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Preface

Recent advances in artificial intelligence (Al) have placed great power into the
hands of humans. With great power comes a proportional level of responsibility.
Self-driving cars, chatbots, and increasingly accurate predictions of the future are
but a few examples of Al's ability to supercharge humankind's capacity for growth
and advancement.

Al is becoming a core, transformative path that is changing the way we think about
every aspect of our lives. It is impacting industry. It is becoming pervasive and
embedded in our everyday lives. Most excitingly, this is a field that is still in its
infancy: the Al revolution has only just begun.

As we collect more and more data and tackle that data with better and faster
algorithms, we can use Al to build increasingly accurate models and to answer
increasingly complex, previously intractable questions.

From this, it will come as no surprise that the ability to work with and fully utilize
AI will be a skill that is set only to increase in value. In this book, we explore various
real-world scenarios and learn how to apply relevant Al algorithms to a wide swath
of problems.

The book starts with the most basic Al concepts and progressively builds on these
concepts to solve increasingly difficult problems. It will use the initial knowledge
gleaned during the beginning chapters as a foundation to allow the reader to explore
and tackle some of the more complicated problems in Al By the end of the book, the
reader will have gained a solid understanding of many Al techniques and will have
gained confidence about when to use these techniques.

We will start by talking about various realms of AI. We'll then move on to discuss
more complex algorithms, such as extremely random forests, Hidden Markov
Models, genetic algorithms, artificial neural networks, convolutional neural
networks, and so on.

[xi]
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This book is for Python programmers looking to use Al algorithms to create real-
world applications. This book is friendly to Python beginners, but familiarity with
Python programming would certainly be helpful so you can play around with

the code. It is also useful to experienced Python programmers who are looking to
implement artificial intelligence techniques.

You will learn how to make informed decisions about the type of algorithms you
need to use and how to implement those algorithms to get the best possible results.
If you want to build versatile applications that can make sense of images, text,
speech, or some other form of data, this book on artificial intelligence will definitely
come to your rescue!

Who this book is for

This book is for Python developers who want to build real-world artificial
intelligence applications. This book is friendly to Python beginners, but being
familiar with Python would be useful to play around with the code. It will also
be useful for experienced Python programmers who are looking to use artificial
intelligence techniques in their existing technology stacks.

What this book covers

Chapter 1, Introduction to Artificial Intelligence

This chapter provides some basic definitions and groupings that will be used
throughout the book. It will also provide an overall classification of the artificial
intelligence and machine learning fields as they exist today.

Chapter 2, Fundamental Use Cases for Artificial Intelligence

Artificial Intelligence is a fascinating topic and a vast field of knowledge. In its
current state it generates more questions than it answers, but there are certainly
many places where artificial intelligence is being applied, in many instances without
us even realizing. Before we delve into the fundamental algorithms that drive Al,
we will analyze some of the most popular use cases for the technology as of today.

Chapter 3, Machine Learning Pipelines

Model training is only a small piece of the machine learning process. Data scientists
often spend a significant amount of time cleansing, transforming, and preparing
data to get it ready to be consumed by an Al model. Since data preparation is such a
time-consuming activity, we will present state-of-the-art techniques to facilitate this
activity as well as other components that a well-designed production data pipeline
should possess.

[ xii ]



Preface

Chapter 4, Feature Selection and Feature Engineering

Model performance can be improved by selecting the right dimensions to pass to

the model as well as discovering new dimensions that can enrich the input datasets.
This chapter will demonstrate how new features can be created from existing ones as
well as from external sources. It will also cover how to eliminate redundant or low-
value features.

Chapter 5, Classification and Regression Using Supervised Learning

This chapter defines in detail supervised learning. It provides a taxonomy of the
various methods and algorithms for problems that fall under this classification.

Chapter 6, Predictive Analytics with Ensemble Learning

Ensemble learning is a powerful technique that allows you to aggregate the power
of individual models. This chapter goes over the different ensemble methods

as well as guidance on when to use each of them. Finally, the chapter will cover
how to apply these techniques to real-world event prediction.

Chapter 7, Detecting Patterns with Unsupervised Learning

This chapter will explore the concepts of clustering and data segmentation and

how they are related to unsupervised learning. It will also cover how to perform
clustering and how to apply various clustering algorithms. It will show several
examples that allow the reader to visualize how these algorithms work. Lastly, it will
cover the application of these algorithms to perform clustering and segmentation in
real-world situations.

Chapter 8, Building Recommender Systems

This chapter will demonstrate how to build recommender systems. It will also show
how to persist user preferences. It will cover the concepts of nearest neighbor search
and collaborative filtering. Finally, there will be an example showing how to build

a movie recommendation system.

Chapter 9, Logic Programming

This chapter will cover how to write programs using logic programming. It will
discuss various programming paradigms and see how programs are constructed
with logic programming. It will highlight the building blocks of logic programming
and see how to solve problems in this domain. Finally, various Python program
implementations will be built for various solvers that tackle a variety of problems.

[ xiii ]
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Chapter 10, Heuristic Search Techniques

This chapter covers heuristic search techniques. Heuristic search techniques are
used to search through the solution space to come up with answers. The search is
conducted using heuristics that guide the search algorithm. Heuristics allow the
algorithm to speed up the process, which would otherwise take a long time to arrive
at the solution.

Chapter 11, Genetic Algorithms and Genetic Programming

We will discuss the basics of genetic programming and its importance in the field

of AL. We will learn how to solve simple problems using genetic algorithms. We will
understand some underlying concepts that are used to do genetic programming,.
We will then see how to apply this to a real-world problem.

Chapter 12, Artificial Intelligence on the Cloud

The cloud enables us to accelerate Al development, workloads, and deployment. In
this chapter, we will explore the different offerings from the most popular vendors
that enable and accelerate Al projects.

Chapter 13, Building Games with Artificial Intelligence

This chapter will cover how to build games using artiticial intelligence techniques.
Search algorithms will be used to develop winning game strategies and tactics.
Finally, intelligent bots will be built for a variety of games.

Chapter 14, Building a Speech Recognizer

This chapter will cover how to perform speech recognition. It will show how to
process speech data and extract features from it. Finally, it will demonstrate how
to use the extracted features to build a speech recognition system.

Chapter 15, Natural Language Processing

This chapter will focus on the important area of Al known as Natural Language
Processing (NLP). It will discuss various concepts such as tokenization, stemming,
and lemmatization to process text. It will also cover how to build a Bag of Words
model and use it to classify text. It will demonstrate how machine learning can be
used to analyze the sentiment of a given sentence. Lastly, it will show topic modeling
and go over the implementation of a system to identify topics in a document.

Chapter 16, Chatbots

Chatbots can help to save money and better serve customers by increasing
productivity and deflecting calls. In this chapter, we will cover the basics of chatbots
and the tools available to build them.

[ xiv]
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Finally, we will build a full-blown chatbot from scratch that will implement a
real-world use case including error handling, connecting it to an external API,
and deploying the chatbot.

Chapter 17, Sequential Data and Time Series Analysis

We will discuss the concept of probabilistic reasoning. We will learn how to apply
that concept to build models for sequential data. We will learn about the various
characteristics of time-series data. We will discuss Hidden Markov Models and how
to use them to analyze sequential data. We will then use this technique to analyze
stock market data.

Chapter 18, Image Recognition

We will discuss how to work with images in this chapter. We will learn how to detect
and track objects in a live video. We will then learn how to apply those techniques
to track parts of the human face.

Chapter 19, Neural Networks

We will discuss artificial neural networks. We will learn about perceptrons and

see how they are used to build neural networks. We will learn how to build single-
layered and multi-layered neural networks. We will discuss how a neural network
learns about the training data and builds a model. We will learn about the cost
function and backpropagation. We will then use these techniques to perform optical
character recognition.

Chapter 20, Deep Learning with Convolutional Neural Networks

We will discuss the basics of deep learning in this chapter. The reader will be
introduced to various concepts in convolutional neural networks and how they

can be used for image recognition. We will discuss various layers in a convolutional
neural network. We will then use these techniques to build a real-world application.

Chapter 21, Recurrent Neural Networks and Other Deep Learning Models

This chapter will continue to cover other types of deep learning algorithms. It

will start with coverage of recurrent neural networks and it will then cover newer
algorithms such as the Attention, Self-Attention, and Transformer models. This
chapter will cover the use cases where these networks are used and the advantages
of using these kinds of model architecture, as well as their limitations. Finally, the
techniques discussed will be used to build a real-world application.

[xv]
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Chapter 22, Creating Intelligent Agents with Reinforcement Learning

This chapter will define reinforcement learning (RL) as well as cover the
components within an RL model. It will detail the techniques used to build RL
systems. Finally, it will demonstrate how to build learning agents that can learn by
interacting with the environment.

Chapter 23, Artificial Intelligence and Big Data

This chapter will analyze how big data techniques can be applied to accelerate
machine learning pipelines as well as covering different techniques that can be
used to streamline dataset ingestion, transformation, and validation. Finally, it will
walk the reader through an actual example using Apache Spark to demonstrate the
concepts covered in the chapter.

What you need for this book

This book is focused on Al in Python as opposed to Python itself. We have used
Python 3 to build various applications. We focus on how to utilize various Python
libraries in the best possible way to build real world applications. In that spirit,
we have tried to keep all of the code as friendly and readable as possible. We feel
that this will enable our readers to easily understand the code and readily use it
in different scenarios.

Download the example code files

You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files emailed directly
to you.

You can download the code files by following these steps:

Log in or register at http: //www.packtpub.com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the on-screen
instructions.

Ll .

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

*  WinRAR / 7-Zip for Windows

[ xvi]
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* Zipeg / iZip / UnRarX for Mac
* 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Artificial-Intelligence-with-Python-Second-Edition.
We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781839219535 ColorImages.pdf.

Conventions used

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation
of their meaning.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. For example: "The n_estimators parameter refers to the number

of trees that will be constructed.”

A block of code is set as follows:

# Create label encoder and fit the labels
encoder = preprocessing.LabelEncoder ()
encoder.fit (input labels)

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

# Create label encoder and fit the labels
encoder = preprocessing.LabelEncoder ()
encoder.fit (input labels)

Any command-line input or output is written as follows:
$ python3 random forests.py --classifier-type rf

Bold: Indicates a new term, an important word, or words that you see on the screen,
for example, in menus or dialog boxes, also appear in the text like this. For example:
"Supervised learning refers to the process of building a machine learning model that
is based on labeled training data."

[ xvii ]
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\/{n’; Warnings or important notes appear in a box like this.

AY ! 4
‘/@\' Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention
the book title in the subject of your message and email us at customercaree
packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book we would be grateful
if you would report this to us. Please visit, www.packtpub.com/support/errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address or
website name. Please contact us at copyright@packt . com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit authors .packtpub. com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packt . com.
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Introduction to
Artificial Intelligence

In this chapter, we are going to discuss the concept of artificial intelligence (AI)

and how it's applied in the real world. We spend a significant portion of our
everyday life interacting with smart systems. This can be in the form of searching for
something on the internet, biometric facial recognition, or converting spoken words
to text. Al is at the heart of all this and it's becoming an important part of our modern
lifestyle. All these systems are complex real-world applications and Al solves these
problems with mathematics and algorithms. Throughout the book, we will learn the
fundamental principles that can be used to build such applications. Our overarching
goal is to enable you to take up new and challenging Al problems that you might
encounter in your everyday life.

By the end of this chapter, you will know:

*  Whatis Al and why do we need to study it?
* What are some applications of Al?

* A classification of Al branches

* The five tribes of machine learning

*  What is the Turing test?

* What are rational agents?

*  What are General Problem Solvers?

* How to build an intelligent agent

* How to install Python 3 and related packages

[11]



Introduction to Artificial Intelligence

What is Al?

How one defines Al can vary greatly. Philosophically, what is "intelligence?" How
one perceives intelligence in turn defines its artificial counterpart. A broad and
optimistic definition of the field of Al could be: "the area of computer science that
studies how machines can perform tasks that would normally require a sentient
agent." It could be argued from such a definition that something as simple as

a computer multiplying two numbers is "artificial intelligence." This is because
we have designed a machine capable of taking an input and independently
producing a logical output that usually would require a living entity to process.

A more skeptical definition might be more narrow, for example: "the area

of computer science that studies how machines can closely imitate human
intelligence." From such definition skeptics may argue that what we have today

is not artificial intelligence. Up until now, they have been able to point to examples
of tasks that computers cannot perform, and therefore claim that computers cannot
yet "think" or exhibit artificial intelligence if they cannot satisfactorily perform such
functions.

This book leans towards the more optimistic view of Al and we prefer to marvel at
the number of tasks that a computer can currently perform.

In our aforementioned multiplication task, a computer will certainly be faster

and more accurate than a human if the two numbers are large enough. There are
other areas where humans can currently perform much better than computers.

For example, a human can recognize, label, and classify objects with a few examples,
whereas currently a computer might require thousands of examples to perform at the
same level of accuracy. Research and improvement continue relentlessly, and we will
continue to see computers solving more and more problems that just a few years ago
we could only dream of them solving. As we progress in the book, we will explore
many of these use cases and provide plenty of examples.

An interesting way to consider the field of Al is that Al is in some ways one more
branch of science that is studying the most fascinating computer we know: the brain.
With Al, we are attempting to reflect some of the systems and mechanics of the brain
within computing, and thus find ourselves borrowing from, and interacting with,
fields such as neuroscience.

[2]



Chapter 1

Why do we need to study Al?

Al can impact every aspect of our lives. The field of Al tries to understand patterns
and behaviors of entities. With Al, we want to build smart systems and understand
the concept of intelligence as well. The intelligent systems that we construct are
very useful in understanding how an intelligent system like our brain goes about
constructing another intelligent system.

Let's look at how our brain processes information:

Neocortex

Abstract Thoughts

Behavior, Emotions

Motor regulation, appetite

Brainstem Heart rate, body temperature

Increasing complexity
I .E H I

Figure 1: Basic brain components

Compared to some other fields such as mathematics or physics that have been
around for centuries, Al is relatively in its infancy. Over the last couple of decades,
AT has produced some spectacular products such as self-driving cars and intelligent
robots that can walk. Based on the direction in which we are heading, it's obvious
that achieving intelligence will have a great impact on our lives in the coming years.

We can't help but wonder how the human brain manages to do so much with such
effortless ease. We can recognize objects, understand languages, learn new things,
and perform many more sophisticated tasks with our brain. How does the human
brain do this? We don't yet have many answers to that question. When you try to
replicate tasks that the brain performs, using a machine, you will see that it falls
way behind! Our own brains are far more complex and capable than machines,

in many respects.

[3]



Introduction to Artificial Intelligence

When we try to look for things such as extraterrestrial life or time travel, we don't
know if those things exist; we're not sure if these pursuits are worthwhile. The good
thing about Al is that an idealized model for it already exists: our brain is the holy
grail of an intelligent system! All we have to do is to mimic its functionality to create
an intelligent system that can do something similarly to, or better than, our brain.

Let's see how raw data gets converted into intelligence through various levels of
processing;:

‘ Intelligence

Inference

‘ Understanding

T Pattern extraction

Knowledge

T Cognition

Information

r
Processing

T om

Figure 2: Conversion of data into intelligence

One of the main reasons we want to study Al is to automate many things. We live
in a world where:

* We deal with huge and insurmountable amounts of data. The human brain
can't keep track of so much data.

* Data originates from multiple sources simultaneously. The data is
unorganized and chaotic.

* Knowledge derived from this data must be updated constantly because the
data itself keeps changing.

* The sensing and actuation must happen in real-time with high precision.

[4]
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Even though the human brain is great at analyzing things around us, it cannot keep
up with the preceding conditions. Hence, we need to design and develop intelligent
machines that can do this. We need Al systems that can:

* Handle large amounts of data in an efficient way. With the advent of Cloud
Computing, we are now able to store huge amounts of data.

* Ingest data simultaneously from multiple sources without any lag. Index
and organize data in a way that allows us to derive insights.

* Learn from new data and update constantly using the right learning
algorithms. Think and respond to situations based on the conditions
in real time.

* Continue with tasks without getting tired or needing breaks.

Al techniques are actively being used to make existing machines smarter so that they
can execute faster and more efficiently.

Branches of Al

It is important to understand the various fields of study within Al so that we can
choose the right framework to solve a given real-world problem. There are several
ways to classify the different branches of Al:

* Supervised learning vs. unsupervised learning vs. reinforcement learning
* Artificial general intelligence vs. narrow intelligence
* By human function:

¢ Machine vision

° Machine learning

[+]

Natural language processing
° Natural language generation
Following, we present a common classification:

* Machine learning and pattern recognition: This is perhaps the most popular
form of Al out there. We design and develop software that can learn from
data. Based on these learning models, we perform predictions on unknown
data. One of the main constraints here is that these programs are limited to
the power of the data.

[5]



Introduction to Artificial Intelligence

If the dataset is small, then the learning models would be limited as well.
Let's see what a typical machine learning system looks like:

Data

Preprocessing

Training

Optimization

Machine learning model

Figure 3: A typical computer system

When a system receives a previously unseen data point, it uses the patterns

from previously seen data (the training data) to make inferences on this new
data point. For example, in a facial recognition system, the software will try

to match the pattern of eyes, nose, lips, eyebrows, and so on in order to find
a face in the existing database of users.

* Logic-based AI: Mathematical logic is used to execute computer programs
in logic-based Al. A program written in logic-based Al is basically a set of
statements in logical form that expresses facts and rules about a problem
domain. This is used extensively in pattern matching, language parsing,
semantic analysis, and so on.

* Search: Search techniques are used extensively in Al programs. These
programs examine many possibilities and then pick the most optimal path.
For example, this is used a lot in strategy games such as chess, networking,
resource allocation, scheduling, and so on.

* Knowledge representation: The facts about the world around us need to be
represented in some way for a system to make sense of them. The languages
of mathematical logic are frequently used here. If knowledge is represented
efficiently, systems can be smarter and more intelligent. Ontology is a closely
related field of study that deals with the kinds of objects that exist.

[6]
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It is a formal definition of the properties and relationships of the entities that
exist in a domain. This is usually done with a taxonomy or a hierarchical
structure of some kind. The following diagram shows the difference between
information and knowledge:

Information Knowledge

Figure 4: Information vs. Knowledge

Planning: This field deals with optimal planning that gives us maximum
returns with minimal costs. These software programs start with facts about
the situation and a statement of a goal. These programs are also aware

of the facts of the world, so that they know what the rules are. From this
information, they generate the most optimal plan to achieve the goal.

Heuristics: A heuristic is a technique used to solve a given problem that's
practical and useful in solving the problem in the short term, but not
guaranteed to be optimal. This is more like an educated guess on what
approach we should take to solve a problem. In Al, we frequently encounter
situations where we cannot check every single possibility to pick the best
option. Thus, we need to use heuristics to achieve the goal. They are used
extensively in Al in fields such as robotics, search engines, and so on.
Genetic programming: Genetic programming is a way to get programs

to solve a task by mating programs and selecting the fittest. The programs
are encoded as a set of genes, using an algorithm to get a program that can
perform the given task well.
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The five tribes of machine learning

Machine learning can be further classified in a variety of ways. One of our favorite
classifications is the one provided by Pedro Domingos in his book The Master
Algorithm. In his book, he classifies machine learning by the field of science that
sprouted the ideas. For example, genetic algorithms sprouted from Biology concepts.
Here are the full classifications, the name Domingos uses for the tribes, and the
dominant algorithms used by each tribe, along with noteworthy proponents:

Tribe Origins Dominant algorithm Proponents

Tom Mitchell
. Logic and .

Symbolists Philosophy Inverse deduction Steve Muggleton
Ross Quinlan
Yan LeCun

Connectionists | Neuroscience | Backpropagation Geoffrey Hinton
Yoshua Bengio
John Koza

Evolutionaries | Biology Genetic programming | John Holland
Hod Lipson
David Heckerman

Bayesians Statistics Probabilistic inference | Judea Pearl
Michael Jordan
Peter Hart

Analogizers Psychology Kernel machines Vladimir Vapnik

Douglas Hofstadter

Symbolists - Symbolists use the concept of induction or inverse deduction as their
main tool. When using induction, instead of starting with a premise and looking
for conclusions, inverse deduction starts with a set of premises and conclusions
and works backwards to fill in the missing pieces.

An example of deduction:

Socrates is human + All humans are mortal = What can be deduced? (Socrates

is mortal)
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An example of induction:
Socrates is human + ?? = Socrates is mortal (Humans are mortal?)

Connectionists - Connectionists use the brain, or at least our very crude
understanding of the brain, as their primary tool - mainly neural networks. Neural
networks are a type of algorithm, modeled loosely after the brain, which are
designed to recognize patterns. They can recognize numerical patterns contained in
vectors. In order to use them, all inputs, be they images, sound, text, or time series
need to be translated into these numerical vectors. It is hard to open a magazine

or a news site and not read about examples of "deep learning." Deep learning is a
specialized type of a neural network.

Evolutionaries - Evolutionaries focus on using the concepts of evolution, natural
selection, genomes, and DNA mutation and applying them to data processing.
Evolutionary algorithms will constantly mutate, evolve, and adapt to unknown
conditions and processes.

Bayesians - Bayesians focus on handling uncertainty using probabilistic inference.
Vision learning and spam filtering are some of the problems tackled by the Bayesian
approach. Typically, Bayesian models will take a hypothesis and apply a type of

"a priori" reasoning, assuming that some outcomes will be more likely. They then
update a hypothesis as they see more data.

Analogizers - Analogizers focus on techniques that find similarities between
examples. The most famous analogizer model is the k-nearest neighbor algorithm.

Defining intelligence using the
Turing test

The legendary computer scientist and mathematician, Alan Turing, proposed the
Turing test to provide a definition of intelligence. It is a test to see if a computer can
learn to mimic human behavior. He defined intelligent behavior as the ability to
achieve human-level intelligence during a conversation. This performance should
be enough to trick an interrogator into thinking that the answers are coming from

a human.

To see if a machine can do this, he proposed a test setup: he proposed that a human
should interrogate the machine through a text interface. Another constraint is that
the human cannot know who's on the other side of the interrogation, which means it
can either be a machine or a human. To enable this setup, a human will be interacting
with two entities through a text interface. These two entities are called respondents.
One of them will be a human and the other one will be the machine.

[9]
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The respondent machine passes the test if the interrogator is unable to tell whether
the answers are coming from a machine or a human. The following diagram shows
the setup of a Turing test:

Respondents ' \ )

: /
Interrogator : (

Figure 5: The Turing Test

As you can imagine, this is quite a difficult task for the respondent machine.
There are a lot of things going on during a conversation. At the very minimum,
the machine needs to be well versed with the following things:

* Natural language processing: The machine needs this to communicate with
the interrogator. The machine needs to parse the sentence, extract the context,
and give an appropriate answer.

* Knowledge representation: The machine needs to store the information
provided before the interrogation. It also needs to keep track of the
information being provided during the conversation so that it can respond
appropriately if it comes up again.

* Reasoning; It's important for the machine to understand how to interpret
the information that gets stored. Humans tend to do this automatically in
order to draw conclusions in real time.

* Machine learning: This is needed so that the machine can adapt to new
conditions in real time. The machine needs to analyze and detect patterns
so that it can draw inferences.

You must be wondering why the human is communicating with a text interface.
According to Turing, physical simulation of a person is unnecessary for intelligence.
That's the reason the Turing test avoids direct physical interaction between the
human and the machine.

[10]
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There is another thing called the Total Turing Test that deals with vision and
movement. To pass this test, the machine needs to see objects using computer
vision and move around using robotics.

Making machines think like humans

For decades, we have been trying to get the machine to think more like humans.

In order to make this happen, we need to understand how humans think in the

first place. How do we understand the nature of human thinking? One way to do
this would be to note down how we respond to things. But this quickly becomes
intractable, because there are too many things to note down. Another way to do this
is to conduct an experiment based on a predefined format. We develop a certain
number of questions to encompass a wide variety of human topics, and then see how
people respond to it.

Once we gather enough data, we can create a model to simulate the human process.
This model can be used to create software that can think like humans. Of course,
this is easier said than done! All we care about is the output of the program given
an input. If the program behaves in a way that matches human behavior, then we
can say that humans have a similar thinking mechanism.

The following diagram shows different levels of thinking and how our brain
prioritizes things:

Cognitive
F 3

Behavioral

T

Physical
4

Kinematic

¥ |

Geometric

Figure 6: The levels of thought
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Within computer science, there is a field of study called Cognitive Modeling

that deals with simulating the human thinking process. It tries to understand

how humans solve problems. It takes the mental processes that go into this problem-
solving process and turns it into a software model. This model can then be used

to simulate human behavior.

Cognitive modeling is used in a variety of Al applications such as deep learning,
expert systems, natural language processing, robotics, and so on.

Building rational agents

A lot of research in Al is focused on building rational agents. What exactly is a
rational agent? Before that, let us define the word rationality within the context of Al
Rationality refers to observing a set of rules and following their logical implications in
order to achieve a desirable outcome. This needs to be performed in such a way that
there is maximum benefit to the entity performing the action. An agent, therefore, is
said to act rationally if, given a set of rules, it takes actions to achieve its goals. It just
perceives and acts according to the information that's available. This system is used

a lot in Al to design robots when they are sent to navigate unknown terrains.

How do we define what is desirable? The answer is that it depends on the objectives
of the agent. The agent is supposed to be intelligent and independent. We want to
impart the ability to adapt to new situations. It should understand its environment
and then act accordingly to achieve an outcome that is in its best interests. The best
interests are dictated by the overall goal it wants to achieve. Let's see how an input
gets converted to action:

Input

Sen

Action

Figure 7: Converting input into action
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How do we define the performance measure for a rational agent? One might

say that it is directly proportional to the degree of success. The agent is set up to
achieve a task, so the performance measure depends on what percentage of that
task is complete. But we must think as to what constitutes rationality in its entirety.
If it's just about results, we don't consider the actions leading up to the result.

Making the right inferences is a part of being rational, because the agent must act
rationally to achieve its goals. This will help it draw conclusions that can be used
successively.

But, what about situations where there are no provably right things to do? There are
situations where the agent doesn't know what to do, but it still must do something.

Let's set up a scenario to make this last point clearer. Imagine a self-driving car that's
going at 60 miles an hour and suddenly someone crosses its path. For the sake of the
example, assume that given the speed the car is going, it only has two choices. Either
the car crashes against a guard rail knowing that it will kill the car occupant, or it
runs over the pedestrian and kills them. What's the right decision? How does the
algorithm know what to do? If you were driving, would you know what to do?

We now are going to learn about one of the earliest examples of a rational agent -
the General Problem Solver. As we'll see, despite the lofty name, it really wasn't
capable of solving any problem, but it was a big leap in the field of computer
science nonetheless.

General Problem Solver

The General Problem Solver (GPS) was an Al program proposed by Herbert Simon,
J.C. Shaw, and Allen Newell. It was the first useful computer program that came

into existence in the Al world. The goal was to make it work as a universal problem-
solving machine. Of course, there were many software programs that existed before,
but these programs performed specific tasks. GPS was the first program that was
intended to solve any general problem. GPS was supposed to solve all the problems
using the same base algorithm for every problem.

As you must have realized, this is quite an uphill battle! To program the GPS, the
authors created a new language called Information Processing Language (IPL). The
basic premise is to express any problem with a set of well-formed formulas. These
formulas would be a part of a directed graph with multiple sources and sinks. In

a graph, the source refers to the starting node and the sink refers to the ending node.
In the case of GP’S, the source refers to axioms and the sink refers to the conclusions.
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Even though GPS was intended to be a general purpose, it could only solve well-
defined problems, such as proving mathematical theorems in geometry and

logic. It could also solve word puzzles and play chess. The reason was that these
problems could be formalized to a reasonable extent. But in the real world, this
quickly becomes intractable because of the number of possible paths you can take.
If it tries to brute force a problem by counting the number of walks in a graph,

it becomes computationally infeasible.

Solving a problem with GPS

Let's see how to structure a given problem to solve it using GPS:

1. The first step is to define the goals. Let's say our goal is to get some milk from
the grocery store.

2. The next step is to define the preconditions. These preconditions are in
reference to the goals. To get milk from the grocery store, we need to have
a mode of transportation and the grocery store should have milk available.

3. After this, we need to define the operators. If my mode of transportation is
a car and if the car is low on fuel, then we need to ensure that we can pay the
fueling station. We need to ensure that you can pay for the milk at the store.

An operator takes care of the conditions and everything that affects them. It consists
of actions, preconditions, and the changes resulting from taking actions. In this
case, the action is giving money to the grocery store. Of course, this is contingent
upon you having the money in the first place, which is the precondition. By giving
them the money, you are changing your money condition, which will result in you
getting the milk.

GPS will work if you can frame the problem like we did just now. The constraint is
that it uses the search process to perform its job, which is way too computationally
complex and time consuming for any meaningful real-world application.

In this section we learned what a rational agent is. Now let's learn how to make
these rational agents more intelligent and useful.

Building an intelligent agent

There are many ways to impart intelligence to an agent. The most commonly used
techniques include machine learning, stored knowledge, rules, and so on. In this
section, we will focus on machine learning. In this method, the way we impart
intelligence to an agent is through data and training.
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Let's see how an intelligent agent interacts with the environment:

Input T Action

Actuators
F 3

Sensors

Feature extraction Inference engine

4
Learning model

Intelligent agent

Figure 8: An intelligent agent interaction with its environment

With machine learning, sometimes we want to program our machines to use labeled
data to solve a given problem. By going through the data and the associated labels,
the machine learns how to extract patterns and relationships.

In the preceding example, the intelligent agent depends on the learning model

to run the inference engine. Once the sensor perceives the input, it sends it to

the feature extraction block. Once the relevant features are extracted, the trained
inference engine performs a prediction based on the learning model. This learning
model is built using machine learning. The inference engine then takes a decision
and sends it to the actuator, which then takes the required action in the real world.

There are many applications of machine learning that exist today. It is used in
image recognition, robotics, speech recognition, predicting stock market behavior,
and so on. In order to understand machine learning and build a complete solution,
you will have to be familiar with many techniques from different fields such as
pattern recognition, artificial neural networks, data mining, statistics, and so on.

Types of models

There are two types of models in the AI world: Analytical models and learned
models. Before we had machines that could compute, people used to rely on
analytical models.

[15]



Introduction to Artificial Intelligence

Analytical models were derived using a mathematical formulation, which is basically
a sequence of steps followed to arrive at a final equation. The problem with this
approach is that it was based on human judgment. Hence, these models were
simplistic and often inaccurate, with just a few parameters. Think of how Newton
and other scientists of old made calculations before they had computers. Such
models often involved prolonged derivations and long periods of trial and error
before a working formula was arrived at.

We then entered the world of computers. These computers were good at

analyzing data. So, people increasingly started using learned models. These models
are obtained through the process of training. During training, the machines look

at many examples of inputs and outputs to arrive at the equation. These learned
models are usually complex and accurate, with thousands of parameters. This gives
rise to a very complex mathematical equation that governs the data that can assist
in making predictions.

Machine learning allows us to obtain these learned models that can be used in

an inference engine. One of the best things about this is the fact that we don't need
to derive the underlying mathematical formula. You don't need to know complex
mathematics, because the machine derives the formula based on data. All we need
to do is create the list of inputs and the corresponding outputs. The learned model
that we get is just the relationship between labeled inputs and the desired outputs.

Installing Python 3

We will be using Python 3 throughout this book. Make sure you have installed the
latest version of Python 3 on your machine. Type the following command to check:

$ python3 --version

If you see something like Python 3.x.x (where x.x are version numbers) printed out,
you are good to go. If not, installing it is straightforward.

Installing on Ubuntu

Python 3 is already installed by default on Ubuntu 14.xx and above. If not, you can
install it using the following command:

$ sudo apt-get install python3

[16]
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Run the check command like we did earlier:

$ python3 --version

You should see the version number as output.

Installing on Mac OS X

If you are on Mac OS X, it is recommended that you use Homebrew to install Python
3. Itis a great package installer for Mac OS X and it is really easy to use. If you don't
have Homebrew, you can install it using the following command:

$ ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/
install/master/install)"

Let's update the package manager:

$ brew update

Let's install Python 3:
$ brew install python3

Run the check command like we did earlier:

$ python3 --version

You should see the version number printed as output.

Installing on Windows

If you use Windows, it is recommended that you use a SciPy-stack compatible
distribution of Python 3. Anaconda is pretty popular and easy to use. You can find
the installation instructions at: https://www.continuum. io/downloads.

If you want to check out other sciPy-stack compatible distributions of Python 3,
you can find them at http://www.scipy.org/install.html. The good part about
these distributions is that they come with all the necessary packages preinstalled. If
you use one of these versions, you don't need to install the packages separately.
Once you install it, run the check command like we did earlier:

$ python3 --version

You should see the version number printed as output.
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Installing packages

Throughout this book, we will use various packages such as NumPy, SciPy, scikit-
learn, and matplotlib. Make sure you install these packages before you proceed.

If you use Ubuntu or Mac OS X, installing these packages is straightforward. All
these packages can be installed using a one-line command. Here are the relevant
links for installation:

* NumPy: http://docs.scipy.org/doc/numpy-1.10.1/user/install.
html

* SciPy:http://www.scipy.org/install.html
* scikit-learn: http://scikit-learn.org/stable/install.html

* matplotlib: http://matplotlib.org/1.4.2/users/installing.html

If you are on Windows, you should have installed a scipPy-stack compatible
version of Python 3.

Loading data

In order to build a learning model, we need data that's representative of the world.
Now that we have installed the necessary Python packages, let's see how to use the
packages to interact with data. Enter the Python command prompt by typing the
following command:

$ python3

Let's import the package containing all the datasets:
>>> from sklearn import datasets

Let's load the house prices dataset:

>>> house prices = datasets.load boston()
Print the data:

>>> print(house prices.data)
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You will see an output similar to this:

>>> print(house_prices.

(C

Let's check out the labels.
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.96900000e+02
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.96900000e+02

You will see this output:
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Figure 10: Output of predicted home prices
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Figure 9: Output of input home prices
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The actual array is larger, so the image represents the first few values in that array.
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There are also image datasets available in the scikit-learn package. Each image is of
shape 8x8. Let's load it:

>>> digits = datasets.load digits()
Print the fifth image:
>>> print(digits.images[4])

You will see this output:

>>> print(digits.images[4])
. 9. 1. 11,
Q. 7. 8.

1. 13. 6.
7. 15. e.

16. 10. 0.
15. 16. 13.
2. 3.
0. 2.
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Figure 11: Output of scikit-learn array of images

As you can see, it has eight rows and eight columns.

Summary

In this chapter, we discussed:

* What Al is all about and why we need to study it

* Various applications and branches of Al

*  What the Turing test is and how it's conducted

* How to make machines think like humans

* The concept of rational agents and how they should be designed

* General Problem Solver (GPS) and how to solve a problem using GPS
* How to develop an intelligent agent using machine learning

* Different types of machine learning models
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We also went through how to install Python 3 on various operating systems,
and how to install the necessary packages required to build Al applications. We
discussed how to use these packages to load data that's available in scikit-learn.

In the next chapter, we will learn about supervised learning and how to build models
for classification and regression.
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Fundamental Use Cases
for Artificial Intelligence

In this chapter, we are going to discuss some of the use cases for Artificial
Intelligence (AI). This by no means is an exhaustive list. Many industries have been
impacted by Al, and the list of those industries not yet impacted gets shorter every
day. Ironically, some of the jobs that robots, automation, and Al will not be able to
take over are jobs with a low pay rate that require less "brain" power. For example,

it will be a while until we are able to replace hair stylists and plumbers. Both of these
jobs require a lot of finesse and detail that robots have yet to master. I know it will be
a long time before my wife trusts her hair to anyone else other than her current hair
stylist, let alone a robot.

This chapter will discuss:

* Some representative Al use cases
* The jobs that will take the longest to replace by automation
* The industries that will be most impacted by Al

Representative Al use cases

From finance to medicine, it is difficult to find an industry that is not being disrupted
by Artificial Intelligence. We will focus on real-world examples of the most popular
applications of Al in our everyday life. We will explore the current state of the art

as well as what is coming soon. Most importantly, maybe this book will spark your
imagination and you will come up with some new and innovative ideas that will
positively impact society and we can add it to the next edition of our book.
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Artificial Intelligence, cognitive computing, machine learning, and deep learning
are only some of the disruptive technologies that are enabling rapid change today.
These technologies can be adopted quicker because of advances in cloud computing,
Internet of Things (IoT), and edge computing. Organizations are reinventing

the way they do business by cobbling together all these technologies. This is

only the beginning; we are not even in the first inning, we haven't even recorded

the first strike!

With that, let's begin to look at some contemporary applications of Al

Digital personal assistants and chatbots

Unfortunately, it is still all too common for some call centers to use legacy Interactive
Voice Response (IVR) systems that make calling them an exercise in patience.
However, we have made great advances in the area of natural language processing:
chatbots. Some of the most popular examples are:

* Google Assistant: Google Assistant was launched in 2016 and is one of the
most advanced chatbots available. It can be found in a variety of appliances
such as telephones, headphones, speakers, washers, TVs, and refrigerators.
Nowadays, most Android phones include Google Assistant. Google Home
and Nest Home Hub also support Google Assistant.

* Amazon Alexa: Alexa is a virtual assistant developed and marketed by
Amazon. It can interact with users by voice and by executing commands
such as playing music, creating to-do lists, setting up alarms, playing
audiobooks, and answering basic questions. It can even tell you a joke
or a story on demand. Alexa can also be used to control compatible smart
devices. Developers can extend Alexa's capabilities by installing skills. An
Alexa skill is additional functionality developed by third-party vendors.

* Apple Siri: Siri can accept user voice commands and a natural language
user interface to answer questions, make suggestions, and perform actions
by parsing these voice commands and delegating these requests to a set of
internet services. The software can adapt to users' individual language usage,
their searches, and preferences. The more it is used the more it learns and the
better it gets.

* Microsoft Cortana: Cortana is another digital virtual assistant, designed

and created by Microsoft. Cortana can set reminders and alarms, recognize
natural voice commands, and it answers questions using information.
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All these assistants will allow you to perform all or at least most of these tasks:

* Control devices in your home

* Play music and display videos on command

* Set timers and reminders

* Make appointments

* Send text and email messages

* Make phone calls

*  Open applications

* Read notifications

* Perform translations

* Order from e-commerce sites
Some of the tasks that might not be supported but will start to become more
pervasive are:

¢  Checking into your flight

* Booking a hotel

* Making a restaurant reservation

All these platforms also support 3" party developers to develop their own
applications or "skills" as Amazon calls them. So, the possibilities are endless.

Some examples of existing Alexa skills:

*  MySomm: Recommends what wine goes with a certain meat
* The bartender: Provides instructions on how to make alcoholic drinks
* 7-minute workout: Will guide you through a tough 7-minute workout

* Uber: Allows you to order an Uber ride through Alexa

All the preceding services listed continue to get better. They continuously learn
from interactions with customers. They are improved both by the developers of the
services as well as by the systems taking advantage of new data points created daily
by users of the services.

Most cloud providers make it extremely easy to create chatbots and for some basic
examples it is not necessary to use a programming language. In addition, it is not
difficult to deploy these chatbots to services such as Slack, Facebook Messenger,
Skype, and WhatsApp.
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Personal chauffeur

Self-driving or driverless cars are vehicles that can travel along a pre-established
route with no human assistance. Most self-driving cars in existence today do not
rely on a single sensor and navigation method and use a variety of technologies
such as radar, sonar, lidar, computer vision, and GPS.

As technologies emerge, industries start creating standards to implement and
measure their progress. Driverless technologies are no different. SAE International
has created standard ]J3016, which defines six levels of automation for cars so that
automakers, suppliers, and policymakers can use the same language to classify
the vehicle's level of sophistication:

Level 0 (No automation)

The car has no self-driving capabilities. The driver is fully involved and responsible.
The human driver steers, brakes, accelerates, and negotiates traffic. This describes
most current cars on the road today.

Level 1 (Driver assistance)

System capability: Under certain conditions, the car controls either the steering or the
vehicle speed, but not both simultaneously.

Driver involvement: The driver performs all other aspects of driving and has full
responsibility for monitoring the road and taking over if the assistance system fails
to act appropriately. For example, Adaptive cruise control.

Level 2 (Partial automation)

The car can steer, accelerate, and brake in certain circumstances. The human driver
still performs many maneuvers like interpreting and responding to traffic signals
or changing lanes. The responsibility for controlling the vehicle largely falls on the
driver. The manufacturer still requires the driver to be fully engaged. Examples of
this level are:

*  Audi Traffic Jam Assist

* (Cadillac Super Cruise

* Mercedes-Benz Driver Assistance Systems

* Tesla Autopilot

* Volvo Pilot Assist
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Level 3 (Conditional automation)

The pivot point between levels 2 and 3 is critical. The responsibility for controlling
and monitoring the car starts to change from driver to computer at this level. Under
the right conditions, the computer can control the car, including monitoring the
environment. If the car encounters a scenario that it cannot handle, it requests that
the driver intervene and take control. The driver normally does not control the car
but must be available to take over at any time. An example of this is Audi Traffic
Jam Pilot.

Level 4 (High automation)

The car does not need human involvement under most conditions but still needs
human assistance under some road, weather, or geographic conditions. Under

a shared car model restricted to a defined area, there may not be any human
involvement. But for a privately-owned car, the driver might manage all driving
duties on surface streets and the system takes over on the highway. Google's now
defunct Firefly pod-car is an example of this level. It didn't have pedals or a steering
wheel. It was restricted to a top speed of 25 mph and it was not used in public
streets.

Level 5 (Full automation)

The driverless system can control and operate the car on any road and under any
conditions that a human driver could handle. The "operator" of the car only needs
to enter a destination. Nothing at this level is in production yet but a few companies
are close and might be there by the time the book is published.

We'll now review some of the leading companies working in the space:
Google's Waymo

As of 2018, Waymo's autonomous cars have driven eight million miles on public
roads as well as five billion miles in simulated environments. In the next few years,
it is all but a certainty that we will be able to purchase a car capable of full driving
autonomy. Tesla, among others, already offers driver assistance with their Autopilot
feature and possibly will be the first company to offer full self-driving capabilities.
Imagine a world where a child born today will never have to get a driver's license!
The disruption caused in our society by this advance in Al alone will be massive.
The need for delivery drivers, taxi drivers, and truckers will be obviated. Even

if there are still car accidents in a driverless future, millions of lives will be saved
because we will eliminate distracted driving and drunk driving,.

Waymo launched the first commercial driverless service in 2018 in Arizona,
USA with plans to expand nationally and worldwide.
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Uber ATG

Uber's Advanced Technology Group (ATG) is an Uber subsidiary working on
developing self-driving technology. In 2016, Uber launched an experimental car
service on the streets of Pittsburgh. Uber has plans to buy up to 24,000 Volvo XC90
and equip them with their self-driving technology and start commercializing them
in some capacity by 2021.

Tragically, in March 2018, Elaine Herzberg was involved in an incident with an Uber
driverless car and died. According to police reports, she was struck by the Uber vehicle
while trying to cross the street, while she was watching a video on her phone. Ms.
Herzberg became one of the first individuals to die in an incident involving a driverless
car. Ideally, we would like to see no accidents ever happen with this technology, yet
the level of safety that we demand needs to be tempered with the current crisis we
have with traffic accidents. For context, there were 40,100 motor vehicle deaths in the
US in 2017; even if we continue to see accidents with automated cars, if this death toll
was slashed by say, half, thousands of lives would be saved each year.

It is certainly possible to envision a driverless vehicle that looks more like a living
room than the interior of our current cars. There would be no need for steering
wheels, pedals or any kind of manual control. The only input the car would need
is your destination, which could be given at the beginning of your journey by
"speaking" to your car. There would be no need to keep track of a maintenance
schedule as the car would be able to sense when a service is due or there is an issue
with the car's function.

Liability for car accidents will shift from the driver of the vehicle to the manufacturer
of the vehicle doing away with the need to have car insurance. This last point is
probably one of the reasons why car manufacturers have been slow to deploy

this technology. Even car ownership might be flipped on its head since we could
summon a car whenever we need one instead of needing one all the time.

Shipping and warehouse management

An Amazon sorting facility is one of the best examples of the symbiotic relationship
that is forming between humans, computers, and robots. Computers take customer
orders and decide where to route merchandise, the robots act as mules carrying the
pallets and inventory around the warehouse. Humans plug the "last mile" problem
by hand picking the items that are going into each order. Robots are proficient in
mindlessly repeating a task many times as long as there is a pattern involved and
some level of pretraining is involved to achieve this. However, having a robot pick a
20-pound package and immediately being able to grab an egg without breaking it is
one of the harder robotics problems.

[28]



Chapter 2

Robots struggle dealing with objects of different sizes, weights, shapes, and fragility;
a task that many humans can perform effortlessly. People, therefore, handle the
tasks that the robots encounter difficulty with. The interaction of these three types
of different actors translates into a finely tuned orchestra that can deliver millions

of packages everyday with very little mistakes.

Even Scott Anderson, Amazon's director of robotics fulfillment acknowledged in
May 2019 that a fully automated warehouse is at least 10 years away. So, we will
continue to see this configuration in warehouses across the world for a little longer.

Human health

The ways that Al can be applied in health science is almost limitless. We will discuss
a few of them here, but it will by no means be an exhaustive list.

Drug discovery

Al can assist in generating drug candidates (that is, molecules to be tested for
medical application) and then quickly eliminating some of them using constraint
satisfaction or experiment simulation. We will learn more about constraint
satisfaction programming in later chapters. In a nutshell, this approach allows

us to speed up drug discovery by quickly generating millions of possible drug
candidates and just as quickly rejecting them if the candidates do not satisfy
certain predetermined constraints.

In addition, in some cases we can simulate experiments in the computer that
otherwise would be much more expensive to perform in real life.

Furthermore, in some instances researchers still conduct real-world experiments
but rely on robots to perform the experiments and speed up the process with them.
These emerging fields are dubbed high throughput screening (HTS) and virtual
high throughput screening (VHTS).

Machine learning is starting to be used more and more to enhance clinical trials.
The consulting company of Accenture has developed a tool called intelligent clinical
trials (ITP). It is used to predict the length of clinical trials.

Another approach that can surprisingly be used is to apply to drug discovery is
Natural Language Processing (NLP). Genomic data can be represented using

a string of letters and the NLP techniques can be used to process or "understand"
what the genomic sequences mean.
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Insurance pricing

Machine learning algorithms can be used to better price insurance by more
accurately predicting how much will be spent on a patient, how good a driver
an individual is, or how long a person will live.

As an example, the young.ai project from Insilico Medicine can predict with

some accuracy how long someone will live from a blood sample and a photograph.
The blood sample provides 21 biomarkers such as cholesterol level, inflammation
markers, hemoglobin counts and albumin level that are used as input to a machine
learning model. Other inputs into the model are ethnicity and age, as well

as a photograph of the person.

Interestingly, as of now, anyone can use this service for free by visiting young.ai
(https://young.ai) and providing the required information.

Patient diagnosis

Doctors can make better diagnosis on their patients and be more productive in their
practice by using sophisticated rules engines and machine learning. As an example,
in a recent study at the University of California in San Diego conducted by Kang
Zhang [1], one system could diagnose children's illnesses with a higher degree of
accuracy than junior pediatricians. The system was able to diagnose the following
diseases with a degree of accuracy of between 90% and 97%:

* Glandular fever

* Roseola

* Influenza

* Chicken pox

* Hand, foot, and mouth disease

The input dataset consisted of medical records from 1.3 million children visits to the
doctor from the Guangzhou region in China between 2016 and 2017.

Medical imaging interpretation

Medical imaging data is a complex and rich source of information about patients.
CAT scans, MRIs, and X-rays contain information that is otherwise unavailable.
There is a shortage of radiologists and clinicians that can interpret them.

Getting results from these images can sometimes take days and can sometimes
be misinterpreted. Recent studies have found that machine learning models

can perform just as well, if not better, than their human counterparts.
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Data scientists have developed Al enabled platforms that can interpret MRI scans
and radiological images in a matter of minutes instead of days and with a higher
degree of accuracy when compared with traditional methods.

Perhaps surprisingly, far from being concerned, leaders from the American College
for Radiology see the advent of Al as a valuable tool for physicians. In order to foster
further development in the field, the American College for Radiology Data Science
Institute (ACR DSI) released several Al use cases in medical imaging and plans

to continue releasing more.

Psychiatric analysis

An hour-long session with a psychiatrist can costs hundreds of dollars. We are on the
cusp of being able to simulate the behavior with Al chatbots. At the very least, these
bots will be able to offer follow-up care from the sessions with the psychiatrist and
help with a patient's care between doctor's visits.

One early example of an automated counselor is Eliza. It was developed in 1966

by Joseph Weizenbaum. It allows users to have a "conversation" with the computer
mimicking a Rogerian psychotherapist. Remarkably, Eliza feels natural, but its code
is only a few hundred lines and it doesn't really use much Al at its core.

A more recent and advanced example is Ellie. Ellie was created by the Institute

for Creative Technologies at the University of Southern California. It helps with

the treatment of people with depression or post-traumatic stress disorder. Ellie

is a virtual therapist (she appears on screen), responds to emotional cues, nods
affirmatively when appropriate and shifts in her seat. She can sense 66 points on

a person's face and use these inputs to read a person's emotional state. One of Ellie's
secrets is that she is obviously not human and that makes people feel less judged
and more comfortable opening up to her.

Smart health records

Medicine is notorious for being a laggard in moving to electronic records. Data
science provides a variety of methods to streamline the capture of patient data
including OCR, handwriting recognition, voice to text capture, and real-time reading
and analysis of patient's vital signs. It is not hard to imagine a future coming soon
where this information can be analyzed in real-time by Al engines to take decisions
such as adjusting body glucose levels, administering a medicine, or summoning
medical help because a health problem is imminent.

Disease detection and prediction

The human genome is the ultimate dataset. At some point soon, we will be able to
use the human genome as input to machine learning models and be able to detect
and predict a wide variety of diseases and conditions using this vast dataset.
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Using genomic datasets as an input in machine learning is an exciting area that
is evolving rapidly and will revolutionize medicine and health care.

The human genome contains over 3 billion base pairs. We are making progress on
two fronts that will accelerate progress:

* Continuous advancements in the understanding of genome biology

* Advances in big data computing to process vast amounts of data faster
There is much research applying deep learning to the field of genomics. Although
it is still in early stages, deep learning in genomics has the potential to inform fields
including;:

* Functional genomics

*  Oncology

* Population genetics

* Clinical genetics

* Crop yield improvement

* Epidemiology and public health

* Evolutionary and phylogenetic analysis

Knowledge search

We have gotten to a point where, in some cases, we don't even realize we are using
artificial intelligence. A sign that a technology or product is good is when we don't
necessarily stop to think how it's doing what it is doing. A perfect example of this is
Google Search. The product has become ubiquitous in our lives and we don't realize
how much it relies on artificial intelligence to produce its amazing results. From

its Google Suggest technology to its constant improvement of the relevancy of its
results, Al is deeply embedded in its search process.

Early in 2015, as was reported by Bloomberg, Google began using a deep learning
system called RankBrain to assist in generating search query responses. The
Bloomberg article describes RankBrain as follows:

" RankBrain uses artificial intelligence to embed vast amounts of written language
into mathematical entities — called vectors — that the computer can understand.

If RankBrain sees a word or phrase it isn't familiar with, the machine can make a
quess as to what words or phrases might have a similar meaning and filter the result
accordingly, making it more effective at handling never-before-seen search queries."

— Clark, Jack [2]

[32]



Chapter 2

As of the last report, RankBrain plays a role in a large percentage of the billions of
Google Search queries. As one can imagine, the company is tight lipped about how
exactly RankBrain works, and furthermore even Google might have a hard time
explaining how it works. You see, this is one of the dilemmas of deep learning. In
many cases, it can provide highly accurate results, but deep learning algorithms are
usually hard to understand in terms of why an individual answer was given. Rule-
based systems and even other machine learning models (such as Random Forest)
are much easier to interpret.

The lack of explainability of deep learning algorithms has major implications,
including legal implications. Lately, Google and Facebook among others, have
found themselves under the microscope to determine if their results are biased.

In the future, legislators and regulators might require that these tech giants provide
a justification for a certain result. If deep learning algorithms do not provide
explainability, they might be forced to use other less accurate algorithms that do.

Initially, RankBrain only assisted in about 15 percent of Google queries, but now
it is involved in almost all user queries.

However, if a query is a common query, or something that the algorithm
understands, the RankBrain rank score is given little weight. If the query is one that
the algorithm has not seen before or it does not know its meaning, RankBrain score
is much more relevant.

Recommendation systems

Recommendation systems are another example of Al technology that has been
weaved into our everyday lives. Amazon, YouTube, Netflix, LinkedIn, and Facebook
all rely on recommendation technology and we don't even realize we are using

it. Recommendation systems rely heavily on data and the more data that is at

their disposable, the more powerful they become. It is not coincidence that these
companies have some of the biggest market caps in the world and their power comes
from them being able to harness the hidden power in their customer's data. Expect
this trend to continue in the future.

What is a recommendation? Let's answer the question by first exploring what it is
not. It is not a definitive answer. Certain questions like "what is two plus two?" or
"how many moons does Saturn have?" have a definite answer and there is no room
for subjectivity. Other questions like "what is your favorite movie?" or "do you like
radishes?" are completely subjective and the answer is going to depend on the person
answering the question. Some machine learning algorithms thrive with this kind of
"fuzziness." Again, these recommendations can have tremendous implications.
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Think of the consequences of Amazon constantly recommending a product versus
another. The company that makes the recommended product will thrive and the
company that makes the product that was not recommended could go out of
business if it doesn't find alternative ways to distribute and sell its product.

One of the ways that a recommender system can improve is by having previous
selections from users of the system. If you visit an e-commerce site for the first
time and you don't have an order history, the site will have a hard time making
a recommendation tailored to you. If you purchase sneakers, the website now
has one data point that it can start using as a starting point. Depending on the
sophistication of the system, it might recommend a different pair of sneakers,

a pair of athletic socks, or maybe even a basketball (if the shoes were high-tops).

An important component of good recommendation systems is a randomization
factor that occasionally "goes out on a limb" and makes oddball recommendations
that might not be that related to the initial user's choices. Recommender systems
don't just learn from history to find similar recommendations, but they also attempt
to make new recommendations that might not be related at first blush. For example,
a Netflix user might watch "The Godfather" and Netflix might start recommending
Al Pacino movies or mobster movies. But it might recommend "Bourne Identity,"
which is a stretch. If the user does not take the recommendation or does not watch
the movie, the algorithm will learn from this and avoid other movies like the "Bourne
Identity" (for example any movies that have Jason Bourne as the main character).

As recommender systems get better, the possibilities are exciting. They will be
able to power personal digital assistants and become your personal butler that has
intimate knowledge of your likes and dislikes and can make great suggestions that
you might have not thought about. Some of the areas where recommendations can
benefit from these systems are:

* Restaurants

* Movies

* Music

* Potential partners (online dating)

* Books and articles

* Search results

* Financial services (robo-advisors)
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Some notable specific examples of recommender systems follow:
Netflix Prize

A contest that created a lot of buzz in the recommender system community was the
Netflix Prize. From 2006 to 2009, Netflix sponsored a competition with a grand prize
of one million US dollars. Netflix made available a dataset of 100 million plus ratings.

Netflix offered to pay the prize to the team that offered the highest accuracy in their
recommendations and was 10% more accurate than the recommendations from
Netflix's existing recommender system. The competition energized research for

new and more accurate algorithms. In September 2009, the grand prize was awarded
to the BellKor's Pragmatic Chaos team.

Pandora

Pandora is one of the leading music services. Unlike other companies like Apple and
Amazon, Pandora's exclusive focus is as a music service. One of Pandora's salient
service features is the concept of customized radio stations. These "stations" allow
users to play music by genre. As you can imagine, recommender systems are at the
core of this functionality.

Pandora's recommender is built on multiple tiers:

*  First, their team of music experts annotates songs based on genre, rhythm,
and progression.

* These annotations are transformed into a vector for comparing song
similarity. This approach promotes the presentation of "long tail" or obscure
music from unknown artists that nonetheless could be a good fit for
individual listeners.

* The service also heavily relies on user feedback and uses it to continuously
enhance the service. Pandora has collected over 75 billion feedback data
points on listener preferences.

* The Pandora recommendation engine can then perform personalized filtering
based on a listener's preferences using their previous selections, geography,
and other demographic data.

In total, Pandora's recommender uses around 70 different algorithms, including
10 to analyze content, 40 to process collective intelligence, and about another
30 to do personalized filtering.
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Betterment

Robo-advisors are recommendation engines that provide investment or financial
advice and management with minimal human involvement. These services use
machine learning to automatically allocate, manage, and optimize a customer's asset
mix. They can offer these services at a lower cost than traditional advisors because
their overhead is lower, and their approach is more scalable.

There is now fierce competition in this space with well over 100 companies offering
these kinds of services. Robo-advisors are considered a tremendous breakthrough.
Formerly, wealth management services were an exclusive and expensive service
reserved for high net worth individuals. Robo-advisors promise to bring a similar
service to a broader audience with lower costs compared to the traditional human-
enabled services. Robo-advisors could potentially allocate investments in a wide
variety of investment products like stocks, bonds, futures, commodities, real estate,
and other exotic investments. However, to keep things simple investments are often
constrained to exchange traded funds (ETFs).

As we mentioned there are many companies offering robo-advice. As an example,
you might want to investigate Betterment to learn more about this topic. After
filling out a risk questionnaire, Betterment will provide users with a customized,
diversified portfolio. Betterment will normally recommend a mix of low-fee stock
and bond index funds. Betterment charges an administration fee (as a percentage
of the portfolio) but it is lower than most human-powered services. Please note
that we are not endorsing this service and we only mention it as an example of

a recommendation engine in the financial sector.

The smart home

Whenever you bring up the topic of Al to the common folk on the street, they are
usually skeptical about how soon it is going to replace human workers. They can
rightly point to the fact that we still need to do a lot of housework around the
house. Al needs to become not only technologically possible, but it also needs to be
economically feasible for adoption to become widespread. House help is normally
a low-wage profession and, for that reason, automation to replace it needs to be
the same price or cheaper. In addition, house work requires a lot of finesse and it
comprises tasks that are not necessarily repetitive. Let's list out some of the tasks
that this automaton will need to perform in order to be proficient:

*  Wash and dry clothes
* Fold clothes
* Cook dinner
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* Make beds

* Pick up items off the floor
*  Mop, dust and vacuum

*  Wash dishes

*  Monitor the home

As we already know, some of these tasks are easy to perform for machines (even
without Al) and some of them are extremely hard. For this reason and because of the
economic considerations, the home will probably be one of the last places to become
fully automated. Nonetheless, let's look at some of the amazing advances that have
been made in this area.

Home Monitoring

Home monitoring is one area where great solutions are generally available already.
The Ring video doorbell from Amazon and the Google Nest thermostat are two
inexpensive options that are widely available and popular. These are two simple
examples of smart home devices that are available for purchase today.

The Ring video doorbell is a smart home device connected to the internet that

can notify the homeowner of activity at their home, such as a visitor, via their
smartphone. The system does not continuously record but rather it activates when
the doorbell is pressed, or when the motion detector is activated. The Ring doorbell
can then let the home owner watch the activity or communicate with the visitor
using the built-in microphone and speakers. Some models also allow the homeowner
to open the door remotely via a smart lock and let the visitor into the house.

The Nest Learning Thermostat is a smart home device initially developed by

Nest Labs, a company that was later bought by Google. It was designed by Tony
Fadell, Ben Filson, and Fred Bould. It is programmable, Wi-Fi-enabled, and self-
learning. It uses artificial intelligence to optimize the temperature of the home while
saving energy.

In the first weeks of use you set the thermostat to your preferred settings and this
will serve as a baseline. The thermostat will learn your schedule and your preferred
temperatures. Using built-in sensors and your phones' locations, the thermostat will
shift into energy saving mode when no one is home.

Since 2011, the Nest Thermostat has saved billions of kWh of energy in millions of
homes worldwide. Independent studies have shown that it saves people an average
of 10% to 12% on their heating bills and 15% on their cooling bills so in about 2 years
it may pay for itself.
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Vacuuming and mopping

Two tasks that have been popular to hand off to robots are vacuuming and mopping.
A robotic vacuum cleaner is an autonomous robotic vacuum cleaner that uses Al

to vacuum a surface. Depending on the design, some of these machines use spinning
brushes to reach tight corners and some models include several other features in
addition to being able to vacuum, such as mopping and UV sterilization. Much of
the credit for popularizing this technology goes to the company (not the film), iRobot.

iRobot was started in 1990 by Rodney Brooks, Colin Angle, and Helen Greiner
after meeting each other while working in MIT's Artificial Intelligence Lab. iRobot
is best known for its vacuuming robot (Roomba), but for a long time they also had
a division devoted to the development of military robots. The Roomba started selling
in 2002. As of 2012 iRobot had sold more than eight million home robots as well as
creating more than 5,000 defense and security robots. The company's PackBot is a
bomb-disposal robot used by the US military that has been used extensively in Iraq
and Afghanistan. PackBots were also used to gather information under dangerous
conditions at the Fukushima Daiichi nuclear disaster site. iRobot's Seaglider was
used to detect underwater pools of oil after the Deepwater Horizon oil spill in the
Gulf of Mexico.

Another iRobot product is the Braava series of cleaners. The Braava is a small robot
that can mop and sweep floors. It is meant for small spaces like bathrooms and
kitchens. It sprays water and uses an assortment of different pads to clean effectively
and quietly. Some of the Braava models have a built-in navigation system. The
Braava doesn't have enough power to remove deep-set stains, so it's not a complete
human replacement, but it does have wide acceptance and high ratings. We expect
them to continue to gain popularity.

The potential market for intelligent devices in the home is huge and it is all but
certain that we will continue to see attempts from well established companies
and startups alike to exploit this largely untapped market.

Picking up your mess

As we learned in the shipping use case, picking objects of different weights,
dimensions, and shapes is one of the most difficult tasks to automate. Robots can
perform efficiently under homogeneous conditions like a factory floor where certain
robots specialize in certain tasks. Picking up a pair of shoes after picking up a chair,
however, can be immensely challenging and expensive. For this reason, do not
expect this home chore to be pervasively performed by machines in a cost-effective
fashion any time soon.

[38]



Chapter 2

Personal chef

Like picking up items off the floor, cooking involves picking up disparate items.
Yet there are two reasons why we can expect "automated cooking" to happen sooner:

* Certain restaurants may charge hundreds of dollars for their food and be
paying high prices for skilled chefs. Therefore, they might be open to using
technology to replace their high-priced staff if this should work out to be
more profitable. An example for this is a five-star sushi restaurant.

* Some tasks in the kitchen are repetitive and therefore lend themselves to
automation. Think of a fast food joint where hamburgers and fries might
have to be made by the hundreds. Thus, rather than having one machine
handle the entire disparate cooking process, a series of machines could deal
with individual repetitive stages of the process.

Smart prosthetics are great examples of artificial intelligence augmenting humans
rather than replacing them. There are more than a few chefs that lost their arm in
an accident or were born without a limb.

One example is chef Michael Caines who runs a two Michelin star restaurant and
lost his arm in a horrific car accident. Chef Caines was head chef of Gidleigh Park
in Devon in England until January 2016.[3] He is currently the executive chef of
the Lympstone Manor hotel between Exeter and Exmouth. He now cooks with

a prosthetic arm, but you'd never know it given the quality of his food.

Another example is Eduardo Garcia who is a sportsman and a chef - both of which
are made possible by the most advanced bionic hand in the world.

On October 2011, while bow-hunting elk he was electrocuted in the Montana
backcountry. Eduardo was hunting by himself in October 2011. He was in back
country when he saw a dead baby black bear. He stopped to check it out, knelt,
and used his knife to prod it.

While doing so, 2,400 volts coursed through his body - the baby bear had been killed
by a buried, live electrical wire. He survived but lost his arm during the incident.

In September 2013, Garcia was fitted by Advanced Arm Dynamics with a bionic
hand designed by Touch Bionics. The bionic hand is controlled by Garcia's forearm
muscles and can grip in 25 different ways. With his new hand, Garcia can perform
tasks that normally require great dexterity. His new hand still has some limitations.
For example, Garcia cannot lift heavy weights. However, there are things that he
can perform now that he couldn't before. For example, he can grab things out of

a hot oven and not get burnt and it is impossible to cut his fingers.
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Conversely, rather than augmenting humans, robots may replace humans in the
kitchen entirely. An example of this is Moley, the robotic kitchen. Moley is not
currently in production but the most advanced prototype of the Moley Robotic
Kitchen consists of two robotic arms with hands equipped with tactile sensors,

a stove top, an oven, a dishwasher, and a touchscreen unit. These artificial hands
can lift, grab, and interact with most kitchen equipment including knives, whisks,
spoons, and blenders.

Using a 3D camera and a glove it can record a human chef preparing a meal and
then upload detailed steps and instructions into a repository. The chef's actions are
then translated into robotic movements using gesture recognition models. These
models were created in collaboration with Stanford University and Carnegie Mellon
University. After that Moley can reproduce the same steps and cooks the exact same
meal from scratch.

In the current prototype, the user can operate it using a touchscreen or smartphone
application with ingredients prepared in advance and placed in preset locations.
The company's long-term goal is to allow users to simply select an option from

a list of more 2,000 recipes and Moley will have the meal prepared in minutes.

Gaming

There is perhaps no better example to demonstrate the awe-inspiring advances in
Artificial Intelligence than the progress that has been made in the area of gaming.
Humans are competitive by nature and having machines beat us at our own games
is an interesting yardstick to measure the breakthroughs in the field. Computers
have long been able to beat us in some of the more basic, more deterministic, less
compute-intensive games like say checkers. It's only in the last few years that
machines have been able to consistently beat the masters of some of the harder
games. In this section we go over three of these examples.

StarCraft 2

Video games have been used for decades as a benchmark to test the performance
of Al systems. As capabilities increase, researchers work with more complex games
that require different types of intelligence. The strategies and techniques developed
from this game playing can transfer to solving real-world problems. The game of
StarCraft II is considered one of the hardest, though it is an ancient game by video
game standards.
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The team at DeepMind introduced a program dubbed AlphaStar that can play
StarCraft I and was for the first time able to defeat a top professional player.
In matches held in December 2018, AlphaStar whooped a team put together by
Grzegorz "MaNa" Komincz, one of the world's strongest professional StarCraft
players with a score of 5-0. The games took place under professional match
conditions and without any game restrictions.

In contrast to previous attempts to master the game using Al that required
restrictions, AlphaStar can play the full game with no restrictions. It uses a deep
neural network that is trained directly from raw game data using supervised
learning and reinforcement learning.

One of the things that makes StarCraft II so difficult is the need to balance short-
and long-term goals and adapt to unexpected scenarios. This has normally posed
a tremendous challenge for previous systems.

While StarCraft is just a game, albeit a difficult one, the concepts and techniques
coming out of AlphaStar can be useful in solving other real-world challenges. As
an example, AlphaStar's architecture is capable of modeling very long sequences
of likely actions - with games often lasting up to an hour with tens of thousands
of moves - based on imperfect information. The primary concept of making
complicated predictions over long sequences of data can be found in many
real-world problems, such as:

*  Weather prediction

* Climate modelling

* Natural Language Understanding
The success that AlphaStar has demonstrated playing StarCraft represents a major
scientific breakthrough in one of the hardest video games in existence. These
breakthroughs represent a big leap in the creation of artificial intelligence systems

that can be transferred and that can help solve fundamental real-world practical
problems.

Jeopardy

IBM and the Watson team made history in 2011 when they devised a system that was
able to beat two of the most successful Jeopardy champions.

Ken Jennings has the longest unbeaten run in the show's history with 74 consecutive
appearances. Brad Rutter had the distinction of winning the biggest prize pot with
a total of $3.25 million.
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Both players agreed to an exhibition match against Watson.

Watson is a question-answering system that can answer questions posed in natural
language. It was initially created by IBM's DeepQA research team, led by principal
investigator David Ferrucci.

The main difference between the question-answering technology used by Watson
and general search (think Google searches) is that general search takes a keyword

as input and responds with a list of documents with a ranking based on the relevance
to the query. Question-answering technology like what is used by Watson takes

a question expressed in natural language, tries to understand the question at

a deeper level, and tries to provide the precise answer to the question.

The software architecture of Watson uses:

¢ IBM's DeepQA software

* Apache UIMA (Unstructured Information Management Architecture)
* Avariety of languages, including Java, C++, and Prolog

* SUSE Linux Enterprise Server

* Apache Hadoop for distributed computing

Chess

Many of us remember the news when Deep Blue famously beat chess grand master
Gary Kasparov in 1996. Deep Blue was a chess-playing application created by IBM.

In the first round of play Deep Blue won the first game against Gary Kasparov.
However, they were scheduled to play six games. Kasparov won three and drew
two of the following five games thus defeating Deep Blue by a score of 4-2.

The Deep Blue team went back to the drawing board, made a lot of enhancements

to the software, and played Kasparov again in 1997. Deep Blue won the second
round against Kasparov winning the six-game rematch by a score of 3%2-2%. It then
became the first computer system to beat a current world champion in a match under
standard chess tournament rules and time controls.

A lesser known example, and a sign that machines beating humans is becoming
common place, is the achievement in the area of chess by the AlphaZero team.

Google scientists from their AlphaZero research team created a system in 2017 that
took just four hours to learn the rules of chess before crushing the most advanced
world champion chess program at the time called Stockfish. By now the question

as to whether computers or humans are better at chess has been resolved.
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Let's pause for a second and think about this. All of humanity's knowledge about
the ancient game of chess was surpassed by a system that, if it started learning in the
morning, would be done by lunch time.

The system was given the rules of chess, but it was not given any strategies or further
knowledge. Then, in a few hours, AlphaZero mastered the game to the extent it was
able to beat Stockfish.

In a series of 100 games against Stockfish, AlphaZero won 25 games while playing as
white (white has an advantage because it goes first). It also won three games playing
as black. The rest of the games were ties. Stockfish did not obtain a single win.

AlphaGo
As hard as chess is, its difficulty does not compare to the ancient game of Go.

Not only are there more possible (19 x 19) Go-board positions than there are atoms
in the visible universe and the number of possible chess positions is negligible to the
number of Go positions. But Go is at least several orders of magnitude more complex
than a game of chess because of the large number of possible ways to let the game
flow with each move towards another line of development. With Go, the number of
moves in which a single stone can affect and impact the whole-board situation is also
many orders of magnitude larger than that of a single piece movement with chess.

There is great example of a powerful program that can play the game of Go also
developed by DeepMind called AlphaGo. AlphaGo also has three far more powerful
successors, called AlphaGo Master, AlphaGo Zero, and AlphaZero.

In October 2015, the original AlphaGo became the first computer Go program to beat
a human professional Go player without handicaps on a full-sized 19 x 19 board. In
March 2016, it beat Lee Sedol in a five-game match. This became the first time a Go
program beat a 9-dan professional without handicaps. Although AlphaGo lost to
Lee Sedol in the fourth game, Lee resigned in the final game, giving a final score

of 4 games to 1.

At the 2017 Future of Go Summit, the successor to AlphaGo called AlphaGo

Master beat the master Ke Jie in a three-game match. Ke Jie was ranked the world
No.1 ranked player at the time. After this, AlphaGo was awarded professional 9-dan
by the Chinese Weiqi Association.

AlphaGo and its successors use a Monte Carlo tree search algorithm to find their
moves based on knowledge previously "learned" by machine learning, specifically
using deep learning and training, both playing with humans and by itself. The model
is trained to predict AlphaGo's own moves and the winner's games. This neural net
improves the strength of tree search, resulting in better moves and stronger play

in following games.
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Movie making

It is all but a certainty that within the next few decades it will be possible to

create movies that are 100% computer generated. It is not unfathomable to envision
a system where the input is a written script and the output is a full-length feature
film. In addition, some strides have been made in natural generators. So, eventually
not even the script will be needed. Let's explore this further.

Deepfakes

A deepfake is a portmanteau, or blend, of "deep learning" and "fake." It is an Al
technique to merge video images. A common application is to overlap someone's
face onto another. A nefarious version of this was used to merge pornographic
scenes with famous people or to create revenge porn. Deepfakes can also be
used to create fake news or hoaxes. As you can imagine, there are severe societal
implications if this technology is misused.

One recent version of similar software was developed by a Chinese company

called Momo who developed an app called Zao. It allows you to overlap someone's
face over short movie clips like Titanic and the results are impressive. This and

other similar applications do not come without controversy. Privacy groups are
complaining that the photos submitted to the site per the terms of the user agreement
become property of Momo and then can later be used for other applications.

It will be interesting to see how technology continues to advance in this area.
Movie Script Generation

They are not going to win any Academy Awards any time soon, but there are
a couple projects dedicated to producing movie scripts. One of the most famous
examples is Sunspring.

Sunspring is an experimental science fiction short film released in 2016. It was
entirely written by using deep learning techniques. The film's script was created
using a long short-term memory (LSTM) model dubbed Benjamin. Its creators are
BAFTA-nominated filmmaker Oscar Sharp and NYU Al researcher Ross Goodwin.
The actors in the film are Thomas Middleditch, Elisabeth Grey, and Humphrey Ker.
Their character names are H, H2, and C, living in the future. They eventually connect
with each other and a love triangle forms.

Originally shown at the Sci-Fi-London film festival's 48hr Challenge, it was
also released online by technology news website Ars Technica in June 2016.
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Underwriting and deal analysis

What is underwriting? In short, underwriting is the process by which an institution
determines if they want to take a financial risk in exchange for a premium. Examples
of transactions that require underwriting are:

* Issuing an insurance policy

°  Health
° Life
°  Home

°  Driving

° Installment loans
°  Credit cards
Mortgages

[+]

Commercial lines of credit

* Securities underwriting and Initial Public Offerings (IPOs)

As can be expected, determining whether an insurance policy or a loan should

be issued and at what price can be very costly if the wrong decision is made. For
example, if a bank issues a loan and the loan defaults, it would require dozens of
other performing loans to make up for that loss. Inversely, if the bank passes up on
a loan where the borrower was going to make all their payments is also detrimental
to the bank finances. For this reason, the bank spends considerable time analyzing
or "underwriting" the loan to determine the credit worthiness of the borrower as
well as the value of the collateral securing the loan.

Even with all these checks, underwriters still get it wrong and issue loans that
default or bypass deserving borrowers. The current underwriting process follows

a set of criteria that must be met but specially for smaller banks there is still a degree
of human subjectivity in the process. This is not necessarily a bad thing. Let's visit

a scenario to explore this further:

A high net worth individual recently came back from a tour around the world. Three months
ago, they got a job at a prestigious medical institution and their credit score is above 800.

Would you lend money to this individual? With the characteristics given, they seem
to be a good credit risk. However, normal underwriting rules might disqualify them
because they haven't been employed for the last two years. Manual underwriting
would look at the whole picture and probably approve them.
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Similarly, a machine learning model would probably be able to flag this as a worthy
account and issue the loan. Machine learning models don't have hard and fast rules
but rather "learn by example."

Many lenders are already using machine learning in their underwriting. An
interesting example of a company that specializes in this space is Zest Finance. Zest
Finance uses Al techniques to assist lenders with their underwriting. Al can help to
increase revenue and reduce risk. Most importantly well applied Al in general and
Zest Finance in particular can help companies to ensure that the Al models used
are compliant with a country's regulations. Some AI models can be a "black box"
where it is difficult to explain why one borrower was rejected and another one was
accepted. Zest Finance can fully explain data modeling results, measure business
impact, and comply with regulatory requirements. One of Zest Finance's secret
weapons is the use of non-traditional data, including data that a lender might have
in-house, such as:

* Customer support data
* Payment histories

* Purchase transactions
They might also consider nontraditional credit variables such as:

* The way a customer fills out a form
* The method a customer uses to arrive at the site or how they navigate the site

* The amount of time taken to fill out an application

Data cleansing and transformation

Just as gas powers a car, data is the lifeblood of Al The age-old adage of "garbage
in, garbage out" remains painfully true. For this reason, having clean and accurate
data is paramount to producing consistent, reproducible, and accurate Al models.
Some of this data cleansing has required painstaking human involvement. By some
measures, it is said that a data scientist spends about 80% of their time cleaning,
preparing, and transforming their input data and 20% of the time running and
optimizing their models. Examples of this are the ImageNet and MS-COCO

image datasets. Both contain over a million labeled images of various objects and
categories. These datasets are used to train models that can distinguish between
different categories and object types. Initially, these datasets were painstakingly
and patiently labeled by humans. As these systems become more prevalent, we can
use Al to perform the labeling. Furthermore, there is a plethora of Al-enabled tools
that help with the cleansing and deduplication process.
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One good example is Amazon Lake Formation. In August 2019, Amazon made its
service Lake Formation generally available. Amazon Lake Formation automates
some of the steps typically involved in the creation of a data lake including the
collection, cleansing, deduplication, cataloging, and publication of data. The

data then can be made available for analytics and to build machine models. To
use Lake Formation, a user can bring data into the lake from a range of sources
using predefined templates. They can then define policies that govern data access
depending on the level of access that groups across the organization require.

Some automatic preparation, cleansing, and classification that the data undergoes
uses machine learning to automatically perform these tasks.

Lake Formation also provides a centralized dashboard where administrators can
manage and monitor data access policies, governance, and auditing across multiple
analytics engines. Users can also search for datasets in the resulting catalog. As the
tool evolves in the next few months and years, it will facilitate the analysis of data
using their favorite analytics and machine learning services, including:

* Databricks

* Tableau

* Amazon Redshift

* Amazon Athena

* AWSGlue

*  Amazon EMR

* Amazon QuickSight

* Amazon SageMaker

Summary

This chapter provided a few examples of the applications of Al. That said, the
content here doesn't begin to scratch the surface! We tried to keep the use cases

to either technology that is widely available, or at least that has the potential to
become available soon. It is not difficult to extrapolate how this technology is

going to continue to improve, become cheaper, and be more widely available.

For example, it will be quite exciting when self-driving cars start becoming popular.
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However, we can all be certain that the bigger applications of Al have not yet even
been conceived. Also, advances in Al will have wide implications for our society and
at some point, we will have to deal with these questions:

What happens if an Al became so evolved that it became conscious? Should
it be given rights?

If a robot replaces a human, should companies be required to continue
paying payroll tax for that displaced worker?

Will we get to a point where computers are doing everything, and if so, how
will we adapt to this; how will we spend our time?

Worse yet, does the technology enable a few individuals to control all
resources? Will a universal income society emerge in which individuals can
pursue their own interests? Or will the displaced masses live in poverty?

Bill Gates and Elon Musk have warned about Als either destroying the planet in

a frenzied pursuit of their own goals or doing away with humans by accident (or not
so much by accident). We will take a more optimistic "half-full" view of the impact
of Al, but one thing that is certain is that it will be an interesting journey.
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Model training is only a small piece of the machine learning process. Data scientists
often spend a significant amount of time cleansing, transforming, and preparing data
to get it ready to be consumed by a machine learning model. Since data preparation
is such a time-consuming activity, we will present state of the art techniques

to facilitate this activity as well as other components that together form a well-
designed production machine learning pipeline.

In this chapter, we will cover the following key topics:

* What exactly is a machine learning pipeline?
* What are the components of a production-quality machine learning pipeline?
* What are the best practices when deploying machine learning models?

*  Once a machine learning pipeline is in place, how can we shorten the
deployment cycle?

What is a machine learning pipeline?

Many young data scientists starting their machine learning training immediately
want to jump into model building and model tuning. They fail to realize that
creating successful machine learning systems involves a lot more than choosing
between a random forest model and a support vector machine model.

From choosing the proper ingestion mechanism to data cleansing to feature
engineering, the initial steps in a machine learning pipeline are just as important as
model selection. Also being able to properly measure and monitor the performance
of your model in production and deciding when and how to retrain your models
can be the difference between great results and mediocre outcomes. As the world
changes, your input variables change, and your model must change with them.

[49]



Machine Learning Pipelines

As data science progresses, expectations get higher. Data sources become more
varied, voluminous (in terms of size) and plentiful (in terms of number), and the
pipelines and workflows get more complex. It doesn't help that more and more of
the data we are expected to process is real-time in nature. Think of web logs, click
data, e-commerce transactions, and self-driving car inputs. The data from these
systems comes in fast and furious and we must have methods that can process
the information faster than it is received.

Many machine learning solutions exist to implement these pipelines. It is
certainly possible to set up basic machine learning pipelines using just the
Python or R languages. We'll begin to build up our understanding by laying out
an example of a pipeline using Python. In this chapter we will explore in detail
a few architectures that utilize some of the most popular tools out there today.
Some of the tools that data pipelines commonly leverage are:

* Hadoop

* Spark

* Spark Streaming
+ Kafka

* Azure

« AWS

* Google Cloud Platform
* R

* SAS

* Databricks

* Python

As we'll see, some of these are more appropriate for certain stages of the pipeline.
Let's perform a quick overview of the minimum steps required to set up a machine
learning pipeline.
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One important item to consider is that each step in the pipeline produces an
output that becomes the input for the next step in the pipeline. The term pipeline

is somewhat misleading as it implies a one-way flow of data. In reality, machine
learning pipelines can be cyclical and iterative. Every step in the pipeline might be
repeated to achieve better results or cleaner data. Finally, the output variable might
be used as input the next time the pipeline cycle is performed.

The main steps in a machine learning pipeline are:

1. Problem Definition: Define the business problem.

2. Data Ingestion: Identify and collect the dataset.

3. Data Preparation: Process and prepare the data using techniques such as:
° Impute missing values

°  Remove duplicate records

°  Normalize values (change numeric values in a dataset to use
a common scale)

Perform another type of cleanup or mappings
¢ Complete feature extraction
Eliminate correlated features
° Perform feature engineering
4. Data Segregation: Split the data into a training set, validation set, and
testing set.

5. Model Training: Train the machine models against the training dataset. This
is the core of data science. In this chapter, we will only scratch the surface of
this step and the steps that follow. There are other chapters in the book that
will cover model training in more detail. It is listed here mostly to give the
reader a full picture of the complete pipeline.

6. Candidate Model Evaluation: Measure the performance of the models
using test and validation subsets of data to determine model accuracy.

7. Model Deployment: Once a model is chosen, deploy it into production
for inference.
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8. Performance Monitoring: Continuously monitor model performance,
retrain, and calibrate accordingly. Collect new data to continue to improve
the model and prevent it from becoming stale:

Problem
Definition
Performance Data
Monitoring Ingestion

Model Data
Deployment Preparation

Data

Model

Segregation

Evaluation

Model
Training

Figure 1: The machine learning pipeline

Let's explore further and dive into the components of the pipeline.

Problem definition

This might be the most critical step when setting up your pipeline. Time spent here
can save you orders of magnitude of time on the later stages of the pipeline. It might
mean the difference between making a technological breakthrough or failing, or

it could be the difference between a startup company succeeding or the company
going bankrupt. Asking and framing the right question is paramount. Consider

the following cautionary tale:

"Bob spent years planning, executing, and optimizing how to conquer a hill.
Unfortunately, it turned out to be the wrong hill."

For example, let's say you want to create a pipeline to determine loan default
prediction. Your initial question might be:

For a given loan, will it default or not?
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Now, this question does not distinguish between a loan defaulting in the first month
or 20 years into the loan. Obviously, a loan that defaults upon issuance is a lot less
profitable than a loan that stopped performing 20 years in. So, a better question
might be:

When will the loan default?

This is a more valuable question to answer. Can we make it better? It is sometimes
possible that a borrower will not send in the full due payment every month.
Sometimes, a borrower might send sporadic payments. To account for this,

we might refine the question further:

How much money will be received for a given loan?

Let's improve it even more. A dollar today is worth more than a dollar in the
future. For this reason, financial analysts use a formula to calculate the present
value of money. Just as important as to how much a borrower pays on their loan

is the question of when do they pay it. Also, you have the issue of prepayment. If a
borrower prepays a loan, that might make the loan less profitable since less interest
will be collected. Let's change the question again:

What will be the profit made on a given loan?

Are we done crafting the question? Maybe. Let's consider one more thing. There are
certain input variables that by law are not allowed to be used to determine default
rates. For example, race and sex are two factors that cannot be used to determine
loan eligibility. One more attempt:

What will be the profit made on a given loan without using disallowed input features?

We will leave it to the reader to further refine the question. As you can see, a lot
of thought needs to be given to the first and critical step in the machine learning
pipeline.

Data ingestion

Once you have crafted and polished your question to a degree to which you are
satisfied with, it is now time to gather the raw data that will help you answer the
question. This doesn't mean that your question cannot be changed once you go
on to the next steps of the pipeline. You should continuously refine your problem
statement and adjust it as necessary.

Collecting the right data for your pipeline might be a tremendous undertaking.
Depending on the problem you are trying to solve, obtaining relevant datasets
might be quite difficult.
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Another important consideration is to decide how will the data be sourced, ingested,
and stored:

* What data provider or vendor should we use? Can they be trusted?

* How will it be ingested? Hadoop, Impala, Spark, just Python, and so on?
* Should it be stored as a file or in a database?

*  What type of database? Traditional RDBMS, NoSQL, graph.

* Should it even be stored? If we have a real-time feed into the pipeline,
it might not even be necessary or efficient to store the input.

*  What format should the input be? Parquet, JSON, CSV.

Many times, we might not even have control of the input sources to decide what
form it should take, and we should take it as is and then decide how it needs to be
transformed. Additionally, we might not have a sole data source. There might be
multiple sources that need to be consolidated, merged, and joined before we can
feed them into the model (more on that later).

As much as we would like it, and even though artificial intelligence makes the long-
term promise to replace human intelligence, deciding what variables should be
contained in the input datasets still requires human intelligence and maybe even
some good old human intuition.

If you are trying to predict stock prices, the price of the stock the previous day seems
like an obvious input. Maybe not so obvious might be other inputs like interest rates,
company earnings, news headlines, and so forth.

For restaurant daily sales, the previous day's sales are probably also important.
Others might include: Day of the week, holiday or not holiday, rain or no rain, daily
foot traffic, and so on.

For game-playing systems like chess and Go, we might provide previous games or
successful strategies. As an example, one of the best ways for humans to learn chess
is to learn opening and gambits that master players have used successfully in the
past as well as watching completed games from past tournaments. Computers can
learn in the same way by using this previous knowledge and history to decide how
to play in the future.

As of now, picking relevant input variables and setting up successful models still
requires the data scientist to have domain knowledge. And in some cases intimate
and deep domain knowledge. Let's explore an example further.
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Staying on the loan default example, let's think of some of the most important

teatures that are relevant in order to make accurate predictions. This is a first stab
at that list. Due to space limitations, we're not going to list all the features that would
normally be used. We'll add and remove items as we learn from our data:

Feature Name Feature Description Why is it useful?

If a borrower is having trouble
Delinquent # of accounts on which the paying their bills, they will
Accounts borrower is now delinquent. probably have trouble paying

new loans.

Trade Accounts

# of trades opened in past
24 months.

This is only a problem if there are
too few.

Drop this. Addresses are unique,

Borrower The address provided by the . . .
. I Unique variables do not provide
Address borrower in the loan application. - .
predictive ability.
Zip Code The zip code provided by the This is not unique and can have

borrower in the loan application.

predictive power.

Annual Income

The self-reported annual income
provided by the borrower during
registration.

More income allows the borrower
to handle bigger payments more
easily.

Current Balance

Average current balance of all
accounts.

Not valuable in isolation. Needs
to be relative.

Charge-offs

Number of charge-offs within
12 months.

Indicative of borrower's previous
default behavior.

The past-due amount owed

Past Due for the accounts on which the Indicative of 1t?orrower s previous
Amount . . default behavior.

borrower is now delinquent.

Months since the oldest revolving | Indicative of a borrower's
Oldest Account . :

account opened. experience borrowing money.
E‘r;l:;l&yment Employment length in years. Indicative of borrower's stability.

Loan Amount

The total amount committed
to that loan at that point in time.

Not valuable in isolation. Needs
to be relative.

Number of
Inquiries

Number of personal finance
inquiries.

Borrower looking for credit.

Interest Rate

Interest rate on the loan.

If a loan has a high interest rate,
the payments will be more and
might be harder to pay back.

Maximum
Balance

Maximum current balance owed
on all revolving accounts.

If it's close to 100%, this might
indicate the borrower is having
financial difficulties.
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accounts past
due

Number of accounts 120 or more
days past due

Months S}nce The number of months since the Indicative of previous financial
Last Public . ceps
last public record. difficulties
Record
Number of

Indicative of current financial
difficulties

Public Records

Number of derogatory public
records

Indicative of previous financial
difficulties

Term

The number of monthly payments
on the loan.

The longer the loan, potentially
the more possibility for default.

Total Current
Balance

Total current balance of all
accounts

Not valuable in isolation. Needs
to be relative.

As we saw, some of these variables do not provide meaning on their own and they
need to be combined to become predictive. This would be an example of feature
engineering. Two examples of new variables are:

Credit Utilization

Balance to credit limit on all trades.
Current balance compared to the
credit limit.

A high percentage indicates that
the borrower is "maxed out" and 1s
having trouble obtaining new credit.

Debt to Income

Calculated using the total monthly
debt payments on the total debt
obligations, excluding mortgage
and the requested loan, divided
by the borrower's self-reported
monthly income.

A low debt-to-income ratio
indicates that the borrower has
ample resources to pay back their
obligations and should not have
1ssues meeting them.

Data preparation

The next step is a data transformation tier that processes the raw data; some of the
transformations that need to be done are:

* Data Cleansing

* Filtration

* Aggregation

* Augmentation

* Consolidation

* Storage
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The cloud providers have become the major data science platforms. Some of the most
popular stacks are built around:

* Azure ML service

* AWS SageMaker

* GCP Cloud ML Engine

* SAS

* RapidMiner

*  Knime
One of the most popular tools to perform these transformations is Apache Spark,
but it still needs a data store. For persistence, the most common solutions are:

* Hadoop Distributed File System (HDFS)

* HBase

* Apache Cassandra

* AmazonS3

* Azure Blob Storage
It's also possible to process data for machine learning in-place, inside the database;
databases like SQL Server and SQL Azure are adding specific machine learning

functionality to support machine learning pipelines. Spark has that built in with
Spark Streaming. It can read data from HDFS, Kafka, and other sources.

There are also other alternatives like Apache Storm and Apache Heron. Whatever
else is in the pipeline, initial exploration of the data is often done in interactive
Jupyter notebooks or R Studio.

Some of the real-time data processing solutions out there provide fault-tolerant,
scalable, low-latency data ingestion. Some of the favorite ones are:

* Apache Kafka

e Azure Event IHubs

*  AWS Kinesis
Let's now explore one of the critical operations of data preparation - data cleansing.
We need to ensure that the data is clean. More likely than not, the data will not be

perfect, and the data quality will be less than optimal. The data can be unfit for
several reasons:

[57]



Machine Learning Pipelines

Missing values

Quite often our data contains missing values or missing values are replaced by zeros
or N/A. How do we deal with this problem? Following are six different ways to deal
with missing values:

* Do Nothing: Sometimes the best action is no action. Depending on the
algorithm being used, it is not always the case that we need to do anything
with missing values. XGBoost is an example of an algorithm that can
gracefully handle missing values.

* Imputation using median values: When values are missing, a reasonable
value to assign to the missing data is the median of all the rest of the non-
missing values for that variable. This alternative is easy and fast to calculate,
and it works well for small datasets. However, it does not provide much
accuracy and it doesn't consider correlations with other variables.

* Imputation using the most frequent value or a constant: Another option is
to assign the most frequent value or a constant like zero. One advantage of
this method is that it works for non-numerical variables. Like the previous
method, it doesn't factor correlations with other variables and, depending
on the frequency of the nulls, it can introduce a bias into the dataset.

Duplicate records or values

If two values are truly identical, it is easy to create a query or a program that can find
duplicate values. The trouble starts if two records or values are supposed to identify
the same entity but there is a slight difference between the two values. A traditional
database query for duplicates might not find spelling errors, missing values, address
changes, or people who left out their middle name. Some people use aliases.

Until recently, finding and fixing duplicate records has been a manual process that
is time-intensive and resource-consuming. However, some techniques and research
are starting to emerge that use Al to find duplicates. Unless all the details match
exactly, it is difficult to determine whether different records refer to the same entity.
Additionally, often most duplicates are false positives. Two individuals might share
the same name, address, and date of birth but still be different people.

The solution to identifying duplicates is to use fuzzy matching instead of exact
matching. Fuzzy matching is a computer-assisted technique to score data similarity.
It is used extensively to perform fuzzy matching. Discussing fuzzy matching is
beyond the scope of this book, but it may be useful for the reader to investigate

this topic further.
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Feature scaling

Datasets often contain features with varying magnitudes. This kind of variation

in the magnitudes in the features often has a detrimental effect on the accuracy

of predictions (but not always; for example, Random Forest does not need feature
scaling). Many machine learning algorithms use Euclidean distance between the data
points for their calculations. If we don't make this adjustment, features with a high
order of magnitude will have an over-weighted impact on the results.

The most common methods for feature scaling are:

* Rescaling (min-max normalization)
* Mean normalization
* Standardization (Z-score normalization)

* Scaling to unit length

Inconsistent values

Data can contain often contain inconsistent values. Furthermore, data can be
inconsistent in a variety of ways. An example of inconsistent data is a street
address modifier. Consider these data points:

* Fifth Avenue

¢ Fifth Ave
e Fifth Av
¢ Fifth Av.

As humans, we can quickly determine that all these examples are truly the same
value. Computers have a harder time in drawing this conclusion.

Two approaches to handle this are rule-based and example-based. A rule-based
system will work better when there is less variability in the data, and it doesn't
change quickly. The rule-based approach breaks when we have fast moving data.

Consider a spam filter. We could create a rule that marks as spam anything that has
the word "Viagra," but spammers might get smart and start changing the data to
bypass the rule ("Vi@gra"). A machine learning example-based cleanser would work
better in this case.

Sometimes, we might want to consider a hybrid approach and use both methods.
For instance, a person's height should always be a positive value. So, we could
write a rule for that. For other values with more variability, we can use a machine
learning approach.
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Inconsistent date formatting
e 11/1/2016
s 11/01/2016
. 11/1/16
* Nov11é6
*  November 1%, 2016

These are all the same value. So, we need to standardize dates.

This is not a comprehensive list of data preparation but instead is designed to give
a taste of the different transformations that need to be done to cleanse and prepare
data in order to be useful.

Data segregation

In order to train a model using the processed data, it is recommended to split the
data into two subsets:
* Training data

* Testing data
and sometimes into three:

* Training data
* Validation data
* Testing data

You can then train the model on the training data in order to later make predictions on
the test data. The training set is visible to the model and it is trained on this data. The
training creates an inference engine that can be later applied to new data points that
the model has not previously seen. The test dataset (or subset) represents this unseen
data and it now can be used to make predictions on this previously unseen data.

Model training

Once we split the data it is now time to run the training and test data through a series
of models and assess the performance of a variety of models and determine how
accurate each candidate model is. This is an iterative process and various algorithms
might be tested until you have a model that sufficiently answers your question.
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We will delve deeper into this step within later chapters. Plenty of material is
provided on model selection in the rest of the book.

Candidate model evaluation and selection

After we train our model with various algorithms comes another critical step. It is
time to select which model is optimal for the problem at hand. We don't always pick
the best performing model. An algorithm that performs well with the training data
might not perform well in production because it might have overfitted the training
data. At this point in time, model selection is more of an art than a science but there
are some techniques that are explored further to decide which model is best.

Model deployment

Once a model is chosen and finalized, it is now ready to be used to make predictions.
It is typically exposed via an API and embedded in decision-making frameworks
as part of an analytics solution.

How it gets exposed and deployed should be determined by the business
requirements. Some questions to consider in the deployment selection:

* Does the system need to be able to make predictions in real-time (if yes, how
fast: in milliseconds, seconds, minutes, hours?)

* How often do the models need to be updated?

*  What amount of volume or traffic is expected?

*  What is the size of the datasets?

* Are there regulations, policies and other constraints that need to be followed
and abided by?

Once you've solidified the requirements, we can now consider a high-level
architecture for the deployment of the model. Following are a variety of options.
This is not an exhaustive list by any means, but it does encompass some of the more
popular architectures:

RESTful API Shared DB Streaming Mobile App

Architecture Architecture Architecture Architecture
Training Method | Batch Batch Streaming Streaming
Prediction Real-time Batch Streaming Real-time
Method
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Result Delivery Via RESTful Via Shared Streaming Via in-process
API Database via Message API on mobile
Queue device
Prediction Low High Very Low Low
Latency
System Medium Easy Difficult Medium
Maintainability

As summarized in the table, each of these four options has its pros and cons. Many

more considerations need to be accounted for as we drill down into the specifics

of the architecture. As an example, each of these architectures can be implemented
using a modularized microservice architecture or in a monolithic manner. Again, the
choice should be driven by the business requirements. For example, the monolithic
approach might be picked because we have a very limited use case that required an

extremely low latency.

Regardless of the architecture chosen for the model deployment it is a good idea
to use the following principles:

* Reproducibility: Store all the model inputs and outputs, as well as all

relevant metadata such as configuration, dependencies, geography, and time
zones. required to explain a past prediction. Ensure the latest versioning for
each of these deployment bundles is available, which should also include
the training data. This is especially important for domains that are highly

regulated, banking, for example.

* Automation: As early as possible, automate as much as possible of the
training and model publishing.

* Extensibility: If models need to be updated on a regular basis, a plan needs

to be put in place from the beginning.

* Modularity: As much as possible, modularize your code and make sure
that controls are put in place to faithfully reproduce the pipelines across
environments (DEV, QA, TEST).

* Testing: Allocate a significant part of your schedule for testing the machine
learning pipeline. Automate the testing as much as possible and integrate
into your process from the beginning. Explore Test Driven Development

(TDD) and Behavior Driven Development (BDD).
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Performance monitoring

Once a model makes it into production, our work is not finished. Moving a model
into production may not be easy, but once the model is deployed it must be closely
monitored to make sure that the model is performing satisfactorily. There are various
steps involved in getting the model into production. The model is continuously
monitored to observe how it behaved in the real world and calibrated accordingly.
New data is collected to incrementally improve it. Similarly, monitoring a deployed
machine learning model requires attention from various perspectives to make sure
that the model is performing. Let's analyze these different metrics that need to be
considered when monitoring machine learning models, and why each one of them

is important:

Model performance

Performance in the data science context does not mean how fast the model is
running, but rather how accurate are the predictions. Data scientists monitoring
machine learning models are primarily looking at a single metric: drift. Drift happens
when the data is no longer a relevant or useful input to the model. Data can change
and lose its predictive value. Data scientists and engineers must monitor the models
constantly to make sure that the model features continue to be like the data points
used during the model training. If the data drifts, the prediction results will become
less accurate because the input features are out of date or no longer relevant. As an
example, think of stock market data. Thirty years ago, the market was dramatically
different. Some ways in which it was different include the following;:

* Volume in the stock exchanges was significantly lower than it is today
* High-frequency trading was not even an idea
* Passive index funds were much less popular

As you can imagine, these characteristics make stock performance significantly

different. If we train our models with 30-year-old data, they are more than likely
not going to be able to perform with today's data.

Operational performance
Machine learning pipelines at the end of the day are still software systems. For this
reason, it's still important to monitor resource consumption, including;:
* CPU utilization: Identifies spikes and whether or not they can be explained.
* Memory usage: How much memory is being consumed.

* Disk usage: How much disc space is our application consuming,.
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* Network I/O traffic: If our application spans across instances, it is important
to measure the network traffic.

* Latency: The amount of time it takes for a data transfer to occur.

* Throughput: The amount of data successfully transferred.

If these metrics change, they need to be analyzed to understand why these changes
are happening.

Total cost of ownership (TCO)

Data scientists need to monitor their model performance in terms of records per
second. Although this gives some insight into the efficiency of the model, companies
should also be focused on the benefit they gain from the model versus the cost. It is
recommended to monitor the cost of all the steps of the machine learning pipeline. If
this information is closely tracked, the business can make smart decisions on how to
keep costs down and how to take advantage of new opportunities or whether certain
pipelines are not providing enough value and they need to be changed or shut down.

Service performance

Technology not in the context of a business problem is useless. Businesses often
have, or at least should have, service level agreements (SLAs) in place with the
technology department. Examples of SLAs:

* Fix all critical bugs within one day

* Ensure that an API responds within 100 ms

* Process at least a million predictions per hour

* Complex models must be designed, developed, and deployed within

3 months

For the business to perform optimally it's important to establish, monitor, and meet
previously agreed upon SLAs.

Machine learning models can be mission critical to a business. A key to ensure
that they do not become a bottleneck is to properly monitor the deployed models.
As part of your machine learning pipelines, make sure that deployed machine
learning models are monitored and compared against SLAs to ensure satisfactory
business results.
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Summary

This chapter laid out in detail what are the different steps involved in creating

a machine learning pipeline. This tour should be considered an initial overview
of the steps involved. As the book progresses you will learn how to improve

your own pipelines, but we did learn some of the best practices and most popular
tools that are used to set up pipelines today. In review the steps to a successful
pipeline are:

Problem definition

Data ingestion

Data preparation

Data segregation
Candidate model selection
Model deployment

Performance monitoring

In the next chapter we'll delve deeper into one of the steps of the machine learning
pipeline. We'll learn how to perform feature selection and we'll learn what is
feature engineering. These two techniques are critically important to improve
model performance.

[65]



Copyrighted material



Feature Selection and
Feature Engineering

Feature selection - also known as variable selection, attribute selection, or

variable subset selection - is a method used to select a subset of features (variables,
dimensions) from an initial dataset. Feature selection is a key step in the process of
building machine learning models and can have a huge impact on the performance
of a model. Using correct and relevant features as the input to your model can also
reduce the chance of overfitting, because having more relevant features reduces the
opportunity of a model to use noisy features that don't add signal as input. Lastly,
having less input features decreases the amount of time that it will take to train a
model. Learning which features to select is a skill developed by data scientists that
usually only comes from months and years of experience and can be more of an art
than a science. Feature selection is important because it can:

* Shorten training times
* Simplify models and make them easier to interpret

* Enhances testing set performance by reducing overfitting

One important reason to drop features is the high correlation and redundancy
between input variables or the irrelevancy of certain features. These input variables
can thus be removed without incurring much loss of information. Redundant and
irrelevant are two distinct notions, since one relevant feature may be redundant in
the presence of another relevant feature with which it is strongly correlated.

Feature engineering in some ways is the opposite of feature selection. With feature
selection, you remove variables. In feature engineering, you create new variables
to enhance the model. In many cases, you are using domain knowledge for the
enhancement.
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Feature selection and feature engineering is an important component of your
machine learning pipeline, and that's why a whole chapter is devoted to this topic.

By the end of this chapter, you will know:

* How to decide if a feature should be dropped from a dataset
* Learn about the concepts of collinearity, correlation, and causation

* Understand the concept of feature engineering and how it differs from
feature selection

* Learn about the difference between manual feature engineering and
automated feature engineering. When is it appropriate to use each one?

Feature selection

In the previous chapter, we explored the components of a machine learning pipeline.
A critical component of the pipeline is deciding which features will be used as inputs
to the model. For many models, a small subset of the input variables provide the
lion's share of the predictive ability. In most datasets, it is common for a few features
to be responsible for the majority of the information signal and the rest of the
teatures are just mostly noise.

It is important to lower the amount of input features for a variety of reasons including;:

* Reducing the multi collinearity of the input features will make the machine
learning model parameters easier to interpret. Multicollinearity (also
collinearity) is a phenomenon observed with features in a dataset where one
predictor feature in a regression model can be linearly predicted from the
other's features with a substantial degree of accuracy.

* Reducing the time required to run the model and the amount of storage
space the model needs will allow us to run more variations of the models
leading to quicker and better results.

* The smaller number of input features a model requires, the easier it is to
explain it. When the number of features goes up, the explainability of the
model goes down. Reducing the amount of input features also makes it easier
to visualize the data when reduced to low dimensions (for example, 2D or 3D).

* As the number of dimensions increases, the possible configurations increase
exponentially, and the number of configurations covered by an observation
decreases. As you have more features to describe your target, you might be
able to describe the data more precisely, but your model will not generalize
with new data points - your model will overfit the data. This is known as
the curse of dimensionality.
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Let's think about this intuitively by going through an example. There is a real estate
site in the US that allows real estate agents and homeowners to list homes for rent or
for sale. Zillow is famous, among other things, for its Zestimate. The Zestimate is an
estimated price using machine learning. It is the price that Zillow estimates a home
will sell for if it was put on the market today. The Zestimates are constantly updated
and recalculated. How does Zillow come up with this number? If you want to learn
more about it, there was a competition on Kaggle that has great resources on the
Zestimate. You can find out more here:

https://www.kaggle.com/c/zillow-prize-1

The exact details of the Zestimate algorithm are proprietary, but we can make

some assumptions. We will now start to explore how we can come up with our

own Zestimate. Let's come up with a list of potential input variables for our machine
learning model and the reasons why they might be valuable:

* Square footage: Intuitively, the bigger the home, the more expensive
it will be.

*  Number of bedrooms: More rooms, more cost.
¢  Number of bathrooms: Bedrooms need bathrooms.

* Mortgage interest rates: If rates are low, that makes mortgage payments
lower, which means potential homeowners can afford a more expensive
home.

* Year built: In general, newer homes are typically more expensive than older
homes. Older homes normally need more repairs.

* Property taxes: If property taxes are high, that will increase the monthly
payments and homeowners will only be able to afford a less expensive home.

* House color: At first glance, this might not seem like a relevant variable, but
what if the home is painted lime green?

* Zip code: Location, location, location. In real estate, where the home is
located is an important determinant of price. In some cases, a house in one
block can be hundreds of thousands of dollars more than a house on the next
block. Location can be that important.

* Comparable sales: One of the metrics that is commonly used by appraisers
and real estate agents to value a home is to look for similar properties to the
"subject" property that have been recently sold or at least are listed for sale,
to see what the sale price was or what the listing price currently is.

* Tax assessment: Property taxes are calculated based on what the
county currently thinks the property is worth. This is publicly accessible
information.
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These could all potentially be variables that have high predictive power, but
intuitively we can probably assume that square footage, the number of bedrooms,
and number of bathrooms are highly correlated. Also, intuitively, square footage
provides more precision than the number of bedrooms or the number of bathrooms.
So, we can probably drop the number of bedrooms and the number bathrooms and
keep the square footage and don't lose much accuracy. Indeed, we could potentially
increase the accuracy, by reducing the noise.

Furthermore, we can most likely drop the house color without losing precision.

Features that can be dropped without impacting the model's precision significantly
fall into two categories:

* Redundant: This is a feature that is highly correlated to other input features
and therefore does not add much new information to the signal.
* Irrelevant: This is a feature that has a low correlation with the target feature

and for that reason provides more noise than signal.

One way to find out if our assumptions are correct is to train our model with and
without our assumptions and see what produces the better results. We could use
this method with every single feature, but in cases where we have a high number
of features the possible number of combinations can escalate quickly.

As we mentioned previously, exploratory data analysis can be a good way to get an
intuitive understanding and to obtain insights into the dataset we are working with.
Let's analyze three approaches that are commonly used to obtain these insights.
They are:

* Feature importance

* Univariate selection

* Correlation matrix with heatmap

Feature importance

The importance of each feature of a dataset can be established by using this method.

Feature importance provides a score for each feature in a dataset. A higher score
means the feature has more importance or relevancy in relation to the output feature.

Feature importance is normally an inbuilt class that comes with Tree-Based Classifiers.
In the following example, we use the Extra Tree Classifier to determine the top five
features in a dataset:

import pandas as pd
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from sklearn.ensemble import ExtraTreesClassifier
import numpy as np
import matplotlib.pyplot as plt

data = pd.read_csv("train.csv")
X = data.iloc[:,0:20] #independent columns
vy = data.iloc[:,-1] # pick last column for the target feature

model = ExtraTreesClassifier()

model.fit (X,vy)

print (model.feature importances_ ) fuse inbuilt class

#feature importances of tree based classifiers

#plot graph of feature importances for better wvisualization

feat importances = pd.Series(model.feature importances , index=X.
coluﬁns) B a
feat_importances.nlargest (5) .plot (kind='barh')

plt.show ()

You should see this as output:
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Figure 1: Feature importance graph
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actions, setting up 398, 399

parameters, setting up 398, 399

training phrases, setting up for 398

webhooks, enabling for 397
interactive object tracker

building, with CAMShift algorithm 446-453
Interactive Voice Response (IVR) 24, 387
Internet of Things (loT) 24, 284
Inverse Document Frequency (idf) 364
loT activity 405
iRobot 38

J
Jeopardy 41

K

Key phrase Extraction APl 292
key-values databases 573
key-value stores

examples 573
K-Means algorithm

about 154

data, clustering 154-158
K-nearest neighbors classifier

building 183-188
knowledge representation 10
knowledge search 32
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L

L1 normalization 99
L2 normalization 99
label encoding 100, 101
Language Detection APl 292
Language Modeling
use case 530, 531
Lasso regression 76
Latent Dirichlet Allocation
topic modeling 374-376
launch words 385
Leaky RelLU 528
learning 541, 542
learning agent
building 550-554
learning models
building, with ensemble learning 130
Least Absolute Deviations 99
lemmatization

words, converting to base forms 356, 357

Linear discriminant analysis (LDA) 75
local search techniques 224
logic programming

about 201-203

fundamentals 204

used, for solving problems 204, 205
logistic function 525
logistic regression classifier 101-105
logpy

reference link 205
log transform 87, 88
long short-term memory (LSTM) 44, 524
Lucas-Kanade method 454

machine learning
about 8, 10
analogizers 9
Bayesians 9
connectionists 9
evolutionaries 9
symbolists 8

machine learning pipeline
about 49, 50
candidate model deployment 51
candidate model evaluation 51

data ingestion 51-56
data preparation 56, 57
data segregation 51, 60
model training 51, 60
problem definition 51-53
machines
making, to think like humans 11, 12
Mac 0S X
Python 3, installing on 17
MapReduce 568
market
segmenting, based on shopping
patterns 175-177
massively parallel processing (MPP) 571
mathematical expressions
matching 205, 207
matplotlib packages
installation link 18
Maximum A-Posteriori (MAP) 167
maze solver
building 242-246
mean absolute error (MAE) 120
mean removal 97
Mean Shift algorithm
about 158
number of clusters, estimating 158-161
mean squared error (MSE) 120, 264
Mel Frequency Cepstral Coefficients (MFCCs)
about 340
reference link 340
Microsoft Azure 284, 298
Microsoft Azure Machine Learning
Studio 298-300
Microsoft Cortana 24
Minimax algorithm 311
missing values
dealing with 58
model deployment 61, 62
model performance 63
model training 60
module 300
MongoDB 574
mopping 38
movie making 44
movie recommendation system
building 196-199
movie script generation 44
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multilayer neural network
constructing 479-483

multivariable regressor
building 120-122

mutation 250

MySomm 25

Naive Bayes classifier 105-109
Natural Language Processing
(NLP) 10, 29, 291, 352, 388, 524
Natural Language Toolkit (NLTK)
about 352
URL 352
Natural Language Understanding
(NLU) 305, 524
NaturalMotion
about 277
URL 277
Natural Text Generation (NLG) 531
nearest neighbors
extracting 179-182
Negamax algorithm 312
Neodj 574
Netflix Prize 35
neural networks
about 469, 470
building 470
training 470, 471
Neural Network Toolbox (NNT) 471
NeuroLab
about 471
URL 471
ngrok
about 394
URL 395
NLP packages
installing 352, 353
normalization 88, 98, 99
NoSQL databases
about 572
document databases 572
graph databases 572
key-values databases 573
wide-column databases 573

number of clusters
estimating, with Mean Shift
algorithm 158-161
Numerical Imputation 79
NumPy packages
installation link 18

o

object detection
Haar cascades, using for 460
objects
tracking, with color spaces 439-442
object tracking
with background subtraction 442-445
one-hot encoding 85, 86
One Max algorithm 251
OpenAl Gym
URL 545
OpenCV 3, with Python 3
installation links 435
OpenCV (Open source computer vision)
about 435
installing 435
URL 435
operational performance 63
optical character recognition database
characters, visualizing in 491-493
optical character recognition engine
building 493-497
Optical Character Recognition (OCR)
about 491
reference link 491
optical flow-based tracking 453-459
optimal training parameters
searching, grid search used 144-146
Oracle Cloud Infrastructure (OCI) 286
outlier management 81-85

P

packages
installing 18
PackBot 38
PageRank 560
Pandas
about 405, 406
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time series data, handling 406-408
Pandora 35
parameters
setting up, for intents 398, 399
Pearson score 188
Pearson's Correlation 75
Perceptron-based classifier
building 471-475
perceptron-based linear regressor
building 506-512
perceptron neural networks
versus CNNs 503, 505
performance monitoring
about 63
model performance 63
operational performance 63
service performance 64
total cost of ownership (TCO) 64
personal chauffeur 26, 27
personal chef 39
Platform as a Service (PaaS) 284
Polly 291
population 249
predefined parameters
used, for generating bit pattern 251-256
predictors 117
preprocessing techniques
binarization 96
mean removal 97
normalization 98, 99
scaling 97, 98
primes
validating 207, 208
problem
solving, with constraints 231-234
solving, with General Problem Solver
(GPS) 14
solving, with logic programming 204, 205
problem definition 52, 53
programming paradigms
declarative 202
functional 202
imperative 202
logic 202
object oriented 202
procedural 202
symbolic 202

pruning 312
puzzle solver
building 217-219

Python

chatbot, integrating into website 393-395
Python 3

installing 16

installing, on Mac 0S X 17

installing, on Ubuntu 16

installing, on Windows 17
Python packages

installing 205

Q

quality of clustering
estimating, with silhouette scores 162-166

R

random forest classifier

building 131-136
random forests

about 130

advantages 131
RankBrain 32
ranking 560, 561
rational agents

building 12, 13
reasoning 10
recombination 250
recommendation 33
Recommendations Al 306
recommendation systems

about 33

Betterment 36

Netflix Prize 35

Pandora 35
Rectified Linear Unit (ReLU)

function 517, 527, 528

recurrent neural networks (RNNs)

architecture 528-530

basics 524

reference link 487

training 531-540

used, for analyzing sequential data 487-491
recursive feature elimination method 75
Redis 574
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region-coloring problem
solving 234-236
regression 117
reinforcement learning
fundamentals 544, 545
real world examples 543, 544
versus supervised learning 542, 543
relative feature importance
computing 147-149
representative Al use cases
about 23,24
chatbots 24
data cleansing 46, 47
data transformation 46, 47
deal analysis 45
digital personal assistants 24, 25
gaming 40-43
human health 29-31
knowledge search 32
movie making 44
personal chauffeur 26-28
recommendation systems 33-36
shipping 28
smart home 36-40
underwriting 45, 46
warehouse management 28
Resilient Distributed Datasets (RDD)
about 569
characteristics 569
methods, for creating 569
responses
checking, from webhook 401
ridge regression 76
Ring video doorbell 37
rules 204

S

scaling 88, 97, 98
scikit-learn packages
installation link 18
SciPy packages
installation link 18
SciPy-stack compatible distributions,
Python 3
reference link 17
search algorithms

using, in games 310
sentiment analysis 370
Sentiment Analysis APl 292
sentiment analyzer

building 370-373
sequential data

about 404, 405

analyzing, with recurrent neural

networks 487-491

examples 404
service level agreements (SLAs) 64
service performance 64
shipping 28
sigmoid curve 102
sigmoid function 525, 526
silhouette scores

quality of clustering, estimating 162-166

similarity scores
computing 188-192
similar users

finding, with collaborative filtering 193-195

simpleai
reference link 227
Simulated Annealing 225, 226
single layer neural network
constructing 475-479

used, for building image classifier 513-515

single variable regressor
building 117-120
sinusoids 335
slot values 385, 386
smart home
about 36
home monitoring 37
mess pickup 38
mopping 38
personal chef 39
vacuuming 38
SparkSQL 570
speech features
extracting 340-343
speech recognition 329
speech signals
working with 330
Speech-to-Text 306
spoken words
recognizing 343-348
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standardization 89
StarCraft 2 40,41
statistics
extracting, from time series data 414-418
stemming
words, converting to base forms 354-356
step function 525
stock market analysis 428-431
stock market prices 404
string
constructing, with greedy search 227-230
supervised learning
about 94
versus reinforcement learning 542, 543
versus unsupervised learning 93, 94
Support Vector Machine (SVM)
about 112, 113
income data, classifying 113-116
Support Vector Regressor
housing prices, estimating 123
symbol regression problem
solving 263-267
Syntax APl 292

T

tanh function 526
Term Frequency - Inverse Document
Frequency (tf-idf) 363
Term Frequency (tf) 363
Test Driven Development (TDD) 62
text data
dividing, into chunks 358, 359
tokenizing 353, 354
Text-to-Speech 305
The bartender 25
Tic-Tac-Toe 310, 317
time series data
handling, with Python 406-408
operating on 411-414
slicing 409-411
statistics, extracting from 414-418
time series data analysis 405
Tkinter
reference link 102
tones
synthesizing, to generate music 337-340

tools, for matrix operations

reference link 420
topic modeling

with Latent Dirichlet Allocation 374-376
total cost of ownership (TCO) 64
training phrases

setting up, for intent 398
traveling salesman problem (TSP) 280, 419
true negatives 110
true positives 110
Turing test

intelligence, defining 9, 10

U

Uber 25
Uber ATG 28
Ubuntu

Python 3, installing on 16
underwriting 45
Uniform Cost Search (UCS) 222
uninformed search

versus informed search 222, 223
univariate selection 72
unrolling 529
unsupervised learning

about 94, 153, 154

versus supervised learning 93, 94
utterances 384, 385

'

vacuuming 38
Vector Quantization 483
vector quantizer
building 483-486
virtual high throughput screening (VHTS) 29

W

wake words 385
warehouse management 28
webhook
about 386
enabling, for intents 397
fulfillment responses, building
from 399-401
responses, checking from 401
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setting up, in DialogFlow 396
well-architected chatbot

about 386

adaptability 386

availability 387

personalization 387

relatability 387
wide-column databases 573
widget

chatbot, integrating into website 392
Windows

Python 3, installing on 17
wrapper methods

backward elimination 75

forward selection 74

recursive feature elimination 75
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