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Chapter 1
Introduction

Logical and mathematical concepts must no longer produce
instruments for building a metaphysical “world of thought”:
their proper function and their proper application is only
within the empirical science.

Ernest Cassirer

Mathematics is a part of physics. It is a part of physics where
experiments are cheap. [..] In the middle of the 20th century
there were attempts to separate mathematics from physics.
The results turned to be catastrophic.

Vladimir Arnold

The main motivation of writing this book is to develop the view on mathematics
described in the above epigraphs. Some 200 years ago this view used to be by far
more common and easier to justify than today. It is sufficient to say that it made
part of Kant’s view on mathematics, and that Kant’s view on mathematics remained
extremely influential until the very end of the nineteenth century. When Cassirer
defended this Kantian view in the beginning of the twentieth century it was already
polemical. When Arnold defended it in the end of the twentieth century and in the
beginning of this current century it already sounded as an intellectual provocation,
and so his words sound today. Kant, Cassirer and Arnold do not speak about the
same mathematics: each speaks about mathematics of his own time. So the growing
polemical attitude to their shared view reflects not only a change of the common
opinion about the subject but a change of this subject itself. It is a common place
that the modern mathematics is more abstract and more detached from physical
experience than it used to be in Euclid’s times and in Kant’s times. When I say that I
nevertheless want to defend the view on mathematics as a part of physics this means
that I also want to contribute to changing the character of current mathematics, but
not only to changing the common views about it.

A. Rodin, Axiomatic Method and Category Theory, Synthese Library 364, 1
DOI 10.1007/978-3-319-00404-4_1, © Springer International Publishing Switzerland 2014



2 1 Introduction

The above is a motivation behind this book but not its purpose. The purpose is
much more limited. In order to justify the view on mathematics as part of physics
I would need to write at least as much about physics as about mathematics. But
this book is mainly about mathematics and about logic; physics is mentioned in it
only occasionally. Yet more specifically I shall focus on the Axiomatic Method and
Category Theory (including the categorical logic, which is a part of modern logic
using category-theoretic methods). Let me explain why.

When Arnold talks about recent attempts to separate mathematics from physics
he has in mind Elements of Mathematics by Nicolas Bourbaki (1939-1988) that
aims at developing the whole of mathematics systematically from the first princi-
ples, i.e., on an axiomatic basis. Bourbaki’s Elements continue the long tradition
of presenting renewed foundations of mathematics in the form of Elements: this
tradition begins with Euclid’s Elements (and earlier versions of Greek Elements that
have been lost) and continues through the whole history of mathematics until today.
(I say a bit more about this tradition in the introductory part of Part I.) Arnold sees
the key to the problem in Bourbaki’s Axiomatic Method, and takes a notoriously
hostile attitude towards the Axiomatic Method in general. I observe on my part that
the problem of separating mathematics from physics concerns the specific form of
the Axiomatic Method used by Bourbaki rather the Axiomatic Method in general.
It is clear, in particular, that Euclid’s method does not produce the same effect.
And I further observe that Bourbaki’s Axiomatic Method is a version of Hilbert’s
Axiomatic Method presented in Hilbert’s Foundations of Geometry of 1899, which
is another example of renewed mathematical Elements playing a more special
but perhaps even more important role in the twentieth century mathematics than
Bourbaki’s Elements. So I conclude that the origin of Arnold’s problem should be
traced back at least to the beginning rather than only to the middle of the twentieth
century. This explains my focus on Axiomatic Method and its history.

Why Category Theory? The mathematical notion of category (which has no
immediate relation to the philosophical notion widely known under this name) was
invented in 1945 by Eilenberg and MacLane for general purposes, some of which
I explain in Chap. 9, see also Kromer (2007) for details. In his thesis defended in
1963 (Lawvere 1963) and a series of papers based on this thesis (Lawvere 1964,
1966a,b, 1967). Lawvere put forward a program of categorical (i.e., category-
theoretic) foundations of mathematics and opened a new research field known
today under the name of categorical logic, see Marquis and Reyes (2012) for the
most recent historical account. Although Lawvere and other people who pursued
the program of categorical foundations have never explicitly challenged Hilbert’s
Axiomatic Method (albeit they did and do challenge some special applications of
this method, most importantly its applications in the standard axiomatic set theories)
I shall try to show in this book that some recent works in categorical logic and new
foundations of mathematics effectively modify Hilbert’s Axiomatic Method and
develop it in a wholly new direction. As it always happens in the intellectual history
this new development continue some earlier developments, which I shall also take
into account. In the last Chapter of this book I generalize upon these tendencies
and describe a hypothetical New Axiomatic Method, which admittedly does not
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yet exist in the form of precise logical and mathematical procedure. I hope that
my proposed general philosophical vision of this new method will contribute to its
future technical development and also help to use it outside the pure mathematics
and its philosophy.

As the reader shall see the New Axiomatic Method establishes closer relation-
ships between mathematics and physics and so suggests a solution of Arnold’s
problem. Although I cannot fully justify this claim in this book (because I am not
going to discuss physics systematically) I do prepare a philosophical background for
such a justification. The issue of relationships between mathematics and physics is a
hardcore philosophical issue, and I believe that Arnold’s problem cannot be solved
without taking this philosophical issue seriously. Another hardcore philosophical
issue that comes into the play as soon as one discusses the use of Axiomatic
Method in mathematics is the relationships between mathematics and logic. This
latter philosophical issue unlike the former is in the focus of this book. The main
philosophical dilemma that I consider is, roughly, this: either (i) logic is fundamental
in the sense that it gives us an independent access to an ideal space of logical
possibilities where the actual world exists side-by-side with plenty of other possible
worlds, which can be explored only mathematically, or as Cassirer insists in the
above epigraph, (ii) logic and mathematics must stick to the actual world as we
know it through empirical sciences, and by all means must avoid producing possible
“metaphysical worlds of thought” even if these appear more logically coherent
and more mathematical beautiful than our actual world. With many important
reservations that this rough formulation requires I shall defend the latter view.
The former view (which also obviously needs a more precise formulation) I call
logicism, and when it is applied to mathematics I call it mathematical logicism.
Beware that this meaning of “mathematical logicism” is broader than Russell’s
radical version of mathematical logicism according to which mathematics is logic
(Russell 1903). So a central purpose of this book is to refute mathematical logicism
and defend an alternative way of thinking about logic and mathematics.

Talking about these philosophical issues I would like to stress that I study
primarily their implementation in mathematics. When in the beginning of the
twentieth century Cassirer, Russell and other people discussed hot philosophical
issues concerning mathematics and logic they not only made general philosophical
arguments but also referred to the actual state of affairs in their contemporary
science and to the history of these subjects. They also often contributed themselves
to the ongoing research in mathematics and logic. In this book I follow the
same pattern of philosophical discussion paying a lot of attention to some recent
mathematical works and to the history of the subject but without trying to make any
mathematical contribution.

Before I summarize the content of this book chapter by chapter let me say a
few more words about its style and its methodology. I stick to the traditional idea
according to which philosophy and its history naturally combine together. When this
view is applied to the philosophy of science and mathematics the result is sometimes
called the historical epistemology (Rheinberger 2010). So what I am doing in
this book can be described as a historical epistemology of logic and mathematics.



4 1 Introduction

However one important reservation is here in order. In my understanding the past
history, the present state of affairs and the anticipated future of a given discipline are
parts of the same whole. This whole can be described as the current state of affairs
in a broader sense of the word, which includes both the historical reflection upon the
past and the projection towards the future of the given discipline. When I talk in this
book about mathematics and its philosophy I think about these subjects in this way.
When such a view is called historical this should mean the attention to development
of the given discipline but not the exclusive attention to its past.

Although I write about logic and mathematics I don’t use myself any formal
logical or other mathematical means for expressing and justifying my arguments.
A century ago this point would be hardly worth mentioning but since using formal
methods in philosophy in general and in philosophy of mathematics in particular is
nowadays popular (particularly in the philosophical school that calls itself Analytic
philosophy) this point requires some explanations. Without going into a long
discussion on this sensitive issue let me boldly express my believe that the natural
language and the philosophical prose remain so far the best instruments for historical
and philosophical work, or at least for the kind of such work that I want to do. The
clarity and the exactness that formal methods bring to philosophy come with a price,
which for my purposes is unacceptable. This price amounts to certain philosophical
assumptions, without which these formal methods cannot work. I am not prepared
to pay this price until I can see clearly these assumptions and thus know the price
exactly. A philosophical and historical analysis of the notion of logical formalization
is a part of my present project (see particularly Chaps. 3 and 10). Even if a formal
theory of formalization is possible I cannot see that it can be useful for this purpose.
I shall not return to the question of using formal methods in philosophy in what
follows but the reader will see that my analysis of the idea of logical formalization
hardly supports the idea of using it as an universal instrument for philosophizing.

Although I am not going to use formal methods for philosophical purposes the
reader will find below a lot of rudimentary mathematics. Since this book is about
mathematics, and a part of this book is about very recent mathematics, which still
remains a work in progress (see Sects.7.9-7.10), this is not surprising. So let me
explain my strategy of presenting the relevant mathematical content and mention
some mathematical prerequisites for reading this book. My intention is to make
this book readable both for a working mathematician interested in philosophy and
history of this discipline and for a philosopher like myself, who studies (or wants
to study) mathematics and its history, and finds a broad philosophical inspiration in
this discipline. To present a fragment of modern mathematics to a wider audience
is a very challenging task, which normally should not be combined with any
philosophical agenda. I certainly do have a philosophical agenda, which I have
already outlined earlier in this Introduction. This is why writing this book I have
tried to reduce the burden of explaining mathematics to minimum. At the same time
I tried to avoid any metaphoric talk about mathematical concepts — even if some
people would argue that any talk about mathematics outside the pure mathematics
is doomed to be metaphoric. So I could not avoid the burden of explaining some
mathematics completely but tried to use the most elementary examples and also
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tried to use some existing introductory expositions when such were available. In
each particular case I refer to the existing mathematical literature and chose this
literature accordingly to my specific purpose.

For the first superficial reading the given book is self-sustained and, as I hope,
it gives a right idea of what I am after. A more attentive critical reading is by
far more demanding. The ideal judge of this book is a working mathematician
who is also a working philosopher and working historian of mathematics having
some broader philosophical and scientific interests, which include some interest in
physics, its history and its philosophy. I know several people who at some degree of
approximation fit this description but I rather imagine an average reader of this book
as a person like myself who during these recent years has learnt some philosophy,
some mathematics and some history of both subjects, and who tries to make these
ends meet. I shall say more about the mathematical prerequisites and give some
suggestions for reading (in addition to references found in the main text) in the
following summary of the Chapters.

Part I of this book treats the history of Axiomatic Method. As I have already
explained this history is not only about the past. Only Chap. 2 on Euclid concerns
what is indeed in the past (albeit in Sect. 2.5 I show that even in this case the past
continues to live in the present); Chap. 3 on Hilbert treats (in the original historical
context) what remains today the standard notion of Axiomatic Method; Chap. 5 on
Lawvere treats what I suggest as a conceptual basis of the New Axiomatic Method.
So these three Chapters of this book present, roughy, the past, the present and the
anticipated future of the Axiomatic Method. Chapter 4 is reserved for studying the
fate of Hilbert’s Axiomatic Method in the twentieth century mathematics.

Instead of trying to reconstruct a general history of Axiomatic Method, I decided
to choose these three key figures and look at the relevant parts of their work
more attentively. Although a historical discussion on Euclid found in Chap.2 may
appear out of place in a book about today’s mathematics it is important for me
for several reasons. According to a common view (supported by Hilbert himself at
some occasions), Hilbert’s Axiomatic Method improves upon Euclid’s method in
terms of logical rigor and logical clarity. Of course, in such a general formulation
this view can hardly be challenged. However in order to see how exactly this
improvement on rigor and clarity has been achieved in the twentieth century we
need first to study Euclid’s method on its own rights. This requires some special
hermeneutical techniques, which are well-known to historian of mathematics but
are less familiar to logicians, mathematicians and philosophers who also write
about this subject. We shall see that in some respects Euclid’s and Hilbert’s method
are different in principle, so that the difference between these methods does not
reduce to differences in degrees of continuous magnitudes like rigor and clarity.
In addition to my attempt to reconstruct Euclid’s mathematical reasoning in its
proper terms (and in some terms borrowed from Greek philosophy) I explain in this
Chapter the relevance of Euclid’s geometry to Kant’s philosophy of mathematics.
In the end of this Chapter I point to some Euclidean patterns of reasoning in the
recent mathematics. The main textual reference in this Chapter is obviously Euclid’s
Elements, which is now available in a new English translation (Euclid 2011). An
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interested reader who would like to study the history of Greek mathematics more
broadly and would like to better understand Euclid’s special place in this history
(this is an important subject that I wholly skip in this book) is advised to begin with
(Heath 1981, 2003) and then study more recent secondary literature.

Chapter 3 on Hilbert is also written in a historical style and contains extended
quotes from Hilbert’s writings. Although I leave outside the scope of my discussion
most of the contemporary context of Hilbert’s work I follow the development of
Hilbert’s own ideas rather closely and distinguish in it several stages. In its narrow
historical aspect my treatment of Hilbert’s work contains nothing original. However
I also make an attempt to reconstruct the history of some relevant notions (or
at least to keep track of their changing meaning) including the notion of being
formal. This historical discussion is combined with an explanation of Hilbert’s
Formal Axiomatic Method, which can be used by a non-mathematical reader for
the first acquaintance with this basic method of modern mathematical reasoning.
Someone well acquainted with this method will find here an analysis of certain
assumptions required by this method, which remain tacit when this method becomes
an intellectual habit and is used automatically. I shall pay a lot of attention to
philosophical remarks made by Hilbert in his presentations of Axiomatic Method
trying to reconstruct Hilbert’s thinking and its philosophical motivation. 1 also
discuss in this Chapter some related subjects including the notion of logicality,
diagrammatic and symbolic thinking and some others. This Chapter presents (in
its historical original form) the core notion of modern Formal Axiomatic Method,
which I contrast in what follows to more traditional Euclid’s method, on the one
hand, and to some later versions of Axiomatic Method including the anticipated
New Axiomatic Method, on the other hand.

The main suggested reading for Chap. 3 is Hilbert’s Foundations of Geometry,
which exist in multiple editions including the English edition (Hilbert 1950) and
some later English editions. 1 highly recommend this reading also to a non-
mathematical reader of this book because the real subject-matter of this short
masterpiece is the Axiomatic Method itself rather than geometry, and so this short
book can be used as a shortcut to the modern style of mathematical thinking. For a
later more developed systematic presentation of Formal Axiomatic Method and its
underlying philosophy I refer the reader to Tarski’s textbook (1941). This textbook
presents in a very clear form a philosophical view on logic and mathematics that I
discuss in my present book.

In Chap.4 T talk about applications of Hilbert’s Axiomatic Method in the
twentieth century mathematics and stress the fact that it has hardly ever been used
in its original form and for its originally intended purpose. I discuss from this
point view some formal studies of axiomatic set theories, Bourbaki’s Elements
of Mathematics Bourbaki:1939-1988 and more specifically an unpublished Bour-
baki’s draft (Bourbaki 1935-1939). My main observation amounts to saying that
both the modern set theory and Bourbaki’s structural mathematics can be described
in Hilbert’s terms as a metatheory or in Tarski’s terms as a model theory of certain
Hilbert-style axiomatic theory or, more typically, of a number of such theories.
Since this metatheory or model theory itself is developed by some other means (i.e.,



1 Introduction 7

not axiomatically in Hilbert’s sense) one can say that the mainstream mathematics
widely applies Hilbert’s Formal Axiomatic Method only with a pinch of salt. In
the mainstream structural mathematics of the twentieth century this method serves
as a method of definition and constructing new concepts rather than method of
building deductive theories. On the basis of this observations I criticize Hilbert’s
Axiomatic Method arguing that it is not apt to support mathematical theories useful
in the modern physics. Finally I consider in this Chapter Tarski’s topological model
of intuitionistic propositional logic (Tarski 1956) and stress its unusual character:
although, technically speaking, there is no big difference between modeling a given
formal theory and modeling a given logical calculus, philosophically it makes a
huge difference and requires a rethinking of the whole idea of Axiomatic Method.
Although Tarski himself does not draw from this work such far-reaching conclusions
I use this example in the following Chapter as a historical prototype of the New
Axiomatic Method.

In addition to the literature referred to in Chap. 4 I suggest reading the classical
introduction (Bar-Hillel et al. 1973) to the modern axiomatic set theory including its
last philosophical chapter, and Galileo’s Two New Sciences (Galilei 1974) where the
author stresses the constructive experimental character of the New Science against
the background of the earlier Scholastic patterns of doing science.

Chapter 5 plays a central role in this book because here I first introduce
the notion of category and discuss a new notion of Axiomatic Method, which
emerges in category theory and, more specifically, in categorical logic. Although
categorical logic is already a well established subject (see Marquis and Reyes
2012 for a historical introduction) I decided to follow here the pattern of the
first two Chapters and focus my attention on the work of one particular person,
namely Lawvere, who founded this discipline in 1960s; as before I combine here
a historical and a systematic orders of presentation and pay a minute attention to
Lawvere’s philosophical comments found throughout his writings. After presenting
Lawvere’s categorical axiomatization of (the category of) sets (Lawvere 1964)
and of the category of categories (Lawvere 1966a), which gives the first idea of
using the category theory for axiomatization, I turn to Lawvere’s critique of the
standard Formal Axiomatic Method as “subjective” and explain his idea of objective
conceptual logic realized by category-theoretic means. I begin this latter discussion
by considering two Lawvere’s papers (Lawvere 1966b, 1967) that mark the birth of
the categorical logic, and in the same context explain Lawvere’s notion of quantifiers
as adjoint functors to the substitution functor. Then I make a digression on Curry’s
combinatorial logic, type theory and the so-called Curry-Howard correspondence,
and show how these conceptual developments combine in Lawvere’s notion of
Cartesian closed category. Then after a brief discussion on Lawvere’s notions
of hyperdoctrine (that conceptually connects to the discussion on homotopy type
theory found in Sect. 7.9) and functorial semantics (further discussed in Sect. 10.2)
I turn to philosophical issues and discuss the role of Hegel’s dialectical logic
in Lawvere’s thinking, which Lawvere stresses himself at many instances. Here
I provide a philosophical reconstruction of Hegel’s distinction between the objective
and the subjective logic and then describe how this philosophical distinction is
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realized by Lawvere with the technical means of categorical logic. This discussion
helps me then for interpreting the groundbreaking paper (Lawvere 1970b) where
Lawvere suggests his axiomatization of topos theory and demonstrates the strength
of his notion of internal logic of a given category. In the last Chap. 10 I use
Lawvere’s axiomatization of topos theory as a basic example of the new axiomatic
approach, which I try to describe in general terms under the title of New Axiomatic
Method.

For a better understanding of Chap. 5 it would be useful if the reader get some
knowledge of basic category theory beforehand (albeit this is not an absolutely
necessary requirement and the reader can also follow references during the reading).
For a non-mathematical reader or a reader with a modest mathematical background
I recommend (Lawvere and Schanuel 1997; Lawvere and Rosebrugh 2003) co-
authored by Lawvere as a very accessible introduction into the subject. For a
mathematical reader not familiar with categorical logic I recommend (MacLane
and Moerdijk 1992) that covers most of the mathematical material that I discuss
in this Chapter (but unfortunately skips hyperdoctrines). There is a huge gap in
terms of required mathematical skills between these two suggested readings and
by the present day this gap has not been yet filled in spite of many very valuable
attempts such as Reyes et al. (2004). I believe that there is a principle and not
only technical and pedagogical difficulty involved with the project of writing a
fairly elementary introduction to category, topos theory and categorical logic. The
problem is that the elementary introductions like Lawvere and Schanuel (1997),
Lawvere and Rosebrugh (2003), and Reyes et al. (2004) begin with considering the
category of finite sets, which are first introduced naively as bags of dots and then are
treated in terms of their maps. Although such an introduction is geometrical in its
character the basic geometry reduces here to the geometry of bags of dots, which is
a geometry of a very special sort. A genuine continuous geometry appears then only
at the much more advanced level and in a much more abstract form of Grothendieck
topology and Grothendieck topos, which are systematically treated in MacLane and
Moerdijk (1992) and other books of the same advanced level. So it still remains,
in my view, a challenging task to follow Hilbert’s example and rewrite Euclidean
or other simple intuitive geometry in new categorical terms. Voevodsky Univalent
Foundations discussed in Sect. 7.10 appear to be a step in this direction.

Talking about elementary introductions to category theory and topos theory
I would like also to mention (1992) by McLarty. The expression “elementary’
theory” in the title does not stand for being easy to grasp by a beginner but is used
in the technical sense of being a first-order theory in the sense of modern logic and
the standard Formal Axiomatic Method. This book is a systematic presentation of
category and topos theory which fully complies with the requirement of Formal
Axiomatic Method and at the same time treats the internal logic of a given topos
and the idea of internal description of a given topos with its internal language. So
for a logically-minded philosopher habituated to formal methods this book may
also serve as an introduction into the subject. I would like to stress however that
since in the present book I discuss specific features of Lawvere’s axiomatic thinking,
which fall apart from the standard Formal Axiomatic Method, studying McLarty’s
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book does not replace studying Lawvere’s original works even if, formally speaking,
McLarty’s book fully covers the same subject.

Part II is devoted to the notion of identity (in mathematics). This may appear
as a side subject with respect to the general theme of this book but it is actually
not. A mathematical logicist argues like this: in order to build a mathematical
theory in an axiomatic form one needs first to fix some basic logical notions
like that of being the same (or being equal). Unless this is done beforehand and
quite independently from the content of any particular mathematical theory, so the
argument goes, no axiomatic construction of mathematical theories is possible.
A similar point can be made, of course, about other logical notions including
logical connectives “and”, “or”, the notion of logical inference, of truth-value, etc.
This standard logicist argument does not go through in the case of categorical
logical, or at least it does not go through immediately, because the categorical
logic internalizes the logical notions, i.e., reconstructs them in terms of a given
mathematical theory (see Sects. 5.9 and 10.3). This applies to logical connectives,
the relation of inference, quantifiers, truth-values and to some other logical notions.
It also applies to the logical identity relation but this case turns to be both more
difficult and more mathematically and philosophically interesting than other cases.
So I treat it systematically in the two consequent Chapters making the Part I1.

In Chap. 6 I consider the question of identity/equality in mathematics in general
beginning with some naive observations and historical examples. In particular,
I briefly consider Plato’s view according to which the mathematical equality is a
weak form of strict identity: while the latter applies only the ideal world of Forms
the former applies in the world of mathematics, which takes an intermediate position
between the world of immutable Forms and the world of changing material beings.
Plato’s theory is an echo of the modern mathematical structuralism discussed later
in Chap. 9. In Chap. 6 I also show the significance of discussions about identity in
mathematics in Frege’s and Russell’s works for establishing the logicist view on
mathematics in the end of the nineteenth and the beginning of the twentieth century.
Then I turn to more theoretical subjects including a discussion on classes and
individuals, and a discussion of the distinction between logical extension and logical
intension. This Chapter resumes with a discussion on Martin-L6f’s intuitionistic
type theory (Martin-Lof 1984) that provides a theory of identity types, which is
very non-trivial in the intensional case. I compare Martin-Lof’s approach to identity
with Frege’s approach and reconsider Frege’s famous Venus example through the
optics of Martin-L6f’s type theory.

Chapter 7 continues to treat the issue of identity but this time with new
approaches coming from category theory and some related fields. In the beginning of
this Chapter I stress the conceptual similarity and the conceptual difference between
the logical notion of relation and geometrical notion of transformation aka mapping
or simply map. On this basis I re-introduce the notion of category with a naive
geometrical example, stress the geometrical origin of categorical thinking and the
relationships between category theory and Klein’s Erlangen Program. (I come back
to this topic in Sect.9.6). Then I turn to more advanced geometrically motivated
categories and show how they realize the idea of identity as a map (rather than
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a relation). In particular, I consider Bénabou’s fibered categories (Bénabou 1985)
and higher categories (aka n-categories) — first in an abstract form and then in
the geometrical form of homotopy categories. So I approach the hot subject of
homotopy type theory, which brings together identity types of Martin-L6f’s type
theory and the geometrical approaches to identity and the homotopical higher
category theory. When I began to study these two subjects about 10 years ago
the precise mathematical connection between them was not yet established and the
mathematical discipline of homotopy type theory did not yet exist. So it was for me
a great relief to learn that these ideas combine not only at the level of speculative
philosophy but also in precise mathematical terms. I conclude this Chapter with a
presentation of Voevodsky’s new foundations of mathematics that he calls Univalent
Foundations (Voevodsky 2010, 2011; Voevodsky et al. 2013). In Chap. 10 I refer to
the Univalent Foundations as an example of a new form of axiomatic presentation
along with the example of Lawvere’s axiomatic topos theory.

As a general mathematical reading for Part II I recommend Leinster’s book
(2004) on higher category-theory, which has great pedagogical advantages,
Granstrom’s book (2011) on type theory, which also provides a philosophical
perspective on this theory, Jacob’s book (1999) that stresses the link between
categorical logic and type theory. The homotopy type theory has been not yet
exposed in textbooks but there are very clear expository papers and the collective
monograph (Awodey and Warren 2009; Awodey 2010; Voevodsky et al. 2013).

Last Part III of the book treats two different subjects, which fall under the scope
of Hegel-Lawvere’s distinction between objective and subjective features of logic
and mathematics. In Chap. 8 I discuss the issue of mathematical intuition from a
historical perspective and argue using some historical examples that mathematical
intuitions change through the historical time at least as rapidly as do mathematical
concepts. The main purpose of this Chapter is to refute the popular opinion accord-
ing to which mathematics always develops by increasing its degree of abstractness
and according to which the highly abstract character of modern mathematical
concepts does not allow for a faithful intuitive representation in principle. I suggest
an alternative picture of the historical development of mathematics where concepts
and intuitions develop side-by-side but sometimes the conceptual development
takes over the intuitive development and sometimes, on the contrary, the intuitive
development takes over the conceptual one.

I expect that a phenomenologically-minded philosophical reader may object
that what I discuss is not the strict philosophical notion of intuition but rather a
commonsensical meaning of the word “intuition” as a bunch of helpful analogies
borrowed from the everyday life or elsewhere. I argue in this Chapter that the
changing mathematical intuition that I describe qualifies at least as intuition in
Kant’s sense of the term. The lack of discussion of Husserl’s views is indeed a
significant lacuna of this Chapter that I cannot easily fix. So I leave it for a future
work.

Although I wholly share Lawvere’s Hegelian view concerning the objective
character of scientific logic (which perfectly squares with Cassirer’s view on the
place and the role of mathematics and logic expressed in the above epigraph) I also
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stress the role of the subjective intuition because it provides the necessary link that
connects the pure mathematics to the individual sensual experience to the scientific
empirical methods to the whole body of empirical science. Without such a link
Hegel’s objective dialectical logic too easily turns into a new form of speculative
dogmatic metaphysics wholly detached from reality. One may suggest that since the
dogmatic dialectics is an obvious oxymoron it cannot refer to anything real. But
the dialectical logic quite rightly protects one from such naive conclusions made
on abstract logical grounds: as a matter of painful historical fact the examples of
dogmatic misuse of philosophical dialectics are abound.'

In Chap. 9 I discuss structuralism including its mathematical variety. Considering
structuralism as a suggestive idea rather than a system of stable philosophical
views I argue against the received view according to which category theory brings
about a new variety of structuralism and provides a new framework for developing
structural mathematics. I recognize the role of structural thinking in the development
of category theory and describe this role in this Chapter. In particular, I elaborate
on Eilenberg and Mac Lane’s idea of category theory as a continuation of Klein’s
Erlangen Program (Eilenberg and MacLane 1945). This very analogy allows me to
specify the crucial difference between Klein’s structural thinking and new categor-
ical thinking: when groups are generalized up to categories the notion of invariant
structure is replaced by the notion of covariant or contravariant functor. I argue that
the structuralist thinking about functoriality in terms of preservation of invariant
structures is, generally, inappropriate; then I suggest a different philosophical view
(or rather another suggestive idea) where the notion of functoriality (i.e., of co- and
contravariance) becomes central. Although this conceptual development begins with
a mere generalization of the structuralist Erlangen Program it brings about a new
view, which is very unlike the structuralist view. In the end of this Chapter (Sect. 9.8)
1 suggest a purely geometrical way of thinking about categories alternative to the
more convenient way of thinking about categories as categories of structures. The
basic idea here is thinking of geometrical objects as maps from types (of geometrical
objects) to spaces. I demonstrate this approach with some elementary examples from
the twentieth century geometry. Thus in my suggested post-structuralist picture the
notion of object (this time understood as a map) becomes once again central.

The conceptual change described in Chap.9 affects not only the choice of
structures explored with the Formal Axiomatic Method but also this method itself.
So in the concluding Chap. 10 I make the long-promised attempt to describe the
New Axiomatic Method more systematically. I first describe the two basic functions
of Axiomatic Method, which Lawvere calls the unification and the concentration.
Here I contrast the unificatory strategy of the New Method to the more traditional
unificatory strategy of Formal Axiomatic Method, which has a structuralist and a
logicist underpinning. Then I describe the concentration part, which turns to be

"'Unlike the older forms of dogmatism the more recent dialectical dogmatism does not use any
fixed system of beliefs but enforces a permanent organized change of one’s beliefs on changing
pragmatic grounds (political, economical, etc.).
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more traditional and in a new form reproduces some features of Euclid’s Axiomatic
Method. The most original part of the New Axiomatic Method is, of course, its
logical part, which involves the notion of internal logic. Generalizing on works of
Lawvere and Voevodsky I describe here in general terms a way of using the internal
logic of some given category (which is construed in intuitive geometrical terms at
the first step of the axiomatic construction) for improving upon the construction of
this very category and providing it with some deductive structure. This way of using
logic for building mathematical theories suggests a new way of thinking about the
role of logic in mathematical theories, which is very unlike Hilbert’s and Tarski’s.

In my suggested approach logic is designed along with the rest of conceptual
construction rather than used as a ready-made foundation for making further
mathematical constructions. One may think that the freedom of making up logical
calculi added to the freedom of making up new axiomatic mathematical theories
(assured already by Hilbert) only reinforce the inflation of the “metaphysical world
of thought”. In fact the New Axiomatic Method prevents this inflation in two
different ways. First, by taking into account the objective meaning of the category of
interest (which can be, for example, a spatiotemporal category used in physics) and,
second, by requiring the relevant logic to be the internal logic of this given category.
While the former feature is at some degree also compatible with the standard Formal
Axiomatic Method the latter feature is a genuinely original contribution of the New
Method. The New Method no longer reduces the function of logical formalization
to a logical censorship; instead logic is used here as a flexible tool for the internal
conceptual reconstruction.

An important part of my argument consists of pointing to Lawvere’s and
Voevodsky’s works as applications of this New Method, and stressing the fact that
in both cases it allows for a remarkable conceptual simplification and clarification
of otherwise difficult and conceptually problematic theories. Since in both cases
the relevant logic is internal with respect to its base category this logic inherits the
objective meaning of this base category. This allows me to suggest that the New
Axiomatic Method may help to bridge the gap between mathematics and physics
created and justified by the standard Formal Axiomatic Method and by the logicist
view on mathematics that underpins this standard method. Notwithstanding my
critique of Hilbert’s version of Axiomatic Method developed throughout in this
book, I believe (contra Arnold) that Hilbert was perfectly right when he described
this method as “the basic instrument of all research” (Hilbert 1927, p. 467) and when
he said that “[t]o proceed axiomatically means [..] nothing else than to think with
consciousness” (Hilbert 1922, p. 1120).



Part 1
A Brief History of the Axiomatic Method

In his famous address “Axiomatic Thought” delivered before the Swiss
Mathematical Society in Zurich in 1917 Hilbert says:

If we consider a particular theory more closely, we always see that a few distinguished
propositions of the field of knowledge underlie the construction of the framework of
concepts, and these propositions then suffice by themselves for the construction, in accor-
dance with logical principles, of the entire framework. [..] These fundamental propositions
can be regarded [..] as the axioms of the individual fields of knowledge: the progressive
development of the individual field of knowledge then lies solely in the further logical
construction of the already mentioned framework of concepts. This standpoint is especially
predominant in pure mathematics. [.. A]nything at all that can be the object of scientific
thought becomes dependent on the axiomatic method, an thereby indirectly on mathematics.
(Hilbert 1918, pp. 1108-1115)

In a different paper the author makes a further epistemological claim:

The axiomatic method is and remains the indispensable tool, appropriate to our minds, for
all exact research in any field whatsoever: it is logically incontestable and at the same time
fruitful. [..] To proceed axiomatically means in this sense nothing else than to think with
consciousness. (Hilbert 1922, p. 1120)

Although Hilbert’s enthusiasm about the Axiomatic Method and his high esteem
of the role of this method in science may be not universally accepted today,
the modern notion of axiomatic theory remains shaped by Hilbert’s works; his
Grundlagen der Geometrie (Foundations of Geometry) first published in 1899 still
serves as a paradigm of axiomatic mathematical theory. As soon as this method is
understood in the above general terms one may think that it has been practiced by
mathematicians since the early days of their discipline. Indeed in the Introduction
to his Foundations of Geometry of 1899 Hilbert states the following:

Geometry, like arithmetic, requires for its logical development only a small number of
simple, fundamental principles. These fundamental principles are called the axioms of
geometry. The choice of the axioms and the investigation of their relations to one another
is a problem which, since the time of Euclid, has been discussed in numerous excellent
memoirs to be found in the mathematical literature. This problem is tantamount to the
logical analysis of our intuition of space. (Hereafter Hilbert 1899 is quoted in English
translation Hilbert 1950)
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Notice Euclid’s name is the above quote. Evidently Hilbert had in mind Euclid’s
Elements when he prepared his Foundations of Geometry for publication. Hilbert
aims at developing Euclidean geometry on a wholly new conceptual basis.' In
this sense Hilbert’s Foundations of 1899 qualifies as a fairly revolutionary work.
However one should not forget that rewriting geometrical chapters of Euclid’s
Elements in new terms is itself an old and well-establish tradition in the history
of mathematical thought. Hilbert’s Foundations of Geometry (as well as Bourbaki’s
open-ended Elements of Mathematics (Bourbaki 1939-1988) produced later in the
twentieth century) make part of this long-term tradition and can be compared with
such groundbreaking works of earlier generations as, for example, Restored Euclid
by Borelli (1658), New Elements of Geometry by Arnauld (1683) and Euclid Freed
Jrom All Flaws by Saccheri (1733). Thus the Hilbertian revolution that still strongly
influences today’s mathematical practice is certainly not the first revolution of this
sort and hopefully not the last one.

Hilbert thinks of his new version of Axiomatic Method as a development of
and improvement over Euclid’s method of theory-building. Surely Hilbert is aware
about the fact that his method is not the same as Euclid’s; we shall see that Hilbert
in fact quite precisely points to the key difference (see Sect. 3.6). The purpose of
Chap. 2 is to describe this difference more precisely and more systematically. In
Chap. 3, I focus on Hilbert’s work and compare Hilbert’s approach to Euclid’s.
In Chap. 4, I consider applications of Hilbert’s Axiomatic Method in the twentieth
century mathematics and, in particular, in Bourbaki. In Chap. 5, I discuss Lawvere’s
work and show how some basic features of Euclid’s approach deliberately ignored
by Hilbert get a new life in today’s categorical logic.

'T agree with David Rowe when he says that “The reform of geometry that [Hilbert] envisaged in
Grundlagen der Geometrie was primarily conceived as a renewal of the fundamental structures of
classical Euclidean geometry.” (Rowe 2000, p. 71)



Chapter 2
Euclid: Doing and Showing

Reading older mathematical texts always involves a hermeneutical dilemma: in
order to make sense of the mathematical content of a given old text one wants to
interpret it in modern terms; in order to see the difference between the modern
mathematical thinking and older ways of mathematical thinking one wants to avoid
anachronisms and understand the old text in its own terms (Unguru 1975). Any
scholar studying older mathematics needs to find a way between the Scylla of
“antiquarianism” that seeks the scholar’s conversion into a person living during a
different historical epoch, and the Charybdis of radical “presentism™ that finds in
older texts nothing but a minor part of today’s standard mathematical curricula and
wholly ignores the historical change of basic patterns of mathematical thinking.'
My way through the channel is the following. I read Euclid’s text verbatim
(relying on Heiberg’s edition of the original Greek (Euclides 1883—1886) and using
Fitzpatrick’s new English translation Euclid 2011), consider its most important
modern interpretations (including overtly anachronistic ones), criticize some of
these interpretations on the basis of textual evidences, and finally suggest some
alternative interpretations. In order to prevent the risk of losing the main argument
behind the following historical details I formulate now my general conclusion.
Contrary to popular opinion Euclid’s geometry is not a system of propositions some
of which have a special status of axioms while some other are derived from the
axioms according to certain rules of logical inference. It can be rather described
after Friedman as “a form of rational argument” (Friedman 1992, p. 94),2 where
some non-propositional content (including non-propositional first principles) is
indispensable. Precipitating what follows (see particularly Sect. 3.6) let me mention

!Being between Scylla and Charybdis is an idiom deriving from Greek mythology. Scylla and
Charybdis were mythical sea monsters noted by Homer. Scylla was rationalized as a rock shoal
(described as a six-headed sea monster) on the Italian side of the strait and Charybdis was a
whirlpool off the coast of Sicily. They were regarded as a sea hazard located close enough to each
other that they posed an inescapable threat to passing sailors; avoiding Charybdis meant passing
too close to Scylla and vice versa. (after WikipediA)

2See the full quote from Friedman in the end of Sect. 3.5.

A. Rodin, Axiomatic Method and Category Theory, Synthese Library 364, 15
DOI 10.1007/978-3-319-00404-4_2, © Springer International Publishing Switzerland 2014
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that certain non-propositional principles also make part of modern formal theories
in the form of syntactic rules. As we shall now see in Euclid the non-propositional
aspect of mathematical reasoning plays a more prominent role.

2.1 Demonstration and ‘“Monstration”

All Propositions of Euclid’s Elements (with few easily understandable exceptions)
fit into the scheme described by Proclus in his Commentary (Proclus 1970) as
follows:

Every Problem and every Theorem that is furnished with all its parts should contain the
following elements: an enunciation, an exposition, a specification, a construction, a proof
and a conclusion. Of these enunciation states what is given and what is being sought from
it, a perfect enunciation consists of both these parts. The exposition takes separately what
is given and prepares it in advance for use in the investigation. The specification takes
separately the thing that is sought and makes clear precisely what it is. The construction
adds what is lacking in the given for finding what is sought. The proof draws the proposed
inference by reasoning scientifically from the propositions that have been admitted. The
conclusion teverts to the enunciation, confirming what has been proved. (Proclus 1970,
p- 203, italic is mine)

It is appropriate to notice here that the term “proposition”, which is traditionally
used in translations as a common name of Euclid’s problems and theorems, is not
found in the original text of the Elements: Euclid numerates these things throughout
each Book without naming them by any common name. (The reader will shortly
see why this detail is important.) The difference between problems and theorems
is explained in Sect. 2.4 below. Let me now show how Proclus’ scheme applies to
Proposition 5 of the First Book (Theorem 1.5), which is a well-known theorem
about angles of the isosceles triangle. References in square brackets are added by
the translator; some of them will be discussed later on. Words in round brackets are
added by the translator for stylistic reason. Words in bold are borrowed from the
above Proclus’ quote. Throughout this Chap. 2 I write these words in italic when 1
use them in Proclus’ specific sense (Fig. 2.1).

enunciation:

For isosceles triangles, the angles at the base are equal to one another, and if
the equal straight lines are produced then the angles under the base will be
equal to one another.

exposition:
Let ABC be an isosceles triangle having the side AB equal to the side AC; and

let the straight lines BD and CE have been produced further in a straight line
with AB and AC (respectively). [Postulate 2].
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2.1 Demonstration and “Monstration’

Fig. 2.1 Isosceles triangle A
theorem (Theorem 1.5 of A
Euclid’s Elements)

specification:

1 say that the angle ABC is equal to ACB, and (angle) CBD to BCE.
construction:

For let a point F be taken somewhere on BD, and let AG have been cut off
from the greater AE, equal to the lesser AF [Proposition 1.3]. Also, let the
straight lines FC, GB have been joined. [Postulate 1]

proof:

In fact, since AF is equal to AG, and AB to AC, the two (straight lines)
FA, AC are equal to the two (straight lines) GA, AB, respectively. They also
encompass a common angle FAG. Thus, the base FC is equal to the base GB,
and the triangle AFC will be equal to the triangle AGB, and the remaining
angles subtended by the equal sides will be equal to the corresponding
remaining angles [Proposition 1.4]. (That is) ACF to ABG, and AFC to AGB.
And since the whole of AF is equal to the whole of AG, within which AB is
equal to AC, the remainder BF is thus equal to the remainder CG [Axiom 3].
But FC was also shown (to be) equal to GB. So the two (straight lines) BF,
FC are equal to the two (straight lines) CG, GB respectively, and the angle
BFC (is) equal to the angle CGB, while the base BC is common to them.
Thus the triangle BFC will be equal to the triangle CGB, and the remaining
angles subtended by the equal sides will be equal to the corresponding
remaining angles [Proposition 1.4]. Thus FBC is equal to GCB, and BCF
to CBG. Therefore, since the whole angle ABG was shown (to be) equal to
the whole angle ACF, within which CBG is equal to BCF, the remainder ABC
is thus equal to the remainder ACB [Axiom 3]. And they are at the base of
triangle ABC. And FBC was also shown (to be) equal to GCB. And they are
under the base.
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conclusion:

Thus, for isosceles triangles, the angles at the base are equal to one another,
and if the equal sides are produced then the angles under the base will be
equal to one another. (Which is) the very thing it was required to show.

An obvious difference between Proclus’ analysis of the above theorem and
its usual modern analysis is the following. For a modern reader the proof of
this theorem begins with Proclus’ exposition and includes Proclus’ specification,
construction and proof. Thus for Proclus the proof is only a part of what we call
today the proof of this theorem. Also notice that Euclid’s theorems conclude with
the words “which ...was required to show” (as correctly translates Fitzpatrick)
but not with the words “what it was required to prove” (as inaccurately translates
Heath 1926). The standard Latin translation of this Euclid’s formula as quod
erat demonstrandum is also inaccurate. These inaccurate translations conflate two
different Greek verbs: “apodeiknumi” (English “to prove”, Latin “demonstrare”)
and “deiknumi” (English “to show”, Latin “monstrare”). The difference between
the two verbs can be clearly seen in the two Aristotle’s Analytics: Aristotle uses
the verb “apodeiknumi” and the derived noun *apodeixis” (proof) as technical
terms in his syllogistic logic, and he uses the verb “deiknumi” in a broader
and more informal sense when he discusses epistemological issues (mostly in
the Second Analytics). Without trying to trace here the history of Greek logical
and mathematical terminology and speculate about possible influences of some
Greek writers on some other writers, I would like to stress the remarkable fact
that Aristotle’s use of verbs “deiknumi” and “apodeiknumi” agrees with Euclid’s
and Proclus’. In my view this fact alone is sufficient for taking seriously the
difference between the two verbs and distinguishing between proof and “showing”
(or otherwise between demonstration and monstration).’

One may think that the difference between the current meaning of the word
“proof” in today’s mathematics and logic and the meaning of Proclus’ proof
(Greek “apodeixis™) is a merely terminological issue, which is due to difficulties
of translation from Greek to English. I shall try now to show that this terminological
difference points on a deeper problem, which is not merely linguistic. In today’s
logic the word “proof” stands for a logical inference of certain conclusion from
some given premises. In fact this is what by and large was meant by proof also by
Aristotle and Proclus. Indeed, looking at the proof (in Proclus’ sense) of Euclids
Theorem 1.5 we see that it also qualifies as a proof in the modern sense: we have
here a number of premises (which I make explicit in the next Section) and certain

3 As far as mutual influences are concerned two things are certain: (i) Proclus read Aristotle and
(ii) Aristotle had at least a basic knowledge of the mathematical tradition, on which Euclid later
elaborated in his Elements (as Aristotle’s mathematical examples clearly show Heath 1949). It
remains unclear whether Aristotle’s work could influence Euclid. In my view this is unlikely.
However Aristotle’s logic certainly played an important role in later interpretations and revisions
of Euclid’s Elements. I leave this interesting issue outside of the scope of this book.
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conclusions derived from those premises. It is irrelevant now whether or not this
particular inference is valid according to today’s logical standards; what I want to
stress here is only the general setting that involves some premises, an inference
(probably invalid) and some conclusions. This core meaning of the word “proof™
(Greek “apodeixis”™) hardly changed since Proclus’ times.

So we get a problem, which is clearly not only terminological: Is it indeed
justified to describe the exposition, the specification and the construction as
elements of the proof or one should rather follow Proclus and consider these things
as independent constituents of a mathematical theorem?

The question of logical significance of the exposition, the specification and the
construction in Euclid’s geometry has been discussed in the literature; in what
follows I shall briefly describe some tentative answers to it. However before doing
this I would like to stress that this question may be ill-posed to begin with. As far as
one assumes, first, that the theory of Euclid’s Elements is (by and large) sound and,
second, that any sound mathematical theory is an axiomatic theory in the modern
sense, then, in order to make these two assumptions mutually compatible, one has
to describe the exposition, the specification and the construction of each Euclid’s
theorem as parts of the proof of this theorem and specify their logical role and their
logical status. I shall not challenge the usual assumption according to which Euclid’s
mathematics is by and large sound. (I say “by and large” in order to leave some
room for possible revisions and corrections of Euclid’s arguments and thus avoid
controversies about the question whether a given interpretation of Euclid is authentic
or not. Although I pay more attention to textual details than it is usually done in
modern logical reconstructions of Euclid’s reasoning, I am not going to criticize
these reconstructions by pointing to their anachronistic character.) However I shall
challenge the other assumption according to which any sound mathematical theory
is an axiomatic theory in the modern sense. Since I do not take this latter assumption
for granted I do not assume from the outset that the problematic elements of Euclid’s
reasoning (the exposition, the specification and the construction) play some logical
role, which only needs to be made explicit and appropriately understood. In what
follows I try to describe how these elements work without making about them any
additional assumptions and only then decide whether the role of these elements
qualifies as logical or not.

2.2 Are Euclid’s Proofs Logical?

Let’s look at Euclid’s Theorem 1.5 more attentively. I begin its analysis with its
proof. Among the premisses of this proof, one may easily identify Axiom (Common
Notion) 3 according to which

(Axiom 3): If equal things are subtracted from equal things then the remainders are equal
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documented in Aristotle’s writings. In particular, Aristotle quotes Euclid’s Axiom 3
(which, of course, Aristotle could know from another source) almost verbatim.’

However important Aristotle’s argument in the history of Western thought may
be, there is no reason to take it for granted every time when we try today to
interpret Euclid’s Elements or any other old mathematical text. Whatever is one’s
philosophical stance concerning the place of logical principles in human reasoning
one can see what kind of harm can be made if Aristotle’s assumption about
the primacy of logical and ontological principles is taken straightforwardly and
uncritically: one treats Euclid’s Axioms on equal footing with premisses like Conl—
3 and Hyp and so misses the law-like character of the Axioms. Missing this
feature doesn’t allow one to see the relationships between Greek logic and Greek
mathematics, which I just sketched.

Having said that I would like to repeat that Euclid’s proof (apodeixis) is the part
of Euclid’s theorems, which more resembles what we today call proof (in logic)
than other parts Euclid’s theorems. For this reason in what follows I shall call
inferences in Euclid’s proofs, which are based on Axioms, protological inferences

SHere are some quotes:

By first principles of proof [as distinguished from first principles in general] I mean
the common opinions on which all men base their demonstrations, e.g. that one of two
contradictories must be true, that it is impossible for the same thing both be and not to be,
and all other propositions of this kind. (Met. 996b27-32, Heath’s translation, corrected)

Here Aristotle refers to a logical principle as “common opinion”. In the next quote he compares
mathematical and logical axioms:

We have now to say whether it is up to the same science or to different sciences to inquire
into what in mathematics is called axioms and into [the general issue of] essence. Clearly the
inquiry into these things is up to the same science, namely, to the science of the philosopher.
For axioms hold of everything that [there] is but not of some particular genus apart from
others. Everyone makes use of them because they concern being qua being, and each genus
is. But men use them just so far as is sufficient for their purpose, that is, within the limits
of the genus relevant to their proofs. Since axioms clearly hold for all things qua being (for
being is what all things share in common) one who studies being qua being also inquires
into the axioms. This is why one who observes things partly [=who inquires into a special
domain] like a geometer or a arithmetician never tries to say whether the axioms are true or
false. (Met. 1005a19-28, my translation)

Here is the last quote where Aristotle refers to Axiom 3 explicitly:

Since the mathematician too uses common [axioms] only on the case-by-case basis, it must
be the business of the first philosophy to investigate their fundamentals. For that, when
equals are subtracted from equals, the remainders are equal is common to all quantities,
but mathematics singles out and investigates some portion of its proper matter, as e.g. lines
or angles or numbers, or some other sort of quantity, not however qua being, but as [...]
continuous. (Met. 1061b, my translation)

The “science of philosopher” otherwise called the “first philosophy™ is Aristotle’s logic, which in
his understanding is closely related to (if not indistinguishable from) what we call today ontology.
After Alexandrian librarians we call today the relevant collection of Aristotle’s texts by the name
of metaphysics and also use this name for a relevant philosophical discipline.
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and distinguish them from inferences of another type that I shall call geometrical
inferences. This analysis is not incompatible with the idea (going back to Aristotle)
that behind Euclid’s protological and geometrical inferences there are inferences of
a more fundamental sort, that can be called /logical in the proper sense of the word.
However I claim that Euclid’s text as it stands provides us with no evidence in favor
of this strong assumption. One can learn Euclid’s mathematics and fully appreciate
its rigor without knowing anything about logic just like Moliere’s M. Jourdain could
well express himself long before he learned anything about prose!

Whether or not the science of logic really helps one to improve on mathematical
rigor — or this is rather the mathematical rigor that helps one to do logic rigorously
— is a controversial question that I shall discuss throughout this book and suggest an
answer only in the last Chapter. The purpose of my present reading of Euclid is at
the same time more modest and more ambitious than the purpose of logical analysis.
It is more modest because this reading doesn’t purport to assess Euclid’s reasoning
from the viewpoint of today’s mathematics and logic but aims at reconstructing
this reasoning in its authentic archaic form. It is more ambitious because it doesn’t
take the today’s viewpoint for granted but aims at reconsidering this viewpoint by
bringing it into a historical perspective.

2.3 Instantiation, Objecthood and Objectivity

Let us now see where the premises Hyp and Con1-3 come from. As I have already
mentioned they actually come from two different sources: Hyp is assumed by
hypotheis while Conl-3 are assumed by construction. 1 shall consider here these
two cases one after the other.

The notion of hypothetic reasoning is an important extension of the core notion
of axiomatic theory outlined above; it is well-treated in the literature and I shall
not cover it here in full. I shall consider only one particular aspect of hypothetical
reasoning as it is present in Euclid. The hypothesis that validates Hyp, informally
speaking, amounts to the fact that Theorem 1.5 tells us something about isosceles
triangles (rather than about objects of another sort). The corresponding definition
(Definition 1.20) tells us that two sides of the isosceles triangle are equal. However
to get from here to Hyp one needs yet another step. The enunciation of Theorem 1.5
refers to isosceles triangles in general. But Hyp that is involved into the proof
of this Theorem concerns only particular triangle ABC. Notice also that the proof
concludes with the propositions ABC = ACB and FBC = GCB (where ABC, ACB,
FBC and GCB are angles), which also concern only particular triangle ABC. This
conclusion differs from the following conclusion (of the whole Theorem), which
almost verbatim repeats the enunciation and once again refers to isosceles triangles
and their angles in general terms.

The wanted step that allows Euclid to proceed from the enunciation to Hyp
is made in the exposition of this Theorem, which introduces triangle ABC as an
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“arbitrary representative” of isosceles triangles (in general). In terms of modern
logic this step can be described as the universal instantiation:

VxP(x) = P(a/x)

where P(a/x) is the result of the substitution of individual constant a at the place of
all free occurrences of variable x in P(x). The same notion of universal instantiation
allows for interpreting Euclid’s specification in the obvious way. The reciprocal
backward step that allows Euclid to obtain the conclusion of the Theorem from the
conclusion of the proof can be similarly described as the universal generalization:

P(a) = VxP(x)

(which is a valid rule only under certain conditions that I skip here).

As long as the exposition and the specification are interpreted in terms of the
universal instantiation these operations are understood as logical inferences and,
accordingly, as element of proof in the modern sense of the word. A somewhat
different — albeit not wholly incompatible — interpretation of Euclid’s exposition
and specification can be straightforwardly given in terms of Kant’s transcendental
aesthetics and transcendental logic developed in his Critique of Pure Reason (Kant
1999). Kant thinks of the traditional geometrical exposition not as a logical inference
of one proposition from another but as a “general procedure of the imagination for
providing a concept with its image”; a representation of such a general procedure
Kant calls a schema of the given concept (A140). Thus for Kant any individual
mathematical object (like triangle ABC) always comes with a specific rule that
one follows constructing this object in one’s imagination and that provides a link
between this object and its corresponding concept (the concept of isosceles triangle
in our example). According to Kant the representation of general concepts by
imaginary individual objects (which Kant for short also describes as “construction
of concepts™) is the principal distinctive feature of mathematical thinking, which
distinguishes it from a philosophical speculation.

Philosophical cognition is rational cognition from concepts, mathematical cognition is that

from the construction of concepts.” But to construct a concept means to exhibit a priori the

intuition corresponding to it. For the construction of a concept, therefore, a non-empirical
intuition is required, which consequently, as intuition, is an individual object, but that
must nevertheless, as the construction of a concept (of a general representation), express

in the representation universal validity for all possible intuitions that belong under the

same concept, either through mere imagination, in pure intuition, or on paper, in empirical

intuition. . . . The individual drawn figure is empirical, and nevertheless serves to express the
concept without damage to its universality, for in the case of this empirical intuition we have
taken account only of the action of constructing the concept, to which many determinations,

e.g., those of the magnitude of the sides and the angles, are entirely indifferent, and thus we

have abstracted from these differences, which do not alter the concept of the triangle.

Philosophical cognition thus considers the particular only in the universal, but math-
ematical cognition considers the universal in the particular, indeed even in the individ-

ual... (A713-4/B741-2).
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Kant’s account can be understood as a further explanation of what the in-
stantiation of mathematical concepts amounts to; then one may claim that the
Kantian interpretation of Euclid’s exposition and specification is compatible with
its interpretation as the universal instantiation in the modern sense. However the
Kantian interpretation doesn’t suggest by itself to interpret the instantiation as a
logical procedure, i.e., as an inference of a proposition from another proposition.
As the above quote makes it clear Kant describes the instantiation as a cognitive
procedure of a different sort.

Now coming back to Euclid we must first of all admit that the exposition
and the specification of Theorem 1.5 as they stand are too concise for preferring
one philosophical interpretation rather than another. Euclid introduces an isosceles
triangle through Definition 1.20 providing no rule for constructing such a thing.
(This example may serve as an evidence against the often-repeated claim that every
geometrical object considered by Euclid is supposed to be constructed on the basis
of Postulates beforehand.) Nevertheless given the important role of constructions
in Euclid’s geometry, which I explain in the next Section, the idea that every
geometrical object in Euclid has an associated construction rule, appears very
plausible. There is also another interesting textual feature of Euclid’s specification
that in my view makes the Kantian interpretation more plausible.

Notice the use of the first person in the specification of Theorem 1.5: “I say
that....”. In Elements Euclid uses this expression systematically in the specification
of every theorem. Interpreting the specification in terms of universal instantiation
one should, of course, disregard this feature as merely rhetorical. However it may
be taken into account through the following consideration. While the enunciation
of a theorem is a general proposition that can be best understood a la Frege in the
abstraction from any human or inhuman thinker, i.e., independently of any thinking
subject, who might believe this proposition, assert it, refute it, or do anything else
about it, the core of Euclid’s theorems (beginning with their exposition) involves
an individual thinker (individual subject) that cannot and should not be wholly
abstracted away in this context. When Euclid enunciates a theorem this enunciation
does not involve — or at least is not supposed to involve — any particularities
of Euclid’s individual thinking; the less this enunciation is affected by Euclid’s
(or anyone else’s) individual writing and speaking style the better. However the
exposition and thespecification of the given theorem essentially involve an arbitrary
choice of notation (“Let ABC be an isosceles triangle. .. "), which is an individual
choice made by an individual mathematician (namely, made by Euclid on the
occasion of writing his Elements). This individual choice of notation goes on par
with what we have earlier described as instantiation, i.e. the choice of one individual
triangle (triangle ABC) of the given type, which serves Euclid for proving the
general theorem about all triangles of this type. The exposition can be also naturally
accompanied by drawing a diagram, which in its turn involves the choice of a
particular shape (provided this shape is of the appropriate type), to leave alone the
choices of its further features like color, etc.

Thus when in the specification of Theorem 1.5 we read “I say that the angle ABC
is equal to ACB” we indeed do have good reason to take Euclid’s wording seriously.
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For the sentence “angle ABC is equal to ACB” unlike the sentence “for isosceles
triangles, the angles at the base are equal to one another” has a feature that is relevant
only to one particular presentation (and to one particular diagram if any), namely
the use of letters A, B, C rather than some other letters.® The words “I say that ...”
in the given context stress this situational character of the following sentence “angle
ABC is equal to ACB”. What matters in these words is, of course, not Euclid’s
personality but the reference to a particular act of speech and cognition of an
individual mathematician. Proving the same theorem on a different occasion Euclid
or anybody else could use other letters and another diagram of the appropriate type.

A competent reader of Euclid is supposed to know that the choice of letters in Eu-
clid’s notation is arbitrary and that Euclid’s reasoning does not depend of this choice.
The arbitrary character of this notation should be distinguished from the general ar-
bitrariness of linguistic symbols in natural languages. What is specific for the case of
exposition and specification is the fact that here the arbitrary elements of reasoning
(like notation) are sharply distinguished from its invariant elements. To use Kant’s
term we can say that behind the notion according to which the choice of Euclid’s
notation is arbitrary (at least at the degree that letters used in this notation are
permutable) and according to which the same reasoning may work equally well with
different diagrams (provided all of them belong to the same appropriate type) there
is a certain invariant schema that sharply limits such possible choices. This schema
not simply allows for making some arbitrary choices but requires every possible
choice in the given reasoning to be wholly arbitrary. This requirement is tantamount
to saying that subjective reasons behind choices made by an individual mathemati-
cian for presenting a given mathematical argument are strictly irrelevant to the
“argument itself” (in spite of the fact that the argument cannot be formulated without
making such choices). In general talks in natural languages there is no similar sharp
distinction between arbitrary and invariant elements. When I write this paper I can
certainly change some wordings without changing the sense of my argument but I
am not in a position to describe precisely the scope of such possible changes and
identify the intended “sense” of my argument with a mathematical rigor. This is be-
cause my present study is philosophical and historical but not purely mathematical.

Thus Euclid’s exposition serves for the formulation of a given universal proposi-
tion in terms, which are suitable for a particular act of mathematical cognition made
by an individual mathematician. This aspect of the exposition is not accounted for
by the modern notion of universal instantiation. It may be argued that this aspect of
the exposition needs not be addressed in a logical analysis of Euclid’s mathematics
that aims at explication of the objective meaning of Euclid’s reasoning and may
well leave aside cognitive aspects of this reasoning. I agree that this latter issue lies
out of the scope of logical analysis in the usual sense of the term but I disagree
that the objective meaning of Euclid’s reasoning can be properly understood
without addressing this issue. Euclid’s mathematical reasoning is objective due

5 Although the choice of letters in Euclid’s notation is arbitrary the system of this notation is not.
This traditional geometrical notation has a relatively stable and rather sophisticated syntax, which
I briefly describe in what follows.
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and thus “gets” these new objects. Under this interpretation Euclid’s constructions
turn into logical inferences of sort. As Hintikka and Remes emphasize in their paper
the principal distinctive feature of Euclid’s constructions (under their interpretation)
is that these constructions introduce some new individuals; they call such individuals
“new” in the sense that these individuals are not (and cannot be) introduced through
the universal instantiation of hypotheses making part the enunciation of the given
theorem.

The propositional interpretations of Euclid’s Postulates are illuminating because
they allow for analyzing traditional geometrical constructions in modern logical
terms. However they require a paraphrasing of Euclid’s wording, which from a
logical point of view is far from being innocent. In order to see this let us leave aside
the epistemic attitude expressed by the verb “postulate” and focus on the question of
what Euclid postulates in his Postulates 1-3. Literally, he postulates the following:

P1: to draw a straight-line from any point to any point.
P2: to produce a finite straight-line continuously in a straight-line.
P3: to draw a circle with any center and radius.

As they stand expressions P1-3 don’t qualify as propositions; they rather describe
certain operations! And making up a proposition from something which is not a
proposition is not a innocent step. My following analysis is based on the idea that
Postulates are not primitive truths from which one may derive some further truths
but are primitive operations that can be combined with each other and so produce
into some further operations. In order to make my reading clear I paraphrase P1-3
as follows:

(OP1): drawing a (segment of) straight-line between its given endpoints

(OP2): continuing a segment of given straight-line indefinitely (“in a straight-line)”

(OP3): drawing a circle by given radius (a segment of straight-line) and center (which is

supposed to be one of the two endpoints of the given radius).

Noticeably none of OP1-3 allows for producing geometrical constructions out
of nothing; each of these fundamental operation produces a geometrical object out
of some other objects, which are supposed to be given in advance. The table below
specifies inputs (operands) and outputs (results) of OP1-3:

Operation  Input Output

OPI Two (different) points Straight segment

OP2 Straight segment (Bigger) Straight segment
OP3 Straight segment and one of its endpoints  Circle

PELI as it stands does not imply that there exists at least one point or at least
one line in Euclid’s geometrical universe. If there are no points then there are no
lines either. Similar remarks can be made about the existential interpretation of
other Euclid’s Postulates. Thus the existential interpretation of Postulates by itself
does not turn these Postulates into existential axioms that guarantee that Euclid’s
universe is non-empty and contains all geometrical objects constructible by ruler and
compass. To meet this purpose one also needs to postulate the existence of at least
two different points — and then argue that the absence of any counterpart of such an
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above, the exposition describes reasoning of an individual mathematician rather
than presents this reasoning in an objective form. That every complex construction
must be performed through Postulates and earlier performed constructions is an
epistemic requirement, which is on par with the requirement according to which
every theorem must be proved rather than simply stated. Remind that the expositions
of Euclid’s Theorems have the form “I say that...”. This indeed makes an apparent
contrast with the expositions of Problems that have the form “it is required to ....”.
However this contrast doesn’t seem me to be really sharp. Euclid’s expression
“I say that...” in the given context is interchangeable with the expression “it is
required to show that...”, which matches the closing formula of Theorems “(this is)
the very thing it was required to show”. Euclid’s expression “it is required to...”
that he uses in the expositions of Problems similarly matches the closing formula
of Problems “(this is) the very thing it was required to do”. The requirement
according to which every Theorem must be “shown” or “monstrated” doesn’t
imply, of course, that the enunciation (statement) of this Theorem has a deontic
meaning. The requirement according to which every Problem must be “done”
doesn’t imply either that the enunciation of this Problem has something to do with
deontic modalities.

The analogy between axioms and theorems, on the one hand, and postulates
and problems, on the other hand, may suggest that Euclid’s geometry splits into
two independent parts one of which is ruled by (proto)logical deduction while the
other is ruled by geometrical production. However this doesn’t happen and in fact
problems and theorems turn to be mutually dependent elements of the same theory.
The above example of Problem 1.1 and Theorem 1.5 show how the intertwining of
problems and theorems works. Theorems, generally, involve constructions (called
in this case auxiliary), which may depend (in the order of geometrical production)
on earlier treated problems (as the construction of Theorem 1.5 depends on
Problem 1.3.) Problems in their turn always involve appropriate proofs that prove
that the construction of the given theorem indeed performs the operation described
in the enunciation of this theorem (rather than performs some other operation). Such
proofs, generally, depend (in the order of the protological deduction) on certain
earlier treated theorems (just like in the case of proofs of theorems). Although
this mechanism linking problems with theorems may look unproblematic it gives
rise to the following puzzle. Geometrical production produces geometrical objects
from some other objects. Protological deduction deduces certain propositions from
some other propositions. How it then may happen that the geometrical production
has an impact on the protological deduction? In particular, how the geometrical
production may justify premises assumed “by construction”, so these premises are
used in following proofs?

In order to answer this question let’s come back to the premise Con3 (AF = AG)
from Theorem 1.5 and see what if anything makes it true. AF = AG because
Euclid or anybody else following Euclid’s instructions constructs this pair of straight
segments in this way. How do we know that by following these instructions one
indeed gets the desired result? This is because the construction of Problem 1.3
that contains the appropriate instruction is followed by a proof that proves that this
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form. Consider the following example taken from a standard mathematical textbook
(Kolmogorov and Fomin 1976, p. 100, my translation into English):

Theorem 2.3. Any closed subset of a compact space is compact

Proof. Let F be a closed subset of compact space T and {F,} be an arbitrary
centered system of closed subsets of subspace FF C T'. Then every Fy is also closed
in T, and hence {F} is a centered system of closed sets in 7. Therefore NFy # 0.
By Theorem 1 it follows that F is compact.

Although the above theorem is presented in the usual for today’s mathematics
form “proposition-proof”, its Euclidean structure can be made explicit without re-
interpretations and paraphrasing:

enunciation:

Any closed subset of a compact space is compact

exposition:

Let F be a closed subset of compact space T

specification: absent

construction:

[Let] {Fy} [be] an arbitrary centered system of closed subsets of subspace
FCT.

proof:

[Elvery Fy is also closed in T, and hence {F } is a centered system of closed
sets in 7. Therefore NFy # @. By Theorem 1 it follows that F is compact.

conclusion: absent

The absent specification can be formulated as follows:
I say that F' is a compact space

while the absent conclusion is supposed to be a literal repetition of the enuncia-
tion of this theorem. Clearly these latter elements can be dropped for parsimony
reason. In order to better separate the construction and the proof of the above
theorem the authors could first construct set MFy and only then prove that it is
non-empty. However this variation of the classical Euclidean scheme also seems
me negligible. I propose the reader to check it at other modern examples that the
Euclidean structure remains today at work.

Does this mean that the modern notion of axiomatic theory is inadequate to
today’s mathematical practice just like it is inadequate to Euclid’s mathematics?
Such a conclusion would be too hasty. Arguably, in spite of the fact that today’s
mathematics preserves some traditional outlook it is essentially different. So the



