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Introduction

The Smartest Horse in the World

t the end of the nineteenth century, Europe was

captivated by a horse called Hans. “Clever Hans”

was nothing less than a marvel: he could solve math

problems, tell time, identify days on a calendar, dif-

ferentiate musical tones, and spell out words and sentences.

People flocked to watch the German stallion tap out answers

to complex problems with his hoof and consistently arrive at

the right answer. “What is two plus three?” Hans would dili-

gently tap his hoof on the ground five times. “What day of the

week is it?” The horse would then tap his hoof to indicate each

letter on a purpose-built letter board and spell out the correct

answer. Hans even mastered more complex questions, such as,

“I have a number in mind. I subtract nine and have three as a

remainder. What is the number?” By 1904, Clever Hans was an

international celebrity, with the New York Times championing

him as “Berlin’s Wonderful Horse; He Can Do Almost Every-
thing but Talk.™

Hans’s trainer, a retired math teacher named Wilhelm

von Osten, had long been fascinated by animal intelligence.
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Von Osten had tried and failed to teach kittens and bear cubs
cardinal numbers, but it wasn’t until he started working with
his own horse that he had success. He first taught Hans to
count by holding the animal’s leg, showing him a number, and
then tapping on the hoof the correct number of times. Soon
Hans responded by accurately tapping out simple sums. Next
von Osten introduced a chalkboard with the alphabet spelled
out, so Hans could tap a number for each letter on the board.
After two years of training, von Osten was astounded by the
animal’s strong grasp of advanced intellectual concepts. So he
took Hans on the road as proof that animals could reason.
Hans became the viral sensation of the belle époque.

But many people were skeptical, and the German board
of education launched an investigative commission to test Von
Osten’s scientific claims. The Hans Commission was led by
the psychologist and philosopher Carl Stumpf and his assis-
tant Oskar Pfungst, and it included a circus manager, a retired
schoolteacher, a zoologist, a veterinarian, and a cavalry officer.
Yet after extensive questioning of Hans, both with his trainer
present and without, the horse maintained his record of cor-
rect answers, and the commission could find no evidence of
deception. As Pfungst later wrote, Hans performed in front of
“thousands of spectators, horse-fanciers, trick-trainers of first
rank, and not one of them during the course of many months’
observations are able to discover any kind of regular signal”
between the questioner and the horse.?

The commission found that the methods Hans had
been taught were more like “teaching children in elementary
schools” than animal training and were “worthy of scientific
examination.”® But Strumpf and Pfungst still had doubts. One
finding in particular troubled them: when the questioner did
not know the answer or was standing far away, Hans rarely
gave the correct answer. This led Pfungst and Strumpf to con-
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Wilhelm von Osten and Clever Hans

sider whether some sort of unintentional signal had been pro-
viding Hans with the answers.

As Pfungst would describe in his 1911 book, their intu-
ition was right: the questioner’s posture, breathing, and facial
expression would subtly change around the moment Hans
reached the right answer, prompting Hans to stop there.*
Pfungst later tested this hypothesis on human subjects and
confirmed his result. What fascinated him most about this
discovery was that questioners were generally unaware that
they were providing pointers to the horse. The solution to the
Clever Hans riddle, Pfungst wrote, was the unconscious di-
rection from the horse’s questioners.” The horse was trained
to produce the results his owner wanted to see, but audiences
felt that this was not the extraordinary intelligence they had
imagined.

The story of Clever Hans is compelling from many angles:
the relationship between desire, illusion, and action, the busi-
ness of spectacles, how we anthropomorphize the nonhuman,
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how biases emerge, and the politics of intelligence. Hans in-
spired a term in psychology for a particular type of conceptual
trap, the Clever Hans Effect or observer-expectancy effect, to
describe the influence of experimenters’ unintentional cues on
their subjects. The relationship between Hans and von Osten
points to the complex mechanisms by which biases find their
ways into systems and how people become entangled with the
phenomena they study. The story of Hans is now used in ma-
chine learning as a cautionary reminder that you can’t always
be sure of what a model has learned from the data it has been
given.® Even a system that appears to perform spectacularly in
training can make terrible predictions when presented with
novel data in the world.

This opens a central question of this book: How is intel-
ligence “made,” and what traps can that create? At first glance,
the story of Clever Hans is a story of how one man constructed
intelligence by training a horse to follow cues and emulate
humanlike cognition. But at another level, we see that the prac-
tice of making intelligence was considerably broader. The en-
deavor required validation from multiple institutions, includ-
ing academia, schools, science, the public, and the military.
Then there was the market for von Osten and his remarkable
horse —emotional and economic investments that drove the
tours, the newspaper stories, and the lectures. Bureaucratic au-
thorities were assembled to measure and test the horse’s abili-
ties. A constellation of financial, cultural, and scientific inter-
ests had a part to play in the construction of Hans’s intelligence
and a stake in whether it was truly remarkable.

We can see two distinct mythologies at work. The first
myth is that nonhuman systems (be it computers or horses)
are analogues for human minds. This perspective assumes that
with sufficient training, or enough resources, humanlike intel-
ligence can be created from scratch, without addressing the
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mance, and considerable patience, yet these were not recog-
nized as intelligence. As author and engineer Ellen Ullman
puts it, this belief that the mind is like a computer, and vice
versa, has “infected decades of thinking in the computer and
cognitive sciences,” creating a kind of original sin for the field."”
It is the ideology of Cartesian dualism in artificial intelligence:
where Al is narrowly understood as disembodied intelligence,
removed from any relation to the material world.

What Is AI? Neither Artificial nor Intelligent

Let’s ask the deceptively simple question, What is artificial
intelligence? If you ask someone in the street, they might
mention Apple’s Siri, Amazon’s cloud service, Tesla’s cars, or
Google’s search algorithm. If you ask experts in deep learn-
ing, they might give you a technical response about how neu-
ral nets are organized into dozens of layers that receive labeled
data, are assigned weights and thresholds, and can classify data
in ways that cannot yet be fully explained.’® In 1978, when dis-
cussing expert systems, Professor Donald Michie described Al
as knowledge refining, where “a reliability and competence of
codification can be produced which far surpasses the highest
level that the unaided human expert has ever, perhaps even
could ever, attain.”*” In one of the most popular textbooks on
the subject, Stuart Russell and Peter Norvig state that AT is the
attempt to understand and build intelligent entities. “Intelli-
gence is concerned mainly with rational action,” they claim.
“Ideally, an intelligent agent takes the best possible action in
a situation.”'®

Each way of defining artificial intelligence is doing work,
setting a frame for how it will be understood, measured, val-
ued, and governed. If Al is defined by consumer brands for
corporate infrastructure, then marketing and advertising have
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predetermined the horizon. If Al systems are seen as more re-
liable or rational than any human expert, able to take the “best
possible action,” then it suggests that they should be trusted to
make high-stakes decisions in health, education, and crimi-
nal justice. When specific algorithmic techniques are the sole
focus, it suggests that only continual technical progress mat-
ters, with no consideration of the computational cost of those
approaches and their far-reaching impacts on a planet under
strain.

In contrast, in this book I argue that Al is neither ar-
tificial nor intelligent. Rather, artificial intelligence is both
embodied and material, made from natural resources, fuel,
human labor, infrastructures, logistics, histories, and classifi-
cations. Al systems are not autonomous, rational, or able to
discern anything without extensive, computationally intensive
training with large datasets or predefined rules and rewards. In
fact, artificial intelligence as we know it depends entirely on a
much wider set of political and social structures. And due to
the capital required to build AI at scale and the ways of seeing
that it optimizes Al systems are ultimately designed to serve
existing dominant interests. In this sense, artificial intelligence
is a registry of power.

In this book we’ll explore how artificial intelligence is
made, in the widest sense, and the economic, political, cul-
tural, and historical forces that shape it. Once we connect Al
within these broader structures and social systems, we can es-
cape the notion that artificial intelligence is a purely techni-
cal domain. At a fundamental level, Al is technical and social
practices, institutions and infrastructures, politics and culture.
Computational reason and embodied work are deeply inter-
linked: AI systems both reflect and produce social relations
and understandings of the world.

It's worth noting that the term “artificial intelligence”
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can create discomfort in the computer science community.
The phrase has moved in and out of fashion over the decades
and is used more in marketing than by researchers. “Machine
learning” is more commonly used in the technical literature.
Yet the nomenclature of Al is often embraced during fund-
ing application season, when venture capitalists come bearing
checkbooks, or when researchers are seeking press attention
for a new scientific result. As a result, the term is both used
and rejected in ways that keep its meaning in flux. For my pur-
poses, I use Al to talk about the massive industrial formation
that includes politics, labor, culture, and capital. When I refer
to machine learning, I'm speaking of a range of technical ap-
proaches (which are, in fact, social and infrastructural as well,
although rarely spoken about as such).

But there are significant reasons why the field has been fo-
cused so much on the technical —algorithmic breakthroughs,
incremental product improvements, and greater convenience.
The structures of power at the intersection of technology, capi-
tal, and governance are well served by this narrow, abstracted
analysis. To understand how Al is fundamentally political, we
need to go beyond neural nets and statistical pattern recog-
nition to instead ask what is being optimized, and for whom,
and who gets to decide. Then we can trace the implications of
those choices.

Seeing Al Like an Atlas

How can an atlas help us to understand how artificial intel-
ligence is made? An atlas is an unusual type of book. It is a
collection of disparate parts, with maps that vary in resolu-
tion from a satellite view of the planet to a zoomed-in detail
of an archipelago. When you open an atlas, you may be seek-
ing specific information about a particular place—or perhaps
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you are wandering, following your curiosity, and finding unex-
pected pathways and new perspectives. As historian of science
Lorraine Daston observes, all scientific atlases seek to school
the eye, to focus the observer’s attention on particular telling
details and significant characteristics.'” An atlas presents you
with a particular viewpoint of the world, with the imprimatur
of science—scales and ratios, latitudes and longitudes —and a
sense of form and consistency.

Yet an atlas is as much an act of creativity —a subjective,
political, and aesthetic intervention—as it is a scientific collec-
tion. The French philosopher Georges Didi-Huberman thinks
of the atlas as something that inhabits the aesthetic paradigm
of the visual and the epistemic paradigm of knowledge. By
implicating both, it undermines the idea that science and art
are ever completely separate.® Instead, an atlas offers us the
possibility of rereading the world, linking disparate pieces dif-
ferently and “reediting and piecing it together again without
thinking we are summarizing or exhausting it.”*!

Perhaps my favorite account of how a cartographic ap-
proach can be helpful comes from the physicist and tech-
nology critic Ursula Franklin: “Maps represent purposeful en-
deavors: they are meant to be useful, to assist the traveler and
bridge the gap between the known and the as yet unknown;
they are testaments of collective knowledge and insight.”**

Maps, at their best, offer us a compendium of open path-
ways—shared ways of knowing —that can be mixed and com-
bined to make new interconnections. But there are also maps
of domination, those national maps where territory is carved
along the fault lines of power: from the direct interventions of
drawing borders across contested spaces to revealing the colo-
nial paths of empires. By invoking an atlas, I'm suggesting that
we need new ways to understand the empires of artificial intel-
ligence. We need a theory of Al that accounts for the states and
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corporations that drive and dominate it, the extractive min-
ing that leaves an imprint on the planet, the mass capture of
data, and the profoundly unequal and increasingly exploitative
labor practices that sustain it. These are the shifting tecton-
ics of power in Al. A topographical approach offers different
perspectives and scales, beyond the abstract promises of arti-
ficial intelligence or the latest machine learning models. The
aim is to understand Al in a wider context by walking through
the many different landscapes of computation and seeing how
they connect.”

There’s another way in which atlases are relevant here.
The field of Al is explicitly attempting to capture the planet
in a computationally legible form. This is not a metaphor so
much as the industry’s direct ambition. The AI industry is
making and normalizing its own proprietary maps, as a cen-
tralized God’s-eye view of human movement, communication,
and labor. Some AT scientists have stated their desire to cap-
ture the world and to supersede other forms of knowing. Al
professor Fei-Fei Li describes her ImageNet project as aiming
to “map out the entire world of objects.”** In their textbook,
Russell and Norvig describe artificial intelligence as “relevant
to any intellectual task; it is truly a universal field.”*® One of
the founders of artificial intelligence and early experimenter
in facial recognition, Woody Bledsoe, put it most bluntly: “in
the long run, Al is the only science.”*® This is a desire not to
create an atlas of the world but to be the atlas—the dominant
way of seeing. This colonizing impulse centralizes power in
the AI field: it determines how the world is measured and de-
fined while simultaneously denying that this is an inherently
political activity.

Instead of claiming universality, this book is a partial ac-
count, and by bringing you along on my investigations, I hope
to show you how my views were formed. We will encounter



14 Introduction

D¢ gante TWale inetn Kleherblat/ Welches in ber Gradt Hannover mteines leben Vaterlandes Wapen,
A i 7 SEPTENTR

SNTATDI0

Heinrich Bunting’s mappa mundi, known as The Biinting
Clover Leaf Map, which symbolizes the Christian Trinity,
with the city of Jerusalem at the center of the world. From
Itinerarium Sacrae Scripturae (Magdeburg, 1581)

Topographies of Computation

How, at this moment in the twenty-first century, is AI concep-
tualized and constructed? What is at stake in the turn to arti-
ficial intelligence, and what kinds of politics are contained in
the way these systems map and interpret the world? What are
the social and material consequences of including AI and re-
lated algorithmic systems into the decision-making systems of
social institutions like education and health care, finance, gov-
ernment operations, workplace interactions and hiring, com-
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munication systems, and the justice system? This book is not a
story about code and algorithms or the latest thinking in com-
puter vision or natural language processing or reinforcement
learning. Many other books do that. Neither is it an ethno-
graphic account of a single community and the effects of Al on
their experience of work or housing or medicine—although
we certainly need more of those.

Instead, this is an expanded view of artificial intelligence
as an extractive industry. The creation of contemporary Al sys-
tems depends on exploiting energy and mineral resources from
the planet, cheap labor, and data at scale. To observe this in ac-
tion, we will go on a series of journeys to places that reveal the
makings of AL

In chapter 1, we begin in the lithium mines of Nevada,
one of the many sites of mineral extraction needed to power
contemporary computation. Mining is where we see the ex-
tractive politics of AI at their most literal. The tech sector’s
demand for rare earth minerals, oil, and coal is vast, but the
true costs of this extraction is never borne by the industry
itself. On the software side, building models for natural lan-
guage processing and computer vision is enormously energy
hungry, and the competition to produce faster and more effi-
cient models has driven computationally greedy methods that
expand AI's carbon footprint. From the last trees in Malaysia
that were harvested to produce latex for the first transatlantic
undersea cables to the giant artificial lake of toxic residues in
Inner Mongolia, we trace the environmental and human birth-
places of planetary computation networks and see how they
continue to terraform the planet.

Chapter 2 shows how artificial intelligence is made of
human labor. We look at the digital pieceworkers paid pennies
on the dollar clicking on microtasks so that data systems can
seem more intelligent than they are.** Our journey will take us



16 Introduction

inside the Amazon warehouses where employees must keep in
time with the algorithmic cadences of a vast logistical empire,
and we will visit the Chicago meat laborers on the disassembly
lines where animal carcasses are vivisected and prepared for
consumption. And we’ll hear from the workers who are pro-
testing against the way that AI systems are increasing surveil-
lance and control for their bosses.

Labor is also a story about time. Coordinating the actions
of humans with the repetitive motions of robots and line ma-
chinery has always involved a controlling of bodies in space
and time.** From the invention of the stopwatch to Google’s
TrueTime, the process of time coordination is at the heart of
workplace management. Al technologies both require and cre-
ate the conditions for ever more granular and precise mecha-
nisms of temporal management. Coordinating time demands
increasingly detailed information about what people are doing
and how and when they do it.

Chapter 3 focuses on the role of data. All publicly acces-
sible digital material —including data that is personal or po-
tentially damaging—is open to being harvested for training
datasets that are used to produce Al models. There are gigantic
datasets full of people’s selfies, of hand gestures, of people
driving cars, of babies crying, of newsgroup conversations
from the 1990s, all to improve algorithms that perform such
functions as facial recognition, language prediction, and ob-
ject detection. When these collections of data are no longer
seen as people’s personal material but merely as infrastruc-
ture, the specific meaning or context of an image or a video
is assumed to be irrelevant. Beyond the serious issues of pri-
vacy and ongoing surveillance capitalism, the current practices
of working with data in Al raise profound ethical, method-
ological, and epistemological concerns.*

And how is all this data used? In chapter 4, we look at
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the practices of classification in artificial intelligence systems,
what sociologist Karin Knorr Cetina calls the “epistemic ma-
chinery.”**
predict human identity, commonly using binary gender, es-
sentialized racial categories, and problematic assessments of
character and credit worthiness. A sign will stand in for a sys-
tem, a proxy will stand for the real, and a toy model will be
asked to substitute for the infinite complexity of human sub-

jectivity. By looking at how classifications are made, we see

We see how contemporary systems use labels to

how technical schemas enforce hierarchies and magnify in-
equity. Machine learning presents us with a regime of norma-
tive reasoning that, when in the ascendant, takes shape as a
powerful governing rationality.

From here, we travel to the hill towns of Papua New
Guinea to explore the history of affect recognition, the idea
that facial expressions hold the key to revealing a person’s
inner emotional state. Chapter 5 considers the claim of the
psychologist Paul Ekman that there are a small set of univer-
sal emotional states which can be read directly from the face.
Tech companies are now deploying this idea in affect recog-
nition systems, as part of an industry predicted to be worth
more than seventeen billion dollars.** But there is consider-
able scientific controversy around emotion detection, which
is at best incomplete and at worst misleading. Despite the un-
stable premise, these tools are being rapidly implemented into
hiring, education, and policing systems.

In chapter 6 we look at the ways in which AI systems are
used as a tool of state power. The military past and present of
artificial intelligence have shaped the practices of surveillance,
data extraction, and risk assessment we see today. The deep
interconnections between the tech sector and the military are
now being reined in to fit a strong nationalist agenda. Mean-
while, extralegal tools used by the intelligence community
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have now dispersed, moving from the military world into the
commercial technology sector, to be used in classrooms, police
stations, workplaces, and unemployment offices. The military
logics that have shaped AI systems are now part of the work-
ings of municipal government, and they are further skewing
the relation between states and subjects.

The concluding chapter assesses how artificial intelli-
gence functions as a structure of power that combines infra-
structure, capital, and labor. From the Uber driver being
nudged to the undocumented immigrant being tracked to the
public housing tenants contending with facial recognition sys-
tems in their homes, Al systems are built with the logics of
capital, policing, and militarization—and this combination
further widens the existing asymmetries of power. These ways
of seeing depend on the twin moves of abstraction and extrac-
tion: abstracting away the material conditions of their making
while extracting more information and resources from those
least able to resist.

But these logics can be challenged, just as systems that
perpetuate oppression can be rejected. As conditions on Earth
change, calls for data protection, labor rights, climate justice,
and racial equity should be heard together. When these inter-
connected movements for justice inform how we understand
artificial intelligence, different conceptions of planetary poli-
tics become possible.

Extraction, Power, and Politics

Artificial intelligence, then, is an idea, an infrastructure, an in-
dustry, a form of exercising power, and a way of seeing; it’s also
a manifestation of highly organized capital backed by vast sys-
tems of extraction and logistics, with supply chains that wrap
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resource extraction to data protections, racial inequity to cli-
mate change. To do that, we need to expand our understand-
ing of what is under way in the empires of Al to see what is
at stake, and to make better collective decisions about what
should come next.






1
Earth

he Boeing 757 banks right over San Jose on its final

approach to San Francisco International Airport.

The left wing drops as the plane lines up with the

runway, revealing an aerial view of the tech sector’s
most iconic location. Below are the great empires of Silicon
Valley. The gigantic black circle of Apple’s headquarters is laid
out like an uncapped camera lens, glistening in the sun. Then
there’s Google’s head office, nestled close to NASA’s Moffett
Federal Airfield. This was once a key site for the U.S. Navy
during World War II and the Korean War, but now Google
has a sixty-year lease on it, and senior executives park their
private planes here. Arrayed near Google are the large manu-
facturing sheds of Lockheed Martin, where the aerospace and
weapons manufacturing company builds hundreds of orbital
satellites destined to look down on the activities of Earth. Next,
by the Dumbarton Bridge, appears a collection of squat build-
ings that are home to Facebook, ringed with massive parking
lots close to the sulfuric salt ponds of the Ravenswood Slough.
From this vantage point, the nondescript suburban cul-de-sacs
and industrial midrise skyline of Palo Alto betray little of its
true wealth, power, and influence. There are only a few hints of
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its centrality in the global economy and in the computational
infrastructure of the planet.

I'm here to learn about artificial intelligence and what
it is made from. To see that, I will need to leave Silicon Valley
altogether.

From the airport, I jump into a van and drive east. I
cross the San Mateo-Hayward Bridge and pass by the Law-
rence Livermore National Laboratory, where Edward Teller di-
rected his research into thermonuclear weapons in the years
after World War II. Soon the Sierra Nevada foothills rise be-
yond the Central Valley towns of Stockton and Manteca. Here
the roads start winding up through the tall granite cliffs of
the Sonora Pass and down the eastern side of the mountains
toward grassy valleys dotted with golden poppies. Pine forests
give way to the alkaline waters of Mono Lake and the parched
desert landforms of the Basin and Range. To refuel, I pull into
Hawthorne, Nevada, site of the world’s biggest ammunition
depot, where the U.S. Army stores armaments in dozens of
dirt-covered ziggurats that populate the valley in neat rows.
Driving along Nevada State Route 265 I see a lone VORTAC
in the distance, a large bowling pin-shaped radio tower that
was designed for the era before GPS. It has a single function:
it broadcasts “I am here” to all passing aircraft, a fixed point of
reference in a lonely terrain.

My destination is the unincorporated community of Sil-
ver Peak in Nevada’s Clayton Valley, where about 125 people
live, depending on how you count. The mining town, one of
the oldest in Nevada, was almost abandoned in 1917 after the
ground was stripped bare of silver and gold. A few gold rush
buildings still stand, eroding under the desert sun. The town
may be small, with more junked cars than people, but it har-
bors something exceedingly rare. Silver Peak is perched on the
edge of a massive underground lake of lithium. The valuable
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Silver Peak Lithium Mine. Photograph by Kate Crawford

lithium brine under the surface is pumped out of the ground
and left in open, iridescent green ponds to evaporate. From
miles away, the ponds can be seen when they catch the light
and shimmer. Up close, it’s a different view. Alien-looking
black pipes erupt from the ground and snake along the salt-
encrusted earth, moving in and out of shallow trenches, ferry-
ing the salty cocktail to its drying pans.

Here, in a remote pocket of Nevada, is a place where the
stuff of AI is made.

Mining for Al

Clayton Valley is connected to Silicon Valley in much the way
that the nineteenth-century goldfields were to early San Fran-
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the Mission district, where rows of tents have returned to shel-
ter people who have nowhere to go. In the wake of the tech
boom, San Francisco now has one of the highest rates of street
homelessness in the United States.® The United Nations spe-
cial rapporteur on adequate housing called it an “unaccept-
able” human rights violation, due to the thousands of home-
less residents denied basic necessities of water, sanitation, and
health services in contrast to the record number of billionaires
who live nearby.” The greatest benefits of extraction have been
captured by the few.

In this chapter we’ll traverse across Nevada, San Jose,
and San Francisco, as well as Indonesia, Malaysia, China, and
Mongolia: from deserts to oceans. We'll also walk the spans of
historical time, from conflict in the Congo and artificial black
lakes in the present day to the Victorian passion for white latex.
The scale will shift, telescoping from rocks to cities, trees to
megacorporations, transoceanic shipping lanes to the atomic
bomb. But across this planetary supersystem we will see the
logics of extraction, a constant drawdown of minerals, water,
and fossil fuels, undergirded by the violence of wars, pollution,
extinction, and depletion. The effects of large-scale computa-
tion can be found in the atmosphere, the oceans, the earth’s
crust, the deep time of the planet, and the brutal impacts on
disadvantaged populations around the world. To understand
it all, we need a panoramic view of the planetary scale of com-
putational extraction.

Landscapes of Computation

I'm driving through the desert valley on a summer afternoon
to see the workings of this latest mining boom. I ask my phone
to direct me to the perimeter of the lithium ponds, and it re-
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plies from its awkward perch on the dashboard, tethered by a
white USB cable. Silver Peak’s large, dry lake bed was formed
millions of years ago during the late Tertiary Period. It’s sur-
rounded by crusted stratifications pushing up into ridgelines
containing dark limestones, green quartzites, and gray and red
slate.’® Lithium was discovered here after the area was scoped
for strategic minerals like potash during World War II. This
soft, silvery metal was mined in only modest quantities for the
next fifty years, until it became highly valuable material for the
technology sector.

In 2014, Rockwood Holdings, Inc., a lithium mining
operation, was acquired by the chemical manufacturing com-
pany Albemarle Corporation for $6.2 billion. It is the only
operating lithium mine in the United States. This makes Silver
Peak a site of intense interest to Elon Musk and the many other
tech tycoons for one reason: rechargeable batteries. Lithium is
a crucial element for their production. Smartphone batteries,
for example, usually contain about three-tenths of an ounce
of it. Each Tesla Model S electric car needs about one hun-
dred thirty-eight pounds of lithium for its battery pack." These
kinds of batteries were never intended to supply a machine as
power hungry as a car, but lithium batteries are currently the
only mass-market option available." All of these batteries have
a limited lifespan; once degraded, they are discarded as waste.

About two hundred miles north of Silver Peak is the Tesla
Gigafactory. This is the world’s largest lithium battery plant.
Tesla is the number-one lithium-ion battery consumer in the
world, purchasing them in high volumes from Panasonic and
Samsung and repackaging them in its cars and home chargers.
Tesla is estimated to use more than twenty-eight thousand tons
of lithium hydroxide annually— half of the planet’s total con-
sumption.” In fact, Tesla could more accurately be described as
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a battery business than a car company.* The imminent short-
age of such critical minerals as nickel, copper, and lithium
poses a risk for the company, making the lithium lake at Silver
Peak highly desirable." Securing control of the mine would
mean controlling the U.S. domestic supply.

As many have shown, the electric car is far from a perfect
solution to carbon dioxide emissions.’® The mining, smelting,
export, assemblage, and transport of the battery supply chain
has a signiﬁcant negative impact on the environment and, in
turn, on the communities affected by its degradation. A small
number of home solar systems produce their own energy. But
for the majority of cases, charging an electric car necessitates
taking power from the grid, where currently less than a fifth
of all electricity in the United States comes from renewable
energy sources.”” So far none of this has dampened the deter-
mination of auto manufacturers to compete with Tesla, putting
increasing pressure on the battery market and accelerating the
removal of diminishing stores of the necessary minerals.

Global computation and commerce rely on batteries. The
term “artificial intelligence” may invoke ideas of algorithms,
data, and cloud architectures, but none of that can function
without the minerals and resources that build computing’s
core components. Rechargeable lithium-ion batteries are
essential for mobile devices and laptops, in-home digital assis-
tants, and data center backup power. They undergird the inter-
net and every commerce platform that runs on it, from bank-
ing to retail to stock market trades. Many aspects of modern
life have been moved to “the cloud” with little consideration of
these material costs. Our work and personal lives, our medi-
cal histories, our leisure time, our entertainment, our politi-
cal interests —all of this takes place in the world of networked
computing architectures that we tap into from devices we hold
in one hand, with lithium at their core.
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The mining that makes Al is both literal and metaphori-
cal. The new extractivism of data mining also encompasses and
propels the old extractivism of traditional mining. The stack
required to power artificial intelligence systems goes well be-
yond the multilayered technical stack of data modeling, hard-
ware, servers, and networks. The full-stack supply chain of AI
reaches into capital, labor, and Earth’s resources—and from
each, it demands an enormous amount.’® The cloud is the
backbone of the artificial intelligence industry, and it’s made
of rocks and lithium brine and crude oil.

In his book A Geology of Media, theorist Jussi Parikka
suggests we think of media not from Marshall McLuhan’s point
of view—in which media are extensions of the human senses—
but rather as extensions of Earth.'” Computational media now
participate in geological (and climatological) processes, from
the transformation of the earth’s materials into infrastructures
and devices to the powering of these new systems with oil and
gas reserves. Reflecting on media and technology as geological
processes enables us to consider the radical depletion of non-
renewable resources required to drive the technologies of the
present moment. Each object in the extended network of an
Al system, from network routers to batteries to data centers, is
built using elements that required billions of years to form in-
side the earth.

From the perspective of deep time, we are extracting
Earth’s geological history to serve a split second of contem-
porary technological time, building devices like the Amazon
Echo and the iPhone that are often designed to last for only a
few years. The Consumer Technology Association notes that
the average smartphone life span is a mere 4.7 years.* This
obsolescence cycle fuels the purchase of more devices, drives
up profits, and increases incentives for the use of unsustain-
able extraction practices. After a slow process of development,
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these minerals, elements, and materials then go through an
extraordinarily rapid period of excavation, processing, mix-
ing, smelting, and logistical transport—crossing thousands
of miles in their transformation. What begins as ore removed
from the ground, after the spoil and the tailings are discarded,
is then made into devices that are used and discarded. They
ultimately end up buried in e-waste dumping grounds in
places like Ghana and Pakistan. The lifecycle of an Al system
from birth to death has many fractal supply chains: forms of
exploitation of human labor and natural resources and mas-
sive concentrations of corporate and geopolitical power. And
all along the chain, a continual, large-scale consumption of
energy keeps the cycle going.

The extractivism on which San Francisco was built is
echoed in the practices of the tech sector based there today.**
The massive ecosystem of Al relies on many kinds of extrac-
tion: from harvesting the data made from our daily activities
and expressions, to depleting natural resources, and to exploit-
ing labor around the globe so that this vast planetary network
can be built and maintained. And AI extracts far more from
us and the planet than is widely known. The Bay Area is a cen-
tral node in the mythos of AI, but we’ll need to traverse far
beyond the United States to see the many-layered legacies of
human and environmental damage that have powered the tech
industry.

The Mineralogical Layer

The lithium mines in Nevada are just one of the places where
the materials are extracted from the earth’s crust to make
Al There are many such sites, including the Salar in south-
west Bolivia—the richest site of lithium in the world and thus
a site of ongoing political tension—as well as places in cen-
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free.” Like Intel, Philips has tens of thousands of suppliers,
each of which provides component parts for the company’s
manufacturing processes.’® Those suppliers are themselves
linked downstream to thousands of component manufactur-
ers acquiring treated materials from dozens of smelters. The
smelters in turn buy their materials from an unknown number
of traders who deal directly with both legal and illegal mining
operations to source the various minerals that end up in com-
puter components.”

According to the computer manufacturer Dell, the com-
plexities of the metals and mineral supply chains pose almost
insurmountable challenges to the production of conflict-free
electronics components. The elements are laundered through
such a vast number of entities along the chain that sourcing
their provenance proves impossible—or so the end-product
manufacturers claim, allowing them a measure of plausible de-
niability for any exploitative practices that drive their profits.*?

Just like the mines that served San Francisco in the nine-
teenth century, extraction for the technology sector is done
by keeping the real costs out of sight. Ignorance of the supply
chain is baked into capitalism, from the way businesses pro-
tect themselves through third-party contractors and suppliers
to the way goods are marketed and advertised to consumers.
More than plausible deniability, it has become a well-practiced
form of bad faith: the left hand cannot know what the right
hand is doing, which requires increasingly lavish, baroque,
and complex forms of distancing.

While mining to finance war is one of the most extreme
cases of harmful extraction, most minerals are not sourced
from direct war zones. This doesn’t mean, however, that they
are free from human suffering and environmental destruction.
The focus on conflict minerals, though important, has also
been used to avert focus from the harms of mining writ large.
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If we visit the primary sites of mineral extraction for computa-
tional systems, we find the repressed stories of acid-bleached
rivers and deracinated landscapes and the extinction of plant
and animal species that were once vital to the local ecology.

Black Lakes and White Latex

In Baotou, the largest city in Inner Mongolia, there is an arti-
ficial lake filled with toxic black mud. It reeks of sulfur and
stretches as far as the eye can see, covering more than five and
a half miles in diameter. The black lake contains more than
180 million tons of waste powder from ore processing.* It was
created by the waste runoff from the nearby Bayan Obo mines,
which is estimated to contain almost 70 percent of the world’s
reserves of rare earth minerals. It is the largest deposit of rare
earth elements on the planet.**

China supplies 95 percent of the world’s rare earth min-
erals. China’s market domination, as the writer Tim Maughan
observes, owes far less to geology than to the country’s will-
ingness to take on the environmental damage of extraction.”
Although rare earth minerals like neodymium and cerium are
relatively common, making them usable requires the hazard-
ous process of dissolving them in large volumes of sulfuric
and nitric acid. These acid baths yield reservoirs of poison-
ous waste that fill the dead lake in Baotou. This is just one of
the places that are brimming with what environmental studies
scholar Myra Hird calls “the waste we want to forget.”*®

To date, the unique electronic, optical, and magnetic uses
of rare earth elements cannot be matched by any other metals,
but the ratio of usable minerals to waste toxins is extreme.
Natural resource strategist David Abraham describes the min-
ing in Jiangxi, China, of dysprosium and terbium, which are
used in a variety of high-tech devices. He writes, “Only 0.2
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percent of the mined clay contains the valuable rare earth ele-
ments. This means that 99.8 percent of earth removed in rare
earth mining is discarded as waste, called ‘tailings,” that are
dumped back into the hills and streams,” creating new pollu-
tants like ammonium.”” In order to refine one ton of these rare
earth elements, “the Chinese Society of Rare Earths estimates
that the process produces 75,000 liters of acidic water and one
ton of radioactive residue.”*®

About three thousand miles south of Baotou are the
small Indonesian islands of Bangka and Belitung, off the coast
of Sumatra. Bangka and Belitung produce 9o percent of Indo-
nesia’s tin, used in semiconductors. Indonesia is the world’s
second-largest producer of the metal, behind China. Indo-
nesia’s national tin corporation, PT Timah, supplies companies
such as Samsung directly, as well as solder makers Chernan
and Shenmao, which in turn supply Sony, LG, and Foxconn—
all suppliers for Apple, Tesla, and Amazon.*

On these small islands, gray-market miners who are not
officially employed sit on makeshift pontoons, using bamboo
poles to scrape the seabed before diving underwater to suck
tin from the surface by drawing their breath through giant,
vacuumlike tubes. The miners sell the tin they find to middle-
men, who also collect ore from miners working in autho-
rized mines, and they mix it together to sell to companies like
Timah.** Completely unregulated, the process unfolds beyond
any formal worker or environmental protections. As inves-
tigative journalist Kate Hodal reports, “Tin mining is a lucra-
tive but destructive trade that has scarred the island’s land-
scape, bulldozed its farms and forests, killed off its fish stocks
and coral reefs, and dented tourism to its pretty palm-lined
beaches. The damage is best seen from the air, as pockets of
lush forest huddle amid huge swaths of barren orange earth.
Where not dominated by mines, this is pockmarked with
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graves, many holding the bodies of miners who have died over
the centuries digging for tin.”*' The mines are everywhere: in
backyards, in the forest, by the side of the road, on the beaches.
It is a landscape of ruin.

It is a common practice of life to focus on the world im-
mediately before us, the one we see and smell and touch every
day. It grounds us where we are, with our communities and our
known corners and concerns. But to see the full supply chains
of Al requires looking for patterns in a global sweep, a sensi-
tivity to the ways in which the histories and specific harms are
different from place to place and yet are deeply interconnected
by the multiple forces of extraction.

We can see these patterns across space, but we can also
find them across time. Transatlantic telegraph cables are the
essential infrastructure that ferries data between the continents,
an emblem of global communication and capital. They are also
a material product of colonialism, with its patterns of extrac-
tion, conflict, and environmental destruction. At the end of the
nineteenth century, a particular Southeast Asian tree called Pa-
laquium gutta became the center of a cable boom. These trees,
found mainly in Malaysia, produce a milky white natural latex
called gutta-percha. After English scientist Michael Faraday
published a study in the Philosophical Magazine in 1848 about
the use of this material as an electrical insulator, gutta-percha
rapidly became the darling of the engineering world. Engineers
saw gutta-percha as the solution to the problem of insulating
telegraphic cables to withstand harsh and varying conditions
on the ocean floor. The twisted strands of copper wire needed
four layers of the soft, organic tree sap to protect them from
water incursion and carry their electrical currents.

As the global submarine telegraphy business grew, so did
demand for Palaquium gutta tree trunks. The historian John
Tully describes how local Malay, Chinese, and Dayak workers
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were paid little for the dangerous work of felling the trees
and slowly collecting the latex.*> The latex was processed and
then sold through Singapore’s trade markets into the British
market, where it was transformed into, among other things,
lengths upon lengths of submarine cable sheaths that wrapped
around the globe. As media scholar Nicole Starosielski writes,
“Military strategists saw cables as the most efficient and secure
mode of communication with the colonies—and, by implica-
tion, of control over them.”*® The routes of submarine cables
today still mark out the early colonial networks between the
centers and the peripheries of empire.*

A mature Palaquium gutta could yield around eleven
ounces of latex. But in 1857, the first transatlantic cable was
around eighteen hundred miles long and weighed two thou-
sand tons—requiring about 250 tons of gutta-percha. To pro-
duce just one ton of this material required around nine hundred
thousand tree trunks. The jungles of Malaysia and Singapore
were stripped; by the early 1880s, the Palaquium gutta had
vanished. In a last-ditch effort to save their supply chain, the
British passed a ban in 1883 to halt harvesting the latex, but the
tree was all but extinct.*

The Victorian environmental disaster of gutta-percha, at
the dawn of the global information society, shows how the re-
lations between technology and its materials, environments,
and labor practices are interwoven.*® Just as Victorians precipi-
tated ecological disaster for their early cables, so do contempo-
rary mining and global supply chains further imperil the deli-
cate ecological balance of our era.

There are dark ironies in the prehistories of planetary
computation. Currently large-scale Al systems are driving
forms of environmental, data, and human extraction, but from
the Victorian era onward, algorithmic computation emerged
out of desires to manage and control war, population, and cli-
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from sight.”** Addressing this energy-intensive infrastructure
has become a major concern. Certainly, the industry has made
significant efforts to make data centers more energy efficient
and to increase their use of renewable energy. But already, the
carbon footprint of the world’s computational infrastructure
has matched that of the aviation industry at its height, and it
is increasing at a faster rate.>® Estimates vary, with research-
ers like Lotfi Belkhir and Ahmed Elmeligi estimating that the
tech sector will contribute 14 percent of global greenhouse
emissions by 2040, while a team in Sweden predicts that the
electricity demands of data centers alone will increase about
fifteenfold by 2030.%*

By looking closely at the computational capacity needed
to build AI models, we can see how the desire for exponen-
tial increases in speed and accuracy is coming at a high cost
to the planet. The processing demands of training AI models,
and thus their energy consumption, is still an emerging area of
investigation. One of the early papers in this field came from
Al researcher Emma Strubell and her team at the University
of Massachusetts Amherst in 2019. With a focus on trying to
understand the carbon footprint of natural language process-
ing (NLP) models, they began to sketch out potential estimates
by running Al models over hundreds of thousands of compu-
tational hours.> The initial numbers were striking. Strubell’s
team found that running only a single NLP model produced
more than 660,000 pounds of carbon dioxide emissions, the
equivalent of five gas-powered cars over their total lifetime
(including their manufacturing) or 125 round-trip flights from
New York to Beijing.*

Worse, the researchers noted that this modeling is, at
minimum, a baseline optimistic estimate. It does not reflect
the true commercial scale at which companies like Apple and
Amazon operate, scraping internet-wide datasets and feeding
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their own NLP models to make Al systems like Siri and Alexa
sound more human. But the exact amount of energy consump-
tion produced by the tech sector’s Al models is unknown; that
information is kept as highly guarded corporate secrets. Here,
too, the data economy is premised on maintaining environ-
mental ignorance.

In the AI field, it is standard practice to maximize com-
putational cycles to improve performance, in accordance with
a belief that bigger is better. As Rich Sutton of DeepMind de-
scribes it: “Methods that leverage computation are ultimately
the most effective, and by a large margin.”*” The computational
technique of brute-force testing in Al training runs, or system-
atically gathering more data and using more computational
cycles until a better result is achieved, has driven a steep in-
crease in energy consumption. OpenAl estimated that since
2012, the amount of compute used to train a single AI model
has increased by a factor of ten every year. That’s due to de-
velopers “repeatedly finding ways to use more chips in paral-
lel, and being willing to pay the economic cost of doing so0.”**
Thinking only in terms of economic cost narrows the view on
the wider local and environmental price of burning computa-
tion cycles as a way to create incremental efficiencies. The ten-
dency toward “compute maximalism” has profound ecological
impacts.

Data centers are among the world’s largest consumers
of electricity®® Powering this multilevel machine requires
grid electricity in the form of coal, gas, nuclear, or renewable
energy. Some corporations are responding to growing alarm
about the energy consumption of large-scale computation,
with Apple and Google claiming to be carbon neutral (which
means they offset their carbon emissions by purchasing cred-
its) and Microsoft promising to become carbon negative by
2030. But workers within the companies have pushed for re-
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ductions in emissions across the board, rather than what they
see as buying indulgences out of environmental guilt.** More-
over, Microsoft, Google, and Amazon all license their Al plat-
forms, engineering workforces, and infrastructures to fossil
fuel companies to help them locate and extract fuel from the
ground, which further drives the industry most responsible for
anthropogenic climate change.

Beyond the United States, more clouds of carbon dioxide
are rising. China’s data center industry draws 73 percent of its
power from coal, emitting about 99 million tons of CO2 in
2018.°" And electricity consumption from China’s data center
infrastructure is expected to increase by two-thirds by 2023.%*
Greenpeace has raised the alarm about the colossal energy de-
mands of China’s biggest technology companies, arguing that
“China’s leading tech companies, including Alibaba, Tencent,
and GDS, must dramatically scale up clean energy procure-
ment and disclose energy use data.”®® But the lasting impacts
of coal-fired power are everywhere, exceeding any national
boundaries. The planetary nature of resource extraction and
its consequences goes well beyond what the nation-state was
designed to address.

Water tells another story of computation’s true cost. The
history of water use in the United States is full of battles and
secret deals, and as with computation, the deals made over
water are kept close. One of the biggest U.S. data centers be-
longs to the National Security Agency (NSA) in Bluffdale, Utah.
Open since late 2013, the Intelligence Community Comprehen-
sive National Cybersecurity Initiative Data Center is impos-
sible to visit directly. But by driving up through the adjacent
suburbs, I found a cul-de-sac on a hill thick with sagebrush,
and from there I was afforded a closer view of the sprawling
1.2-million-square-foot facility. The site has a kind of symbolic
power of the next era of government data capture, having been
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featured in films like Citizenfour and pictured in thousands of
news stories about the NSA. In person, though, it looks non-
descript and prosaic, a giant storage container combined with
a government office block.

The struggle over water began even before the data cen-
ter was officially open, given its location in drought-parched
Utah.** Local journalists wanted to confirm whether the esti-
mated consumption of 1.7 million gallons of water per day was
accurate, but the NSA initially refused to share usage data,
redacted all details from public records, and claimed that its
water use was a matter of national security. Antisurveillance
activists created handbooks encouraging the end of material
support of water and energy to surveillance, and they strate-
gized that legal controls over water usage could help shut
down the facility.*® But the city of Bluffdale had already made
a multiyear deal with the NSA, in which the city would sell
water at rates well below the average in return for the promise
of economic growth the facility might bring to the region.*®
The geopolitics of water are now deeply combined with the
mechanisms and politics of data centers, computation, and
power—in every sense. From the dry hillside that overlooks
the NSA’s data repository, all the contestation and obfuscation
about water makes sense: this is a landscape with a limit, and
water that is used to cool servers is being taken away from
communities and habitats that rely on it to live.

Just as the dirty work of the mining sector was far re-
moved from the companies and city dwellers who profited
most, so the majority of data centers are far removed from
major population hubs, whether in the desert or in semi-
industrial exurbs. This contributes to our sense of the cloud
being out of sight and abstracted away, when in fact it is ma-
terial, affecting the environment and climate in ways that are
far from being fully recognized and accounted for. The cloud
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is of the earth, and to keep it growing requires expanding re-
sources and layers of logistics and transport that are in con-
stant motion.

The Logistical Layer

So far, we have considered the material stuff of Al, from rare
earth elements to energy. By grounding our analysis in the
specific materialities of AI—the things, places, and people—
we can better see how the parts are operating within broader
systems of power. Take, for example, the global logistical ma-
chines that move minerals, fuel, hardware, workers, and con-
sumer Al devices around the planet.” The dizzying spectacle
of logistics and production displayed by companies like Ama-
zon would not be possible without the development and wide-
spread acceptance of a standardized metal object: the cargo
container. Like submarine cables, cargo containers bind the
industries of global communication, transport, and capital, a
material exercise of what mathematicians call “optimal trans-
port” —in this case, as an optimization of space and resources
across the trade routes of the world.

Standardized cargo containers (themselves built from
the basic earth elements of carbon and iron forged as steel)
enabled the explosion of the modern shipping industry, which
in turn made it possible to envision and model the planet as
a single massive factory. The cargo container is the single unit
of value—like a piece of Lego—that can travel thousands of
miles before meeting its final destination as a modular part of
a greater system of delivery. In 2017, the capacity of container
ships in seaborne trade reached nearly 250 million deadweight
tons of cargo, dominated by giant shipping companies includ-
ing Maersk of Denmark, the Mediterranean Shipping Com-
pany of Switzerland, and France’s CMA CGM Group, each



Earth 49

ing models and linear algebra. It is metamorphic: relying on
manufacturing, transportation, and physical work; data cen-
ters and the undersea cables that trace lines between the con-
tinents; personal devices and their raw components; trans-
mission signals passing through the air; datasets produced
by scraping the internet; and continual computational cycles.
These all come at a cost.

We have looked at the relations between cities and mines,
companies and supply chains, and the topographies of extrac-
tion that connect them. The fundamentally intertwined nature
of production, manufacturing, and logistics reminds us that
the mines that drive AI are everywhere: not only sited in dis-
crete locations but diffuse and scattered across the geography
of the earth, in what Mazen Labban has called the “planetary
mine.””* This is not to deny the many specific locations where
technologically driven mining is taking place. Rather, Labban
observes that the planetary mine expands and reconstitutes
extraction into novel arrangements, extending the practices
of mines into new spaces and interactions around the world.

Finding fresh methods for understanding the deep ma-
terial and human roots of Al systems is vital at this moment
in history, when the impacts of anthropogenic climate change
are already well under way. But that’s easier said than done. In
part, that’s because many industries that make up the Al sys-
tem chain conceal the ongoing costs of what they do. Further-
more, the scale required to build artificial intelligence systems
is too complex, too obscured by intellectual property law, and
too mired in logistical and technical complexity for us to see
into it all. But the aim here is not to try and make these com-
plex assemblages transparent: rather than trying to see inside
them, we will be connecting across multiple systems to under-
stand how they work in relation to each other.” Thus, our path
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The ruins at Blair. Photograph by Kate Crawford

will follow the stories about the environmental and labor costs
of AT and place them in context with the practices of extrac-
tion and classification braided throughout everyday life. It
is by thinking about these issues together that we can work
toward greater justice.

I make one more trip to Silver Peak. Before I reach the
town, I pull the van over to the side of the road to read a
weather-beaten sign. It's Nevada Historical Marker 174, dedi-
cated to the creation and destruction of a small town called
Blair. In 1906, the Pittsburgh Silver Peak Gold Mining Com-
pany bought up the mines in the area. Anticipating a boom,
land speculators purchased all of the available plots near Silver
Peak along with its water rights, driving prices to record artifi-
cial highs. So the mining company surveyed a couple of miles
north and declared it the site for a new town: Blair. They built
a hundred-stamp cyanide mill for leach mining, the biggest in
the state, and laid the Silver Peak railroad that ran from Blair
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Junction to the Tonopah and Goldfield main line. Briefly, the
town thrived. Many hundreds of people came from all over
for the jobs, despite the harsh working conditions. But with so
much mining activity, the cyanide began to poison the ground,
and the gold and silver seams began to falter and dry up. By
1918, Blair was all but deserted. It was all over within twelve
years. The ruins are marked on a local map—just a forty-five-
minute walk away.

It’s a blazing hot day in the desert. The only sounds are
the metallic reverberations of cicadas and the rumble of an
occasional passenger jet. I decide to start up the hill. By the
time I reach the collection of stone buildings at the top of the
long dirt road, I'm exhausted from the heat. I take shelter in-
side the collapsed remains of what was once a gold miner’s
house. Not much is left: some broken crockery, shards of glass
bottles, a few rusted tins. Back in Blair’s lively years, multiple
saloons thrived nearby and a two-story hotel welcomed visi-
tors. Now it’s a cluster of broken foundations.

Through the space where a window used to be, the view
stretches all the way down the valley. I'm struck by the real-
ization that Silver Peak will also be a ghost town soon. The
current draw on the lithium mine is aggressive in response to
the high demand, and no one knows how long it will last. The
most optimistic estimate is forty years, but the end may come
much sooner. Then the lithium pools under the Clayton Val-
ley will be exsanguinated —extracted for batteries that are des-
tined for landfill. And Silver Peak will return to its previous
life as an empty and quiet place, on the edge of an ancient salt
lake, now drained.
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Labor

hen I enter Amazon’s vast fulfillment center
in Robbinsville, New Jersey, the first thing I
see is a large sign that reads “Time Clock.” It
juts out from one of the bright yellow con-
crete pylons spanning across the vast factory space of 1.2 mil-
lion square feet. This is a major distribution warehouse for
smaller objects—a central distribution node for the North-
eastern United States. It presents a dizzying spectacle of con-
temporary logistics and standardization, designed to acceler-
ate the delivery of packages. Dozens of time-clock signs appear
at regular intervals along the entryway. Every second of work
is being monitored and tallied. Workers—known as “associ-
ates” —must scan themselves in as soon as they arrive. The
sparse, fluorescent-lit break rooms also feature time clocks—
with more signs to underscore that all scans in and out of the
rooms are tracked. Just as packages are scanned in the ware-
house, so too are workers monitored for the greatest possible
efficiency: they can only be off-task for fifteen minutes per
shift, with an unpaid thirty-minute meal break. Shifts are ten
hours long.
This is one of the newer fulfillment centers that feature
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by the customer’s shipping demands. If the box is late, this af-
fects Amazon’s brand and ultimately its profits. So enormous
attention has been devoted to the machine learning algorithm
that is tuned to the data regarding the best size, weight, and
strength of corrugated boxes and paper mailers. Apparently
without irony, the algorithm is called “the matrix.”* Whenever
a person reports a broken item, it becomes a data point about
what sort of box should be used in the future. The next time
that product is mailed, it will automatically be assigned anew
type of box by the matrix, without human input. This prevents
breakages, which saves time, which increases profits. Workers,
however, are forced continually to adapt, which makes it harder
to put their knowledge into action or habituate to the job.

The control over time is a consistent theme in the Ama-
zon logistical empire, and the bodies of workers are run ac-
cording to the cadences of computational logics. Amazon is
America’s second-largest private employer, and many compa-
nies strive to emulate its approach. Many large corporations
are heavily investing in automated systems in the attempt
to extract ever-larger volumes of labor from fewer workers.
Logics of efficiency, surveillance, and automation are all con-
verging in the current turn to computational approaches to
managing labor. The hybrid human-robotic distribution ware-
houses of Amazon are a key site to understand the trade-offs
being made in this commitment to automated efficiency. From
there, we can begin to consider the question of how labor, capi-
tal, and time are entwined in Al systems.

Rather than debating whether humans will be replaced
by robots, in this chapter I focus on how the experience of
work is shifting in relation to increased surveillance, algo-
rithmic assessment, and the modulation of time. Put another
way, instead of asking whether robots will replace humans, I'm
interested in how humans are increasingly treated like robots
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and what this means for the role of labor. Many forms of work
are shrouded in the term “artificial intelligence,” hiding the
fact that people are often performing rote tasks to shore up
the impression that machines can do the work. But large-scale
computation is deeply rooted in and running on the exploita-
tion of human bodies.

If we want to understand the future of work in the con-
text of artificial intelligence, we need to begin by understand-
ing the past and present experience of workers. Approaches to
maximizing the extraction of value from workers vary from
reworkings of the classical techniques used in Henry Ford’s
factories to a range of machine learning-assisted tools de-
signed to increase the granularity of tracking, nudging, and
assessment. This chapter maps geographies of labor past and
present, from Samuel Bentham’s inspection houses to Charles
Babbage’s theories of time management and to Frederick
Winslow Taylor’s micromanagement of human bodies. Along
the way, we will see how Al is built on the very human efforts
of (among other things) crowdwork, the privatization of time,
and the seemingly never-ending reaching, lifting, and toiling
of putting boxes into order. From the lineage of the mecha-
nized factory, a model emerges that values increased confor-
mity, standardization, and interoperability —for products, pro-
cesses, and humans alike.

Prehistories of Workplace Al

Workplace automation, though often told as a story of the
future, is already a long-established experience of contempo-
rary work. The manufacturing assembly line, with its emphasis
on consistent and standardized units of production, has ana-
logues in the service industries, from retail to restaurants. Sec-
retarial labor has been increasingly automated since the 1980s
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and now is emulated by highly feminized Al assistants such
as Siri, Cortana, and Alexa.? So-called knowledge workers,
those white-collar employees assumed to be less threatened
by the forces driving automation, find themselves increas-
ingly subjected to workplace surveillance, process automa-
tion, and collapse between the distinction of work and leisure
time (although women have rarely experienced such clear dis-
tinctions, as feminist theorists of work like Silvia Federici and
Melissa Gregg have shown).” Work of all stripes has had to sig-
nificantly adapt itself in order to be interpretable and under-
stood by software-based systems.*

The common refrain for the expansion of Al systems and
process automation is that we are living in a time of beneficial
human-Al collaboration. But this collaboration is not fairly
negotiated. The terms are based on a significant power asym-
metry—is there ever a choice not to collaborate with algorith-
mic systems? When a company introduces a new Al platform,
workers are rarely allowed to opt out. This is less of a collabo-
ration than a forced engagement, where workers are expected
to re-skill, keep up, and unquestioningly accept each new tech-
nical development.

Rather than representing a radical shift from established
forms of work, the encroachment of Al into the workplace
should properly be understood as a return to older practices of
industrial labor exploitation that were well established in the
1890s and the early twentieth century. That was a time when
factory labor was already seen in relation to machines and
work tasks were increasingly subdivided into smaller actions
requiring minimal skill but maximum exertion. Indeed, the
current expansion of labor automation continues the broader
historical dynamics inherent in industrial capitalism. Since the
appearance of the earliest factories, workers have encountered
ever more powerful tools, machines, and electronic systems



Labor 59

that play a role in changing how labor is managed while trans-
ferring more value to their employers. We are witnessing new
refrains on an old theme. The crucial difference is that em-
ployers now observe, assess, and modulate intimate parts of
the work cycle and bodily data—down to the last micromove-
ment—that were previously off-limits to them.

There are many prehistories of workplace Al; one is the
Industrial Revolution’s widespread automation of common
productive activities. In his Wealth of Nations, the eighteenth-
century political economist Adam Smith first pointed to the
division and subdivision of manufacturing tasks as the basis
of both improved productivity and increasing mechanization.®
He observed that by identifying and analyzing the various
steps involved in manufacturing any given item, it was possible
to divide them into ever-smaller steps, so that a product once
made entirely by expert craftspeople could now be built by a
team of lower-skill workers equipped with tools purpose-built
for a particular task. Thus, a factory’s output could be scaled
up significantly without an equivalent increase in labor cost.

Developments in mechanization were important, but it
was only when combined with a growing abundance of energy
derived from fossil fuels that they could drive a massive in-
crease in the productive capacities of industrial societies. This
increase in production occurred in tandem with a major trans-
formation of the role of labor vis-a-vis machinery in the work-
place. Initially conceived as labor-saving devices, factory ma-
chines were meant to assist workers with their daily activities
but quickly became the center of productive activity, shaping
the speed and character of work. Steam engines powered by
coal and oil could drive continuous mechanical actions that in-
fluenced the pace of work in the factory. Work ceased to be pri-
marily a product of human labor and took on an increasingly
machinelike character, with workers adapting to the needs of
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the machine and its particular rhythms and cadences. Building
on Smith, Karl Marx noted as early as 1848 that automation ab-
stracts labor from the production of finished objects and turns
a worker into “an appendage of the machine.”®

The integration of workers’ bodies with machines was
sufficiently thorough that early industrialists could view their
employees as a raw material to be managed and controlled like
any other resource. Factory owners, using both their local po-
litical clout and paid muscle, sought to direct and restrict how
their workers moved around within factory towns, sometimes
even preventing workers from emigrating to less mechanized
regions of the world.”

This also meant increasing control over time. The histo-
rian E. P. Thompson’s formative essay explores how the Indus-
trial Revolution demanded greater synchronization of work
and stricter time disciplines.® The transition to industrial capi-
talism came with new divisions of labor, oversight, clocks,
fines, and time sheets—technologies that also influenced
the way people experienced time. Culture was also a power-
ful tool. During the eighteenth and nineteenth centuries, the
propaganda about hard work came in the forms of pamphlets
and essays on the importance of discipline and sermons on
the virtues of early rising and working diligently for as long
as possible.” The use of time came to be seen in both moral
and economic terms: understood as a currency, time could be
well spent or squandered away. But as more rigid time disci-
plines were imposed in workshops and factories, the more
workers began to push back—campaigning over time itself.
By the 1800s, labor movements were strongly advocating for
reducing the working day, which could run as long as sixteen
hours. Time itself became a key site for struggle.

Maintaining an efficient and disciplined workforce in
the early factory necessitated new systems of surveillance and
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data is used to make predictions about who is most likely to
succeed (according to narrow, quantifiable parameters), who
might be diverging from company goals, and who might be or-
ganizing other workers. Some use the techniques of machine
learning, and others are more simplistic algorithmic systems.
As workplace Al becomes more prevalent, many of the more
basic monitoring and tracking systems are being expanded
with new predictive capacities to become increasingly inva-
sive mechanisms of worker management, asset control, and
value extraction.

Potemkin AI and the Mechanical Turks

One of the less recognized facts of artificial intelligence is how
many underpaid workers are required to help build, maintain,
and test Al systems. This unseen labor takes many forms—
supply-chain work, on-demand crowdwork, and traditional
service-industry jobs. Exploitative forms of work exist at all
stages of the Al pipeline, from the mining sector, where re-
sources are extracted and transported to create the core infra-
structure of Al systems, to the software side, where distributed
workforces are paid pennies per microtask. Mary Gray and Sid
Suri refer to such hidden labor as “ghost work.”*® Lilly Irani
calls it “human-fueled automation.””” These scholars have
drawn attention to the experiences of crowdworkers or micro-
workers who perform the repetitive digital tasks that underlie
Al systems, such as labeling thousands of hours of training
data and reviewing suspicious or harmful content. Workers do
the repetitive tasks that backstop claims of Al magic —but they
rarely receive credit for making the systems function."
Although this labor is essential to sustaining Al sys-
tems, it is usually very poorly compensated. A study from the
United Nations International Labour Organization surveyed
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3,500 crowdworkers from seventy-five countries who routinely
offered their labor on popular task platforms like Amazon Me-
chanical Turk, Figure Eight, Microworkers, and Clickworker.
The report found that a substantial number of people earned
below their local minimum wage even though the majority of
respondents were highly educated, often with specializations
in science and technology.”” Likewise, those who do content
moderation work—assessing violent videos, hate speech, and
forms of online cruelty for deletion—are also paid poorly.
As media scholars such as Sarah Roberts and Tarleton Gil-
lespie have shown, this kind of work can leave lasting forms of
psychological trauma.*

But without this kind of work, Al systems won’t func-
tion. The technical Al research community relies on cheap,
crowd-sourced labor for many tasks that can’t be done by ma-
chines. Between 2008 and 2016, the term “crowdsourcing” went
from appearing in fewer than a thousand scientific articles to
more than twenty thousand —which makes sense, given that
Mechanical Turk launched in 2005. But during the same time
frame, there was far too little debate about what ethical ques-
tions might be posed by relying on a workforce that is com-
monly paid far below the minimum wage.*

Of course, there are strong incentives to ignore the de-
pendency on underpaid labor from around the world. All the
work they do—from tagging images for computer-vision sys-
tems to testing whether an algorithm is producing the right
results—refines Al systems much more quickly and cheaply,
particularly when compared to paying students to do these
tasks (as was the earlier tradition). So the issue has generally
been ignored, and as one crowdwork research team observed,
clients using these platforms “expect cheap, frictionless’ com-
pletion of work without oversight, as if the platform were not
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an interface to human workers but a vast computer without
living expenses.”?* In other words, clients treat human em-
ployees as little more than machines, because to recognize
their work and compensate it fairly would make AI more ex-
pensive and less “efficient.”

Sometimes workers are directly asked to pretend to be an
Al system. The digital personal assistant start-up x.ai claimed
that its Al agent, called Amy, could “magically schedule meet-
ings” and handle many mundane daily tasks. But a detailed
Bloomberg investigation by journalist Ellen Huet revealed that
it wasn't artificial intelligence at all. “Amy” was carefully being
checked and rewritten by a team of contract workers pulling
long shifts. Similarly, Facebook’s personal assistant, M, was re-
lying on regular human intervention by a group of workers
paid to review and edit every message.”®

Faking Al is an exhausting job. The workers at x.ai were
sometimes putting in fourteen-hour shifts of annotating
emails in order to sustain the illusion that the service was auto-
mated and functioning 24/7. They couldn’t leave at the end of
the night until the queues of emails were finished. “I left feel-
ing totally numb and absent of any sort of emotion,” one em-
ployee told Huet.**

We could think of this as a kind of Potemkin AI—little
more than facades, designed to demonstrate to investors and
a credulous media what an automated system would look like
while actually relying on human labor in the background.* In
a charitable reading, these facades are an illustration of what
the system might be capable of when fully realized, or a “mini-
mum viable product” designed to demonstrate a concept. In
a less charitable reading, Potemkin AI systems are a form of
deception perpetrated by technology vendors eager to stake a
claim in the lucrative tech space. But until there is another way
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to create large-scale Al that doesn’t use extensive behind-the-
curtain work by humans, this is a core logic of how AT works.

The writer Astra Taylor has described the kind of over-
selling of high-tech systems that aren’t actually automated as
“fauxtomation.”*® Automated systems appear to do work pre-
viously performed by humans, but in fact the system merely
coordinates human work in the background. Taylor cites the
examples of self-service kiosks in fast-food restaurants and
self-checkout systems in supermarkets as places where an em-
ployee’s labor appears to have been replaced by an automated
system but where in fact the data-entry labor has simply been
relocated from a paid employee to the customer. Meanwhile,
many online systems that provide seemingly automated deci-
sions, such as removing duplicated entries or deleting offensive
content, are actually powered by humans working from home
on endless queues of mundane tasks.”” Much like Potemkin’s
decorated villages and model workshops, many valuable auto-
mated systems feature a combination of underpaid digital
pieceworkers and consumers taking on unpaid tasks to make
systems function. Meanwhile, companies seek to convince in-
vestors and the general public that intelligent machines are
doing the work.

What is at stake in this artifice? The true labor costs of
Al are being consistently downplayed and glossed over, but
the forces driving this performance run deeper than merely
marketing trickery. It is part of a tradition of exploitation and
deskilling, where people must do more tedious and repetitive
work to back-fill for automated systems, for a result that may
be less effective or reliable than what it replaced. But this ap-
proach can scale—producing cost reductions and profit in-
creases while obscuring how much it depends on remote
workers being paid subsistence wages and off-loading addi-
tional tasks of maintenance or error-checking to consumers.
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Fauxtomation does not directly replace human labor;
rather, it relocates and disperses it in space and time. In so
doing it increases the disconnection between labor and value
and thereby performs an ideological function. Workers, having
been alienated from the results of their work as well as discon-
nected from other workers doing the same job, are liable to
be more easily exploited by their employers. This is evident
from the extremely low rates of compensation crowdworkers
receive around the world.*® They and other kinds of fauxto-
mation laborers face the very real fact that their labor is inter-
changeable with any of the thousands of other workers who
compete with them for work on platforms. At any point they
could be replaced by another crowdworker, or possibly by a
more automated system.

In 1770, Hungarian inventor Wolfgang von Kempelen
constructed an elaborate mechanical chess player. He built a
cabinet of wood and clockwork, behind which was seated a
life-size mechanical man who could play chess against human
opponents and win. This extraordinary contraption was first
shown in the court of Empress Maria Theresa of Austria,
then to visiting dignitaries and government ministers, all of
whom were utterly convinced that this was an intelligent au-
tomaton. The lifelike machine was dressed in a turban, wide-
legged pants, and a fur-trimmed robe to give the impression
of an “oriental sorcerer.”* This racialized appearance signaled
exotic otherness, at a time when the elites of Vienna would
drink Turkish coffee and dress their servants in Turkish cos-
tumes.*® It came to be known as the Mechanical Turk. But the
chess-playing automaton was an elaborate illusion: it had a
human chess master hiding inside an internal chamber, oper-
ating the machine from within and completely out of sight.

Some 250 years later, the hoax lives on. Amazon chose to
name its micropayment-based crowdsourcing platform “Ama-
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of streamlining factory work and generating efhiciencies. He
went further, however, arguing that the industrial corporation
could be understood as an analogue to a computational sys-
tem. Just like a computer, it included multiple specialized units
performing particular tasks, all coordinated to produce a given
body of work, but with the labor content of the finished prod-
uct rendered largely invisible by the process as a whole.

In Babbage’s more speculative writing, he imagined per-
fect flows of work through the system that could be visualized
as data tables and monitored by pedometers and repeating
clocks.*® Through a combination of computation, surveillance,
and labor discipline, he argued, it would be possible to enforce
ever-higher degrees of efficiency and quality control.*® It was a
strangely prophetic vision. Only in very recent years, with the
adoption of artificial intelligence in the workplace, has Bab-
bage’s unusual twin goals of computation and worker automa-
tion become possible at scale.

Babbage’s economic thought extended outward from
Smith’s but diverged in one important way. For Smith, the eco-
nomic value of an object was understood in relation to the cost
of the labor required to produce it. In Babbage’s rendering,
however, value in a factory was derived from investment in
the design of the manufacturing process rather than from the
labor force of its employees. The real innovation was the logis-
tical process, while workers simply enacted the tasks defined
for them and operated the machines as instructed.

For Babbage, labor’s role in the value production chain
was largely negative: workers might fail to perform their tasks
in the timely manner prescribed by the precision machines
they operated, whether through poor discipline, injury, ab-
senteeism, or acts of resistance. As noted by historian Simon
Schaffer, “Under Babbage’s gaze, factories looked like per-
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fect engines and calculating machines like perfect computers.
The workforce might be a source of trouble—it could make
tables err or factories fail —but it could not be seen as a source
of value.”®” The factory is conceived as a rational calculating
machine with only one weakness: its frail and untrustworthy
human labor force.

Babbage’s theory was, of course, heavily inflected with
a kind of financial liberalism, causing him to view labor as a
problem that needed to be contained by automation. There was
little consideration of the human costs of this automation or
of how automation might be put to use to improve the work-
ing lives of factory employees. Instead, Babbage’s idealized
machinery aimed primarily to maximize financial returns to
the plant owners and their investors. In a similar vein, today’s
proponents of workplace Al present a vision of production
that prioritizes efficiency, cost-cutting, and higher profits in-
stead of, say, assisting their employees by replacing repetitive
drudge work. As Astra Taylor argues, “The kind of efficiency to
which techno-evangelists aspire emphasizes standardization,
simplification, and speed, not diversity, complexity, and inter-
dependence.”*® This should not surprise us: it is a necessary
outcome of the standard business model of for-profit compa-
nies where the highest responsibility is to shareholder value.
We are living the result of a system in which companies must
extract as much value as possible. Meanwhile, 94 percent of all
new American jobs created between 2005 and 2015 were for
“alternative work” —jobs that fall outside of full-time, salaried
employment.*® As companies reap the benefits of increasing
automation, people are, on average, working longer hours, in
more jobs, for less pay, in insecure positions.
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The Meat Market

Among the first industries to implement the type of mecha-
nized production line Babbage envisioned was the Chicago
meat-packing industry in the 1870s. Trains brought livestock
to the stockyard gates; the animals were funneled toward their
slaughter in adjacent plants; and the carcasses were trans-
ported to various butchering and processing stations by means
of a mechanized overhead trolley system, forming what came
to be known as the disassembly line. The finished products
could be shipped to faraway markets in specially designed re-
frigerated rail cars.*® Labor historian Harry Braverman noted
that the Chicago stockyards realized Babbage’s vision of auto-
mation and division of labor so completely that the human
techniques required at any point on the disassembly line could
be performed by just about anyone.*' Low-skill laborers could
be paid the bare minimum and replaced at the first sign of
trouble, themselves becoming as thoroughly commoditized as
the packaged meats they produced.

When Upton Sinclair wrote The Jungle, his harrow-
ing novel about working-class poverty, he set it in the meat-
packing plants of Chicago. Although his intended point was
to highlight the hardships of working immigrants in support
ofa socialist political vision, the book had an entirely different
effect. The depictions of diseased and rotting meat prompted
a public outcry over food safety and resulted in the passing of
the Meat Inspection Act in 1906. But the focus on workers was
lost. Powerful institutions from the meat-packing industry to
Congress were prepared to intervene to improve the methods
of production, but addressing the more fundamental exploit-
ative labor dynamics that propped up the entire system was off
limits. The persistence of this pattern underscores how power
responds to critique: whether the product is cow carcasses or
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Armour Beef dressing floor, 1952.
Courtesy Chicago Historical Society

facial recognition, the response is to accept regulation at the
margins but to leave untouched the underlying logics of pro-
duction.

Two other figures loom large in the history of workplace
automation: Henry Ford, whose moving assembly line from
the early twentieth century was inspired by Chicago’s disas-
sembly lines, and Frederick Winslow Taylor, the founder of
scientific management. Taylor forged his career in the latter
years of the nineteenth century developing a systematic ap-
proach to workplace management, one that focused on the
minute movements of workers’ bodies. Whereas Smith’s and
Babbage’s notion of the division of labor was intended to pro-
vide a way to distribute work between people and tools, Taylor
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narrowed his focus to include microscopic subdivisions in the
actions of each worker.

As the latest technology for precisely tracking time, the
stopwatch was to become a key instrument of workplace sur-
veillance for shop-floor supervisors and production engineers
alike. Taylor used stopwatches to perform studies of workers
that included detailed breakdowns of the time taken to per-
form the discrete physical motions involved in any given task.
His Principles of Scientific Management established a system
to quantify the movements of workers’ bodies, with a view
to deriving an optimally efficient layout of tools and working
processes. The aim was maximum output at minimal cost.*?
It exemplified Marx’s description of the domination of clock
time, “Time is everything, man is nothing; he is, at most, time’s
carcass.”*

Foxconn, the largest electronics manufacturing company
in the world, which makes Apple iPhones and iPads, is a vivid
example of how workers are reduced to animal bodies per-
forming tightly controlled tasks. Foxconn became notorious
for its rigid and militaristic management protocols after a spate
of suicides in 2010.** Just two years later, the company’s chair-
man, Terry Gou, described his more than one million employ-
ees this way: “As human beings are also animals, to manage
one million animals gives me a headache.”*

Controlling time becomes another way to manage
bodies. In service and fast-food industries, time is measured
down to the second. Assembly line workers cooking burgers at
McDonald’s are assessed for meeting such targets as five sec-
onds to process screen-based orders, twenty-two seconds to
assemble a sandwich, and fourteen seconds to wrap the food.*®
Strict adherence to the clock removes margin for error from
the system. The slightest delay (a customer taking too long to
order, a coffee machine failing, an employee calling in sick)
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according to prescribed standards.>* Surveillance apparatuses
are justified for producing inputs for algorithmic scheduling
systems that further modulate work time, or to glean behav-
ioral signals that may correlate with signs of high or low per-
formance, or merely sold to data brokers as a form of insight.
In her essay “How Silicon Valley Sets Time,” sociology
professor Judy Wajcman argues that the aims of time-tracking
tools and the demographic makeup of Silicon Valley are no co-
incidence.” Silicon Valley’s elite workforce “is even younger,
more masculine and more fully committed to working all
hours,” while also creating productivity tools that are premised
on a kind of ruthless, winner-takes-all race to maximal effi-
ciency.>* This means that young, mostly male engineers, often
unencumbered by time-consuming familial or community re-
sponsibilities, are building the tools that will police very differ-
ent workplaces, quantifying the productivity and desirability
of employees. The workaholism and round-the-clock hours
often glorified by tech start-ups become an implicit bench-
mark against which other workers are measured, producing a
vision of a standard worker that is masculinized, narrow, and
reliant on the unpaid or underpaid care work of others.

Private Time

The coordination of time has become ever more granular in
the technological forms of workplace management. For ex-
ample, General Motors’ Manufacturing Automation Proto-
col (MAP) was an early attempt to provide standard solutions
to common manufacturing robot coordination problems, in-
cluding clock synchronization.* In due course, other, more ge-
neric time synchronization protocols that could be delivered
over ethernet and TCP/IP networks emerged, including the
Network Time Protocol (NTP), and, later, the Precision Time
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Protocol (PTP), each of which spawned a variety of competing
implementations across various operating systems. Both NTP
and PTP function by establishing a hierarchy of clocks across a
network, with a “master” clock driving the “slave” clocks.

The master-slave metaphor is riddled throughout engi-
neering and computation. One of the earliest uses of this racist
metaphor dates back to 1904 describing astronomical clocks
in a Cape Town observatory.>® But it wasn’t until 1960s that
the master-slave terminology spread, particularly after it was
used in computing, starting with the Dartmouth timesharing
system. Mathematicians John Kemeny and Thomas Kurtz de-
veloped a time-sharing program for access to computing re-
sources after a suggestion by one of the early founders of Al,
John McCarthy. As they wrote in Science in 1968, “First, all
computing for users takes place in the slave computer, while
the executive program (the ‘brains’ of the system) resides in
the master computer. It is thus impossible for an erroneous or
runaway user program in the slave computer to ‘damage’ the
executive program and thereby bring the whole system to a
halt.”*” The problematic implication that control is equivalent
to intelligence would continue to shape the Al field for de-
cades. And as Ron Eglash has argued, the phrasing has a strong
echo of the pre-Civil War discourse on runaway slaves.*®

The master-slave terminology has been seen as offensive
by many and has been removed from Python, a coding lan-
guage common in machine learning, and Github, a software
development platform. But it persists in one of the most ex-
pansive computational infrastructures in the world. Google’s
Spanner—named as such because it spans the entire planet—
is a massive, globally distributed, synchronously replicated
database. It is the infrastructure that supports Gmail, Google
search, advertising, and all of Google’s distributed services.

At this scale, functioning across the globe, Spanner syn-
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chronizes time across millions of servers in hundreds of data
centers. Every data center has a “time master” unit that is
always receiving GPS time. But because servers were polling a
variety of master clocks, there was slight network latency and
clock drift. How to resolve this uncertainty? The answer was to
create a new distributed time protocol —a proprietary form of
time —so that all servers could be in sync regardless of where
they were across the planet. Google called this new protocol,
without irony, TrueTime.

Google’s TrueTime is a distributed time protocol that
functions by establishing trust relationships between the local
clocks of data centers so they can decide which peers to syn-
chronize with. Benefiting from a sufficiently large number of
reliable clocks, including GPS receivers and atomic clocks that
provide an extremely high degree of precision, and from suf-
ficiently low levels of network latency, TrueTime allows a dis-
tributed set of servers to guarantee that events can occur in a
determinate sequence across a wide area network.>

What’s most remarkable in this system of privatized
Google time is how TrueTime manages uncertainty when
there is clock drift on individual servers. “If the uncertainty
is large, Spanner slows down to wait out that uncertainty,”
Google researchers explain.®® This embodies the fantasy of
slowing down time, of moving it at will, and of bringing the
planet under a single proprietary time code. If we think of the
human experience of time as something shifting and subjec-
tive, moving faster or slower depending on where we are and
whom we are with, then this is a social experience of time.
TrueTime is the ability to create a shifting timescale under
the control of a centralized master clock. Just as Isaac Newton
imagined an absolute form of time that exists independently
of any perceiver, Google has invented its own form of univer-
sal time.
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Proprietary forms of time have long been used to make
machines run smoothly. Railroad magnates in the nineteenth
century had their own forms of time. In New England in 1849,
for example, all trains were to adopt “true time at Boston as
given by William Bond & Son, No. 26 Congress Street.”*' As
Peter Galison has documented, railroad executives weren’t
fond of having to switch to other times depending on which
state their trains traveled to, and the general manager of the
New York & New England Railroad Company called switch-
ing to other times “a nuisance and great inconvenience and no
use to anybody I can see.”® But after a head-on train collision
killed fourteen people in 1853, there was immense pressure to
coordinate all of the clocks using the new technology of the
telegraph.

Like artificial intelligence, the telegraph was hailed as
a unifying technology that would expand the capabilities of
human beings. In 1889 Lord Salisbury boasted that the tele-
graph had “assembled all mankind upon one great plane.”**
Businesses, governments, and the military used the telegraph
to compile time into a coherent grid, erasing more local forms
of timekeeping. And the telegraph was dominated by one of
the first great industrial monopolies, Western Union. In addi-
tion to altering the temporal and spatial boundaries of human
interaction, communications theorist James Carey argues that
the telegraph also enabled a new form of monopoly capitalism:
“a new body of law, economic theory, political arrangements,
management techniques, organizational structures, and sci-
entific rationales with which to justify and make effective the
development of a privately owned and controlled monopolis-
tic corporation.”®* While this interpretation implies a kind of
technological determinism in what was a complex series of de-
velopments, it is fair to say that the telegraph—paired with
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the transatlantic cable—enabled imperial powers to maintain
more centralized control over their colonies.

The telegraph made time a central focus for commerce.
Rather than traders exploiting the difference in prices between
regions by buying low and selling high in varying locations,
now they traded between time zones: in Carey’s terms, a shift
from space to time, from arbitrage to futures.®® The privatized
time zones of data centers are just the latest example. The infra-
structural ordering of time acts as a kind of “macrophysics of
power,” determining new logics of information at a planetary
level.*® Such power is necessarily centralizing, creating orders
of meaning that are extremely difficult to see, let alone disrupt.

Defiance of centralized time is a vital part of this his-
tory. In the 1930s, when Ford wanted more control over his
global supply chain, he set up a rubber plantation and pro-
cessing facility deep in the Brazilian rain forest, in a town he
named Fordlandia. He employed local workers to process rub-
ber for shipping back to Detroit, but his attempts to impose his
tightly controlled manufacturing process on the local popula-
tion backfired. Rioting workers tore apart the factory’s time
clocks, smashing the devices used to track the entry and exit
of each worker in the plant.

Other forms of insurgence have centered on adding fric-
tion to the work process. The French anarchist Emile Pouget
used the term “sabotage” to mean the equivalent of a “go slow”
on the factory floor, when workers intentionally reduce their
pace of work.®” The objective was to withdraw efficiency, to
reduce the value of time as a currency. Although there will
always be ways to resist the imposed temporality of work, with
forms of algorithmic and video monitoring, this becomes
much harder—as the relation between work and time is ob-
served at ever closer range.
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above it that read, “The Voice of the Associates.” This was far
less varnished. Messages scrolled rapidly past with complaints
about arbitrary scheduling changes, the inability to book vaca-
tion time near holidays, and missing family occasions and
birthdays. Pat responses from management seemed to be mul-
tiple variations on the theme of “We value your feedback.”

“Enough is enough. Amazon, we want you to treat us like
humans, and not like robots.”*® These are the words of Abdi
Muse, executive director of the Awood Center in Minneapo-
lis, a community organization that advocates for the working
conditions of Minnesota’s East African populations. Muse is a
soft-spoken defender of Amazon warehouse workers who are
pushing for better working conditions. Many workers in his
Minnesota community have been hired by Amazon, which ac-
tively recruited them and added sweeteners to the deal, such as
free busing to work.

What Amazon didn’t advertise was “the rate” —the
worker productivity metric driving the fulfillment centers that
quickly became unsustainable and, according to Muse, inhu-
mane. Workers began suffering high stress, injuries, and ill-
ness. Muse explained that if their rate went down three times
they would be fired, no matter how long they had worked at
the warehouse. Workers talked about having to skip bathroom
breaks for fear that they would underperform.

But the day we met, Muse was optimistic. Even though
Amazon explicitly discourages unions, informal groups of
workers were springing up across the United States and staging
protests. He smiled widely as he reported that the organizing
was starting to have an impact. “Something incredible is hap-
pening,” he told me. “Tomorrow a group of Amazon workers
will be walking off the job. It’s such a courageous group of
women, and they are the real heroes.””® Indeed, that night, ap-
proximately sixty warehouse workers walked out of a deliv-
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ery center in Eagan, Minnesota, wearing their mandated yel-
low vests. They were mostly women of Somali descent, and
they held up signs in the rain, demanding such improvements
as increased wages for night shifts and weight restrictions on
boxes.”" Only a few days earlier, Amazon workers in Sacra-
mento, California, had protested the firing of an employee who
had gone one hour over her bereavement leave after a family
member died. Two weeks before that, more than a thousand
Amazon workers staged the first ever white-collar walkout in
the company’s history over its massive carbon footprint.
Eventually, Amazon’s representatives in Minnesota came
to the table. They were happy to discuss many issues but never
“the rate.” “They said forget about ‘the rate,”” recounted Muse.
“We can talk about other issues, but the rate is our business
model. We cannot change that.”’> The workers threatened to
walk away from the table, and still Amazon would not budge.
For both sides, “the rate” was the core issue, but it was also the
hardest to alter. Unlike other local labor disputes where the on-
the-ground supervisors might have been able to make conces-
sions, the rate was set based on what the executives and tech
workers in Seattle—far removed from the warehouse floor—
had decided and had programmed Amazon’s computational
distribution infrastructure to optimize for. If the local ware-
houses were out of sync, Amazon’s ordering of time was threat-
ened. Workers and organizers started to see this as the real
issue. They are shifting their focus accordingly toward building
a movement across different factories and sectors of Amazon’s
workforce to address the core issues of power and centraliza-
tion represented by the relentless rhythm of “the rate” itself.
These fights for time sovereignty, as we've seen, have a
history. Al and algorithmic monitoring are simply the latest
technologies in the long historical development of factories,
timepieces, and surveillance architectures. Now many more
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sectors—from Uber drivers to Amazon warehouse workers
to highly paid Google engineers—perceive themselves in this
shared fight. This was strongly articulated by the executive di-
rector of the New York Taxi Workers Alliance, Bhairavi Desai,
who put it this way: “Workers always know. They are out there
building solidarity with each other, at red lights or in restau-
rants or in hotel queues, because they know that in order to
prosper they have to band together.””* Technologically driven
forms of worker exploitation are a widespread problem in
many industries. Workers are fighting against the logics of
production and the order of time they must work within. The
structures of time are never completely inhumane, but they
are maintained right at the outer limit of what most people
can tolerate.

Cross-sector solidarity in labor organizing is nothing
new. Many movements, such as those led by traditional labor
unions, have connected workers in different industries to win
the victories of paid overtime, workplace safety, parental leave,
and weekends. But as powerful business lobbies and neolib-
eral governments have chipped away at labor rights and pro-
tections over the past several decades and limited the avenues
for worker organizing and communications, cross-sector sup-
port has become more difficult.” Now Al-driven systems of
extraction and surveillance have become a shared locus for
labor organizers to fight as a unified front.”

“We are all tech workers” has become a common sign at
tech-related protests, carried by programmers, janitors, cafe-
teria workers, and engineers alike.”® It can be read in multiple
ways: it demands that the tech sector recognize the wide labor
force it draws on to make its products, infrastructures, and
workplaces function. It also reminds us that so many workers
use laptops and mobile devices for work, engage on platforms
like Facebook or Slack, and are subject to forms of workplace
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Al systems for standardization, tracking, and assessment. This
has set the stage for a form of solidarity built around tech
work. But there are risks in centering tech workers and tech-
nology in what are more generalized and long-standing labor
struggles. All kinds of workers are subject to the extractive
technical infrastructures that seek to control and analyze time
to its finest grain —many of whom have no identification with
the technology sector or tech work at all. The histories of labor
and automation remind us that what is at stake is producing
more just conditions for every worker, and this broader goal
should not depend on expanding the definition of tech work in
order to gain legitimacy. We all have a collective stake in what
the future of work looks like.
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mated fingerprint recognition and has developed methods
to assess the quality of fingerprint scanners and imaging sys-
tems.® After the terrorist attacks of September 11, 2001, NIST
became part of the national response to create biometric stan-
dards to verify and track people entering the United States.*
This was a turning point for research on facial recognition; it
widened out from a focus on law enforcement to controlling
people crossing national borders.

The mug shot images themselves are devastating. Some
people have visible wounds, bruising, and black eyes; some are
distressed and crying. Others stare blankly back at the camera.
Special Dataset 32 contains thousands of photographs of de-
ceased people with multiple arrests, as they endured repeated
encounters with the criminal justice system. The people in the
mug shot datasets are presented as data points; there are no
stories, contexts, or names. Because mug shots are taken at the
time of arrest, it’s not clear if these people were charged, ac-
quitted, or imprisoned. They are all presented alike.

The inclusion of these images in the NIST database has
shifted their meaning from being used to identify individuals
in systems of law enforcement to becoming the technical base-
line to test commercial and academic Al systems for detect-
ing faces. In his account of police photography, Allan Sekula
has argued that mug shots are part of a tradition of technical
realism that aimed to “provide a standard physiognomic gauge
of the criminal.”® There are two distinct approaches in the his-
tory of the police photograph, Sekula observes. Criminologists
like Alphonse Bertillon, who invented the mug shot, saw it as
a kind of biographical machine of identification, necessary to
spot repeat offenders. On the other hand, Francis Galton, the
statistician and founding figure of eugenics, used composite
portraiture of prisoners as a way to detect a biologically deter-
mined “criminal type.”” Galton was working within a physi-
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ognomist paradigm in which the goal was to find a general-
ized look that could be used to identify deep character traits
from external appearances. When mug shots are used as train-
ing data, they function no longer as tools of identification but
rather to fine-tune an automated form of vision. We might
think of this as Galtonian formalism. They are used to detect
the basic mathematical components of faces, to “reduce nature
to its geometrical essence.”®

Mug shots form part of the archive that is used to test
facial-recognition algorithms. The faces in the Multiple En-
counter Dataset have become standardized images, a techni-
cal substrate for comparing algorithmic accuracy. NIST, in col-
laboration with the Intelligence Advanced Research Projects
Activity (IARPA), has run competitions with these mug shots
in which researchers compete to see whose algorithm is the
fastest and most accurate. Teams strive to beat one another
at tasks like verifying the identity of faces or retrieving a face
from a frame of surveillance video.” The winners celebrate
these victories; they can bring fame, job offers, and industry-
wide recognition.'

Neither the people depicted in the photographs nor their
families have any say about how these images are used and
likely have no idea that they are part of the test beds of Al. The
subjects of the mug shots are rarely considered, and few engi-
neers will ever look at them closely. As the NIST document
describes them, they exist purely to “refine tools, techniques,
and procedures for face recognition as it supports Next Gen-
eration Identification (NGI), forensic comparison, training,
analysis, and face image conformance and inter-agency ex-
change standards.”" The Multiple Encounter Dataset descrip-
tion observes that many people show signs of enduring vio-
lence, such as scars, bruises, and bandages. But the document
concludes that these signs are “difficult to interpret due to the
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lack of ground truth for comparison with a ‘clean’ sample.”*

These people are not seen so much as individuals but as part of
a shared technical resource—just another data component of
the Facial Recognition Verification Testing program, the gold
standard for the field.

I've looked at hundreds of datasets over years of research
into how Al systems are built, but the NIST mug shot databases
are particularly disturbing because they represent the model of
what was to come. It’s not just the overwhelming pathos of the
images themselves. Nor is it solely the invasion of privacy they
represent, since suspects and prisoners have no right to refuse
being photographed. It’s that the NIST databases foreshadow
the emergence of a logic that has now thoroughly pervaded the
tech sector: the unswerving belief that everything is data and is
there for the taking. It doesn’t matter where a photograph was
taken or whether it reflects a moment of vulnerability or pain
or if it represents a form of shaming the subject. It has become
so normalized across the industry to take and use whatever is
available that few stop to question the underlying politics.

Mug shots, in this sense, are the urtext of the current ap-
proach to making Al The context—and exertion of power—
that these images represent is considered irrelevant because
they no longer exist as distinct things unto themselves. They
are not seen to carry meanings or ethical weight as images of
individual people or as representations of structural power in
the carceral system. The personal, the social, and the political
meanings are all imagined to be neutralized. I argue this rep-
resents a shift from image to infrastructure, where the meaning
or care that might be given to the image of an individual per-
son, or the context behind a scene, is presumed to be erased
at the moment it becomes part of an aggregate mass that
will drive a broader system. It is all treated as data to be run
through functions, material to be ingested to improve techni-



