ArtificiallIntelligenceforBigData_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,

file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here 1s an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in

your system."

[5]
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A block of code is set as follows:

StopWordsRemover remover = new StopWordsRemover ()
.setInputCol ("raw")
.setOutputCol ("filtered");

Any command-line input or output is written as follows:

S mkdir css
$ cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel.”

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questionslpacktpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

[ 6]
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Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub. com.

[ 7]



Big Data and Artificial
Intelligence Systems

The human brain is one of the most sophisticated machines in the universe. It has evolved
for thousands of years to its current state. As a result of continuous evolution, we are able to
make sense of nature's inherent processes and understand cause and effect relationships.
Based on this understanding, we are able to learn from nature and devise similar machines
and mechanisms to constantly evolve and improve our lives. For example, the video
cameras we use derived from the understanding of the human eye.

Fundamentally, human intelligence works on the paradigm of sense, store, process, and act.
Through the sensory organs, we gather information about our surroundings, store the
information (memory), process the information to form our beliefs/patterns/links, and use
the information to act based on the situational context and stimulus.

Currently, we are at a very interesting juncture of evolution where the human race has
found a way to store information in an electronic format. We are also trying to devise
machines that imitate the human brain to be able to sense, store, and process information to
make meaningful decisions and complement human abilities.

This introductory chapter will set the context for the convergence of human intelligence and
machine intelligence at the onset of a data revolution. We have the ability to consume and
process volumes of data that were never possible before. We will understand how our
quality of life is the result of our decisive power and actions and how it translates to the
machine world. We will understand the paradigm of Big Data along with its core attributes
before diving into artificial intelligence (AI) and its basic fundamentals. We will
conceptualize the Big Data frameworks and how those can be leveraged for building

intelligence into machines. The chapter will end with some of the exciting applications of
Big Data and Al



Big Data and Artificial Intelligence Systems Chapter 1

We will cover the following topics in the chapter:

e Results pyramid
e Comparing the human and the electronic brain
e Overview of Big Data

Results pyramid

The quality of human life is a factor of all the decisions we make. According to Partners in
Leadership, the results we get (positive, negative, good, or bad) are a result of our actions,
our actions are a result of the beliefs we hold, and the beliefs we hold are a result of our
experiences. This is represented as a results pyramid as follows:

o

Beliefs

At the core of the results pyramid theory is the fact that it is certain that we cannot achieve
better or different results with the same actions. Take an example of an organization that is
unable to meets its goals and has diverted from its vision for a few quarters. This is a result
of certain actions that the management and employees are taking. If the team continues to
have same beliefs, which translate to similar actions, the company cannot see noticeable
changes in its outcomes. In order to achieve the set goals, there needs to be a fundamental
change in day-to-day actions for the team, which is only possible with a new set of beliefs.
This means a cultural overhaul for the organization.

Similarly, at the core of computing evolution, man-made machines cannot evolve to be
more effective and useful with the same outcomes (actions), models (beliefs), and data
(experiences) that we have access to traditionally. We can evolve for the better if human
intelligence and machine power start complementing each other.

[9]
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What the human brain does best

While the machines are catching up fast in the quest for intelligence, nothing can come close
to some of the capabilities that the human brain has.

Sensory input

The human brain has an incredible capability to gather sensory input using all the senses in
parallel. We can see, hear, touch, taste, and smell at the same time, and process the input in
real time. In terms of computer terminology, these are various data sources that stream
information, and the brain has the capacity to process the data and convert it into
information and knowledge. There is a level of sophistication and intelligence within the
human brain to generate different responses to this input based on the situational context.

For example, if the outside temperature is very high and it is sensed by the skin, the brain
generates triggers within the lymphatic system to generate sweat and bring the body
temperature under control. Many of these responses are triggered in real time and without
the need for conscious action.

Storage

The information collected from the sensory organs is stored consciously and
subconsciously. The brain is very efficient at filtering out the information that is non-critical
for survival. Although there is no confirmed value of the storage capacity in the human
brain, it is believed that the storage capacity is similar to terabytes in computers. The brain's
information retrieval mechanism is also highly sophisticated and efficient. The brain can
retrieve relevant and related information based on context. It is understood that the brain
stores information in the form of linked lists, where the objects are linked to each other by a
relationship, which is one of the reasons for the availability of data as information and
knowledge, to be used as and when required.

[10]



Big Data and Artificial Intelligence Systems Chapter 1

Processing power

The human brain can read sensory input, use previously stored information, and make
decisions within a fraction of a millisecond. This is possible due to a network of neurons
and their interconnections. The human brain possesses about 100 billion neurons with one
quadrillion connections known as synapses wiring these cells together. It coordinates
hundreds of thousands of the body's internal and external processes in response to
contextual information.

Low energy consumption

The human brain requires far less energy for sensing, storing, and processing information.
The power requirement in calories (or watts) is insigniticant compared to the equivalent
power requirements for electronic machines. With growing amounts of data, along with the
increasing requirement of processing power for artificial machines, we need to consider
modeling energy utilization on the human brain. The computational model needs to
fundamentally change towards quantum computing and eventually to bio-computing.

What the electronic brain does best

As the processing power increases with computers, the electronic brain—or computers—are

much better when compared to the human brain in some aspects, as we will explore in the
following sections.

Speed information storage

The electronic brain (computers) can read and store high volumes of information at
enormous speeds. Storage capacity is exponentially increasing. The information is easily
replicated and transmitted from one place to another. The more information we have at our
disposal for analysis, pattern, and model formation, the more accurate our predictions will
be, and the machines will be much more intelligent. Information storage speed is consistent
across machines when all factors are constant. However, in the case of the human brain,
storage and processing capacities vary based on individuals.

[11]
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Processing by brute force

The electronic brain can process information using brute force. A distributed computing
system can scan/sort/calculate and run various types of compute on very large volumes of
data within milliseconds. The human brain cannot match the brute force of computers.

Computers are very easy to network and collaborate with in order to increase collective
storage and processing power. The collective storage can collaborate in real time to produce
intended outcomes. While human brains can collaborate, they cannot match the electronic
brain in this aspect.

Best of both worlds

Al is finding and taking advantage of the best of both worlds in order to augment human
capabilities. The sophistication and efficiency of the human brain and the brute force of
computers combined together can result in intelligent machines that can solve some of the
most challenging problems faced by human beings. At that point, the AI will complement
human capabilities and will be a step closer to social inclusion and equanimity by
facilitating collective intelligence. Examples include epidemic predictions, disease
prevention based on DNA sampling and analysis, self driving cars, robots that work in
hazardous conditions, and machine assistants for differently able people.

Taking a statistical and algorithmic approach to data in machine learning and AI has been
popular for quite some time now. However, the capabilities and use cases were limited
until the availability of large volumes of data along with massive processing speeds, which
is called Big Data. We will understand some of the Big Data basics in the next section. The
availability of Big Data has accelerated the growth and evolution of AI and machine
learning applications. Here is a quick comparison of Al before and with with Big Data:

Availability of limited data sets (MBs) Availability of ever increasing data sets (TBs)

Limited Sample Sizes Massive Sample Sizes resulting in increased
model accuracy

Inability to analyze large data in milliseconds  Large data analysis in milliseconds

Batch oriented Real-time

Slow learning curve Accelerated learning curve

Limited Data Sources Heterogeneous and multiple data sources
Based on mostly structured data sets Based on Structured / unstructured and semi-

structured data

[12]
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The primary goal of Al is to implement human-like intelligence in machines and to create
systems that gather data, process it to create models (hypothesis), predict or influence
outcomes, and ultimately improve human life. With Big Data at the core of the pyramid, we
have the availability of massive datasets from heterogeneous sources in real time. This
promises to be a great foundation for an Al that really augments human existence:

e

Models
Hypothesis

Big Data

"We don’t have better algorithms, We just have more data.”

- Peter Noruvig, Research Director, Google

Data in dictionary terms is defined as facts and statistics collected together for reference or
analysis. Storage mechanisms have greatly evolved with human evolution—sculptures,
handwritten texts on leaves, punch cards, magnetic tapes, hard drives, floppy disks, CDs,
DVDs, SSDs, human DNA, and more. With each new medium, we are able to store more
and more data in less space; it's a transition in the right direction. With the advent of the
internet and the Internet of Things (IoT), data volumes have been growing exponentially.

Data volumes are exploding; more data has been created in the past two
years than in the entire history of the human race.

[13]
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The term Big Data was coined to represent growing volumes of data. Along with volume,
the term also incorporates three more attributes, velocity, variety, and value, as follows:

e Volume: This represents the ever increasing and exponentially growing amount
of data. We are now collecting data through more and more interfaces between
man-made and natural objects. For example, a patient’s routine visit to a clinic
now generates electronic data in the tune of megabytes. An average smartphone
user generates a data footprint of at least a few GB per day. A flight traveling
from one point to another generates half a terabyte of data.

e Velocity: This represents the amount of data generated with respect to time and a
need to analyze that data in near-real time for some mission critical operations.
There are sensors that collect data from natural phenomenon, and the data is then
processed to predict hurricanes/earthquakes. Healthcare is a great example of the
velocity of the data generation; analysis and action is mission critical:

.Eﬂlﬂ (50,000
GB / Second)

2013 (28,000

GB / Second)
.IDDE (100 GB /
Second)
.159? (100 GB
/ Hour)
© 1992 (100
GB / Day) Growing Data Volumes and Velocity

e Variety: This represents variety in data formats. Historically, most electronic
datasets were structured and fit into database tables (columns and rows).
However, more than 80% of the electronic data we now generate is not in
structured format, for example, images, video files, and voice data tiles. With Big
Data, we are in a position to analyze the vast majority of structured/unstructured
and semi-structured datasets.

[14 ]
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¢ Value: This is the most important aspect of Big Data. The data is only as valuable
as its utilization in the generation of actionable insight. Remember the results
pyramid where actions lead to results. There is no disagreement that data holds
the key to actionable insight; however, systems need to evolve quickly to be able
to analyze the data, understand the patterns within the data, and, based on the
contextual details, provide solutions that ultimately create value.

Evolution from dumb to intelligent machines

The machines and mechanisms that store and process these huge amounts of data have
evolved greatly over a period of time. Let us briefly look at the evolution of machines (for
simplicity's sake, computers). For a major portion of their evolution, computers were dumb
machines instead of intelligent machines. The basic building blocks of a computer are the
CPU (Central Processing Unit), the RAM (temporary memory), and the disk (persistent
storage). One of the core components of a CPU is an ALU (Arithmetic and Logic Unit). This
is the component that is capable of performing the basic steps of mathematical calculations
along with logical operations. With these basic capabilities in place, traditional computers
evolved with greater and higher processing power. However, they were still dumb
machines without any inherent intelligence. These computers were extremely good at
following predefined instructions by using brute force and throwing errors or exceptions
for scenarios that were not predefined. These computer programs could only answer specific
questions they were meant to solve.

Although these machines could process lots of data and perform computationally heavy
jobs, they would be always limited to what they were programmed to do. This is extremely
limiting if we take the example of a self driving car. With a computer program working on
predefined instructions, it would be nearly impossible to program the car to handle all
situations, and the programming would take forever if we wanted to drive the car on ALL
roads and in all situations.

This limitation of traditional computers to respond to unknown or non-programmed
situations leads to the question: Can a machine be developed to think and evolve as humans
do? Remember, when we learn to drive a car, we just drive it in a small amount of situations
and on certain roads. Our brain is very quick to learn to react to new situations and trigger
various actions (apply breaks, turn, accelerate, and so on). This curiosity resulted in the
evolution of traditional computers into artificially intelligent machines.

Traditionally, Al systems have evolved based on the goal of creating expert
systems that demonstrate intelligent behavior and learn with every
interaction and outcome, similar to the human brain.

[15]
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In the year 1956, the term artificial intelligence was coined. Although there were gradual
steps and milestones on the way, the last decade of the 20th century marked remarkable
advancements in Al techniques. In 1990, there were significant demonstrations of machine
learning algorithms supported by case-based reasoning and natural language
understanding and translations. Machine intelligence reached a major milestone when then
World Chess Champion, Gary Kasparov, was beaten by Deep Blue in 1997. Ever since that
remarkable feat, Al systems have greatly evolved to the extent that some experts have
predicted that Al will beat humans at everything eventually. In this book, we are going to
look at the specifics of building intelligent systems and also understand the core techniques
and available technologies. Together, we are going to be part of one of the greatest
revolutions in human history.

Intelligence

Fundamentally, intelligence in general, and human intelligence in particular, is a constantly
evolving phenomenon. It evolves through four I’s when applied to sensory input or data
assets: Perceive, Process, Persist, and Perform. In order to develop artificial intelligence, we
need to also model our machines with the same cyclical approach:

—

Perform Perceive

Persist Process

S—

Types of intelligence

Here are some of the broad categories of human intelligence:

e Linguistic intelligence: Ability to associate words to objects and use language
(vocabulary and grammar) to express meaning

e Logical intelligence: Ability to calculate, quantify, and perform mathematical
operations and use basic and complex logic for inference

* Interpersonal and emotional intelligence: Ability to interact with other human
beings and understand feelings and emotions

[16]
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Intelligence tasks classification

This is how we classify intelligence tasks:

e Basic tasks:
e Perception
¢ Common sense
* Reasoning
e Natural language processing
e Intermediate tasks:
e Mathematics
e Games
e Expert tasks:
e Financial analysis
e Engineering
e Scientific analysis
e Medical analysis

The fundamental difference between human intelligence and machine intelligence is the
handling of basic and expert tasks. For human intelligence, basic tasks are easy to master
and they are hardwired at birth. However, for machine intelligence, perception, reasoning,
and natural language processing are some of the most computationally challenging and
complex tasks.

Big data frameworks

In order to derive value from data that is high in volume, varies in its form and structure,
and is generated with ever increasing velocity, there are two primary categories of
framework that have emerged over a period of time. These are based on the consideration
of the differential time at which the event occurs (data origin) and the time at which the
data is available for analysis and action.

[17]
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Batch processing

Traditionally, the data processing pipeline within data warehousing systems consisted of
Extracting, Transforming, and Loading the data for analysis and actions (ETL). With the
new paradigm of file-based distributed computing, there has been a shift in the ETL process
sequence. Now the data is Extracted, Loaded, and Transformed repetitively for analysis

(ELTTT) a number of times:
llh €
k Transform

4 N/ N/ N
Extract Transform Load ‘ u
. AN AN Y
Traditional Data Warehousing Modern Data Warehousing

In batch processing, the data is collected from various sources in the staging areas and
loaded and transformed with defined frequencies and schedules. In most use cases with
batch processing, there is no critical need to process the data in real time or in near real
time. As an example, the monthly report on a student’s attendance data will be generated
by a process (batch) at the end of a calendar month. This process will extract the data from
source systems, load it, and transform it for various views and reports. One of the most
popular batch processing frameworks is Apache Hadoop. It is a highly scalable,
distributed/parallel processing framework. The primary building block of Hadoop is

the Hadoop Distributed File System.

As the name suggests, this is a wrapper filesystem which stores the data
(structured/unstructured/semi-structured) in a distributed manner on data nodes within
Hadoop. The processing that is applied on the data (instead of the data that is processed) is
sent to the data on various nodes. Once the compute is performed by an individual node,
the results are consolidated by the master process. In this paradigm of data-compute
localization, Hadoop relies heavily on intermediate I/O operations on hard drive disks. As a
result, extremely large volumes of data can be processed by Hadoop in a reliable manner at
the cost of processing time. This framework is very suitable for extracting value from Big
Data in batch mode.

[18]
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Real-time processing

While batch processing frameworks are good for most data warehousing use cases, there is
a critical need for processing the data and generating actionable insight as soon as the data
is available. For example, in a credit card fraud detection system, the alert should be
generated as soon as the first instance of logged malicious activity. There is no value if the
actionable insight (denying the transaction) is available as a result of the end-of-month
batch process. The idea of a real-time processing framework is to reduce latency between
event time and processing time. In an ideal system, the expectation would be zero
differential between the event time and the processing time. However, the time ditfference is
a function of the data source input, execution engine, network bandwidth, and hardware.
Real-time processing frameworks achieve low latency with minimal I/O by relying on in-
memory computing in a distributed manner. Some of the most popular real-time processing
frameworks are:

e Apache Spark: This is a distributed execution engine that relies on in-memory
processing based on fault tolerant data abstractions named RDDs
(Resilient Distributed Datasets).

e Apache Storm: This is a framework for distributed real-time computation. Storm
applications are designed to easily process unbounded streams, which generate
event data at a very high velocity.

e Apache Flink: This is a framework for efficient, distributed, high volume data
processing. The key feature of Flink is automatic program optimization. Flink
provides native support for massively iterative, compute intensive algorithms.

As the ecosystem is evolving, there are many more frameworks available for batch and real-
time processing. Going back to the machine intelligence evolution cycle (Perceive, Process,
Persist, Perform), we are going to leverage these frameworks to create programs that work
on Big Data, take an algorithmic approach to filter relevant data, generate models based on
the patterns within the data, and derive actionable insight and predictions that ultimately
lead to value from the data assets.
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Intelligent applications with Big Data

At this juncture of technological evolution, where we have the availability of systems that
gather large volumes of data from heterogeneous sources, along with systems that store
these large volumes of data at ever reducing costs, we can derive value in the form of
insight into the data and build intelligent machines that can trigger actions resulting in the
betterment of human life. We need to use an algorithmic approach with the massive data
and compute assets we have at our disposal. Leveraging a combination of human
intelligence, large volumes of data, and distributed computing power, we can create expert
systems which can be used as an advantage to lead the human race to a better future.

Areas of Al

While we are in the infancy of developments in Al here are some of the basic areas in
which significant research and breakthroughs are happening;:

e Natural language processing: Facilitates interactions between computers and
human languages.

e Fuzzy logic systems: These are based on the degrees of truth instead of
programming for all situations with IF/ELSE logic. These systems can control
machines and consumer products based on acceptable reasoning.

e Intelligent robotics: These are mechanical devices that can perform mundane or
hazardous repetitive tasks.

e Expert systems: These are systems or applications that solve complex problems
in a specific domain. They are capable of advising, diagnosing, and predicting
results based on the knowledge base and models.

Frequently asked questions

Here is a small recap of what we covered in the chapter:

Q: What is a results pyramid?

A: The results we get (man or machine) are an outcome of our experiences (data), beliefs
(models), and actions. If we need to change the results, we need ditferent (better) sets of
data, models, and actions.

[20]
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Q: How is this paradigm applicable to Al and Big Data?

A: In order to improve our lives, we need intelligent systems. With the advent of Big Data,
there has been a boost to the theory of machine learning and Al due to the availability of
huge volumes of data and increasing processing power. We are on the verge of getting

better results for humanity as a result of the convergence of machine intelligence and Big
Data.

Q: What are the basic categories of Big Data frameworks?

A: Based on the differentials between the event time and processing time, there are two
types of framework: batch processing and real-time processing.

Q: What is the goal of AI?
A: The fundamental goal of Al is to augment and complement human life.
Q: What is the difference between machine learning and AI?

A: Machine learning is a core concept which is integral to Al. In machine learning, the
conceptual models are trained based on data and the models can predict outcomes for the
new datasets. Al systems try to emulate human cognitive abilities and are context sensitive.
Depending on the context, Al systems can change their behaviors and outcomes to best suit
the decisions and actions the human brain would take.

Have a look at the following diagram for a better understanding;:

Artificial
Intelligence

Deep
Learning

Machine

Learning
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Summary

In this chapter, we understood the concept of the results pyramid, which is a model for the
continuous improvement of human life and striving to get better results with an improved
understanding of the world based on data (experiences), which shape our models (beliefs).
With the convergence of the evolving human brain and computers, we know that the best of
both worlds can really improve our lives. We have seen how computers have evolved from
dumb to intelligent machines and we provided a high-level overview of intelligence and

Big Data, along with types of processing frameworks.

With this introduction and context, in subsequent chapters in this book, we are going to
take a deep dive into the core concepts of taking an algorithmic approach to data and the
basics of machine learning with illustrative algorithms. We will implement these algorithms
with available frameworks and illustrate this with code samples.

[22]



Ontology for Big Data

In the introductory chapter, we learned that big data has fueled rapid advances in the field
of artificial intelligence. This is primarily because of the availability of extremely large
datasets from heterogeneous sources and exponential growth in processing power due to
distributed computing. It is extremely difficult to derive value from large data volumes if
there is no standardization or a common language for interpreting data into information
and converting information into knowledge. For example, two people who speak two
different languages, and do not understand each other’s languages, cannot get into a verbal
conversation unless there is some translation mechanism in between. Translations and
interpretations are possible only when there is a semantic meaning associated with a
keyword and when grammatical rules are applied as conjunctions. As an example, here is a
sentence in the English and Spanish languages:

English John eats three bananas every day

Spanish John come tres platanos todos los dias

Broadly, we can break a sentence down in the form of objects, subjects, verbs, and
attributes. In this case, John and bananas are subjects. They are connected by an activity, in
this case eating, and there are also attributes and contextual data—information in
conjunction with the subjects and activities. Knowledge translators can be implemented in
two ways:

¢ All-inclusive mapping: Maintaining a mapping between all sentences in one
language and translations in the other language. As you can imagine, this is
impossible to achieve since there are countless ways something (object, event,
attributes, context) can be expressed in a language.

e Semantic view of the world: If we associate semantic meaning with every entity
that we encounter in linguistic expression, a standardized semantic view of the
world can act as a centralized dictionary for all the languages.
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A semantic and standardized view of the world is essential if we want to implement
artificial intelligence which fundamentally derives knowledge from data and utilizes the
contextual knowledge for insight and meaningful actions in order to augment human
capabilities. This semantic view of the world is expressed as Ontologies. In the context of
this book, Ontology is defined as: a set of concepts and categories in a subject area or
domain, showing their properties and the relationships between them.

In this chapter, we are going to look at the following:

e How the human brain links objects in its interpretation of the world

e The role Ontology plays in the world of Big Data

e Goals and challenges with Ontology in Big Data

e The Resource Description Framework

e The Web Ontology Language

¢ SPARQL, the semantic query language for the RDF

e Building Ontologies and using Ontologies to build intelligent machines
e Ontology learning

Human brain and Ontology

While there are advances in our understanding of how the human brain functions, the
storage and processing mechanism of the brain is far from fully understood. We receive
hundreds and thousands of sensory inputs throughout a day, and if we process and store
every bit of this information, the human brain will be overwhelmed and will be unable to
understand the context and respond in a meaningful way. The human brain applies filters
to the sensory input it receives continuously. It is understood that there are three
compartments to human memory:

e Sensory memory: This is the first-level memory, and the majority of the
information is flushed within milliseconds. Consider, for example, when we are
driving a car. We encounter thousands of objects and sounds on the way, and
most of this input is utilized for the function of driving. Beyond the frame of
reference in time, most of the input is forgotten and never stored in memory.
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¢ Short-term memory: This is used for the information that is essential for serving
a temporary purpose. Consider, for example, that you receive a call from your co-
worker to remind you about an urgent meeting in room number D-1482. When
you start walking from your desk to the room, the number is significant and the
human brain keeps the information in short-term memory. This information may
or may not be stored beyond the context time. These memories can potentially
convert to long-term memory if encountered within an extreme situation.

e Long-term memory: This is the memory that will last for days or a lifetime. For
example, we remember our name, date of birth, relatives, home location, and so
many other things. The long-term memory functions on the basis of patterns and
links between objects. The non-survival skills we learn and master over a period
of time, for example playing a musical instrument, require the storage of
connecting patterns and the coordination of reflexes within long-term memory.

[rrespective of the memory compartment, the information is stored in the form of patterns
and links within the human brain. In a memory game that requires players to momentarily
look at a group of 50-odd objects for a minute and write down the names on paper, the
player who writes the most object names wins the game. One of the tricks of playing this
game is to establish links between two objects and form a storyline. The players who try to
independently memorize the objects cannot win against the players who create a linked list
in their mind.

When the brain receives input from sensory organs and the information needs to be stored
in the long-term memory, it is stored in the form of patterns and links to related objects or
entities, resulting in mind maps. This is shown in the following figure:
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When we see a person with our eyes, the brain creates a map for the image and retrieves all
the context-based information related to the person.

This forms the basis of the Ontology of information science.

Ontology of information science

Formally, the Ontology of information sciences is defined as: A formal naming and definition
of types, properties, and interrelationships of the entities that fundamentally exist for a particular
domain.

There is a fundamental difference between people and computers when it comes to dealing
with information. For computers, information is available in the form of strings whereas for
humans, the information is available in the form of things. Let's understand the difference
between strings and things. When we add metadata to a string, it becomes a thing.
Metadata is data about data (the string in this case) or contextual information about data.
The idea is to convert the data into knowledge. The following illustration gives us a good

idea about how to convert data into knowledge:

Information Knowledge

New York, NY, USA

Monday 8:00 PM
Clear

66 66 66"
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The text or the number 66 is Data; in itself, 66 does not convey any meaning. When we say
66 F, 66 becomes a measure of  temperature and at this point it represents some
Information. When we say 66 F in New York on 3rd October 2017 at 8:00 PM, it becomes
Knowledge. When contextual information is added to Data and Information, it becomes
Knowledge.

In the quest to derive knowledge from data and information, Ontologies play a major role
in standardizing the worldview by precisely defined terms that can be communicated
between people and software applications. They create a shared understanding of objects
and their relationships within and across domains. Typically, there are schematic,
structural, and semantic differences, and hence contlict arises between knowledge
representations. Well-defined and governed Ontologies bridge the gaps between the
representations.

Ontology properties

At a high level, Ontologies should have the following properties to create a consistent view
of the universe of data, information, and knowledge assets:

e The Ontologies should be complete so that all aspects of the entities are covered.

e The Ontologies should be unambiguous in order to avoid misinterpretation by
people and software applications.

e The Ontologies should be consistent with the domain knowledge to which they
are applicable. For example, Ontologies for medical science should adhere to the
formally established terminologies and relationships in medical science.

¢ The Ontologies should be generic in order to be reused in different contexts.

e The Ontologies should be extensible in order to add new concepts and facilitate
adherence to the new concepts, that emerge with growing knowledge in the
domain.

e The Ontologies should be machine-readable and interoperable.

[27]
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Here is an illustration to better explain properties of Ontologies:
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The most important advantage of Ontological representation for real-world concepts and
entities is that it facilitates the study of concepts independently of programming language,
platforms, and communication protocols. This enables loose coupling, and at the same time,
tight integration between the concepts, which enables the software development process to
reuse the software and knowledge base as modular concepts.

Advantages of Ontologies

The following are the advantages of Ontologies:

e Increased quality of entity analysis
e Increased use, reuse, and maintainability of the information systems

e Facilitation of domain knowledge sharing, with common vocabulary across
independent software applications

Those who are familiar with the object-oriented programming paradigm or database design
can easily relate the Ontological representation of the domain entities to classes or database
schemas. The classes are generic representations of the entities that encapsulate properties
and behaviors. One class can inherit behavior and properties from another class (is-a
relationship). For example, a cat is an animal.
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In this case, Animal is an abstract superclass of Cat. The Cat class inherits properties from
the Animal class and adds/overrides some of the attributes and behaviors specific to a cat.
This paradigm is applicable in Ontologies. Similarly, relational databases have schematic

representations of the domain entities within an organization.

There are some fundamental differences between databases and Ontologies, as follows:

e Ontologies are semantically richer than the concepts represented by databases

e Information representation in an Ontology is based on semi-structured, natural
language text and it is not represented in a tabular format

e The basic premise of Ontological representation is globally consistent
terminology to be used for information exchange across domains and
organizational boundaries

e More than defining a confined data container, Ontologies focus on generic
domain knowledge representation

Components of Ontologies

The following are the components of Ontologies:

e Concepts: These are the general things or entities similar to classes in object-
oriented programming, for example, a person, an employee, and so on.

e Slots: These are the properties or attributes of the entities, for example, gender,
date of birth, location, and so on.

e Relationships: These represent interactions between concepts, or is-a, has-a
relationships, for example, an employee is a person.

¢ Axioms: These are statements which are always true in regards to concepts, slots
and relationships, for example, a person is an employee if he is employed by an
employer.

e Instances: These are the objects of a class in object-oriented terms. For example,
John is an instance of the Employee class. It is a specific representation of a
concept. Ontology, along with instances, fully represents knowledge.

e Operations: These are the functions and rules that govern the various

components of the Ontologies. In an object-oriented context, these represent
methods of a class.
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The following diagram explains the components of Ontologies:
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The development of Ontologies begins with defining classes in the Ontology. These classes
represent real-world entities. Once the entities are clearly identified and defined, they are
arranged in a taxonomic hierarchy. Once the hierarchy is defined, the Slots and
Relationships are defined. Filling in the values for slots and instances completes the
development of a domain-specific Ontology.

The role Ontology plays in Big Data

As we saw in the introductory chapter, data volumes are growing at a phenomenal rate and
in order to derive value from the data, it is impossible to model the entire data in a
traditional Extract, Transform, and Load (ETL) way. Traditionally, data sources generate
the datasets in structured and unstructured formats. In order to store these data assets, we
need to manually model the data based on various entities. Taking an example of Person as
an entity in the relational database world, we need to create a table that represents Person.
This table is linked to various entities with foreign key relationships. However, these
entities are predefined and have a fixed structure. There is manual effort involved in
modeling the entities and it is difficult to modify them.

In the big data world, the schema is defined at read time instead of write time. This gives us
a higher degree of flexibility with the entity structure and data modeling. Even with
flexibility and extensible modeling capabilities, it is very difficult to manage the data assets
on an internet scale if the entities are not standardized across domains.
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In order to facilitate web search, Google introduced the knowledge graph which changed
the search from keyword statistics based on representation to knowledge modeling.

This was the introduction of the searching by things and not strings paradigm. The
knowledge graph is a very large Ontology which formally describes objects in the real
world. With increased data assets generated from heterogeneous sources at an accelerating
pace, we are constantly headed towards increased complexity. The big data paradigm
describes large and complex datasets that are not manageable with traditional applications.
At a minimum, we need a way to avoid false interpretations of complex data entities. The
data integration and processing frameworks can possibly be improved with methods from
the field of semantic technology. With use of things instead of text, we can improve
information systems and their interoperability by identifying the context in which they
exist. Ontologies provide the semantic richness of domain-specific knowledge and

its representation.

With big data assets, it is imperative that we reduce the manual effort of modeling the data
into information and knowledge. This is possible if we can create a means to find the
correspondence between raw entities, derive the generic schema with taxonomical
representation, and map the concepts to topics in specific knowledge domains with
terminological similarities and structural mappings. This implementation will facilitate
automatic support for the management of big data assets and the integration of different
data sources, resulting in fewer errors and speed of knowledge derivation.

We need an automated progression from Glossary to Ontologies in the following manner:
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Ontology alignment

Ontology alignment or matching is a process of determining one-to-one mapping between
entities from heterogeneous sources. Using this mapping, we can infer the entity types and
derive meaning from the raw data sources in a consistent and semantic manner:

ﬂnurce System Dntnlugv\

/ Big Data System Dntnluﬂ\

rdfs:subClassO

rdfs:subClassOf

rdf:type

Goals of Ontology in big data

The following are the goals of Ontology in big data:

e Share a common understanding of information structures across software
applications

e Make ETL faster, easier, and more accurate

e Eliminate the need for customized, situation-specific ETL pipelines

e The automatic incorporation of new data sources

¢ Enhance information extraction from text and convert it into knowledge assets
e Enrich existing data with structural and semantic information

e Translate business knowledge into machine-usable software

e Build once, use many times
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Challenges with Ontology in Big Data

We face the following challenges when using Ontology in big data:

¢ Generating entities (converting strings to things)
 Managing relationships

e Handling context

e Query efficiency

e Data quality

RDF—the universal data format

With the background of Ontologies and their significance in the big data world, let us look
at a universal data format that defines the schematic representations of the Ontologies. One
of the most adopted and popular frameworks is the Resource Description Framework
(RDEF). RDF has been a W3C recommendation since 2004. RDF provides a structure for
describing identified things, entities, or concepts designed to be read and interpreted by
computers. There is a critical need to uniquely identify an entity or concept universally. One
of the most popular ways in the information science field is the use of Universal Resource
Identifiers (URIs). We are familiar with website addresses, which are represented

as Universal Resource Locators (URLs). These map to a unique IP’ address and hence a web
domain on the internet. A URI is very similar to a URL, with the difference that the URIs
may or may not represent an actual web domain. Given this distinction, the URIs that
represent the real-world objects must be unambiguous. Any URI should be exclusive to
either a web resource or a real-world object and should never be used to represent both at
the same time, in order to avoid confusion and ambiguity:
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Here is a basic example that describes the https://www.w3schools.com/rdf resource:

<?xml version="1.0"72>
<RDE>
<Description about="https://www.w3schools.com/rdf">
<homepage>https: //www.w3schools.com</homepage>
</Description>
</RDF>

When defining RDFs, there are the following considerations:

e Define a simple data model

e Define formal semantics

e Use extensible URI-based vocabulary
e Preferably use an XML-based syntax

The basic building block of the RDF is a triple that consists of a Subject, Predicate, and an
Object. The set of triples constitutes an RDF graph:

Predicate

John:works as a Project Manager_} at;a Logistics Company

Let us look at an example of a database of books and represent it with RDF XML.:

Book Name Author Company Year
Hit Refresh Satva Nadella Microsoft 2017
shoe Dog Phil Knight Nike 2016
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<?2xm]l version="1.0"2>

<rdf:RDF

xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-nsg"
xmins:book="http://www.artificial-intelligence.big-data/bookf">

<rdf:Description

rdf:about="http://www.artificial-intelligence .big-data/boock/Hit-Refresh">
<book:author>Satya Nadella</book:author>
<book:company>Microsoft</book:company>
<book:year>2017</book:year>

</rdf:Description>

<rdf:Description

rdf:about="http://www.artificial-intelligence.big-data/book/Shoe-Dog">
<book:author>Phil Rnight</book:author>
<book:company>Nike</book:company>
<book:year>2016</book:year>

</rdf:Description>

</rdf :RDF>

The first line of the RDF document is the XML declaration. The XML declaration is followed
by the root element of the RDF documents, <rdf :RDF>.

The xmlns: rdf namespace specifies that the elements with the rdf prefix are from
the http://www.w3.0rg/1999/02/22-rdf-syntax-ns# namespace. The XML

namespaces are used to provide uniquely named elements and attributes in an XML
document.

The xmlns:book namespace specifies that the elements with the book prefix are from the -
http://www.artificial-intelligence.big-data/book# namespace.

The <rdf:Description> element contains the description of the resource identified by
the rdf : about attribute.

The elements <book:author>, <book:company>, <book:year>, and so on are properties
of the resource.
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W3C provides an online validator service (https://www.w3.0org/RDF/Validator/), which

validates the RDF in terms of its syntax and generates tabular and graphical views of the
RDF document:

e« = C & Secure https:/fwwww3.orgr'RDFAValidator/rdfval®#messages @ * | q

Validation Results

Your RDF document validated successfully.

Iriples of the Data Model

Number Subject Predicate Object

1 http://www.artificial-intelligence.big- http: //www.artificial-intelligence.big- "Satya
data/hook/Hit-Refresh data/boocktauthor Nadel la"

| http://www.artificial-intelligence.big- http://www.artificial-intelligence.biqg- — "

2 . S — ; Microsoft
data/book/Hit-Refresh data/boocki#company

. http://www.artificial-intelligence.big- http: //www.artificial-intelligence.big- N

3 . - ; : 2017
data/book/Hit-Refresh data/bookivear

P http://www.artificial-intelligence.big- http: //www.artificial-intelligence.big- "Phil
data/book/Shoe-Dog data/boockfauthor KEnight"

3 http: //www.artificial-intelligence.big- http: //www.artificial-intelligence.big- "Dk

' data/book/Shoe-Dog data,/boockfcompany )

c http: //www.artificial-intelligence.big http://www.artificial=-intelligence.big- "2016"
data/book/Shoe=-Dog data/bookivear

RDF containers

RDF containers are used to describe groups of things. Here is an example:

<rdf:Description
rdf:about="http://wvww.artificial-intelligence.big-data/bock/Hit-Refresh">
<book:author>Satya Nadella</book:author>
<book:company>Microsoft</book:company>
<book:year>2017</book:year>
<book:chapters>
<rdf:Bag>
<rdf:11>1. From Hyderabad to Redmond</rdf:1li>
<rdf:11>2. Learning to Lead</rdf:1i>
<rdf:11>3. New Mission, New Momentum</rdf:1li>

</rdf :Bag>
</book:chapters>
</rdf:Description>

The <rdf:Bag> element is used to describe a list of values that do not have to be in a
specific order.
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<rdf:Seqg> is similar to <rdf : Bag>. However, the elements represent an ordered list.

<rdf:Alt>is used to represent a list of alternate values for the element.

RDF classes

The RDF classes are listed in the following images:

Element Class of Subcdlass of
rdfs:Class All classes

rdfs:Datatype Data types Class
rdfs:Resource All resources Class
rdfs:Container Containers Resource
rdfs:Literal Literal values (text and numbers) |Resource
rdf:List Lists Resource
rdf:Property Properties Resource
rdf:Statement Statements Resource
rdf: Alt Containers of alternatives Container
rdf:Bag Unordered containers Container
rdf:Seq Ordered containers Container
rdfs:ContainerMembershipProperty |Container membership properties |Property
rdf: XMLLiteral XML literal values Literal

RDF properties

The RDF properties are listed as follows:

Element Domain Description

rdfs:domain Property |Class The domain of the resource

rdfs:range Property |Class The range of the resource

rdfs:subPropertyOf |Property |Property |The property is a sub property of a property
rdfs:subClassOf Class Class The resource is a subclass of a class
rdfs:comment Resource |Literal The human readable description of the resource
rdfs:label Resource |Literal The human readable label (name) of the resource
rdfs:isDefinedBy Resource _Resnurce The definition of the resource

rdfs:seeAlso Resource |Resource |The additional information about the resource
rdfs:member Resource |Resource |The member of the resource

rdf:first List Resource

rdf:rest List List

rdf:subject Statement |Resource | The subject of the resource in an RDF Statement
rdf:predicate Statement |Resource [The predicate of the resource in an RDF Statement
rdf:object Statement |Resource | The object of the resource in an RDF Statement
rdf:value Resource |Resource |The property used for values

rdf:type Resource |Class The resource is an instance of a class
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RDF attributes

The various RDF attributes are listed as follows:

[ Attribute — Description |
rdf:about Defines the resource being descnbed
rdf:Description Container for the description of a resource
rdf:resource Defines a resource to identify a property
rdf:datatype Defines the data type of an element
rdf:ID Defines the ID of an element
rdf:li Defines a list
rdf:_n Defines a node
rdf:nodelD Defines the ID of an element node
rdf:parseType Defines how an element should be parsed
rdf:RDF The root of an RDF document
xml:base Defines the XML base
xml:lang Defines the language of the element content

Using OWL, the Web Ontology Language

While the RDF and corresponding schema definitions (RDFS) provide a structure for the
semantic view of the information assets, there are some limitations with RDFS. RDEFES cannot
describe the entities in sufficient detail. There is no way to define localized ranges for the
entity attributes, and the domain-specific constraints cannot be explicitly expressed. The
existence or non-existence of a related entity, along with cardinality constraints (one-to-one,
one-to-many, and so on), cannot be represented with RDFS. It is difficult to represent
transitive, inverse, and symmetrical relationships. One of the important aspects of real-
world entity relationships is logical reasoning and inferences, without explicit mention of
the relationship. RDFS cannot provide reasoning support for the related entities.

The Web Ontology Language (OWL) extends and builds on top of RDF/RDFS. OWL is a
family of knowledge representation languages for authoring Ontologies.

Actually, OWL is not a real acronym. The language started out as WOL.
However, the working group disliked the acronym WOL. Based on
conversations within the working group, OWL had just one obvious
pronunciation that was easy on the ear, and it opened up great
opportunities for a logo—owls are associated with wisdom!
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For building intelligent systems that can communicate across domains, there is a need to
overcome the limitations of RDFS and equip the machines with access to structured
collections of knowledge assets and sets of inference rules that can be used for automated
reasoning. OWL provides formal semantics for knowledge representation and attempts to
describe the meaning of the entities and their relationships and reasoning precisely.

There are three species of OWL.:

e OWL DL: This is used for supporting description logic. This supports maximum
expressiveness and logical reasoning capabilities. This is characterized by:
e Well-defined semantics
e Well-understood formal properties for the entities
e The ease of implementation of known reasoning algorithms
¢ OWL Full: This is based on RDFS-compatible semantics. It complements the

predefined RDF and OWL vocabulary. However, with OWL Full, the software
cannot completely reason and inference.

e OWL Lite: This is used for expressing taxonomy and simple constraints such as
zero-to-one cardinality.

OWL represents entities as classes. For example, let's define an entity of P1ayGround with
OWL:

<owl:Class rdf:ID="PlayGround">
Now, define FootballGround and state that FootballGroundis a type of PlayGround:

<pwl:Class rdf:ID="FootbhallGround">
<rdf:subClass0Of rdf:resource="#PlayGround"/>
</owl:Class>
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OWL provides several other mechanisms for defining classes:

e equivalentClass: Represents that the two classes (across Ontologies and
domains) are synonymous.

e disjointWith: Represents that an instance of a class cannot be an instance of
another class. For example, FootballGround and HockyGround are stated as
disjointed classes.

* Boolean combinations:

e unionOf: Represents that a class contains things that are from
more than one class

e intersectionOf: Represents that a class contains things that
are in both one and the other

e complementOf: Represents that a class contains things that are not
other things

SPARQL query language

With a generic understanding of Ontologies, the RDF, and OWL, we are able to
fundamentally understand how intelligent systems can communicate with each other
seamlessly with a semantic view of the world. With a semantic worldview, the entities come
to life by translating data assets into information and information assets into knowledge. It
is imperative that there is a common language to leverage a semantic worldview so that
heterogeneous systems can communicate with each other. SPARQL is a W3C standard that
is attempting to be the global query language with the primary goal of interoperability.
SPARQL is a recurring acronym and stands for SPARQL Protocol and RDF Query
Language. As the name indicates, it is a query language for querying knowledge (as triples)
stored in RDF format. Traditionally, we stored the information in relational databases in
tabular format. The relational database view of the entities can easily be represented as
triples. For example, let us once again consider the BOOK table:

Book_TID Title Author Company Year
1 Hit Refresh Satya Nadella Microsoft 2017
2 Shoe Dog Phil Knight Nike 2016
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Here, the row identifier (Book_ID and Tit1le) is the subject, the column name is the
predicate, and the column value is the object. For example:

A Trple:

{1: Hit Refresh} {Author} {Satya Nadella]

Subiject (Entity Name) Predicate (Attribute Name) Object (Attribute Value)

The subjects and predicates are represented using URIs which universally identify specific
subjects and predicates as resources:

http://www.artificial-intelligence.big-data/book#
http://www.artificial-intelligence.big-data/book#autheor "Satva Nadella"

Turtle syntax allows an RDF graph to be completely written in a compact
and natural text form. It provides abbreviations for common usage
patterns and datatypes. This format is compatible with the triple pattern
syntax of SPARQL.

Let us use the turtle syntax to represent the book table in RDF format:

@prefix book: <http://www.artificial-intelligence.big-data/book#>

book:1 book:Title "Hit Refresh"
book:1 bock:Author "Satyva Nadella™
book:1 book:Company "Microsoft"
book:1 book:Year "Z017"

book:2 book:Title "Shoe Dog"”
book:Z2 book:Author "Phil KEnight"
book:2 book:Company "Nike"

book:Z2 book:Year "2016"

Let us use a simple SPARQL query for getting a list of books published in the year 2017:

PREFIX book: <http://www.artificial-intelligence.big-data/boock#>
SELECT ?books

WHERE

{

?books bocok:year "2017"
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We have the following result:

?books
book:1

Here is another SELECT query, which fetches more data elements from the dataset:
PREFIX bocok: <http://www.artificial-intelligence.big-data/book#>

SELECT 7?bocks 7bookName 7?company
WHERE
{
?books book:year "2017"
?books book:title ?bookName
?books book:company 7Ycompany .

i

The result is as follows:

?books “hookName 7company
book:1 Hit Refresh Microsoft

While we are discussing role of Ontologies in the context of Artificial Intelligence for Big Data,
a complete reference to OWL and SPARQL is outside of the scope of this book. In the
following subsections, we will introduce a generic SPARQL language reference, which will
help us leverage Ontologies to build artificial intelligence.

Generic structure of an SPARQL query

The generic structure of SPARQL is as follows:

e PREFIX: Similar to the declaration of namespaces in the context of XML, and
package in the context of Java, or any similar programming languages, PREFIX is
the SPARQL equivalent, which ensures uniqueness among entity representations
and eliminates the need for typing long URI patterns within SPARQL code.

® SELECT /ASK/DESCRIBE / CONSTRUCT:

e SELECT: This is an equivalent of SQL's SELECT clause. It defines
the attributes that are required to be fetched from the RDF triples
that fulfill the selection criteria.

o ASK: This returns a Boolean value of true or false depending on the

availability of the RDF triples, and based on the selection criteria
within the RDF knowledge base.
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e DESCRIBE: This query construct returns a graph containing all the
available triples from the RDF knowledge base which match the
selection criteria.

® CONSTRUCT: This is very handy when creating a new RDF graph
from an existing RDF based on selection criteria and filter
conditions. This is the equivalent of XSLT in the context of XML.
XSLT transforms XML in the intended format.

e FROM: Defines the data source of the RDF endpoint, against which the query will
be run. This is the SQL equivalent of the FROM <TABLE_NAME> clause. The
endpoint can be a resource on the internet or a local data store accessible to the
query engine.

e WHERE: Defines the part of the RDF graph we are interested in. This is the
equivalent of the WHERE SQL clause which defines filter conditions to fetch
specific data from the entire dataset.

Additional SPARQL features

The additional SPARQL features are as follows:

e Optional matching: Unlike traditional relational data stores, where the
database schemas and constraints are predefined for the structured
representation of data, in the big data word we deal with unstructured datasets.
The attributes of the two resources of the same type may be different. Optional
matching comes in handy when handling heterogeneous representations of the
entities. The OPTIONAL block is used to select the data elements if they exist.

e Alternative matching: Once again, considering the unstructured nature of
knowledge assets, alternating matching provides a mechanism to return
whichever properties are available.

e UNION: This is in contrast to the OPTIONAL pattern. In the case of UNION, at least
one of the datasets must find a match given the query criteria.

e DISTINCT: This is the equivalent of the DISTINCT SQL clause, which excludes
multiple occurrences of the same triple within the result.
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e ORDER BY: Instructs the query to sequence results by a specific variable either in
ascending or descending order. This is also equivalent to ORDER BY clause in
SQL.

e FILTERS and regular expressions: SPARQL provides features to restrict the result
set triples by using expressions. Along with mathematical and logical
expressions, SPARQL allows for the use of regular expressions to apply filters on
datasets based on textual patterns.

e GROUP BY: This allows the grouping of the resulting RDF triples based on one or
more variables.
e HAVING: This facilitates a selection of the query results at the group level.

e SUM, COUNT, AVG, MIN, MAX, and so on are the functions available to be applied at
the group level.

Building intelligent machines with Ontologies

In this chapter, we have looked at the role of Ontology in the management of big data assets
as knowledge repositories, and understood the need for computational systems to perceive
the data as things instead of strings. Although some of the big systems and web search
engines use a semantic world view, the adoption of Ontology as a basis for systems is slow.
The custodians of data assets (governments and everyone else) need to model knowledge
assets in a consistent and standardized manner in order for us to evolve current
computational systems into intelligent systems.

Let us consider a use case that leverages Ontology-based knowledge graphs in order to
simplify the flight boarding process. We have all experienced a hugely manual and time-
consuming process when boarding a flight. From the time we enter the airport to the time
we board the flight, we go through a number of security checks and experience document
verification. In a connected world where all the knowledge assets are standardized and
defined as domain-specific Ontologies, it is possible to develop intelligent agents to make
the flight boarding process hassle free and seamless.
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Let us define the generic characteristics of an intelligent agent:

l
s

A little expansion on the characteristics is as follows:

e Goals: Every intelligent system should have a well defined set of goals. These
goals govern the rational decisions taken by the intelligent system and drive
actions and hence results. For example, in the case of an intelligent agent that is
responsible for the flight boarding process, one of the goals is to restrict access to
anyone who does not pass all security checks, even if the person has a valid air
ticket. In defining the goals for intelligent agents, one of the prime considerations
should be that the Al agent or systems should complement and augment human
capabilities.

e Environment: The intelligent agent should operate within the context of the
environment. Its decisions and actions cannot be independent of the context. In
our example use case, the environment is the airport, the passenger gates, flight
schedules, and so on. The agents perceive the environment with various sensors,
for example video cameras.

e Data Assets: The intelligent agent needs access to historical data in terms of the
domain and the context in which it operates. The data assets can be available
locally and globally (internet endpoints). These data assets ideally should be
defined as RDF schema structures with standardized representations and
protocols. These data assets should be queryable with standard languages and
protocols (SPARQL) in order to ensure maximum interoperability.

[45]
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 Model: This is where the real intelligence of the agent is available as algorithms
and learning systems. These models evolve continuously based on the context,
historical decisions, actions, and results. As a general rule, the model should
perform better (more accurately) over a period of time for similar contextual
inputs.

» Effectors: These are the tangible aspects of the agent which facilitate actions. In
the example of an airline passenger boarding agent, the effector can be an
automated gate opening system which opens a gate once all the passengers are
fully validated (having a valid ticket, identity, and no security check failures).
The external world perceives the intelligent agent through effectors.

e Actions and Results: Based on the environmental context, the data assets, and the
trained models, the intelligent agent makes decisions that trigger actions through
the effectors. These actions provide results based on the rationality of the decision
and accuracy of the trained model. The results are once again fed into model
training in order to improve accuracy over a period of time.

At a high level, the method of the intelligent agent, which facilitates the flight boarding
process, can be depicted as follows:

1. When a passenger walks into the airport, a video camera reads the image and
matches it to the data assets available to the agent. These data assets are Ontology
objects which are loosely coupled and have flexibility of structure and attributes.
Some of the inferences are made at the first level of matching to correctly identify
the person who has entered the airport.

2. If the person cannot be identified with the video stream, the first airport gate does
not open automatically and requires a fingerprint scan from the passenger. The
fingerprint scan is validated against the dataset, which is once again an Ontology
object representation of the person entity. If the person is not identified at this
stage, they are flagged for further manual security procedures.

3. Once the person is correctly identified, the agent scans the global active ticket
directory in order to ensure that the person has a valid ticket for a flight that
departs from the airport in a reasonable time window. The global ticket directory
and the flight database is also available as Ontology objects for the agent to refer
to in real time.

4. Once ticket validity is ensured, a boarding pass is generated and delivered to the
passenger's smartphone, once again by referring to the person Ontology to derive
personal details in a secure manner. The real-time instructions for directions to
the gate are also sent to the device.
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The agent can seamlessly guide the passenger to the appropriate boarding gate. The system
can be built easily once all the heterogeneous data sources are standardized and have
Ontological representation, which facilitates maximum interoperability and eliminates a
need to code diverse knowledge representations. This results in an overall reduction of
complexity in the agent software and an increase in efficiency.

Ontology learning

With the basic concepts on Ontologies covered in this chapter, along with their significance
in building intelligent systems, it 1s imperative that for a seamlessly connected world, the
knowledge assets are consistently represented as domain Ontologies. However, the process
of manually creating domain-specific Ontologies requires lots of manual etfort, validation,
and approval. Ontology learning is an attempt to automate the process of the generation of
Ontologies, using an algorithmic approach on the natural language text, which is available
at the internet scale. There are various approaches to Ontology learning, as follows:

e Ontology learning from text: In this approach, the textual data is extracted from
various sources in an automated manner, and keywords are extracted and
classified based on their occurrence, word sequencing, and patterns.

e Linked data mining; In this processes, the links are identified in the published
RDF graphs in order to derive Ontologies based on implicit reasoning.

e Concept learning from OWL: In this approach, existing domain-specitic
Ontologies are leveraged for expand the new domains using an algorithmic
approach.

e Crowdsourcing: This approach combines automated Ontology extraction and
discovery based on textual analysis and collaboration with domain experts to
define new Ontologies. This approach works great since it combines the
processing power and algorithmic approaches of machines and the domain
expertise of people. This results in improved speed and accuracy.

Here are some of the challenges of Ontology learning:

* Dealing with heterogeneous data sources: The data sources on the internet, and
within application stores, differ in their forms and representations. Ontology
learning faces the challenge of knowledge extraction and consistent meaning
extraction due to the heterogeneous nature of the data sources.
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¢ Uncertainty and lack of accuracy: Due the the inconsistent data sources, when
Ontology learning attempts to define Ontology structures, there is a level of
uncertainty in terms of the intent and representation of entities and attributes.
This results in a lower level of accuracy and requires human intervention from
domain experts for realignment.

e Scalability: One of the primary sources for Ontology learning is the internet,
which is an ever growing knowledge repository. The internet is also an
unstructured data source for the most part and this makes it difficult to scale the
Ontology learning process to cover the width of the domain from large text
extracts. One of the ways to address scalability is to leverage new, open source,
distributed computing frameworks (such as Hadoop).

* Need for post-processing: While Ontology learning is intended to be an
automated process, in order to overcome quality issues, we require a level of
post-processing. This process need to be planned and governed in detail in order
to optimize the speed and accuracy of new Ontology definitions.

Ontology learning process

The Ontology learning process consists of six Rs:

Retrieve

Release

Represent

Re-align

[48]
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They are explained as followed:

Retrieve: The knowledge assets are retrieved from the web and application
sources from the domain specific stores using web crawls and protocol-based
application access. The domain specific terms and axioms are extracted with a
calculation of TF/IDF values and by the application of the C-Value / NC Value
methods. Commonly used clustering techniques are utilized and the statistical
similarity measures are applied on the extracted textual representations of the
knowledge assets.

Refine: The assets are cleansed and pruned to improve signal to noise ratio. Here,
an algorithmic approach is taken for refinement. In the retinement step, the terms
are grouped corresponding to concepts within the knowledge assets.

Represent: In this step, the Ontology learning system arranges the concepts in a
hierarchical structure using the unsupervised clustering method (at this point,
understand this as a machine learning approach for the segmentation of the data;
we will cover the details of unsupervised learning algorithms in the next
chapter).

Re-align: This is a type of post-processing step that involves collaboration with
the domain experts. At this point, the hierarchies are realigned for accuracy. The
Ontologies are aligned with instances of concepts and corresponding attributes
along with cardinality constraints (one-to-one, one-to-many, and so on). The rules
for defining the syntactic structure are defined in this step.

Reuse: In this step, similar domain-specific Ontologies with connection endpoints
are reused, and synonyms are defined in order to avoid parallel representations
of the same concepts, which are finalized across other Ontology definitions.

Release: In this step, the Ontologies are released for generic use and further
evolution.
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Frequently asked questions

Let's have a small recap of the chapter:
Q: What are Ontologies and what is their significance in intelligent systems?

A: Ontology as a generic term means the knowledge of everything that exists in this
universe. As applicable to information systems, Ontologies represent a semantic and
standardized view of the world's knowledge assets. They are domain-specific
representations of knowledge and models related to real world entity representations. The
intelligent systems that link heterogeneous knowledge domains need to have access to
consistent representations of knowledge in order to interoperate and understand contextual
events to make inferences and decisions, which trigger actions and hence results, in order to
complement human capabilities.

Q: What are the generic properties of Ontologies?
A: Ontologies should be complete, unambiguous, domain-specific, generic, and extensible.
Q: What are the various components of Ontologies?

A: Various Ontology components are Concepts, Slots, Relationships, Axioms, Instances, and
Operations.

Q: What is the significance of a universal data format in knowledge management systems?

A: The Resource Description Format (RDF) intends to be the universal format for
knowledge representation, allowing heterogeneous systems to interact and integrate in a
consistent and reliable manner. This forms the basis of the semantic view of the world.

Q: How is it possible to model the worldview with Ontologies? Is it possible to automate
the Ontology definition process considering vast and ever-increasing knowledge stores in
the universe?

A: Knowledge assets are growing exponentially in size with time. In order to create an
Ontological representation of these assets, we need an automated approach, without which
it will be ditficult to catch up with the volume. Ontology learning takes an algorithmic
approach by leveraging distributed computing frameworks to create a baseline model of the
worldview. The Ontology learning process retrieves textual, unstructured data from
heterogeneous sources, refines it, and represents it in a hierarchical manner. This is
realigned with post-processing by reusing existing domain-specific knowledge assets, and
finally released for generic consumption by intelligent agents.
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Summary

In this chapter, we have explored the need for a standardized and consistent representation
of the world's knowledge for the evolution of intelligent systems, and how these

systems are modeled against the human brain. Ontologies, as applied to information
systems, is a W3C standard that defines the generic rules for knowledge representation.

This chapter introduced the basic concepts of the RDF, OWL, and a query language to
extract the knowledge representations within Ontology instances through SPARQL.

In this chapter, we have explored how to use Ontologies to build intelligent agents by
looking at the generic characteristics of the intelligent agents. In the end, we learned how
Ontology learning facilitates the speedy adoption of Ontologies for the worldview, with
consistent knowledge assets and representations.

[n the next chapter, we will get introduced to fundamental concepts of Machine Learning
and how Big Data facilitates the learning process.
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In the first two chapters, we set the context for intelligent machines with the big data
revolution and how big data is fueling rapid advances in artificial intelligence. We also
emphasized the need for a global vocabulary for universal knowledge representation. We
have also seen how that need is fulfilled with the use of ontologies and how ontologies help
construct a semantic view of the world.

The quest is for the knowledge, which is derived from information, which is in turn derived
from the vast amounts of data that we are generating. Knowledge facilitates a rational
decision-making process for machines that complements and augments human capabilities.
We have seen how the Resource Description Framework (RDF) provides the schematic
backbone for the knowledge assets along with Web Ontology Language (OWL)
fundamentals and the query language for RDFs (SPARQL).

In this chapter, we are going to look at some of the basic concepts of machine learning and
take a deep dive into some of the algorithms. We will use Spark’s machine learning
libraries. Spark is one of the most popular computer frameworks for the implementation of
algorithms and as a generic computation engine on big data. Spark fits into the big data
ecosystem well, with a simple programming interface, and very effectively leverages the
power of distributed and resilient computing frameworks. Although this chapter does not
assume any background with statistics and mathematics, it will greatly help if the reader
has some programming background, in order to understand the code snippets and to try
and experiment with the examples.

[n this chapter, we will see broad categories of machine learning in supervised and
unsupervised learning, before taking a deep dive, with examples, into:

e Regression analysis
e Data clustering
e K-means
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e Data dimensionality reduction
e Singular value decomposition
e Principal component analysis (PCA)

In the end, we will have an overview of the Spark programming model and Spark's
Machine Learning library (Spark MLIib). With all this background knowledge at our
disposal, we will implement a recommendation system to conclude this chapter.

Supervised and unsupervised machine
learning

Machine learning at a broad level is categorized into two types: supervised and
unsupervised learning. As the name indicates, this categorization is based on the
availability of the historical data or the lack thereof. In simple terms, a supervised machine
learning algorithm depends on the trending data, or version of truth. This version of truth is
used for generalizing the model to make predictions on the new data points.

Let's understand this concept with the following example:

Independent Variable
//, Dependent Variable
-~

X y h
100 320
125 340
Input Values — 150 380/ +— Target Values
175 400
200 410
Figure 3.1 Simple training data: input (independent) and target (dependent) variables

Consider that the value of the y variable is dependent on the value of x. Based on a change
in the value of x, there is a proportionate change in the value of y (think about any examples
where the increase or decrease in the value of one factor proportionally changes the other).
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Based on the data presented in the preceding table, it is clear that the value of y increases

with an increase in the value of x. That means there is a direct relationship between x and y.

In this case, x is called an independent, or input, variable and y is called a dependent, or
target, variable. In this example, what will be the value of y when x is 2207 At this point,

let's understand a fundamental difference between traditional computer programming and
machine learning when it comes to predicting the value of the y variable for a specific value

of x=220. The following diagram shows the traditional programming process:

X =220

y=x* 2,55

Program

Traditional Computer Programming

y =562

Figure 3.2 Traditional computer programming process

The traditional computer program has a predefined function that is applied on the input
data to produce the output. In this example, a traditional computer program calculates the

value of the (y) output variable as 562.
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Have a look at the following diagram:

X y
100 320
125 340
150 380
175 400
200 410 y = f(x)

Program

Machine Learning

Figure 3.3 Machine learning process

In the case of supervised machine learning, the input and output data (training data) are
used to create the program or the function. This is also termed the predictor function. A
predictor function is used to predict the outcome of the dependent variable. In its simplest
form, the process of defining the predictor function is called model training. Once a
generalized predictor function is defined, we can predict the value of the target variable (y)
corresponding to an input value (x). The goal of supervised machine learning is to develop
a finely-tuned predictor function, h(x), called hypothesis. Hypothesis is a certain function
that we believe (or hope) is similar to the true function, the target function that we want to
model. Let's add some more data points and plot those on a two-dimensional chart, like the

following diagram:

[55]
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Figure 3.4 Supervised learning (linear regression)

We have plotted the input variable on the x axis and the target variable on the y axis. This is
a general convention used and hence the input variable is termed x and the output variable
is termed y. Once we plot the data points from the training data, we can visualize the
correlation between the data points. In this case, there seems to a direct proportion between
x and y. In order for us to predict the value of y when x =220, we can draw a straight line
that tries to characterize, or model, the truth (training data). The straight line represents the
predictor function, which is also termed as a hypothesis.

Based on the hypothesis, in this case our model predicts that the value of y when x =220
will be ~430. While this hypothesis predicts the value of y for a certain value of x, the line
that defines the predictor function does not cover all the values of the input variable. For
example, based on the training data, the value of y =380 at x = 150. However, as per the
hypothesis, the value comes out to be ~325. This differential is called prediction error (~55
units in this case). Any input variable (x) value that does not fall on the predictor function
has some prediction error based on the derived hypothesis. The sum of errors for across all
the training data is a good measure of the model's accuracy. The primary goal of any
supervised learning algorithm is to minimize the error while defining a hypothesis based on
the training data.
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A straight-line hypothesis function is as good as an illustration. However, in reality, we will
always have multiple input variables that control the output variable, and a good predictor
function with minimal error will never be a straight line. When we predict the value of an
output variable at a certain value of the input variable it is called regression. In certain
cases, the historical data, or version of truth, is also used to separate data points into
discrete sets (class, type, category). This is termed classification. For example, an email can
be flagged as spam or not based on the training data. In the case of classification, the classes
are known and predefined. The following image shows the classification with the Decision
Boundary:

1.2
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O A A A
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0 s |
1
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] ]
[
0.4
0.2
]
]
0
0 0.2 0.4 0.6 0.8 1 1.2

Figure 3.5 Classification with Decision Boundary

Here is a two-dimensional training dataset, where the output variables are separated by a
Decision Boundary. Classification is a supervised learning technique that defines the
Decision Boundary so that there is a clear separation of the output variables.
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Regression and classification, as discussed in this section, require historical data to make
predictions about the new data points. These represent supervised learning techniques. The
generic process of supervised machine learning can be represented as follows:

Model
Training

Training Set

Model Tuning

Model

Validation Set Validation

Figure 3.6 Generic supervised learning process

The labeled data, or the version of truth, is split into training and validation sets with
random sampling. Typically, an 80-20 rule is followed with the split percentage of the
training and validation sets. The training set is used for training the model (curve fitting) to
reduce overall error of the prediction. The model is checked for accuracy with the validation
set. The model is further tuned for the accuracy threshold and then utilized for the
prediction of the dependent variables for the new data.

With this background in machine learning, let's take a deep dive into various techniques of
supervised and unsupervised machine learning.

The Spark programming model

Before we deep dive into the Spark programming model, we should first arrive at an
acceptable definition of what Spark is. We believe that it is important to understand what
Spark is, and having a clear definition will help you to choose appropriate use cases where
Spark is going to be useful as a technological choice.
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There is no one silver bullet for all your enterprise problems. You must pick and choose the
right technology from a plethora of options presented to you. With that, Spark can be
defined as:

Spark i1s a distributed in-memory processing engine and framework that provides you with
abstract APIs to process big volumes of data using an immutable distributed collection of
objects called Resilient Distributed Datasets. It comes with a rich set of libraries,
components, and tools, which let you write-in memory-processed distributed code in an
efficient and fault-tolerant manner.

Now that you are clear on what Spark is, let's understand how the Spark programming
model works. The following diagram represents a high-level component of the Spark
programming model:
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. N\

3 1k

Schedular Task Task

‘ _\ y

Task Task

Cluster Manager

Figure 3.7 Spark programming model
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As shown, all Spark applications are Java Virtual Machine (JVM)-based components
comprising three processes: driver, executor, and cluster manager. The driver program
runs as a separate process on a logically- or physically-segregated node and is responsible
for launching the Spark application, maintaining all relevant information and
configurations about launched Spark applications, executing application DAG as per user
code and schedules, and distributing tasks across different available executors.
Programmatically, the main () method of your Spark code runs as a driver. The driver
program uses a SparkContext or SparkSession object created by user code to coordinate
all Spark cluster activity. SparkContext or SparkSession is an entry point for executing any
code using a Spark-distributed engine. To schedule any task, the driver program converts
logical DAG to a physical plan and divides user code into a set of tasks. Each of those tasks
are then scheduled by schedulers, running in Spark driver code, to run on executors. The
driver is a central piece of any Spark application and it runs throughout the lifetime of the
Spark application. If the driver fails, the entire application will fail. In that way, the driver
becomes a single point of failure for the Spark application.

Spark executor processes are responsible for running the tasks assigned to it by the driver
processes, storing data in in-memory data structures called RDDs, and reporting its code-
execution state back to the driver processes. The key point to remember here is that, by
default, executor processes are not terminated by the driver even if they are not being used
or executing any tasks. This behavior can be explained with the fact that the RDDs follow a
lazy evaluation design pattern. However, even if executors are killed accidentally, the Spark
application does not stop and those executors can be relaunched by driver processes.

Cluster managers are processes that are responsible for physical machines and resource
allocation to any Spark application. Even driver code is launched by the cluster manager
processes. The cluster manager is a pluggable component and is cynical to the Spark user
code, which is responsible for data processing. There are three types of cluster managers
supported by the Spark processing engine: standalone, YARN, and Mesos.

Further reference to about Spark RDDs and cluster managers can be found
at the following links:

® https://spark.apache.org/docs/latest/cluster—-overview,
html

® https://spark.apache.org/docs/2.2.0/rdd-programming-
guide.html#resilient—-distributed-datasets—rdds
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The Spark MLIib library

The Spark MLIib is a library of machine learning algorithms and utilities designed to make
machine learning easy and run in parallel. This includes regression, collaborative filtering,
classification, and clustering. Spark MLIib provides two types of APl included in the
packages, namely spark.mllib and spark.ml, where spark.ml1ib is built on top of
RDDs and spark.ml is built on top of the DataFrame. The primary machine learning API for
Spark is now the DataFrame-based API in the spark.ml package. Using spark.ml with the
DataFrame API is more versatile and flexible, and we can have the benefits provided by
DatakFrame, such as catalyst optimizer and spark.ml1ib, which is an RDD-based API that
is expected to be removed in the future.

Machine learning is applicable to various data types, including text, images, structured
data, and vectors. To support these data types under a unified dataset concept, Spark ML
includes the Spark SQL DataFrame. It is easy to combine various algorithms in a single
workflow or pipeline.

The following sections will give you a detailed view of a few key concepts in the Spark ML
API.

The transformer function

This is something that can transform one DataFrame into another. For instance, an ML
model can transform a DatakFrame with features into a DataFrame with predictions. A
transformer contains feature transformer and learned model. This uses the transform ()
method to transform one DataFrame into another. The code for this is given for your
reference:

import org.apache.spark.ml.,feature.Tokenizer

val df = spark.createDataFrame (Seq/( ("This 1s the Transformer", 1.0),
("Transformer is pipeline component”, 0.0))).toDF( "text", "label") wval
tokenizer = new Tokenizer () .setInputCol ("text") .setOutputCol ("words") wval
tokenizedDF = tokenlzer.transform(df)
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The estimator algorithm

An estimator is another algorithm that can produce a transformer by fitting on a
DataFrame. For instance, a learning algorithm can train on a dataset and produce a model.
This produces a transformer by learning an algorithm. It uses the fit () method to produce
a transformer. For instance, the Naive Bayes learning algorithm is an estimator that calls the
fit () method and trains a Naive Bayes model, which is a transformer. We will use the

following code to train the model:

import org.apache.spark.ml.classification.NaiveBaves
val nb = new NaiveBaves () .setModelType ("multinomial™)

val model = nb.fit (Training_ DataDF)

Pipeline

Pipeline represents a sequence of stages, where every stage is a transformer or an
estimator. All these stages run in an order and the dataset that is input is altered as it passes
through every stage. For the stages of transformers, the transform () method is used,
while for the stages of estimators, the fit () method is used to create a transformer.

Every DataFrame that is output from one stage is input for the next stage. The pipeline is
also an estimator. Therefore, it produces PipelineModel once the £it () method is

run. PipelineModel is a transformer. PipelineModel contains the same number of stages
as in the original pipeline. PipelineModel and pipelines make sure that the test and
training data pass through similar feature-processing steps. For instance, consider a
pipeline with three stages: Tokenizer, which will tokenize the sentence and convert it into a
word with the use of Tokenizer.transform(); HashingTF, which is used to represent a
string in a vector form as all ML algorithms understand only vectors and not strings and
this uses the HashingTF.transform () method; and NaiveRaves, an estimator that is
used for prediction.

We can save the model at HDFS1location using the save () method, so in future we can
load it using the 1oad method and use it for prediction on the new dataset. This loaded
model will work on the feature column of newbDataset, and return the predicted column
with this newDataset will also pass through all the stages of the pipeline:

import org.apache.spark.ml.{Pipeline, PipelineModel}
import org.apache.spark.ml.feature.{HashingTF, Tckenizer}
import org.apache.spark.ml.classification.NaiveBayes
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val df = spark.createDataFrame (Seq/(
("This 1s the Transformer", 1.0),
("Transformer 1is pipeline component™, 0.0)
) ) .toDE( "text"™, "label")

val tokenizer = new Tokenlzer () .setInputCol ("text") .setOutputCol ("words")

val
HashingTF=newHashingTF () .setNumFeatures (1000) .setInputCol (Ltokenizer.getQutp
utCeol) .setOutputCol ("features”)

val nb = new NaiveBayes () .setModelType("multinomial")

val pipeline = new Plpeline () .setStages (Array (tokenizer, hashingTF, nb))
val model = pipeline.fit (df)

model .save (" /HDFSlocation/Path/")

val loadModel = PipelineModel.load(("/HDFSlocation/Path/")

val PredictedData = loadModel .transform(newlDataset)

Regression analysis

Regression analysis is a statistical modeling technique that is used for predicting or
forecasting the occurrence of an event or the value of a continuous variable (dependent
variable), based on the value of one or many independent variables. For example, when we
want to drive from one place to another, there are numerous factors that affect the amount
of time it will take to reach the destination, for example, the start time, distance, real-time
traffic conditions, construction activities on the road, and weather conditions. All these
factors impact the actual time it will take to reach the destination. As you can imagine, some
factors have more impact than the others on the value of the dependent variable. In
regression analysis, we mathematically sort out which variables impact the outcome,
leading us to understand which factors matter most, which ones do not impact the outcome
in a meaningful way, how these factors relate to each other, and mathematically, the
quantified impact of variable factors on the outcome.

Various regression techniques that are used depend on the number and distribution of
values of independent variables. These variables also derive the shape of the curve that
represents predictor function. There are various regression techniques, and we will learn
about them in detail in the following sections.
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Linear regression

With linear regression, we model the relationship between the dependent variable, y, and
an explanatory variable or independent variable, x. When there is one independent variable,
it is called simple linear regression, and in the case of multiple independent variables, the
regression is called multiple linear regression. The predictor function in the case of linear
regression 1s a straight line (refer to figure 4 for an illustration). The regression line defines
the relationship between x and y. When the value of y increases when x increases, there is a
positive relationship between x and y. Similarly, when x and y are inversely proportional,
there is a negative relationship between x and y. The line should be plotted on x and y
dimensions to minimize the difference between the predicted value and the actual value,
called prediction error.

In its simplest form, the linear regression equation is:
y=a -+ bx

This is the equation of a straight line, where y is the value of dependent variable, a is the y
intercept (the value of y where the regression line meets the y axis), and b is the slope of the
line. Let's consider the least square method in which we can derive the regression line with
minimum prediction error.

Least square method

Let's consider the same training data we referred to earlier in this chapter. We have values
for the independent variable, x, and corresponding values for the dependent variable, y.
These values are plotted on a two-dimensional scatter plot. The goal is to draw a regression
line through the training data so as to minimize the error of our predictions. The linear
regression line with minimum error always passes the mean intercept for x and y values.
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The following figure shows the least square method:

Slope equation
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Figure 3.8 Least square method

The formula for calculating the y intercept is as follows:

2. (z—2)(y—y)
> (¢—z)’

The least square method calculates the y intercept and the slope of the line with the

following steps:

Calculate the mean of all the x values (119.33).
Calculate the mean of all the y values (303.20).

A

combinations of x and v.

N o

Calculate difference from the mean for all the x and y values.
Calculate the square of mean difference for all the x values.

Multiply the mean difference of x by the mean difference of y for all the

Calculate the sum squares of all the mean differences of the x values (56743.33).
. Calculate the sum of mean difference products of the x and y values (90452.00).

8. The slope of the regression line is obtained by dividing the sum of the mean

difference products of x and y by the sum of the squares of all the mean

differences of the x values (90452.00 / 56743.33 = 1.594). In this training data, since
there is direct proportion between the x and y values, the slope is positive. This is

the value for b in our equation.
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