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PREFACE

The most important thing about this book, dear reader, is you! That’s
because artificial intelligence, Al for short, will soon find its way into every
corner of our lives and make decisions about, with, and for us. And for
Al to make those decisions as well as possible, we all have to think about
what actually goes into a good decision—and whether computers can make
them in our stead. In what follows I take you on a backstage tour so that
you can see for yourself just how many levers computer and data scien-
tists are actually pulling to wrest decisions from data. And that’s where
you come in: what matters at moments like these is how you would decide.
That's because society should leave its important decisions to machines only
if it is confident those machines will behave according to its cultural and
moral standards. This is why more than anything else, I want this book to
empower you. I hope to dispel the sense of helplessness that creeps in when
the conversation turns to algorithms; to explain the necessary terms and
point out how and where you can intervene; and finally, to rouse you to
action so that you can join computer scientists, politicians, and employers
in debating where artificial intelligence makes sense—and where it doesn't.

And how is it that artificial intelligence will soon find its way into every
corner of our lives, you ask? For one, because Al can make things more
efficient by relieving us of the burdensome, endlessly repetitive parts of
our work. Yet I also see a tendency at present toward thinking Al should
make decisions about people. That might occur when using data to deter-
mine whether a job applicant should receive an interview or a person is fit
enough for a medical study, for example, or if someone else may be predis-
posed to acts of terrorism.

How did we get here in the first place, to the point where it became
possible for so many of us to entertain the notion that machines are better
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judges of people than we ourselves are? Well, for starters computers are
clearly capable of processing data in quantities that humans cannot. What
strikes me, however, is a present lack of faith in the human capacity to
judge. It’s not as though we first came to perceive humanity on the whole
to be irrational, liable to manipulation, subjective, and prejudiced when
Daniel Kahneman was awarded the Nobel Prize in 2002 for his research
on human irrationality, or more recently with the introduction of Richard
Thaler’s concept of nudging in 2017." In our dim view of human judg-
ment, it is, of course, always other people who are the irrational ones—
all the more so if they have utterly failed to appreciate us for the highly
individual and complex beings we are!” This in turn leads us to hope that
machines will unerringly arrive at more objective decisions and then, with a
bit of “magic,” will discover patterns and rules in human behavior that have
escaped the experts thus far, resulting in sounder predictions.

Where do such hopes spring from? In recent years, teams of develop-
ers have demonstrated that by using artificial intelligence, computers are
able to solve tasks quickly and effectively that just two decades ago would
have posed a real challenge. Every day, machines manage to sift through
billions of websites to offer up the best results for our search queries or to
detect partially concealed bicyclists and pedestrians in images and reliably
predict their next movements; they've even beaten the reigning champions
in chess and go. From here, doesn’t it seem obvious that they could also
support decision-makers in reaching fair judgements about people? Or that
machines should simply make those judgements themselves?

Many expect this will make decisions more objective—something that
is also sorely lacking on many counts. Take the United States, one coun-
try where algorithmic decision systems are already used in the lead-up to
important human decisions. In a land that holds 20 percent of the official
prison population worldwide, and where African Americans are roughly
six times as likely to be imprisoned as white people, one could only wish
for systems that would avoid any and all forms of latent racism—if possible,
without having to raise spending significantly. This has led to the use of
risk-assessment systems, which estimate the risk that someone with a pre-
vious conviction runs of becoming a repeat offender. The algorithms work
by automatically analyzing properties that are common among known
criminals who go on to commit another offense, and rare among those who
don’t. I found it deeply unsettling when my research was able to show that



Preface x1

one commonly used algorithm in the US resulted in mistaken judgements
up to 80 percent of the time (!) in the case of serious crimes. Concretely,
this means that a mere one out of every four people the algorithm labeled
as “high-risk repeat offenders”™ went on to commit another serious offense.
Simple guesswork based on the general likelihood of recidivism would
only have been slightly less accurate, and at least had the advantage of con-
sciously being pure conjecture.

So what’s going awry when machines judge people? As a scientist com-
ing from a highly interdisciplinary background, I consider the effects and
side effects of software from a particular angle: socioinformatics. A recent
oftshoot of computer science, as a discipline socioinformatics draws on
methods and approaches from within psychology, sociology, economics,
statistical physics, and (of course) computer science. The key argument is
that interactions between users and software can only be understood when
seen as part of a larger whole called a sociotechnical system.

For over fifteen years now, my research has focused concretely on how
and when we can use computers—and, more specifically, exploit data,
or perform data mining—to better understand the complex world we
inhabit. That lands me among the ranks of those with the sexiest jobs on
planet Earth, even if a weekend spent wading through endless streams of
data, sifting for exciting correlations with statistics, may not exactly sound
like your idea of fun.” Personally, I can’t imagine anything better! Yet at
the start of my career, I used statistics without really understanding it,
always uncertain of whether this, that, or the other method could actu-
ally be applied to data to yield interpretable results. This was due to the
fact that after graduating high school I initially chose to study biochemis-
try, a course of study that typically spends little time on mathematics. We
learned the basics of biology, medicine, physics, and chemistry—but not a
single hour of statistics. They were probably hoping it would seep into our
brains by pure osmosis if only we cooked up enough of the lab experiments
they assigned.

Later, I came to bioinformatics, an entirely new course at the time that
taught us to design and apply methods for examining the biodata that was
then piling up in droves. Yet here, too, statistics was missing. Nor for that
matter did either course provide any instruction in scientific theory, a baf-
fling and dangerous blind spot present in the curricula of nearly every dis-
cipline in the natural sciences that aims to produce facts.
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Under such circumstances, it should come as little surprise that many
computer scientists and engineers are all too sure about their methods
obtaining the pure and unadulterated truth from data. Especially with data
mining and machine learning (the basis for artificial intelligence), they pur-
port to have discovered the magic formula for solving each and every com-
plex problem. For someone unaware of the fact that she is simply busying
herself with models and can never achieve certainty once and for all, it is all
too easy to rush into pronouncements like the following:

Imagine a world where you can maximize the potential of every moment of
your life. Such a life would be productive, efficient, and powerful. You will (in
effect) have superpowers—and a lot more spare time. Well, such a world may
seem a little boring to people who like to take uncalculated risks, but not to a
profit-generating organization. Organizations spend millions of dollars manag-
ing risk. And if there is something out there that helps them manage their risk,
optimize their operations, and maximize their profits, you should definitely
learn about it. That is the world of predictive analytics.”

And that was just the introduction to Predictive Analytics for Dummies!
Things take a more serious turn when companies advertise data mining
software for “predicting hiring success” with phrases like this: “In the end
the predictive possibilities are virtually unlimited, provided the availability
of good data . . . let’s take the emotion out of the hiring process and replace
it with a data-driven approach!”™ The catchphrase data-driven reminds me,
however—there’s someone here who would like to introduce himself and
offer his services. His name is Artie, and he’d like to serve as your fully data-
driven companion throughout this book. Artie is an artificial intelligence
(AI) and may still be a bit slow on the draw when it comes to truly under-
standing humans. But he gets an A for effort!

As I'm sure you've guessed from the preceding two quotes, I would cau-
tion against the bold confidence of some—and against placing too much
trust in Artie. Over the course of this book, I point out the situations in
which we shouldn’t breezily accept the results of machine learning without
further ado. I then go on to make concrete suggestions about when algo-
rithmic decision-making (ADM) systems are unacceptable, whether out of
technological or societal considerations. At the same time, it’s important to
understand the enormous potential of data mining, by which I mean pro-
cessing data with algorithms. In situations where ADM systems are permis-
sible, I thus point out specifically where we have to be on guard, while also
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THE TOOLKIT

If you want to mess with artificial intelligence, you need the right tools.
Going forward, the four tools described in this part will give you a method
to work out the possible pitfalls if and when your boss or a state agency
plans on using an algorithmic decision-making system—or, alternatively,
to sound the all clear, because not everything that looks dangerous really is.
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ROBO-JUDGES . .. WITH POOR JUDGMENT

It wasn't the first time I had sat there dumbfounded by the results of our
research, but it was probably the most memorable. My student Tobias
Krafft and I had just finished sifting through the predictions made by a spe-
cial software used in US courtrooms. We were horrified by just how bad
they were—and yet the state was using them in a pivotal setting. The basic
idea of using algorithms to predict whether a person will commit a crime
or not calls the film Minority Report to mind. The movie is based on a short
story from 1956 by the famous science fiction writer Philip K. Dick. In it,
Tom Cruise plays a policeman who is able to identify and arrest potential
criminals before they commit a crime, aided by “precogs,” people with the
gift of clairvoyance. What was a bizarre tale had now become a reality,
albeit one where the predictive machinery was sadly lacking in precision.

Unlike in the film, real-world predictive software can of course neither
“see” the actual crime nor know its exact timing. Instead, the software is
fed basic information about the criminals it is meant to evaluate: how often
a person has been arrested in the past, what kind of crimes they’ve commit-
ted, and information about their age and gender.

The computer than calculates a risk score based on the information,
which you might compare to risk categories in car insurance, where higher-
risk drivers are grouped into one category and lower-risk drivers into
another. Yet a funny thing happens when a person is sorted into a category.
Even if the driver hasn’t done anything herself (yet), she receives the same
treatment as others in her class. If those drivers were involved in multiple
accidents, say, she pays more; if not, she pays less. This means that when a
driver is first assigned to a risk category, what she pays isn’t based on her
own individual behavior going forward, but the past behavior of the peo-
ple she resembles. In this way, financial risk is distributed among everyone
within the same class.
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How does that work when it comes to crimes that may be committed
in the future? Well, the principle is the same to begin with. The computer
identifies properties common among criminals who become repeat offend-
ers and uncommon among those who regain their footing in society. It
then uses those properties to determine a person’s risk factor. In the case of
car insurance, risk factors include the driver’s age and the number of con-
secutive years without an accident. This isn’t necessarily fair, and certainly
lacks in complexity. Wouldn't it be better to conduct a personality test, and
only after that decide the person’s risk category?

It’s argued, of course, that people are classified according to such highly
schematic and easily measurable properties for efficiency’s sake. At least
with car insurance, however, the process is fair to the extent that any driver
receiving his or her license at sixteen begins at the same starting point. Any
subsequent classification depends exclusively on the individual’s driving
record and not that of their generation.

That wasn’t something Tobias or I could say for the classification method
used in COMPAS, the risk assessment system we were researching. Aside
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from information about previous crimes, an additional questionnaire asked
prisoners whether their parents or siblings had committed crimes, or their
parents had divorced early. While those circumstances may well leave a
mark, they are hardly something for which a person is responsible or might
alter themselves." A criminal is thus evaluated and assigned a risk category
based on whichever properties the software company deems relevant. If
that person lands in a risk category where many of the people have com-
mitted another crime in the past, the software assumes that this person, too,
will become a repeat offender.

The algorithm is advertised on the merit that it results in the right
decisions around 70 percent of the time.” That number alone struck both
Tobias and me as disturbingly low for software used by a public authority
in court. In medicine, for example, such a low percentage would be consid-
ered unacceptable. Yet now we found ourselves face to face with results that
proved how many people assigned to the highest risk category did actually
relapse. The number was in fact somewhat higher than 70 percent for crim-
inal acts in general—but only around 25 percent when it came to violent
crimes. That meant that only one out of every four people who set off clear
alarm signals as liable to commit another serious act of violence actually
did. What was more, other colleagues had shown the average layperson to
be capable of predictions that were just about as accurate.’

I've spent the last three years trying to understand why anyone would
want to use algorithms that make such bad predictions and why govern-
ments would want to commission or purchase them. I also wanted to
answer the million-dollar question, of course: How can we develop better
software? And might there not be situations where algorithms shouldn’t
make decisions about people in the first place?

But what does any of this have to do with you, gentle reader? Isn't it
all so technical that there’s no room for any say in the matter? Your and
my experience both over the past few years has been that we stand zero
chance of changing the algorithms that help to define our lives. Google,
Facebook, Amazon—it’s all too confusing, too removed from the every-
day. As individuals, but also at a societal level—certainly across Germany,
maybe even Europe—we seem to go weak at the knees when confronted
by the algorithms streaming across the Atlantic. The feeling of losing con-
trol owes in part to the fact that around the world, Google and company
move in wherever they find the laws and regulations most congenial. Yet
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as data scientists, we need you backstage with us, as employees, consumers,
and citizens. This book assembles a toolkit that will get you on the job, and
which I'd now like to introduce briefly.

THE TOOLS IN YOUR DECISION-MAKING KIT

The instruments described in detail over the following chapters will
enable you to recognize three things: (a) whether you actually have to get
involved; (b) if so, where you can intervene; and (c) the impact your per-
spective will have on the regulated use of machines. It isn’t always necessary
to get involved. To help you decide, I present the first tool in your kit, the
algoscope, which helps us filter out which systems should be our primary
focus of concern.

Are all systems that use Al suspicious per se? A great deal of thought
has been given to questions like this in recent years. In their 2013 book
Big Data: A Revolution that will Transform how We Live, Work and Think, Vik-
tor Mayer-Schonberger and Kenneth Cukier propose a sort of overarching
algorithmic safety administration that considers each and every algorithm
coming to market.' As I show later on, this is neither sensible nor neces-
sary in that particular form for a number of reasons. Mainly, however, it
isn’t necessary because not every ADM system needs to be brought before
the witness stand. By and large, the only systems that call for regulation and
for their internal mechanisms to be monitored are those making decisions

about the following:

* People
* Resources that concern people
* Issues that affect people’s ability to participate in society’

A small portion of all possible algorithms, in other words. The algoscope
lets us focus on the ADM systems that carry ethical implications. Parts 11
and IIT of this book explain in detail why it is essentially only these systems
that require tighter control and regulation.

What does this look like concretely? Systems that decide whether or
not a screw is defective and should be taken off the production line do not
fall into this category, nor for that matter does a system that distributes
fertilizer over a field with pinpoint accuracy. A self-driving car that could
potentially get into an accident, on the other hand, definitely makes the
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The algoscope helps us describe which kind of software we have to keep a closer eye on:
algorithmic decision-making systems that directly or indirectly affect humans.

list. Systems that only recognize images or translate languages tend not to
belong—unless of course they are built into self-driving cars, where they
may lead to an accident. Al systems in the realm of medicine definitely
belong, although it is less systems that recommend over-the-counter prod-
ucts than those that make decisions about treatment.

When your Al alarm bell goes off, then, first consider what the system is
supposed to be deciding. If it neither directly nor indirectly impacts human
well-being, you can return to the breakroom.

In cases where people’s well-being is involved, the quality of a machine’s
decisions will depend on the following factors:

* The quality and quantity of data the machine has been fed
* The underlying assumptions about the nature of the issue at hand
» What society considers a “good” decision to be in the first place

A computer scientist might talk about this last point in terms of a model for a
good decision; a philosopher would call it a kind of morality—that is, a set of
standards or principles that any “good” decision should obey. For an algo-
rithm to adhere to such a morality, however, the extent to which a given
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Backstage
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decision does so must be made measurable to it; only then can a computer
attempt to make “the best” decisions. And this is no simple matter. Sup-
pose software is used to assign children to schools so as to make their way
to school as short as possible. Does that mean the trek should be short on
average? Or instead that a specific maximum length should be set for every
child? Deciding how to later assess the quality of an algorithmic decision
allows us to measure how good of a solution it really is. In computer sci-
ence, this process is called operationalization.

To continue with the example of school assignment, there’s also the
question of precisely what kind of information the computer is being fed
to calculate the distance from school. Are ideal travel times or actual travel
times being taken as a basis? Has the walk to the bus stop been figured in?
These types of decisions create the model of the problem that the computer is
supposed to solve.

For the results of data processing to observe the moral principles we've
established ahead of time, operationalization (O), the model of the problem
(M), and the algorithm (A) must all work in concert. Together, they make
up the second tool in your toolkit: the OMA principle. Beginning in chapter
2, we'll look at a number of examples that show what exactly this principle
involves and how to go about using it.

Yet the OMA principle isn’t sufficient on its own to determine whether
and when machines should play a part in human decision-making. To do
that, it's also necessary to consider their role in the overall process.
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Figure 3 illustrates the long and winding process of developing and
implementing algorithmic decision-making systems. It’s a process I call the
long chain of responsibility, one I explain step by step over the course of this
book.” Ultimately, its length is problematic because it lets responsibility
for individual decisions rest with so many people that later on it becomes
difficult to hold any one person accountable. From the outset, though, it’s
important to recognize that there are only a few points along the chain where
some form of technical know-how is necessary. By contrast, every step
along the way includes aspects on which you can chime in. The long chain
of responsibility weaves in and out of the topics raised in this book like
a common thread, and with it you now have a third tool in your kit that
shows where in the process you have to look.

Just how carefully we have to monitor a machine depends by and large
on how much damage the decisions it is calculating can cause and how well
we can shield ourselves from that damage. To this end, I present you with

The long chain of responsibility. Only two links in the chain require some degree of
technical knowledge, and you both can and should get involved at every step along
the way. The following chapters discuss each individual step and what can go wrong
in greater detail. A gear icon next to a box indicates some technical knowledge is
necessary for the decisions involved at this step, while the icon with two people
indicates that common sense is enough and/or social discourse is needed.
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a fourth tool linked to a variety of control measures: a risk matrix that
indicates how much regulation a given Al system might require. I'll explain
this tool in greater depth with a couple of examples once we've completed
the backstage tour.

With these four tools, your kit is complete. Once you've become a bit
better acquainted with them, you'll be able to determine for yourself when
they're called for.

Before we go backstage with Al, though, I want to make a quick detour
to the basement, through the laboratories of the natural sciences. Why?
Because the goal of artificial intelligence is to reproduce cognitive ability:
in particular, the ability to draw conclusions about the world by observ-
ing it, that is, making discoveries based on data. And that, of course, is the
grand domain of the natural sciences, something they’'ve been doing for
centuries now—and with great success.

In one sense, computers do this in a manner very similar to people; in
another, they differ radically. To better explain, I invite you to travel back
with me to the first time I was involved in a scientific discovery.
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situations showed at least one hundred or at least three hundred colonies.
The results were astonishing. While both fed cultures did better than the
unfed culture, as expected, those fed the concentrate of dying colonies
were in fact much healthier than those fed young colonies. Up to eight
times as many of the cells fed the dying colonies survived relative to the
control group, compared with only three times as many for the cells fed the
concentrate of growing cells.

Now that we had the data in front of us, we had to decide whether we
could conclude directly on the basis of this observed difference that the
concentrate of apoptotic cells had helped. It would have been ideal, of
course, if nothing at all had grown on the plates with cells that weren't fed,
only a small number of colonies had grown on the plates fed the young
cells, and a great deal had grown on the plates fed the concentrate of old
cells. Unfortunately, things in life are rarely so clear-cut that you can tell
their differences apart immediately and beyond all shadow of a doubt.

Over the course of the experiment, I had set up multiple plates for both
cultures that were fed a concentrate. Most of the plates fed the young cells
showed fewer than a thousand colonies, while most of the colonies fed the
dying cells showed many more. A number of plates in both groups, how-
ever, showed around a thousand colonies. Their distributions overlapped,
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in other words; it was the average number of colonies fed the apoptotic
cells that was significantly higher than the average for those fed young cells,
roughly as shown in the illustration. Was the difference between the two
averages large enough, though? Was it “statistically significant™?

The methods used to answer this type of question work in the opposite
direction, by asking first whether it couldn’t just as easily be coincidence
that the plates fed apoptotic yeast cells did so much better. When seen from
a purely statistical standpoint the number of viable cells in two different
samples is bound to differ, after all, even if they are drawn from the exact
same yeast culture. It's the same as if you roll a die a hundred times, then
another hundred times. There is a large probability you will have rolled
a different number of sixes in each round. Fortunately, statisticians know
how large that sort of a difference normally is; when rolling dice, it is much
more likely to be small rather than large.

It was the same with our yeast cells. If a statistician were to take a sample
from two different yeast cultures, she would compare the observed difference
in the number of viable cells to the difference that could be expected if the
two samples were taken from the same culture. If the observed difference is
comparable to the expected difference—that is, similar in size to what one
could expect of two random samples taken from the same culture—the
statistician would label that difference insignificant. In our case, the greater
the variation between the two, the more strongly our results would support
the hypothesis that one culture did in fact contain more viable cells than
another.

Sadly, my degree in biochemistry didn’t include a single course in scien-
tific theory, nor for that matter any introduction on the right way to eval-
uate biochemical data statistically—and really, why bother?!* Nor for that
matter did all of us budding biochemists find mathematics exactly riveting.
I myself had always liked math, but without any background in statistics I
also lacked the knowledge necessary to demonstrate with any kind of sci-
entific rigor that yeast cultures fed apoptotic cells did in fact show a statisti-
cally significant advantage over those fed younger cells.

I dove into the literature and soon found myself awash in a sea of sta-
tistics books. Yet nowhere did I find a patch of solid ground that would
let me decide for certain which statistical method was the right one. How
was | supposed to distinguish between methods for “normal distribution”™
and other types, for example? In the end, I opted for one of the simplest.
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Figure 4

A test for statistical significance measures whether two observed distributions—in this
case, the number of viable cells in two yeast cultures—show a conspicuous difference
or not.

Armed with this knowledge, I became a one-eyed queen in the land of
the blind. My team subsequently used the same method on any issue that
didn’t resolve itself quickly enough—always with our fingers crossed that
we were actually doing it correctly.

As for my diploma thesis, it turned out that cells fed the concentrate of
apoptotic cells did in fact stand a significantly greater chance of surviv-
ing. A “greater chance” is not the same as a guaranteed outcome, however,
let alone sufficient evidence to conclude a direct causal relationship. It is
merely a correlation—that is, two properties or patterns of behavior that are
often observed to coincide with one another. What our observations did do
was help support the hypothesis that a causal relationship might exist.

And so, after nine months of work, all I had managed to do was fit one
small piece into a gigantic puzzle.

This explains in part why we've taken a quick detour through the lab-
oratory on our way backstage. It’s because the algorithms I discuss in this
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book would stop right here and simply accept the findings as such, rather
than continuing on to test the correlations directly for causality. Rather, if
algorithms find two things appearing alongside one another often enough
it is made into a rule: “If you see the one thing, expect the other!” In this
case the rule would be this: “Cultures fed by older cells will always show
greater rates of survival.”

Fortunately, biologists can shore up confidence in their results by run-
ning numerous similar experiments or drawing on other means of analy-
sis and experimentation. That was exactly what my thesis advisor Frank
Madeo did with the many students who came after me, and today we can
rest assured that unicellular yeast cells “have good cause for apoptosis,” as
Frank and his coauthors phrased it.” As for yours truly, it was the last time I
would be caught in a laboratory. I was drawn to computer science instead.

FROM DATA PRODUCER TO DATA ANALYST

To this day, the joy I find in searching for the best ways to evaluate data has
never left. Yet neither has the question of when and where a given method
can in fact be used to meaningfully interpret results. This sort of critical
awareness of methodology is called literacy, a term that encompasses a great
deal besides: knowing the facts, but also selecting them discerningly with
an eye toward solving a problem, as well as the ability to solve problems in
and of itself.” These also happen to be the very skills needed in the field of
artificial intelligence, where sometimes it is about as clear as mud which
particular method will bring forth the best conclusions from the data.

As my work in biochemistry drew to a close, it was my time spent toil-
ing in the laboratory I was happiest to leave behind. Generating data was
laborious in every sense of the word, while the part that actually brought
me joy—analyzing data—always seemed to get the short end of the stick.
[ found it maddening just how many individual experiments and observa-
tions it took to piece together a single causal chain. By causal chain, I mean
setting facts in a sequence that explains how a given observation came to
be. And that is exactly what machine learning promises us today: that cor-
relating data with observed behavior is on its own enough to make decisions
about new data.

To do so, however, would be to jump to conclusions. Tyler Vigen
captured this in a particularly memorable way on his website, Spurious
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Correlations (and in the eponymous book).” A visitor to the website encoun-
ters various sets of public government data, from which she then picks a set
of her choosing—the number of divorces in Alabama, say—to see how the
numbers have shifted over the years. Once a set of data has been selected,
all other available data sets are sorted by their correlation with the chosen
set. If two sets behave in the same way—that is, both sets of values rise and
fall at the same time—they are said to be highly correlated. The exact degree
of correlation can be measured using mathematical formulas. And lo and
behold, the share of women with a degree in engineering shows a strong
correlation with the divorce rate in Alabama!® Figure 5 shows the change
in divorce rate over time compared to the percentage of female engineers.
They rise and fall nearly at the same time; in this case, there is a visible cor-
relation. Was this undeniable evidence that women working in male profes-
sions destroys marriages? Or alternatively that women who had been left by
their husbands were going on to pursue engineering degrees?

The answer in both cases is a resounding no. What is going on here is
a case of spurious correlation, or coincidence that appears statistically.
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Figure 5

The annual change in the divorce rate in Alabama and the share of engineers who are
female. The two curves show a strong correlation, which means they rise and fall
nearly at the same time with only slight deviations.
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nondeterministic infinite automatons into deterministic finite automatons,
or something equally abstract. I sat there, spellbound—though I couldn’t
say the same for many of my friends. Inspired by the great mathematician
and computer scientist Alan Turing, theoretical computer science asks the
philosophical questions raised by the discipline. What does computability
actually mean? Do problems exist whose solutions only computers can
compute or questions only humans can answer? Are there questions that
neither people nor machines can solve by a general schema?

As it turns out, the first generation of computer scientists managed to
come up with quite a surprising answer in response to these downright
ethereal questions: Based on everything we know to date, humans and comput-
ers are essentially capable of answering the exact same questions. Both are capable of
solving—and fail to solve—the same problems.

Such is the gist of the Church-Turing thesis." Humans and machines
can both calculate the root of one million or the shortest path from A to
B, for example, or arrange a pile of books by the last and first names of
their authors. Neither, by contrast, is capable of coming up with a general
method for determining whether a given piece of software code will ever
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enter an infinite loop. That’s a shame, by the way, for a tremendous number
of computer crashes could be avoided if such a method did exist. In this
case, however, we've run up against the limits of computability.

Something about Professor Lange’s lecture set me thinking. People actu-
ally get paid to figure out philosophical and mathematical puzzles like these? That'’s
what I want to do! 1 found the work that went into designing algorithms
especially appealing. Discovering, then analyzing and evaluating patterns
in data was the piece of the puzzle that joined my various passions: my love
of the natural sciences, but also my curiosity about what certain observa-
tions might herald for our lives and societies.

But does the Church-Turing thesis actually hold water? Don't we all
share the sneaking suspicion that computers are much better at calculat-
ing than us humans, we who are constantly making mistakes? Only rarely
do people get the same answer twice when asked to calculate even a small
handful of numbers. We make subjective, not objective, decisions and often
fail to see the forest for the trees. Fortunately, making calculations is child’s
play for a computer; adding together long strings of numbers, generating
statistics, or searching for patterns within large sets of data—mnone of these
pose a problem. Computers don't slip up; when given the same input, they
will always give the same result. That’s because the way a computer calcu-
lates the desired result has been prescribed by an algorithm that sets out in
great detail how the computer should arrive there based on the input (more
on that in chapter 3). No hormone fluctuations, no bad days, no surprise
prejudices—they are lifeless decisions, in the best sense of the term.

Yet it is the very same spark of life that computers seem to be lacking
when it comes to our deepest emotions and judgements as humans. Say
you wanted to commission a poem or a piece of art: it’s difficult to imagine
a computer fabricating something that another person would enjoy. The
same holds true for questions of justice and fairness in court, for example,
or when educating our children or caring for the sick and elderly. Isn't a
computer bound to fail in these instances if it “lacks soul”?

But these days, an entirely new breed of algorithm has emerged that
would seem to overtake us in these matters as well. I'm talking about algo-
rithms that make use of machine learning and that form the basis of artificial
intelligence. With their help, texts that have foiled other methods for years
are now suddenly translatable; the famed Babel fish from Douglas Adams’s
The Hitchhiker’s Guide to the Galaxy seemingly draws nigh. Machine learning
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is capable of identifying the most important objects in a photo and tran-
scribing spoken language more quickly and reliably than humans are able
to. Al has even composed poems and painted pictures that humans regard
aesthetically.

So why dally in the natural sciences when artificial intelligence seems
like such a safe bet? It is because machine learning—an essential compo-
nent of artificial intelligence—turns fact-finding completely on its head,
a process that may have advanced very slowly over the centuries, but with
great success. Instead of searching for reasons (a causal chain), machine
learning identifies modes of behavior or properties that often appear along-
side (correlate with) a significant event: the age of a driver in the case of
an accident, for example, or personal characteristics often associated with
criminal recidivism. Yet in contrast to classical algorithms, where a model is
constructed (i.e., a mathematical problem is defined) before the algorithm is
designed and used, it is now the algorithm itself that constructs a model of the
world from the data; more on that later too.

The automatically discovered correlations I discuss in the following
chapters are rarely reviewed and never examined for causal connections,
yet they are still used to stick people in different risk categories. As we will
see, this regularly leads to mistakes. To my mind, that means we can only
take meaningful advantage of the efficiency gains machine learning offers if
we examine these correlations for causal connections, as is normally done
in the natural sciences.

With these initial considerations in mind, we are now ready to step
backstage. As the first step in the long chain of responsibility, I pick up
with the ABCs of computer science: algorithms, big data, and computer
intelligence.



I1

THE ABCs OF COMPUTER SCIENCE

Flip through the pages of just about any newspaper these days and there’s
a good chance you will come across at least one article featuring the
terms algorithm, big data, or artificial intelligence. One reads in the Guardian
of “Franken-algorithms,” while the New York Times warns us that people
may wind up “wrongfully accused by an algorithm.” We'll get to that, but
before we do, what exactly is an algorithm? How is it related to digitaliza-
tion, and what does it have to do with big data? Part II explores these ques-
tions through the ABCs of computer science, beginning with A, of course,
which in this case stands for algorithm.



Copyrighted material



Algorithms 29

solves what's known as the shortest path problem using an algorithm that
finds the shortest route from A to B.

An algorithm, then, is a detailed set of instructions for how to actually
arrive at the desired solution once all the information needed to do so is
available. It’s essentially what you might explain to any rookie the first time
she has to solve a common problem in her profession independently. In
order truly to count as an algorithm, however, those instructions must be
rigorous enough that they can be translated into programming languages.
In computer science, this step is called implementation.

Math puzzles often bear a resemblance to the sort of mathematical prob-
lems I am talking about. I'll give you an example: Which four numbers add
up to 45 and are also all the same number if you add 2 to the first, subtract 2
from the second, divide the third by 2, and multiply the fourth by 2?

In this case, the input is 45, and the solution—the four numbers—must
meet certain requirements to count as solutions.”

And how would you go about solving the problem? Well, we can start
by whittling down the list of candidates with a couple of initial consider-
ations, and then proceed by trial and error. The difference between the first
two numbers must be 4, as adding 2 to the first gives the same number as if
you subtracted 2 from the second. It follows from this that both numbers
are either even or odd. As for the third and fourth numbers, the fourth
number equals one-half of the third number when doubled, which means
it must be one-quarter as large as the third number. Any number multiplied
by 4 comes out even, so for all four numbers to add up to an odd number
(45), the fourth number must itself be odd. That means it could be 1, 3, 5,
7, and so on; once we've figured out which, the other numbers will follow.
If the fourth number is 1, that makes the third number 4, and the first and
second 0 and 4, respectively. Yet that would make for a sum total of 9. Pro-
ceeding by this kind of guesswork, we eventually arrive at 5 for the fourth
number, making the third number 20, the first 8, and the second 12, for a
grand total of 45.

Now, this kind of guesswork isn’t an algorithm but what is called a heu-
ristic, a term which comes from the Ancient Greek heuriskein, “to find” or
“to discover.” Heuristics are strategies developed for finding solutions to a
problem that have proven themselves so far, but offer no guarantee of ulti-
mately finding a solution that satisfies all the set conditions.
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One interesting example of a heuristic comes from ants in their own
attempt to solve the shortest path problem. When off in search of food, an
ant initially wanders about quite at random, leaving a scented trail behind
it. Should it happen upon something delicious, the ant then uses the same
trail to find its way back to the nest. On the way back, the ant lays out
another scented trail—the more delicious the food and the more of it there
is, the stronger the scent. This in turn allows the food to be found by other
ants, who then further strengthen the trail. Since the scent is evenly distrib-
uted equally in all directions, it is more concentrated within a curve than
directly at its edge. That's because all of the little scent molecules radiate
out and meet somewhere inside the curve. It’s similar to perfume; if you
spray some on your neck, chest and wrist, the greatest concentration will be
found somewhere between those sources. This means that other ants near
the center of the curve will be somewhat more attracted than those at the
edge, so that the loops initially traced by the first ant become shorter and
shorter. Ultimately this leads to a relatively short path, albeit not necessar-
ily the shortest.

We will come across the concept of a heuristic again in chapter 5 on
computer intelligence, as most of the methods used in those cases aren’t
algorithms at all. How about that for some specialized knowledge to boost
your score on trivia night! Still, it's an important point to remember: Only
algorithms are certain to find the best solution; heuristics can’t make the
same promise.

Nor is it worth taking the trouble to develop an algorithm that applies
generally anyway, so long as we are dealing with individual cases like the
numbers puzzle given previously. Rather, it is regularly recurring mathe-
matical problems of a general nature that deserve attention. Examples might
include questions about the root of any given number or the product of any
given set of numbers—but also consulting a database for all the purchases a
customer made last year.

We've now assembled all the pieces we need to explain the term algorithm:

An algorithm for a specific mathematical problem is any description of instruc-
tions sufficiently detailed and systematic such that if transferred into code cor-
rectly, its implementation will calculate the correct output for any correct input.

The computer scientist in me would like to add that the algorithm must
calculate its solution in finite time, thank you very much. It seems to defeat
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An algorithm has a plan for finding the solution and guarantees that it is actually a
solution. A heuristic is a method that attempts to find a solution.

the purpose, after all, if we have to wait until the end of the universe to get
the answer! But enough small talk. Would you like to see one for yourself, a
real live algorithm? Step right up then, folks, as I present to you: the sorting
algorithm!

THE ALL-PRESENT SORTING PROBLEM

Some of my favorite childhood memories are the afternoons spent at my
father’s side, helping him sort through his collection of advertising stamps.
From 1880 to 1940, these stamps were used similarly to today’s trad-
ing cards, as a reminder to customers of whatever product they had just
brought home. The stamps had no postal value but were often used to dec-
orate letters or simply assembled in large albums; it was these albums that
my father collected.
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Unfortunately, the stamps’ previous owners had often glued them into
the albums instead of simply laying them down on the pages. This meant
that before we could get down to resorting them, we usually had to detach
the stamps from the albums by rinsing them with soap suds in a little tub
then drying them off with blotting paper. The sorting itself was more of an
interactive process. In the case of the stamp shown in figure 9, the conversa-
tion might have gone something like this: “Papa, how do I sort this stamp?
By the product, Sachsenglanz, or the company, W. Stephan? And if it’s by
the company, should I use the W, or the S for Stephan?”

Our sorting rules were constantly being refined, as each stamp looked
different and I had no idea which keyword my father might use the next
time he looked one up. So I sat there and sorted through hundreds upon
hundreds of stamps, initially by the first letter, and then within that pile by
the second letter, and so on. Finally, there was a small enough number of
stamps left over that I could simply arrange them as you might a hand of cards
and sort them in the correct order.

Figure 9
An advertising stamp from the early twentieth century.



