Danny A.J. Gomez Ramirez

| Artificial
Mathematical
Intelligence



Danny A. J. Gémez Ramirez

Research’s Labs Center Parque i

Instituto Tecnoldgico Metropolitano (ITM)
Medellin, Antioquia, Colombia

ISBN 978-3-030-50272-0 ISBN 978-3-030-50273-7 (eBook)
https://doi.org/10.1007/978-3-030-50273-7

Mathematics Subject Classification: 03-02; 08-02; 13-02; 14-02; 18-02; 68-02

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Contents

1  Global Introduction to the Artificial Mathematical Intelligence

General Program ... e
1.1 A Quite Revolutionary “Artificial Mathematical” Vision .........
1.2 Towards Conceptual Computation ............vvvvvivivininraiannns
1.3 Former and Current (Local) Advances Towards
the AMI VISION. ....u i i e aaas
1.4 A New Foundational and Integrative Program ....................
1.5 Ethical Considerations ...........vvieeeririiiieeeeeririiiiaaaeannnns
ESS ) (] 1 11
2 Some Basic Technical (Meta-)Mathematical Preliminaries
for Cognitive Metamathematics........................ooiiiiiiiin,
2.1 INErOdUCHION L.\ vttt aaaans
22 Propositional and First-Order Logic ..o,
2.2.1 A Formal System for Propositional Logic..............
222 First-Order Logic ...,
2.3 Foundational Instantiations of First-Order Theories in
MathematiCS . ..o e vt e ettt iiie et et iiaie e e e eaaiaaeaeaaaans
2.3.1 Zermelo-Fraenkel Set Theory with the Axiom
of Choice (ZFC) ..o i
232 Von Newmann—-Bernays—Gdodel (Class and) Set
Theory (NBG)..oooviiiiiiiiiii e
233 Peano Arithmetic .........coooiiiiiiiii i
2.3.4 CatEOTIES ot vttt ittt e eiananans
2.4 Further Seminal (Categorical and Set-Theoretical)
Mathematical NOHONS ... .uuuuutsttrtrrrererereaeaearananaes
R T ONCES ..ttt e e

o=

15
15

19
19
19
20
20

23
23
24
27
28

30
37

Xiii



Xiv Contents

PartI New Cognitive Foundations for Mathematics

3 General Considerations for the New Cognitive Foundations’

Program ... ... e 41
3.1 General Introduction ... 41
32 Essential Aspects of the New Cognitive Foundations Program .. 43
33 The Cognitive Substratum of a Mathematical Proof .............. 47
34 The Local Nature of the Conscious Mind ......................... 49
References. . ..o e 51

4  Towards the (Cognitive) Reality of Mathematics and the

Mathematics of (Cognitive) Reality....................................... 53
4.1 Introduction ...........ooiiiiiii s 53
4.2 Towards the Reality of Mathematics.......................ooee. 54
42.1 Qualitative Commonalities of Several Possible
Physical Scenarios ... 54
43 Towards the Mathematics of Reality ............................... 58
43.1 An Initial Taxonomy for the Size of Phenomena
InNature. ... 58
432 The Ontological Role of Mathematics Within
the Existing Realm.............ooooiiiiiiiiii. 58
4.4 The Nature of a Formal Model for Reality at a Mecro-Level..... 60

4.5 The Singularity and the Continuous Model of our
Spacetime: Pseudo-Sculpting Irrational Computable Numbers .. 61

45.1 Continuous Syntactic Notation..............oeeveee.ne. 62

452 “Singular” Sculptures of Irrational Computable
Numbers into a Continuous Physical Realm ........... 63
4.6 Final Remarks and Conclusions..................ooooiiiiia... 65
ReferenCes. ... oo 65
5 The Physical Numbers .............coooiiiiiiiiiiiiiiiiiiiiiiiiininiineaes 67
5.1 Introduction ...........ooiiiiiii s 67
5.2 OVETVIEW L.t 68
5.3 The Natural Finiteness of the Universe ................oeeviennn... 68
54 Our Classic Intuitions About the “Natural Numbers”............. 70
5.5 Additional Cognitive Considerations ...............c.eevevuieianans 72
5.6 The Physical NUMbBErs ..........ouuuiuimiiiiaeans 72
5.6.1 First Approach: Counting Physically ................... 72
5.6.2 Second Approach: Partitioning Physically ............. 74
5.7 Towards a Formalization of the Physical Numbers ............... 75
5.7.1 Axioms Defining the Initial Physical Number.......... 77

572 Axioms for the Final (Global and Relative)

Physical Number................o i 77
5.7.3 Axioms the (Physical) Equality ......................... 77
5.7.4 Partitioning AXiom ... 8

5.7.5 Retraction-Extension Axiom ................ccoeveeen... 78



Contents XV

5.7.6 Axiom for the (Physical) Successor Function .......... 78
5.7.7 (Physical) Addition AXiOm.........uvuvuvuinnnnnnninnan. 79
5.7.8 (Physical) Multiplication AXiom..........coovvuvuvunnn. 79
5.7.9 (Physical) Quotient AXiOM ........oovvuvuruiurnrnrnnannns 80
5.7.10  (Physical) Order AXiOmS .........vvvvrrrurinininiaiainns 80
5.7.11  Refining the Peano AXioms ...........coovvvvivininnnns 80
5.8 Comparison with the Natural Numbers ...................oooviis 81
5.9 Pragmatic Considerations ..............uvvuvriuiririninininianaians 82
5.10  Explanatory Scope of the Physical Numbers in
Mathematics and PhySiCs .........ovvviiiriiiiiiiiiii i, 82
5.11 (In)finiteness and Immensity ...........c.cooviviiiniiiiiiiinnienennns 83
5.12  Counting as Partitioning ............coooviiiiiiiii i 85
5.13  Towards Physical Number Theory ............cooveiiiiiiennnn.. 86
514 CONCIUSIONS . .vuniie it ie et iaee et iirae e e e earannnnaaans 87
REfereNCES .. ettt e 87

6  Dathematics: A Meta-Isomorphic Version of “Standard”

Mathematics Based on Proper Classes ................................... 91
6.1 INErOdUCHON L.\ u ittt aeaeas 91
6.2 Dual Notions and Axioms of Zermelo—Fraenkel Set
Theory with Choice within NGB Set Theory...................... 92
6.2.1 Dual Notion of Equality ..., 93
6.2.2 Dual Inclusion.......... ... i 93
6.2.3 Dual Proper Classes ...........covviiiiiiiiinieieinnann.. 94
6.24 Dual Axiom T ... ... . 94
6.2.5 Dual Predicative Well-Formed Formulas ............... 94
6.2.6 Dual Pairing AXIOm ......oovvviiiiiiiiiiiiiiieieieiennn. 95
6.2.7 Dual Null Set.....oooviiiiiiiiii e 95
6.2.8 Dual Unordered Pairs.............oovvviviiininininnnnn.. 96
6.2.9 Dual Axiom for the Existence of a Membership
Relation ......ovvviiiiiiiiiiiiii e 96
6.2.10  Dual Existence of Intersections ................c.vvvevans 97
6.2.11  Dual Notion of Complement ...............covvvveinnn.. 97
6.2.12  Dual Existence of Domains of Classes ................. 98
6.2.13  Dual Class Existence Theorem.......................... 99
6.2.14  Dual Cartesian Product .................................. 99
6.2.15 Dual Notion of Power Class............cooevivieiiinnn.. 100
6.2.16  Dual AXiom U ... 100
6.2.17  Dual Notion and Axiom of Sum Class.................. 100
6.2.18 Dual Axiom W ... ... i 100
6.2.19 Dual AXiom S ... .. 101
6.220 Dual AXIOm R ... s 101
6.2.21  Dual Axiom of Infinity ........... ... 101
6.2.22  Dual Axiom of Regularity..................coooein.t. 101

6.2.23  Dual Axiom of ChOiCE. ... .oovvviiiiiiiiiieiiaeeinnns 101



xvi Contents

6.3 A More General Dualization Theorem................cooeeveeann
6.4 DathematiCs ......vvuiiie ettt i ie e iiieeaeaaeans
6.5 CONCIUSIONS ..\ttt ittt et e e et et iiaae e e e aaiaaeaeaaeans
S ) (] 1 1

Part II Global Taxonomy of the Fundamental Cognitive
(Metamathematical) Mechanisms Used in Mathematical
Research

7  Conceptual Blending in Mathematical Creation/Invention............
7.1 Introduction ... ...
7.2 Methods ..o

7.2.1 Categorical Mathematical Concepts ....................
7.2.2 Structural Concepts .....oovvveieriiiiiiiaiiiaiaiannans
7.3 Computations and Formal Proofs: Explicit Generation of
Fundamental Concepts of Fields and Galois Theory..............
7.3.1 Fields ..o
732 Field EXtensions ...........coooiviiiiiiiiiiiiiienn s
7.3.3 Group of Automorphisms of aField....................
7.3.4 AUt(E/F) oo
7.4 Additional Evidence: The Theory of Lie Groups .................
7.5 Generating Genuine Concepts from Formal Weakening of
TNCONSISENE ONES L.\ttt ie et iiiie e e eriiaeeaeaaeaas
7.5.1 Non-trivial Space with a Transitive Divisibility
Relation .......coviiiiiiiiii e
7.5.2 Goldbach’s Rings ...
7.6 (Co-)Inventing Experiences of Students Using Formal
Conceptual Blending. ...
7.6.1 Normed Groups .......ooviiiiiiiiiiiiiiiiiiiieieieens
7.6.2 QuOotIent GIOUPS «.voviviiiiiiiiiiiiieiiieieieieieens
7.6.3 Additional Remarks.............cooooiiiiii
7.7 General ConclusionS .. ....o.uvitiiiiii e
| S (5 1= 161

8 Formal Analogical Reasoning in Concrete Mathematical

Research ....... ..o
8.1 Introduction ...
8.2 Basic NOLONS ...ouuiii i e
8.2.1 Syntactic and Generic Depth ..............ooociiian
822 Atomic Analogy .....coviiiiiiiiiiii i
8.2.3 Analogical Space ..........cccviiiiiiiiii
824 Extension for Predicate Logic................coeeea.

8.2.5 An Additional Approach to Conceptual
Blending Between Propositions.........................
8.3 Our Formal Framework. ...

125

128
129
129
129
130

134



Contents

10

8.4 Toward an Analogy-Based Deduction Algorithm for

Propositional LogiC ......uvuuuiiiuiiiiaianas
8.5 Analogical Meta-Modeling of Specific Proofs ....................
8.5.1 First Theorem ............coooiiiiiiiiiii e
852 Second Theorem ..........cccovviiiiieiiiiiiii i
8.6 CONCIUSIONS ...ttt et e e
R CTeNCES ... e
Conceptual Substratum..........................
9.1 Introduction ... .. ...
9.2 Additional Conceptual Support from Several Mathematical
Domains ...
9.3 Introducing a Suitable Notation ..............coooiiiiiiiinnnna..
9.4 A Formalization of Conceptual Substratum in a
(Many-Sorted) First-Order Framework ............................
9.5 Functional Conceptual Substratum ............cocviviiiiininian.
9.6 Metamathematical and Cognitive Interpretation of the
Church—Turing Thesis ........ovuui s
9.7 Conceptual Lining .......oooiiiiiiiiiiiiiiiiii e
RefereNCeS .. ..uii i

(Initial) Global Taxonomy of the Most Fundamental Cognitive
(Metamathematical) Mechanisms Used in Mathematical
Creation/Invention..............................
10.1 Introduction ........ooiiiiiiiiii i
10.2  General Mathematical Concepts ............ccoooviiiiiiiiinn...
10.3  Formal (Meta-)Exemplification and Generic Exemplification....
10.3.1  Formal Examples as One of the Most Important
Cognitive Sources for Doing Research
in Mathematics ...
10.3.2  Formal (Meta-)Exemplification .........................
10.3.3  Syntactic Restriction to Exemplification(s).............
10.3.4  Generic Exemplification and Generic Generalization..
10.4  Syntactic and Conceptual Strengthening and Weakening.........
10.5  Formal Metaphorical Reasoning ...,
10.6  Conceptual and Morpho-Syntactic Generalization and
Particularization.............cooiiiiiiiiiii
10.6.1  Instantiated Generalization and Exemplification.......
10.6.2  Morpho-Syntactic Graphs ...........c.oociiiiiiiinnn.
10.6.3  Generalization and Particularization on
Symbolic Units........c.vvuiiiiiiiiiii e
10.7  Conceptual COMPATISON .. .....veuiiiiiieeeeiiiieeeeaanaananns
10.8  Conceptual Replacement, Identification, and Duplication ........
10.9  (Un-)Conscious Conjunctive Combination ........................
10.10  Generic Conceptual Blending ...,
10.11 (General) Analogical Reasoning .............coovvviiiiiiinieinnn..

Xvii

142
143
143
145
145
146

147
147

149
152

153
158

159
162
163

165
165
166
167

180

182



Xviii Contents
10.12  (General) Conceptual Blending ..............cooiiiiiiiiiiinnn... 190
10.13  (General) Conceptual Substratum and Conceptual Lining........ 191
10.14 Conceptual Complement ............oovuvuveeiiiiniieereaaninnnnnn. 194
10.15 Counterfactual (Contradictory) Affirmation....................... 194
R CTENCES ..t 195

Part III Towards a Universal Meta-Modeling of Mathematical

Creation/Invention: Meta-Analysis of Several Classic and
Modern Proofs and Concepts in Pure Mathematics

11 Meta-Modeling of Classic and Modern Mathematical Proofs

and Concepts ...t e 201
11,1 Introduction ..........c.ooiiiiiiiiii i e 201
11.2  The Classic Proof for Estimating the Cardinality

of The Primes Numbers ..., 203
11.3  Pitagoras’ Theorem .......oooviiiiiiiiiiiiiiiiiiiiiiiiiiieieiannns 208
11.4  Principle of Mathematical Induction.................coooviinnnn. 210
11.5  Cartesian Product ..o 211
11.6  (Equivalence) Relations .............oooviiiiiiiniiiiiiiiinienninn. 212
11.7  Mathematical Functions and Function Compositions............. 213
11.8  Topological SPAaces ..........coiuiiiiiiiiiiiiiiiiii i, 216

11.8.1  Structures of Basic Sets............c.ooovviiiiiiiin... 216

11.8.2  Substructures of Power Pseudo-Sets .................... 217

11.8.3  Doing Local Metaphors .............coooviiiiiiinnnn... 218

11.8.4  Doing a Syntactic Restriction to the Real Line......... 219
11.9  Base for a Topological Space............cvviiiiiiiiiiiinn. 221
11.10  Commutative Rings with Unity ..o, 222
11.11  Isomorphisms (of Commutative Rings with Unit) ................ 222
11.12  Sub-Rings and Ideals of Commutative Rings with Unity......... 223
11.13  Spectrum of Ideals and Prime Ideals, and Multiplicative Rings .. 225

11.13.1 Dedekind Domains ..........coooevviiiiiinniiniiieannnns 226
I1.14  Local RINGS.. .ottt et 227
11.15 Zariski Topology Over Prime Spectra ..................coooen. .. 227
11.16 Multiplicative Sets and Localizations of a Commutative

Ring (With Unity) . ....ooiiii et e e 228
11.17 The (Meta-)Notion of Category ........cooveiiiiiiiiiiiinieieiann. 230
11.18 Functors Between Categories ..........oveviiiiiiiiiniiinieiainnn. 233
11.19 Polynomial Rings, (Finitely) Generated Algebras Over a

Field and Quotients of Commutative Rings with Unity........... 233
11.20  Algebraic Sets. .. ..ottt 236
11.21 Ideals of Polynomials Associated to Algebraic Sets .............. 236
11.22  Rings of Coordinates of Algebraic Sets............................ 237
11.23  Pre-Sheaves ... 238
11.24  Sheaves with Values on the Category of Sets...................... 238
11.25 Stalk of a Pre-Sheafata Point..................ocoiiiiit. 242



Contents

12

11.26  Sheaf Associated to a Pre-Sheaf (Described Over a Basis).......
11.27 (Locally) Ringed Spaces.........coviviiiiiiiiiiiiiiiiiiiiiniaiannn.
11.28 Algebraic Sets as Ringed Spaces..............cooviiiiiiininin..
11.29  Affine Schemes ...
T1.30 0 SCRemMES «ovvvieieiit e e
EE] £ (=) 1 101 P

The Most Outstanding (Future) Challenges Towards Global

AMI and Its Plausible Extensions ........................................
12.1  On the New Cognitive Foundations for Mathematics Program...

12.2  On a Final Global Taxonomy of the Fundamental

Cognitive Metamathematical Mechanisms ........................

12.2.1  Precise Characterization of (Local) Conceptual

SUDSITAta. . ..o

12.3  On the Computational Aspects of Artificial Mathematical

INtelliZENCE .\ vttt e

12.4 A New and More Human Way of Doing Mathematical

Research............oooii
12.5  Plausible Extensions of the AMI Program.........................
12.5.1  Artificial Physical/Chemical/Biological Intelligence ..
12.5.2  Artificial Financial Intelligence .........................
References. ... oo

Xix



Acronyms

m.-s. Morpho-syntactic: It denotes the purely symbolic part of a conceptual entity
together with the domain-specific syntactic rules that configure its atomic
parts. For instance, the morpho-syntactic part of a mathematical entity is
understood as the specific notation used for describing it symbolically.

XX



Chapter 1 m)
Global Introduction to the Artificial i
Mathematical Intelligence General

Program

1.1 A Quite Revolutionary “Artificial Mathematical” Vision

More than eight decades ago, a brilliant scientist astonished the mathematical
community with his simple and, at the same time, powerful formal notion of what
an (autonomous) machine should be. With his new precise concept, he was able, on
the one hand, to set initial bounds to the deductive scope that such machines possess
regarding decision paradigms in formal mathematical thinking. On the other hand,
he was able implicitly to show how powerful, useful, and universal his new devices
could be with regards to enlightening and manipulating not only numerical, but also
conceptual issues in mathematics.

Fourteen years, he once again surprised a broader community with an even
simpler, more suggestive idea: could it be possible to verify in later, a pragmatic way
if a physical realization of his formal machines can imitate “human intelligence”
in an indistinguishable manner? Perhaps without knowing it, he indirectly also
established a global interest in determining more precisely the real bounds for the
general pragmatic scope that (his conceptual) machines have regarding the wide
spectrum of intellectual activities that human beings can do.

More specifically, the former question is a generalization of the following deep
request: Can we construct a specific instance of the former kind of machines
with the ability to imitate an ideal universal mathematician,' when we restrict the
conversation to the search of a (human-style understandable) solution of a specific

IBy “an ideal universal mathematician,” we mean a human being with extraordinary mathematical
abilities, who has a universal mathematical ability and a basic knowledge of all mathematics
done until the present time. In particular, (s)he should be able to provide solutions to (meta-
)mathematical problems, (resp. problems with a mathematical nature) in the style of Arquimedes,
Diophantus, Gauss, Euler, Riemann, Cauchy, Hilbert, Klein, Gédel, or/and von Neumann, among
others.

© Springer Nature Switzerland AG 2020 1
D. A.J. Gémez Ramirez, Artificial Mathematical Intelligence,
https://doi.org/10.1007/978-3-030-50273-7_1



2 1 Global Introduction to the Artificial Mathematical Intelligence General Program

mathematical inquiry?> If one takes a closer look into the intellectual and ‘secret’
work of our inspiring thinker,® one can perceive that he was inspired by questions
similar to the former one for inventing most of his astonishing concepts and devices.
So, as some readers may already suspect, our mysterious figure is one of the leading
founders of modern computer science and artificial intelligence—Alan Mathison
Turing.*

If we compare the legacy of Alan Turing, as a mathematician and logician, with
the work of his (contemporary and predecessor) colleagues, we can affirm that he
was essentially the first one who quite seriously and in a pragmatic way offered
structural insights to the question concerning the possibility that the intellectual
human activity of doing (abstract) mathematics could be simulated concretely by
an artificial engine.

Inspired by the most outstanding scientific and practical achievements of Alan
Turing, we would suggest that the construction of a real artificial device able to
perform mathematical intelligence at a global level, with a human-style manner and
simulating, and even improving the (mathematical) minds of the most outstanding
mathematicians (as individuals as well as a group) could be considered as one of the
most important scientific programs and implicit visions that Alan Turing indirectly
gave us. This vision is heuristically supported by the fact that mathematical
generation, in general, obeys quite clear deductive and methodological rules, which
are closely related to mechanical and systematic (artificial) processes.

Let us call the former global vision Artificial Mathematical Intelligence (AMI),
in honor of one of the seminal founders of Artificial Intelligence: Alan Turing.

We will now systematically explain the central foundational principles of this
vision.

First, let us note that this (AMI) vision possesses a broad multi- and interdis-
ciplinary methodological nature. In other words, the fact that this kind of updated
Turing’s vision involves concepts like mathematics, intelligence, simulation and the
(human) mind implies that it requires the integration and subsequent combination
of results belonging not only to mathematics, metamathematics, logic, computer
science and artificial intelligence, but also (cognitive) linguistics, (cognitive) psy-
chology, neuroscience, cognitive science, physics and philosophy (of mind), among
others. This methodological requirement is highly desirable and virtually necessary
due to two facts: First, on the one hand, we want to get a “surgical” knowledge of
how the human mind proceeds by solving a mathematical inquiry. On the other hand,
the scientific knowledge that we have about the mind (together with its physical

2By mathematical inquiry, we mean any kind of mathematical formal computation, exercise, and
conjecture at an arbitrary degree of sophistication.

31t is worth mentioning that during the time between the initial invention of his (conceptual)
machines and the publication of his seminal ideas about intelligence and machines, he was applying
all the pragmatic power of his technological instruments in a special team that was able to shorten
the second world war by at least 2 years and save millions of lives worldwide.

“For the references supporting the former paragraphs see [28, 48, 49] and www.turingarchive.org.
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“mirrors” like the brain and more generally the body) is not centralized and, in fact,
it is spread among several disciplines like the ones mentioned above.

Second, due to the fact that some aspects of the AMI vision have already
been intensively studied since the beginning of Al, most of the partial solutions
offered have a mono-disciplinary nature (e.g., each of them possesses a purely
metamathematical, linguistic, or philosophical character). For instance, Turing
himself, as well as Kurt Gédel and Alonso Church, offered local negative answers,
mainly from a logical point of view, to a purely metamathematical reading of the
AMI plan [9, 17, 48]. More specifically, by doing a closer and detailed reading of
the former classic results, one observes the following:

On the one hand, the concepts and arguments used have a structural mathematical
character when the central demonstrations are presented. Nonetheless, the initial
and final conclusions are extended at a meta-level and therefore lastly they have
a metamathematical scope (e.g. the notion of Turing machine can be completely
formalized in mathematical terms and simultaneously be used to infer metamathe-
matical results like the insolubility of the Entscheidungsproblem). Contrastingly, a
purely logical approach to the AMI vision turns out to be essentially blind regarding
concept formation in pure mathematics (see, for instance, [31]), which is one of the
most fundamental aspects underlining mathematical generation.

Now, if we wear a “methodological glasses” coming from cognitive science,
then we can affirm based on the former fact that those results were essentially
a cognitive product of three (quite brilliant) minds described with an intrinsic
mathematical style. So, inspired by the most outstanding results in cognitive science
regarding formal reasoning (e.g., assuming the veracity of the computational nature
of the mind, at least in relation with mathematical creation [29]), there is no
methodological obstacle for the construction of a kind of universal mathematical
and logic artificial agent that is able to give answers similar to those given by Turing
(himself), Godel and Church, to the same kind of questions.>®

Therefore, the former results are valuable more from a mono-disciplinary point
of view. However, if we assume a more pragmatic perspective regarding the way in
which mathematics is concretely produced at a global scale, we see (after enough
time of search) that roughly speaking more than 90% of the mathematical results

31t is worth mentioning at this point that although the former three classic results possess a high
level of brilliance in their central ideas, none of them develop an explicit explanation of how
human-made mathematics are done from a cognitive perspective. Perhaps the only one who was
able to achieving that was Turing with the development of his seminal concept of Turing machine.

51t is also important to mention that a lot of methods used by the former authors for obtaining their
limiting results were based on some kind of meta-physical assumptions about the nature of space,
time, and spacetime, like the existence of infinite collections of numbers and temporal processes.
Now, these assumptions are, strictly speaking, not based on standard physical laws, therefore can
be classified from a physical and cognitive perspective, as subjective mental assumptions from the
corresponding authors, with a wide level of (subjective) acceptance by the general community. For
a deeper discussion about these quantitative issues please see Chap. 5.
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produced each year involve solvable and decidable mathematical inquiries.” So,
our AMI program has a fundamental pragmatic importance in spite of the former
limiting results.

A further ontological revision of the former three classic meta-theorems reveals
that each of them use as implicit foundational principle—the existence of the natural
numbers at a classic indefinite basis, i.e., the existence of infinite collection of
objects (e.g., numbers) generated sequentially; or an equivalent version of this
fact. Enhancing our cognitive glasses with additional “formal lenses” coming from
seminal results in modern physics, one can see that the former hypothesis possesses
more a mental nature than a practical and authentic physical substratum (for more
details see Chap.5). Hence, this shows that since those meta-results were based
implicitly on a mental construct (e.g., a classic understanding of the natural number
as a sequential structure without final quantity), the deductive scope should be
preponderantly mental and less pragmatic as argued previously.

Third, after the groundbreaking work of Alan Turing regarding the foundations
of Al at the beginning of the twentieth century, we have seen a tremendous number
of theoretical and practical advances in our global understanding of how the mind
works and how we can simulate, and sometimes improve, specific aspects and
abilities of it through artificial devices (see, for instance, [4, 12, 35] and Sect. 3.1,
Chap. 3). This gives the necessary inspiration to think about the AMI vision in terms
of the creation of a universal mathematical artificial agent (UMAA) whose percepts
and actions (in a classic Al sense [43, Ch.2]) consist exactly of mathematical
structures (e.g., mathematical concepts, theorems, facts, conjectures) described
in a clear, syntactic, and human-style way; its environment is delimited by the
mathematical information that a user would like to provide it; and finally its sensors,
actuators, and internal engine are formed in terms of specific and computationally-
feasible formalizations of the most fundamental cognitive abilities used by the mind
during mathematical research, among others (see, for instance, part II).

Finally, its performance measure is structured in direct relation to the conceptual
solutions that it provides to the problems asked, for example, in the form of
(mathematical) total or partial proofs or counterexamples.

So, arguing from a more philosophical perspective, an UMAA would be capable
of reminding us an ideal universal mathematician-logician whose formal thinking is
rapid, effective and not so constrained by physical, sensorial, or cultural influences.
An abstract thinker who is able to create sophisticated mathematical concepts and
(counter-)examples based on the questions® and (formal) evidence’ provided by the
interlocutor (e.g., user). In particular, this universal mathematician-logician should

"Here, the reader can conduct a self-tour through the articles and books published at renowned
mathematical journals and by publishers, to obtain a stronger conviction of this global qualitative
claim. For example, one can verify that more than 90% of the last 100 papers (until the
first semester of 2019) published in renowned journals like Annals of Mathematics involve
solvable problems dealing with the usage of classic concepts and with the constructions of new
mathematical concepts, theories, and some physical applications.

8For example, a mathematical conjecture.

q . . .
?For instance, successful cases where the conjecture was verified.
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be able to solve formal mathematical inquiries and generate mathematical structures
at a new level of sophistication.'”

In other words, we conceive the fulfillment of the AMI program more from an
interactive point of view than from an automatic one. Explicitly, let us imagine that
the user provides not only the formal version of a mathematical conjecture, but also
additional information describing special cases where the conjecture turns out to be
truth (e.g., “formal specific evidence”). Such “special” interactive conditions and
extra information can cut back several additional challenges that a purely automatic
approach could potentially possess.

At this point, it is worth mentioning that the notions of algorithmic complexity
and efficiency should be conceived with slightly different “eyes” within the AMI
program. Effectively, one of the main goals of our vision will be to produce detailed
and gradually explainable solutions to formal (domain-specific) mathematical
problems, which would take less time to be found than the time required by a
professional researcher (in mathematics or related areas). For example, our vision
goes in the direction of imaging that a robust version of a UMAA which should
require some months of (interactive) work (e.g., 6 months) for solving a Ph.D.-level
mathematical problem, which turns out to be fine in comparison with the standard
time that a Ph.D. thesis takes to be done (e.g., 3—4 years). Additionally, suppose that
the rate of success of it is around 80%, this would represent a huge step towards an
universal and cognitively-inspired (interactive) mechanization of mathematics.!!

In summary, we want to “resurrect” through the AMI program a new form of
what we could call, in modern terms, one of the biggest dreams of Alan Turing:
the fulfillment of artificial intelligence within the special domain of (pragmatic)
mathematical creation/invention.

“Those who can imagine anything, can
create the impossible.”

Alan Turing

1.2 Towards Conceptual Computation

Let us make a simple comparison between the brain (and in an extended manner
the (embodied) mind) and the computer: First, regarding working speed, the human
mind processes information (roughly speaking) around six million eight hundred
thousand times slower than an (average) computer and it is around one billion (10%)

10gee, for example, Chap. 11 for initial formal evidence regarding the universal way in which such
an (artificial) researcher should be able to generate several mathematical structures from different
mathematical domains.

1A quite simpler version of the AMI vision was described initially by the author in [20] at a very
elementary and condense way.
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times less accurate (regarding the error’s rate per number of operations performed)
[1]. On the other hand, the human mind is able to do very simple (and at the same
time very powerful) conceptual inferences like if y =cymbal and ¥ =tambour, then
yYyYyYy =drum set; or, if A =house and B =boat, then AB =houseboat;'? while
this ability is essentially non-existence in (modern) computers. Furthermore, more
than 95% of the scientific results generated in history are product of the (research of
the) human mind, with all the former limitations and strengthens. Thus, why not to
simulate the deductive-pragmatic functioning of the mind (taking into account the
former spectrum of features) with all the strengthens of modern computation?

This kind of simple methodological approach is not so common in auto-
matic deduction or computational logic. In fact, one of the main methodological
approaches is to reduce the conceptual complexity of the problem to solve until
it can be fully verified or refused computationally, instead of modeling com-
putationally the manner in which the mind approaches the problem (without
performing necessarily an ontological reduction on the way). The latter form
of obtaining computationally-feasible solutions should be explored more deeply,
because we have a sufficiently robust constellation of results in cognitive sciences
(and related fields) describing a wide spectrum of (deductive) features of the mind.
This motivates the quest for a new form of conceprual computation paradigm in
computer science and artificial intelligence. In fact, the initial motivation of Alan
Turing to create its famous Turing machines was to find a concrete and pragmatic
formalization of the way in which a mathematician’s mind perform quantitative
tasks (involving, for example, the calculation (by hand) of a function on the
natural numbers) [48]. Therefore, we can think in extending the classic (Church-
)Turing Thesis (or Turing Theorem (TT)) to a general metamathematical conceptual
framework:

Thesis 1.1 (Towards a Conceptual Extension of the Church-Turing Thesis) A
Mathematical structure (e.g., a concept, a proof, a counterexample, a theory) is
effectively calculable (i.e., generated) by a human being(’s mind) if and only if
it can be computed by a “conceptual” (Turing) Machine (e.g., UMAA (Universal
Mathematical Artificial Agent)).

One of the main purposes of this book is to offer a general idea of how such
a conceptual machine should look likes in terms of initial formalizations of a
global taxonomy of fundamental cognitive mechanisms (see Chap. 10). In fact, we
will prove in Chap. 9 that just with the cognitive ability of conceptual substratum
it is possible to recover and to reinterpret cognitively the classic Church-Turing
Thesis. Thus, this represents a starting evidence of the fact that conceptual machines
should be at least as powerful as classic Turing machines. On the other hand,
in Chaps.7 and 11 it will be extensively shown that conceptual machines are a
more appropriate formal device for producing artificial conceptual generations of

12Here, we assume the standard and relatively sophisticated meaning of the word “houseboat™ in
English.
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dozens of mathematical structures from the most simple until the most sophisticate
ones, which currently is not the case for the contemporary literature in automated
deduction (and related fields).

1.3 Former and Current (Local) Advances Towards the AMI
Vision

A lot of (mechanical and computational) aspects of our AMI vision have captured
the attention of a considerable number of researchers during the last decades. Most
of them have done amazing, valuable work which can be seen in our context as
local evidence and support in favor of its (“near”) fulfillment. In this section, we
will mention some of the most outstanding results together with further remarks
concerning their main original goals.'?

At its very beginning, the research field of automated deduction had, as part of
its central motivations, the construction of software able to generate (and implicitly
solve) concrete mathematical work (e.g., outstanding mathematical theories/books).
For example, Whitehead and Russell’s Principia Mathematica [38, 51]; elementary
plane Euclidean geometry [16], (some parts of) Newton’s Principia [14], and, of
course, many instances of propositional calculus [3], among (a few) others. On the
other hand, some specific mathematical challenges as the Robbins problem, the four
color’s problem, the Kepler’s theorem, and the Feit-Thompson theorem have given
(significant) additional inspiration for developing more sophisticated (automated)
theorem provers [22, 23, 25, 36].

Furthermore, nowadays there are many kinds of (free and paid) computer
programs which can assist the researcher in mathematics (and related areas) on
different tasks. Now, these have always involved a relatively small collection
of mathematical areas, for instance, numerical and symbolic computation, the
drawing of technical graphics, solving particular classes of systems of equations,
inequalities, Diophantine and differential equations and quantifier elimination,
among others [7, 34, 46, 52] (for a more general list see “The Guide to Available
Mathematical Software”!4),

Other kinds of outstanding software are used for finding proofs in several
classes of propositional calculi and for proof verification and proof generation in
some specific logics which, in principle, do not cover completely the scope of the
mathematics done every day, not only by professional mathematicians, but also
for researchers working in related fields [3, 42]. Furthermore, some instances of
the later kind of software mentioned possess, in general, such a highly technical
syntax that for the non-specialized mathematician (or related researcher) it is not

131t is not the purpose of the present section to give an exhaustive list of all of them, due to the fact
that the literature in this direction is considerably vast.

https://gams.nist.gov.
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straightforward to begin to use it in his/her daily work, mainly because it would
require several weeks (or even months) of regular and quite technical study to
understand and manipulate practically their main semantic and syntactic features.

There are also a third kind of valuable programs aiming to produce human-style
proofs by integrating the more robust account of the linguistic dimension involved
in mathematical generation. However, its scope involves only very particular kinds
of problems within quite specific theories, e.g., metric space theory (see [15] and
the references there).

Furthermore, there are new proposals for setting general foundational frame-
works for mathematics that aim to facilitate the implementations of mathematical
proofs in computers, for instance, the univalent foundations project [50].

Most of the former works belong to what can be roughly called “The (classic)
Mechanization of Mathematics™ (see, for instance, [2]). They are “classic” in the
sense that their methodologies and goals possess essentially a more purely logical,
metamathematical, and algorithmic nature, and, on the other hand, they provide
a reduced (and often nonexistent) formal account of the cognitive causes that
underlines the origin and structure of the corresponding explanatory frameworks.
In other words, an (implicit) external ontological point of view of mathematics
is perceived in those works, i.e., the corresponding mathematical phenomena is
analyzed as external entities that may or may not have a cognitive origin.

For instance, one (classic) trend in this direction, and one not so intimately related
with a cognitively-inspired model of mathematical invention, is formed by the
main techniques coming from resolution theorem proving, whose slightly different
motivation and orientation emerges more from the need of finding efficient methods
in proof verification and proof generation [42, Ch. 2].

So, keeping in mind the great value and brilliance some of those results can have,
most of them possess the limitation that they cannot be generalized in a straight-
forward way to other mathematical domains, because their explanatory ontology
depends structurally on the particular mathematical entities in consideration.

However, there is a complementary trend of formal and computational frame-
works based more on a cognitive understanding of mathematical generation and
starting with the identification and formalization of fundamental cognitive abilities
used by the mind during creative thinking (see, for instance, [5, 8, 13, 18, 19, 21, 32,
33,37, 44, 45, 47]).

Other quite outstanding works explore and exploit domain-specific mathematical
heuristic at a computational basis for (automated) concept and conjecture generation
and verification [10, 11, 39].

Moreover, there are more traditional treatises with a more philosophical touch,
and simultaneously with deep insights regarding the identification of fundamen-
tal (mathematical) heuristics and cognitive strategies used in mathematical cre-
ation/invention like the classic works of G. Polya and I. Lakatos [31, 40, 41]. In fact,
[39] presents a creative computational account of Lakatos’ work where an initial
formalization of the social dimension of mathematical generation plays a central
role.
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The former second type of results represent strong formal evidence in favor not
only of the thesis that specific mathematical thinking can be gradually understood
and subsequently simulated in a computational way, but also bringing an addi-
tional and enlightening new perspective into the AMI vision that classic purely
logical approaches have only been barely able to suggest. Nonetheless, these more
cognitively- and heuristically-based works present a clear constrain regarding the
level of sophistication of the mathematical structures meta-analyzed and simulated.
These works deal essentially with elementary problems belonging to, for example,
geometry, real and complex analysis, algebra and number theory, among others.
So, more abstract and general mathematical sub-disciplines are virtually not meta-
studied, for instance, modern algebraic geometry [24, 27, 30], which represents an
integrative, illuminating and fascinating case of study for the fulfillment of the AMI
program. This is due to the high level of technical sophistication and elegance of its
concepts and methods.

1.4 A New Foundational and Integrative Program

After exploring in the former section the strengths and weaknesses of some of
the existent (local) results towards the fulfillment of the AMI vision, we will now
describe the precise way in which we aim to used and integrate classic and modern
techniques and perspectives and to create new ones for filling some important
foundational and pragmatic gaps existent in the literature, as well as for setting a
stronger inter- and multidisciplinary basis.

Virtually all the former (local) results towards a positive solution of the AMI
program, with exception of the univalent foundations project and the classic works
of Polya and Lakatos, propose almost immediate algorithmic formalizations of
the particular classes of mathematical inquiries to be solved. This is usually done
without a previous solid and deeper exploration and search into the foundational
properties of the mathematical structures to be computationally modeled.

Methodologically speaking, this can be done without problem, however, such
straightforward approaches have the limitation that they should create highly tech-
nical representations for the semantic content of the corresponding mathematical
structures involved, which has the cost of sacrificing the “cognitive naturalness” of
the whole framework. Furthermore, an ontological gap used to remain implicit “in
the air” between the intrinsic nature and (cognitive) meaning of the mathematical
entities involved, and the corresponding “artificial” juxtapositions of symbols used
for representing them syntactically as well as semantically in artificial devices.

Contrastingly, aiming to go directly to the development of algorithmic frame-
works after having analyzing (only) local mathematical data has the clear limitation
of implicitly ignoring further heuristic, syntactic, morphological, and semantic
principles that ground other mathematical areas and that should be mandatory for
any kind of global explanatory (cognitive) metamathematical framework. In fact,
we will see in further chapters that the meta-analysis of several kinds of conceptual
substrata (Chap. 9) is necessary for the subsequent fulfillment of the AMI vision.
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In particular, it involves an integrative symbolic, semantic, and cognitive meta-
study of prototypical substrata belonging to a not-small collection of mathematical
sub-disciplines, which remains (as far as we know) a non-accomplished task in
(classic) metamathematics. Therefore, the present work focuses essentially on the
theoretical foundations of the AMI program, together with some relevant remarks
for the algorithmic aspects.

Explicitly, we propose in the first part of this book the establishment of a research
program aim to set new cognitive foundations for mathematics, which includes
implicitly a computational component.

We describe in Chap.3 the main reasons supporting the necessity of a new
foundational program for mathematics and its most fundamental future challenges.
In addition, we discuss seminal issues involving the cognitive substratum of a
mathematical proof in a wide generality. Further, we enlighten a central fact of
the most successful natural machine producing mathematics, i.e., we describe the
methodological implications for the AMI program from the fact that the whole
mathematical product that we know today is basically the systematic accumulation
of billions of conscious outputs of the human mind, considered also collectively.'”

Inspired by “cosmological” and “synthetic” considerations, we do a deeper
philosophical exploration (in Chap.4) into the (cognitive) reality of mathematics
and into the mathematics of the (cognitive) reality. Moreover, in our methodological
framework we update the notions of observer’s perspective at the macro, mecro, '¢
and micro level. We argue in favor of the thesis that nature at any level of observation
possess a kind of mathematical precision, and that, in fact, entities in nature possess
a real mathematical substratum which structure them. So, mathematics understood
in the widest sense of the word constitutes an existing dimension of the universe
that structures any part of it. Subsequently, we state and support the existence of
a kind of unpredictability principle at the mecro level. In other words, we argue
that natural human will represent an example of a concrete entity in nature that
qualitatively bounds the predictive scope of the kind of phenomena that any form of
UMAA could model. Further, taking inspiration from some thought experiments and
the development of a “continuous notation™ for real numbers, we show the incom-
patibility of the following: the fulfillment of the “singularity” as an extreme form
of artificial intelligence [6], and the fact that space and time can be modeled with a
continuous framework, e.g. using the set of real numbers.'” In summary, we conduct
a concise intellectual exploration using philosophical, physical, mathematical, and
logic tools for estimating more precisely the ontological status of the explanatory
scope that a UMAA can have, not only concerning mathematical questions, but also
(mathematical reformulations of) questions belonging to other scientific disciplines.

5This simple fact has important consequences on the way in which some cognitive abilities
required in mathematical research are identified and formalized (see part II).

18For a more concrete description of this notion see Chap. 4, Sect. 4.3.

17Strictly speaking, we use a third fact for doing that, namely the unsolvability of the halting
problem [48].
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Chapter 2 serves as a compact and quite concise (meta)mathematical preparation
for the non-specialist (mathematician/logician) reader. It briefly revises the notions
of propositional and predicative logic, the most outstanding logical frameworks for
modern mathematics (e.g., ZFC and NBG set theory, Peano arithmetic), and the
notion of category and some of its derived notions. Moreover, a short description
of fundamental algebraic, topological, and geometric notions are presented that are
mostly required in Chaps. 7 and 11.

In Chap. 5, we start with the development of a seminal (cornerstone) topic within
the new cognitive foundations’ program. In other words, inspired by a formal and
multifaceted analysis of our basic understanding of (mental) counting processes, we
propose a concrete cognitive refinement of one of the most well-known structures in
mathematics, namely the natural numbers. In fact, we present the physical numbers
as a more precise quantitative notion which includes, and at the same time, refines
classic perceptions that we use on a daily basis when we estimate the “number” of
elements of collections of objects.

More explicitly, we enhance the standard notion of “counting” by the new notion
of partitioning, and we show that the former can be considered a particular form of
the latter where our minds can potentially gain a more global and precise perception
of numerical (and subsequently mathematical) entities.

Additionally, we state that the physical numbers have an initial as well as a
final entity, which is bound by the number of physical quanta in our universe.
This allows us to make a finer (cognitive) taxonomy of the natural numbers, (i.e.,
natural number n “smaller” or equal that such a bound, which we denote by w,
are considered “physical natural numbers™ since they count on a physical support
represented by collections of (external) entities (e.g., elementary particles) having
exactly n elements). On the other hand, a natural number m strictly surpassing @ will
be considered simply as a “mental natural number,” because it can be (cognitively)
produced recursively as a concrete conceptual blend of physical natural numbers.
It is a well-known fact that conceptual blending (see Chap.7) can produce purely
mental objects by combining two input concepts which have (or have not) physical
realizations in the external realm [13].

Moreover, we establish a quite significant distinction between the (mental) notion
of “infinity” (in its several variants) and the (more physical) notion of “immensity.”
In particular, we propose notions of small and immense numbers based on the
specific conscious and unconscious patterns required for the mind in order to
understand them.

In addition, we explore in a global way the fact that the explanatory range of
mathematical frameworks based on numerical structures being finite as a whole, is
mature enough to allow us to develop a lot of our most fundamental mathematical
and physical theories.

Finally, we offer an initial formal framework for the physical numbers with
(physical) division as main operation. We also propose a new kind of research
heuristic in (classic) number theory which can be informally called “physical
number theory.” This essentially consists of doing an initial verification of the (non-
Jvalidity of an arithmetic conjecture for the physical (natural) numbers in order
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to test firstly its “physical (or external) veracity,” and after that using (eventually)
additional methods for the “proof™ of a more mental component of it.

It is important to note here that the development of coherent refinements
on the way in which we understand and manipulate pragmatically as well as
theoretically (the notion of the) natural numbers and the particular “counting”
(cognitive) processes underlying them would possess a huge influence not only
on the foundations of mathematics, but also on the foundations of (theoretical)
computer science and physics, among many others. So, this topic represents a central
pillar of the AMI program with consequences beyond the AMI vision.

Delving deeper into the quantitative dimension of the new foundations’ program,
we show explicitly in Chap.6 a “singular” phenomenon happening into “foun-
dational bricks” of mathematics, (i.e., Zermelo—Fraenkel set theory with Choice
(ZFC)). In other words, we prove formally that we can construct an identical (i.e.,
meta-isomorphic) version of (standard) mathematics (i.e., mathematics classically
constructed from ZFC), called “Dathematics” (or Dual Mathematics), where instead
of sets, one uses a special kind of proper classes as foundational bricks. This fact
turns out to be surprising not only from a purely metamathematical perspective,
but even more from a cognitive point of view. Effectively, proper classes are, strictly
speaking, mental constructions without any kind of physical realization at any quan-
titative level. So, the fact that we can support in a semantic way a meta-isomorphic
copy of our (in some sense daily life’s) mathematics strictly based on objects that
do not have any kind of physical counterpart in nature (by definition) implies that
our current basic logic-deductive frameworks are grounding the semantic content
of mathematical structures more in a purely formal and syntactic way and much
less in a physical and (more) “tangible” manner. This implies, among other things,
that deeper intuitions about mathematical structures could be highly limited by the
mono-thematic formalizations that have been developed for them classically.'®

In the second part, we focus our attention on the specific cognitive mechanisms
used by the mind during mathematical creation/invention. Here, we take inspiration
from a wide spectrum of classic and new results in cognitive science, cognitive lin-
guistics, psychology, and from the classic works on the philosophy of mathematics
of G. Polya and 1. Lakatos.

First, we dedicate an entire chapter to the study of one of the most fundamental
of these processes—conceptual blending (Chap.7), or, informally, the ability of
the mind to create genuine conceptual fusions of two (or more) input concepts.
Explicitly, we use a classic formalization of conceptual blending in terms of colimits
embedded in a categorical many-sorted framework for mathematical concepts. For
such a formalization one can generate implementations of concrete blends in the
Heterogeneous Tool Set (HETS). Moreover, we show how to generate fundamental
notions of Fields and Galois theory recursively only in terms of conceptual blends
starting from five elementary concepts coming from different mathematical sub-
disciplines like group theory, fixed point’s theory, and abstract algebra. This is

'8This issue will be illuminated in Sect. 3.1, Chap. 3.
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an initial case study regarding concept generation from a cognitive as well as a
logic perspective that aims to fill the gap existing in the automated deduction’s
literature.'”

In Chap. 8, we present an initial cognitively-based formalization of (atomic and
best) analogy and analogical space of two formulas, starting with a classic Hilbert’s
style calculus for propositional logic. Additionally, we illustrate the explanatory
power of the former notions for offering meta-descriptions of the generation of
classic (elementary but non-trivial) proofs of some tautologies. Moreover, a new
formalization of conceptual blending is described in terms of the former notions.
Finally, some notions are extended to a first-order setting.

In Chap.9, the new cognitive (metamathematical) mechanism of conceptual
substratum is introduced (i.e., the ability of producing specific morpho-syntactic
configuration of symbols with intrinsic meaning, which allow our minds to manipu-
late essential formal features of (mathematical) concepts in sophisticated deductive
tasks). We present two formalizations of this notion in different deductive contexts
and their relations with classic tools in automated deduction and logic like Skolem-
ization and Diophantiveness. Furthermore, based on a first-order formalization of
(functional) conceptual substratum, we state an explicit cognitive characterization
of the Church—Turing Thesis, which can be seen as a modern (and more cognitively-
supported) description of this classic and foundational principle. Moreover, we show
how to construct equivalent versions of the sequent calculus for first-order logic
with equality over a language L, including deductive rules codifying (functional)
conceptual substratum inside. Such deductive systems can be seen as slightly
improved versions of the classic (Gentzel) sequent calculus from the point of view
of their (increased) cognitive soundness. Lastly, we introduce conceptual lining as
the dual cognitive ability of conceptual substratum.

In Chap. 10, we present an initial global taxonomy of the most fundamental
cognitive mechanisms used in mathematical research, together with the correspond-
ing formalizations in terms of a more global notion of mathematical concept (and
mathematical structure) than the one initially presented in Chap. 7. In that chapter,
one can see in a more concrete way the multi- and interdisciplinary nature of the
whole AMI program from a methodological point of view. The formalizations are
presented assuming a minimal robustness of the logical frameworks underlining
the (local) mathematical theories that can be used as the object of meta-study. In
particular, the meta-notions are presented at a level of generality that includes the
possibility of meta-analyzing (local) concepts described over a wide spectrum of
logics. In addition, more general versions of the three initial cognitive abilities of
conceptual blending, analogical reasoning, and conceptual substratum are presented
to match the level of abstractness needed subsequently in further chapters.

This chapter has an additional central relevance from the point of view of
cognitive science because it offers (as far as we know, for the first time) a global
and formal classification of all the essential mechanisms that the mind uses during

9We will tackle this issue in quite more detail in Chap. 11.
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mathematical research. In particular, the intellectual activity of producing abstract
mathematics is broad enough to represent an outstanding case study towards the
development of more general formal frameworks explaining the general functioning
of the mind which is a central research goal by cognitive scientists.

Furthermore, Chap. 10 has also a seminal relevance for the foundations of
computer science because the mechanisms described there are more plausible to be
modeled symbolically as well as algorithmically. And, in some sense, the concrete
formalizations developed there, which possess a more finite nature, begin to “knock
down” methodological “walls” that could emerge from “over-extrapolations” of
classic (unsolvability) results.

In the last part, we present in an explicit and extended manner the concrete
evidence for the universality of all the formal meta-tools developed so far.

Explicitly, in Chap. 11 we offer global formal support to fill the gap that the
majority of the classic methods used in standard automated deduction have regard-
ing the development of meta-explanations of conceptual generation [2, 26, 42]. In
other words, we show explicit cognitive meta-generations (i.e., meta-explanations)
not only of the proofs of two classic theorems in elementary geometry and number
theory, but also of dozens of fundamental mathematical concepts belonging to
several mathematical disciplines like topology, set theory, abstract algebra, category
theory, sheaf theory, commutative algebra, and (classic and modern) algebraic
geometry. These cognitive meta-constructions can be seen as explicit evidence of
the creative power of an ideal (non-necessarily embodied) mathematical artificial
agent (which is one of the main goals of the AMI program).

In particular, we exhibit a recursive and explicit cognitive meta-generation of
one of the conceptual cornerstones of modern algebraic geometry (i.e., the notion
of (mathematical) scheme). This notion was chosen in advance due to its technical
sophistication to show that the multifaceted tools developed in the previous chapters
are strong enough to generate higher abstract mathematics. This fact starts to
fill simultaneously another gap existing in the literature involving the elementary
scope that more cognitively-inspired accounts of conceptual creation possess.?? Tt
is worth mentioning at this point that we could have potentially chosen any other
sophisticated mathematical notion instead of the one of scheme, however, we choose
it due to the central role that it plays in modern mathematics and even beyond
algebraic geometry.

In addition, all these cognitive meta-generations are presented more from the
point of view of a global version of a UMII. So, some of them have more qualitative
commonalities with the original historical reconstructions of the corresponding
concepts (e.g., (mathematical) categories), some possess less and can be seen as
new ways of generating those concepts (following the integrative guidelines of the
AMI vision) (e.g., sheaves).

In Chap. 12, we present the most outstanding (future) challenges of the AMI
program not only from a theoretical and foundational perspective, but also from a

208ee, for example, the references presented at the end of Sect. 1.3.
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more pragmatic and algorithmic point of view. In addition, we describe plausible
extensions of the AMI vision to others scientific disciplines close to mathematics in
some foundational aspect.

Along the lines of such an extension is exactly where one perceives the
importance that a mature version of the AMI vision can have regarding the way
in which we currently do scientific research at essentially a purely human level.

Finally, due to the multifaceted methodological dimension and the cognitive
nature of our new metamathematical (AMI) program, we can also use the more
classic name of Cognitive Metamathematics for it. In fact, this more neutral name
has the advantage that, on the one hand, it stresses deeply the integrative scientific
discipline grounding the AMI vision, and, on the other hand, it emphasizes with a
new clarity the theoretical aspect of the AMI vision in a concise way, extricating
along the way the AMI program from being understood only in terms of the
computational challenge behind it.

1.5 [Ethical Considerations

From the very beginning, this new inter- and multidisciplinary AMI program was
conceived for improving and enhancing our theoretical, constructive, and practical
understanding of mathematics in the widest sense of the word, and, subsequently
our understanding of nature at several levels of observation. So, from a middle-
and long-term perspective, any new product, technology, invention, and community
emerging and largely (in-)directly based on (applications coming from) the AMI
program should pursue respectful, deserving, peaceful, and integrative purposes
regarding a pacific living with our fellows and with nature. So, the AMI program
and all its future applications are strictly envisioned to increase and to protect (our
quality of) life inside and outside earth at any stage of development. More generally,
the Alisomar principles of the Future of Life Institute represent a valuable source
for the global ethical principles that should be observed on any materialization of
Artificial Mathematical Intelligence.”!

References

1. Beck, H.: Scatterbrain: How the Mind’s Mistakes makes Human Creative, Innovative and
Successful. Greystone Books Ltd (2019)

2. Beeson, M.J.: The mechanization of mathematics. In: Alan Turing: Life and legacy of a great
thinker, pp. 77-134. Springer (2004)

3. Biere, A., Heule, M., van Maaren, H.: Handbook of satisfiability, vol. 185. IOS press (2009)

4. Boden, M.A.: Mind as machine: A history of cognitive science. Oxford University Press (2008)

2! For more details, please consult the website https:/futureoflife.org/ai-principles/.



16

10.

L1

13.
14.

19.

20.

2L

22.

23.

24.

25.

26.

27.
28.

1 Global Introduction to the Artificial Mathematical Intelligence General Program

. Bou, E., Corneli, J., Gomez-Ramirez, D., Maclean, E., Peace, A., Schorlemmer, M., Smaill,
A.: The role of blending in mathematical invention. Proceedings of the Sixth International
Conference on Computational Creativity (ICCC). S. Colton et. al., eds. Park City, Utah, June
29-July 2, 2015. Publisher: Brigham Young University, Provo, Utah. pp. 55-62 (2015)

. Chalmers, D.: The singularity: A philosophical analysis. Journal of Consciousness Studies
17(9-10), 7-65 (2010)

. Char, B.W., Geddes, K.O., Gonnet, G.H., Leong, B.L., Monagan, M.B., Watt, S.: Maple V
library reference manual. Springer Science & Business Media (2013)

. Chiu, M.M.: Metaphorical reasoning in mathematics: Experts and novices solving negative
number problems. (1994)

. Church, A.: An unsolvable problem of elementary number theory. American journal of

mathematics 58(2), 345-363 (1936)

Colton, S.: Automated theory formation in pure mathematics. Ph.D. thesis, University of

Edinburgh (2001)

Colton, S., Bundy, A., Walsh, T.: Automatic concept formation in pure mathematics. In:

Proceedings of the 16th international joint conference on Artificial intelligence-Volume 2, pp.

786-791. Morgan Kaufmann Publishers Inc. (1999)

. Colton, S., Wiggins, G.A., et al.: Computational creativity: The final frontier? In: Ecai, vol.

2012, pp. 21-16. Montpelier (2012)

Fauconnier, G., Turner, M.: The Way We Think. Basic Books (2003)

Fleuriot, J.D., Paulson, L.C.: A combination of nonstandard analysis and geometry theorem

proving, with application to newton’s principia. In: International Conference on Automated

Deduction, pp. 3—16. Springer (1998)

. Ganesalingam, M., Gowers, W.T.: A fully automatic theorem prover with human-style
output. Journal of Automated Reasoning pp. 1-39 (2016). https://doi.org/10.1007/s10817-016-
9377-1

. Gelernter, H.: Realization of a geometry theorem proving machine. In: IFIP Congress, pp.
273-281 (1959)

. Godel, K.: Uber formal unentscheidbare siitze der principia mathematica und verwandter
systeme i. Monatshefte fiir mathematik und physik 38(1), 173-198 (1931)

. Goguen, J.: An introduction to algebraic semiotic with application to user interface design. In

Computation for metaphors, analogy and agents. C. L. Nehaniv, Ed. Vol. 1562 pp. 242-291

(1999)

Goguen, J.: Mathematical models of cognitive space and time. Proceedings of the Interdisci-

plinary Conference on Reasoning and Cognition 123, 125-148 (Keio University Press, 2001)

Gomez-Ramirez, D., Smaill, A.: Formal conceptual blending in the (co-)invention of (pure)

mathematics. In: R. Confalonieri, A. Pease, M. Schorlemmer, T. Besold, O. Kutz, E. Maclean,

M. Kaliakatsos-Papakostas (eds.) Concept Invention: Foundations, Implementation, Social

Aspects and Applications, pp. 221-239. Springer International Publishing, Cham (2018)

Gomez-Ramirez, D.A.J., Hetzl, S.: Functional conceptual substratum as a new cognitive

mechanism for mathematical creation. arXiv preprint arXiv:1710.04022 URL https://arxiv.

org/pdf/1710.04022.pdf

Gonthier, G.: Formal proof-the four-color theorem. Notices of the AMS 55(11), 1382-1393

(2008)

Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, ., Le Roux, S., Mahboubi,

A., O’Connor, R., Biha, S.0., et al.: A machine-checked proof of the odd order theorem. In:

International Conference on Interactive Theorem Proving, pp. 163—179. Springer (2013)

Grothendieck, A., Dieudonné, J.: Eléments de Géométrie Algébrique I. Springer (1971)

Hales, T.C.: A proof of the Kepler conjecture. Annals of mathematics 162(3), 1065-1185

(2005)

Harrison, J.: Handbook of practical logic and automated reasoning. Cambridge University

Press (2009)

Hartshorne, R.: Algebraic Geometry. Springer-Verlag, New York (1977)

Hodges, A.: Alan Turing: The Enigma. Random House (2012)



References 17

29.
30.

31

32

33.

34.

35.

36.

37.

38.

39.
40.

41.

42.
43.

44,

45.

46.

47.

48.

49.

50.

51

52.

Horst, S.: The computational theory of mind. Stanford Encyclopedia of Philosophy (2011)
Kobayashi, S., Nomizu, K.: Foundations of differential geometry, vol. 2. Interscience
publishers New York (1969)

Lakatos, L.: Proofs and refutations: The logic of mathematical discovery (Cambridge Philoso-
phy Classics). Cambridge university press (2015)

Lakoff, G., Nufiez, R.E.: Where mathematics comes from: How the embodied mind brings
mathematics into being. AMC 10, 12 (2000)

Martinez, M., Abdel-Fattah, A., Krumnack, U., Gémez-Ramirez, D., Smail, A., Besold, T.,
Pease, A., Schmidt, M., Guhe, M., Kiihnberger, K.U.: Theory blending: Extended algorithmic
aspects and examples. Annals of Mathematics and Artificial Intelligence pp. 1-25 (2016)
MatLab, M.: The language of technical computing. The MathWorks, Inc. http://www.
mathworks.com (2012)

McCorduck, P.: Machines who think: A personal inquiry into the history and prospects of
artificial intelligence. AK Peters/CRC Press (2009)

McCune, W.: Solution of the Robbins problem. Journal of Automated Reasoning 19(3), 263—
276 (1997)

Moreno, R., Mayer, R.E.: Multimedia-supported metaphors for meaning making in mathemat-
ics. Cognition and instruction 17(3), 215-248 (1999)

Newell, A., Shaw, J., Simon, H.: Empirical explorations with the logic theory machine: A case
study in heuristics. Automation of reasoning 1, 1957-1966 (1957)

Pease, A.: A computational model of Lakatos-style reasoning (2007)

Pélya, G.: Mathematics and plausible reasoning: Induction and analogy in mathematics, vol. 1.
Princeton University Press (1990)

Pélya, G.: Mathematics and plausible reasoning: Patterns of plausible inference, vol. 2.
Princeton University Press (1990)

Robinson, A.J., Voronkov, A.: Handbook of automated reasoning, vol. 1. Elsevier (2001)
Russell, S.J., Norvig, P.: Artificial intelligence: a modern approach. Malaysia; Pearson
Education Limited, (2016)

Schorlemmer, M., Smaill, A., Kuehnberger, K.U., Kutz, O., Colton, S., Cambouropoulos,
E., Pease, A.: COINVENT: Towards a computational concept invention theory. In: 5th
International Conference on Computational Creativity (ICCC)

Schwering, A., Krumnack, U., Kuehnberger, K.U., Gust, H.: Syntactic principles of heuristic
driven theory projection. Cognitive Systems Research 10(3), 251-269 (2009)

Stein, W., Joyner, D.: Sage: System for algebra and geometry experimentation. ACM SIGSAM
Bulletin 39(2), 61-64 (2005)

Boy de la Tour, T., Peltier, N.: Computational Approaches to Analogical Reasoning: Current
Trends, chap. Analogy in Automated Deduction: A Survey, pp. 103-130. Springer-Verlag,
Berlin, Heidelberg (2014)

Turing, A.M.: On computable numbers, with an application to the entscheidungsproblem.
Proceedings of the London mathematical society 2(1), 230-265 (1937)

Turing, A.M.: Computing machinery and intelligence. In: Parsing the Turing Test, pp. 23-65.
Springer (2009)

Voevodsky, V., et al.: Homotopy type theory: Univalent foundations of mathematics. Institute
for Advanced Study (Princeton), The Univalent Foundations Program pp. 2007-2009 (2013)
Wang, H.: Toward mechanical mathematics. IBM Journal of research and development 4(1),
2-22 (1960)

Wolfram, S.: The Mathematica book, wolfram media, 2003. Received: November 2 (2015)



Chapter 2 m)
Some Basic Technical ek
(Meta-)Mathematical Preliminaries

for Cognitive Metamathematics

2.1 Introduction

In this chapter, we will introduce some classic logic and (meta-)mathematical
terminology needed in several chapters of this book. So, the present chapter is
mainly devoted to non-mathematicians (e.g., cognitive scientists, Al specialists)
who want to acquire a minimal technical knowledge of some of the fundamental
theories used implicitly along the AMI meta-program.’ In this presentation, we will
describe essentially foundational notions and results without proofs. It is worth to
clarify that we offer in this chapter the minimal syntactic descriptions of most of the
notions needed to get a better technical understanding of the initial applications of
the AMI formal framework to the meta-generation of a wide spectrum of concepts
in pure mathematics.’

2.2 Propositional and First-Order Logic

The main reference for this section is the classic treatise of E. Mendelson [11].
Propositional logic deals with one of the most simple ways of articulate deductive
(semantic and syntactical) procedures among propositions. In other words, one
generates recursively more complex propositions starting with atomic ones and
using a suitable collection of logic connectives with some resemblance with natural
language (e.g., “and” (A), “if --- then -..” (—)). The possible truth value of

I'Therefore, the working mathematician or logician can easily skip most of this chapter without any
substantial lack of preparation for understanding the rest of this book.

2Hence, we recommend that the (non-specialist) reader consult also the references (better
simultaneously) for a more complete and detailed presentation of the corresponding topics.

© Springer Nature Switzerland AG 2020 19
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a proposition is either “true” or “false” and the truth value of a compounded
proposition depends completely on the truth value of these atomic components
and of the (truth tables of the) corresponding logical connectives. Additionally,
one possesses fixed deductive rules and (logic and proper) axioms. We will use
the following concrete system for propositional logic in this book.

2.2.1 A Formal System for Propositional Logic

Explicitly, the basic symbols of our language are —, —, (, ), (primitive connectives
and parenthesis) and upper-case letters A, B, ... (statement letters). As usual, a
well-formed formula (wf) is defined recursively as follows: all statement letters are
wfs and, if .« and & are wfs, then (—.«/) and (&/ — %) are wfs.

Let us use the special symbols #, #7, and #3 to denote propositional variables
ranging over all wfs. So, for any assignation of particular wfs on the former variables
the following wfs are (logic) axioms of our system:

(Al) (1 = (2 — #1))
(A2) ((h — (2 = #3)) = ((h = #) — (F1 — #3)))
(A3) ((—#2 — —#1) = ((=#) — #)) > #))

We have three axiom schemes in our formal system. The only inference rule that
we use is modus ponens (MP), namely, we can deduce directly a wf #; from the wfs
#) and #; — 1.

By a (formal) proof (in propositional logic) we will understand a constructive
proof in the following sense: %’ is a syntactic consequence of I" = {777, - - - , 77;,}
(i.e., I' = %) if and only if there exists a collection of wfs &7, - - - , @/, such that
@y =¥, and for any j, <7 is either an exemplification of an axiom scheme, or one
of the .7, or it is a direct consequence (by MP) of two of the formers .o, (k < j).

We can speak also of an (indirect) “proof” of the fact that .7 is a consequence
of the axioms of our system (i.e., .7 is a theorem, - &), in the sense of being
able to verify that the wf 7 is a tautology (i.e., for any assignation of truth values
of its atomic components, the resulting truth value is always true). Clearly, this is
equivalent to the fact that there exists a formal proof of .7 in the former sense due
to the completeness theorem for propositional logic, in other words, the notions
of theorem (syntactic consequence) and tautology (semantic consequence) coincide
[11, Ch. 1].

2.2.2 First-Order Logic

We want to extend the former (zeroth-order) logic system by including the possi-
bility of expressing universal and existential quantifications of formal variables. For
example, we wish to formalize sentences like “For all natural numbers x and y,
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model M of I" is also a model of ) if and only if ¥ is a syntactic consequence of
I, I' - ¥ (i.e., there exists a formal proof of ¢ starting from wf formulas of I" (and
possibly instantiations of axioms)). In other words, in the former kind of theories the
notions of semantic and syntactic consequence coincide [11, Ch. 2]. A theory T is
consistent if one cannot derive syntactically a formal contradiction, there is no wf
formula ¢ such that -7 ¢ and F7r —¢. It is equivalent to the existence of a model
for the theory T [11, Ch. 4].

A many-sorted first-order theory is an important variant of a first-order theory,
where one has an additional collection of sorts in the language which is meant to be
used in order to create a taxonomy on the particular range of each of the variables
(and indirectly on the domain of definition of the relation and function symbols).
This technical trick can be reconstruct by a classic first-order theory by defining
basically an (explicit) unary relation symbol in the language for any sort. Thus, both
notions are meta-equivalent. We will see an enlightening example of this kind of
theories in Chap. 7.

2.3 Foundational Instantiations of First-Order Theories in
Mathematics

2.3.1 Zermelo—Fraenkel Set Theory with the Axiom of Choice
(ZFC)

One of the most used and famous foundational (first-order) theory for (a large part
of) modern mathematics is the theory of sets, originally developed in a primitive
form by Georg Cantor, and based on the proper axioms of Ernst Zermelo and
Abraham Fraenkel, including the axiom of choice [8]. From a cognitive perspective,
one of the biggest reasons why ZFC is so widely used is its wide easy-going
appealing use of mental and intuitive images as part of the phenomenological way
of understanding its main objects and the relations between them.

ZFC set theory is a first-order theory with a canonical membership (binary)
relation (€), so a € b is expressed as “a is an element of b” or “a belongs to
b7 Let us describe the proper axioms of ZFC in a compact and intuitive way. In
later chapters one can gain a deeper idea of the way in which these axioms can be
written more formally. However, it is more enlightening for an initial presentation if
we mainly appeal to intuition.

7One can also add the equality relation as a primitive relation (assuming the fulfillment of the
standard properties as proper axioms) or one can define it in terms of the membership relation.
Here, we assume the first variant to stress prominently the main intuition behind it and to avoid
excessive technicalities.
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1. Axiom of Extensionality. Two sets are equal when (and only when) both have
exactly the same elements.

2. Axiom of Pairing. Given two sets @ and b there exists a (unique) set {a, b} having
exactly a and b as its elements.

3. Axiom of Union For any set a there exists a set b containing exactly all the
elements of a. This set is called the union of @ and is denoted as Ua.

4. Axiom of Power Set For any set a there exists a set containing as elements all
the subsets of a. This set receives the name of power set of @ and is denoted as
P(a).

5. Axiom of Infinity There exists a set with infinitely many elements.

6. Axiom of Regularity Any nonempty set a has an element e, such that @ and ¢
has no common elements.

7. Axiom Schema of Separation Let Q(a, b) be a formula (describing an (unary)
property where the free variable b is fixed, i.e., b is a parameter). Then, for any
(fixed) set w and (fixed) parameter b, there exists a set v containing precisely the
elements of w fulfilling @, in other words, v = {a € w : Q(a, b)}.

8. Axiom Schema of Replacement Let v/ (x, y, p) be a formula that describes a
function F with parameter p.® (i.e., for any sets x, y, and z, if ¥ (x, y, p) and
¥(x, z, p) hold, then y = z. This unique element y is also denoted as F(x)).
Thus, the image of any set # under ¥ is a set. In other words, for any u there
exists a set v such that v = {F(d) : d € u}.

9. Axiom of Choice Any family of nonempty sets (which can be expressed as Ua
for some set a) possesses a choice function f, i.e., f : @ — Ua and for any
x €a, f(x) € x.

2.3.2 Von Newmann—Bernays—Gadel (Class and) Set Theory
(NBG)

In some mathematical (modern) theories (like category theory) one usually needs to
construct notions involving the collection of all sets and (very large) sub-collections
of it. Now, due to the fact that such collections do not represent sets anymore,” one
needs a kind of suitable extension of ZFC that do not increase the potential for the
existence of inconsistencies that ZFC already possesses.

In this sense, Von Newmann—Bernay—Godel set theory (NBG) is a coherent
candidate for a broader theory maintaining the “working feeling” very similar to
the one in ZFC and allowing to talk about classes as natural (semantic) extensions

of sets.

8In this axiom p can be replaced by several parameters p, - - - , p,. However, for simplicity we
describe the version with only one.

9This is based on the existence of Paradoxes emerging from the assumption that such collections
are sets, e.g., Russell’s paradox [13].
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Here we adopt essentially the approach presented in [11, Ch. 4]. NBG set
theory is a first-order theory with a binary (enlarged) membership relation (€)
and a primitive notion of class. We define equality between classes in terms of
extensionality: A = B stands for (VC)(C € A < C € B).

A set is defined as a class that belongs to some other class. A class that is not a set
is called a proper class. As a matter of terminology, we denote classes by upper-case
letters (e.g., X, Y, and Z) and sets by lower-case letters. Let us describe the proper
axioms of NBG set theory in a more formal way:

1. Axiom T
A=B—> VC)(AeC < Be()

2. Axiom P (Axiom of Pairing)

(Ya)(¥b)(3c)(Vd)(d e c <> d =avd =Db)

3. Axiom N (Empty Set)
(3a)(Vb)(b ¢ a)
4. Axiom F (Axiom of Regularity)
Va)y(a#W— @Abybeananb=4)
5. Axiom E1 (Set-theoretical membership Relation-Class)
BFAYVb)(Ve)((b,c) e A« b ec)
6. Axiom E2 (Intersection of Classes (Conjunction))
VA)VB)YEAN)(Vc)(ce N <+ ce AAcEB)
7. Axiom E3 (Complement of a Class (Negation))
(VA)EC)(Yh)(b e C < b ¢ A)

8. Axiom E4 (Domain (Existential Quantifier))

(VA)(3B)(¥c)(c € B < (3d)({c,d) € A))
9. Axiom ES5 (Product by the Universal Class)

(YA)@AB)(Ye)(Vd)((c,d) € B <» c € A)
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Axiom E6 (Circular Permutation)
(VA)3B)(Ye)(Vd)(Ve)((c.d.e) € A < (d.e.c) € B)
Axiom E7 (Transposition)
(VA)(3B)(Ye)(Vd)(Ye)((c. d.e) € A < (c,e.d) € B)
Axiom U (Union (Sum) Set)

(Va)(3b)(Vc)(c € b <> (Ad)(c e d Ad € a)

. Axiom W (Power Set)

(Ya)(3b)(Vc)(c € b <> (Ve)(e e c — e € a))
Axiom S (Subsets)
(Va)(VB)(3c)(Vd)(d € ¢ <> (d € a Ad € B))
Axiom R (Replacement)
Let V be the universal class containing all the sets. If A is a class, let Fnc(A)
be the formal statement saying that A is a function, i.e.,
A C VA (Va)(Vb)(Ve)({a,b) € AA{a,c) €A — b=c).
Then
(VA)(Fnc(A) — (YD) FAc)(Vd)(d € ¢ < (Fe)((e.d) € A ne € b))

Axiom I (Axiom of Infinity)

(@a)@ € a A (Yb)(b € a — bU (b} € a))

. Axiom G (Axiom of Global Choice)

(AG)(Fne(G) A (Ya)(a # B — 3b)(b € a A (a, b) € G)))

We describe explicitly each of the former axioms for its particular foundational

importance. However, the former list is, strictly speaking, non-minimal, i.e., some
of the axioms can be deduced from some of the remaining ones. Nonetheless, we
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would not discuss this kind of technical issues in this very short presentation, mainly
for pragmatic reasons.'”

NBG set theory is a finitely axiomatizable theory, due to the fact that one can
codify the membership and the equality relation for sets, together with the notions
of intersection, complement, domain, and product (at the level of sets) as particular
(binary) classes.

NBG set theory turns out to be an extension of ZFC set theory, without strictly
bigger chances of generating formal contradictions. In other words, NBG is a
conservative extension of ZFC, i.e., NBG extends formally a ZFC and one of them
is consistent if and only if the other one so is [11, Ch,. 4].

A second fundamental working meta-principle assumed by a large portion of
working mathematicians and logicians regarding ZFC is that one can simulate
and ground almost any mathematical structure (e.g., concept and notion) used for
example in mathematical analysis, abstract algebra, and (differential and algebraic)
geometry (among many others) with set-theoretical structures. Notwithstanding, this
theoretical meta-fact possesses more a platonic importance, because in the concrete
mathematics done at a daily basis in research centers, it is pragmatically impossible
to do the concrete and real grounding explicitly.

2.3.3 Peano Arithmetic

In this section, we will define the first-order theory needed for obtaining a modern
syntactic formalization of the natural numbers in order to be able to establish the
grounding framework for formal number theory.'!

The language of arithmetic (in this formal context) includes a single predicate
letter for equality (=), and individual constant (0) and three function letters fll, flz,
and fzz, with the following conventions on notation fl' (@) =d', fl"'(a, by =a+b,
and fzz(a, b) = a - b. Finally, the proper axioms are the following:

(YL Y2, 3 =y2 = (V1 =y3 = 2 =)

- (YL ) = y2 =y =v5)

(YD #0)

(YL ) =y = v = y2)

Yy +0=y1)

YLy =+ 2))

Yy -0=0)

Yy )y = (- y2) + )

. For any wf formula 2, 2(0) — ((¥V¥)(Z(y) = 2(')) = (¥)Z(y))

O 00~ O B Wk —

100ur main goal here is to give a global view of the most foundational axiomatic aspects for
mathematics, reviewing only some of the most seminal notions, axioms, and results.
Here we adopt the terminology given, for instance, in [11, Ch. 3].
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2.4 Further Seminal (Categorical and Set-Theoretical)
Mathematical Notions

In this section, we will present additional mathematical concepts that will be used as
test samples of the validity of our meta-formal taxonomy of fundamental cognitive
mechanisms employed during abstract mathematical creation (see Chap. 10). Most
of the following concepts can be seen in two ways: firstly, as instances of first-order
theories, where the explicit conditions defining the structures corresponds to the
proper axioms and, simultaneously, they give the essential elements of the (first-
order) language in consideration; and, secondly, as categories, where the (proper)
class corresponds to the collection of all models of the corresponding first-order the-
ory, and the morphisms are given by the corresponding class of functions preserving
the fundamental algebraic properties characterizing the corresponding mathematical
structures (e.g., (group, ring) homomorphisms). So, the next conceptual examples
have a double purpose, enlightening the former logic and (meta)mathematical
notions, and preparing the way for a deeper understanding of the whole AMI
program. For a more detailed description of the notions described in this section
the reader can consult [4-6, 12] and [9, Ch5—6].14 Note that the following notions
are only required in Chaps.7 and 11, the rest of the book can be read without an
explicit knowledge of them.

Definition 2.1 A relation r (between a set a and a set b) is simply a subset of the
Cartesian product between them, i.e., » € a x b. A (mathematical) function f with
domain a and codomain b is defined by a relation f € a x b such that for any
x € Aand y,z € b, if (x,y) € f and (x,z) € f, then y = z. If g is another
function from b to ¢, then one defines the composition function g o f from a to c,
by the rule g o f(x) := g(f(x)), for any x € a. A function f : a — b is injective if
forany x, v € a, if a # b then f(a) # f(b); itis surjective if for any z € b, there
exists a x € a such that f(x) = z; itis bijective if is both injective and surjective.

Let a be a set. A relation r € a x a is an equivalence relation if it is reflexive
(ie., forall x € a, (x,x) € r), symmetric (i.e., forall x,y € a, (x,y) € r if and
only if (y, x) € r, and transitive (i.e., forall x, y,z € a,if (x,y) e rand (y, z) € r,
then (x, z) € r). An equivalent relation r generates a partition of @ into equivalent
classes which are the subsets ¢, € a (where w € a) such that forall x € a,a € ¢y
if and only if (w, @) € r.!”> The collection of equivalence classes is denoted as a/r
and, sometimes, it is referred as the quotient set (where the relation should be clear
from the context).

4Most of the notions are well-known structures in contemporary mathematics, others are less-
known robust concepts which have an intermediate usage within the book, and, therefore, possess
a local naming.

I5Note that the element w is not canonical. In fact each element in ¢, can also represent its
equivalent class.
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Definition 2.2 An abelian group is a set A with a binary operation + and a special
(neutral) element 0 € A such that the following axioms hold:

1. Yae A)(a+0=0+a =a).

2. MaeAyFbe A)a+b=b+a=0).

3. Va,b,ce A)((la+b)+c=a+ (b+0))).
4. Va,be A)Ya+b =b+a).

A is a group if it fulfills conditions 1-3.
The most elementary example of an (abelian) group are the integers Z with the
addition operation and the zero element.

Definition 2.3 A pointed (abelian) group is a set B with a binary operation * and a
distinguished element b € B such that (B \ {b}, *|p\(p1x B\(b}) 15 an (abelian) group
and,bxc=cxb=>bforall c € B.

Well-known examples of pointed abelian groups are the rational, real, and
complex numbers with the zero element and the product operation, respectively.
Moreover, for any nonempty set with a distinguished element there exists at least
one structure of pointed group for it. In fact, it could be shown that this statement is
equivalent to the axiom of choice [7].

Definition 2.4 A distributive space consists of two sets D y K with two operations
@:DxD— Dand® : K x D — D such that

VMx e K)¥Vy,zeD)x®@ (YD) =(x®Yy) & (x®2)).

Instances of distributive spaces are Boolean algebras, the space of square
matrices with entries over a field (e.g., the real or complex numbers) with the
standard sum and product operations, and clearly the natural, integer, rational, real,
and complex numbers with addition and multiplication, respectively. In all these
cases, D = K.

Contrastingly, we also obtain an example of a distributive space if (D, @) is
a vector space over a field K and ® denotes the corresponding scalar product. If
dimD > 1, then clearly D # K.

Definition 2.5 An action of a group (G, +, 0) on a set X is simply a function = :
G x X — X such that the following two conditions hold:

. Wa,be G)(Vx € X)((a+b) xx =a * (b xx)).
2. (Vx € X)(0%xx = x).

Definition 2.6 An algebraic substructure S = ((A, +4,04), (B, +5,0p),i : A —
B), consists with two sets, two binary operations defined over each of them,
two special constants, and an (structural) embedding i fulfilling the following
properties:

1. i is an homomorphism: i (04) = 0g and Vx, vy € A(i(x +4 y) = i(x) +5i(¥)).
2. iisinjective: (Vx,y € A)(i(x) =i(y) = x = y).
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3. Vxe B)(Vy e A)((x +pi(y) =0p) = (Fz € A)(i(2) = x)).

The last condition can be rephrased as follows: the “potential inverses” of elements
of A, considered as elements in B, belong as well to A.

Usual examples of algebraic substructures are given by the natural injections iy :
Z — Q,i» : Q@ - R,and iz : R — C (as well as the remaining meaningful
combinations) with the addition operation and the zero element, respectively.

The main intuition of this definition is that when (B, +pg, 0p) has additionally
an algebraic structure, as the one of a monoid, a semi-group, or a group, then
(A, +4,04) would automatically inherit the same structure.

This definition is a stronger notion than the one of embedding (i.e., an injective
morphism) commonly used in the mathematical literature, since, in principle, sets
A and B have a basic algebraic structure; e.g., we do not even require associativity
for the corresponding operations. However, we impose the typical conditions for an
embedding in (1) and (2) and additionally, we request condition (3) for including
potential inverses of the smaller structure into itself. If we restrict ourselves to the
category of monoids, semi-group, and groups, these two notions coincide, because
we can prove that under these hypothesis, (3) would follow from (1) and (2).

Definition 2.7 If X denotes a set and F is a collection of functions from X to X,
then a subset ¥ of X is called the space of fixed points of F, if

VMxeX)((VfeF)(fx)y=x)<xeY).

Typical examples of spaces of fixed points appear in topology and in the setting of
retractions between topological spaces [12].

Definition 2.8 A fieldis aset (F, +, 0, x, 1), such that (F, 4+, 0) and (F \ {0}, %, 1)
are abelian groups and the operation * distributes with respect to 4.

Canonical examples of fields are the rational, the real, and the complex numbers
with the corresponding operations of addition and multiplication and the distin-
guished constants zero and one.

Definition 2.9 A bigroup is a set Q with two binary operations + and * such
that (@, +,0) is an abelian group and (Q, %) is a pointed abelian group with
distinguished element 0.

Examples of bigroups are the rational, real, and complex numbers with the
standard operations and the zero element as distinguished constant in any case. In
fact, let us show a concrete example of a bigroup which is not a field. Let us define
in the group (R = Z/47Z, +), the following second binary operation *: a x b = 0,
if either a = 0 or b = 0. For the subset R* = R \ {0}, we define *, in terms
of the following bijection ¢ : Z/3Z — R’, defined by ¢(0) = 3,¢(1) = 1,
and ¢ (2) = 2. Here, we translate the addition in Z/37Z to R’ by means of ¢ . It is
straightforward to show that (R, +, %) is a bigroup. However, 1x(1+1) = 1x2 =3
and I 1+ 1%1=242=4=0,thus 1 x(1 +1)# 1x1+1x1.So, Risnot



