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Preface

Multi-armed bandits have now been studied for nearly a century. While research in the
beginning was quite meandering, there is now a large community publishing hundreds of
articles every year. Bandit algorithms are also finding their way into practical applications
in industry, especially in on-line platforms where data is readily available and automation
is the only way to scale.

We had hoped to write a comprehensive book, but the literature is now so vast that many
topics have been excluded. In the end we settled on the more modest goal of equipping our
readers with enough expertise to explore the specialised literature by themselves, and to
adapt existing algorithms to their applications. This latter point is important. Problems in
theory are all alike; every application is different. A practitioner seeking to apply a bandit
algorithm needs to understand which assumptions in the theory are important and how to
modify the algorithm when the assumptions change. We hope this book can provide that
understanding.

What is covered in the book is covered in some depth. The focus is on the mathematical
analysis of algorithms for bandit problems, but this is not a traditional mathematics book,
where lemmas are followed by proofs, theorems and more lemmas. We worked hard to
include guiding principles for designing algorithms and intuition for their analysis. Many
algorithms are accompanied by empirical demonstrations that further aid intuition.

We expect our readers to be familiar with basic analysis and calculus and some linear
algebra. The book uses the notation of measure-theoretic probability theory, but does not
rely on any deep results. A dedicated chapter is included to introduce the notation and
provide intuitions for the basic results we need. This chapter is unusual for an introduction
to measure theory in that it emphasises the reasons to use g-algebras beyond the standard
technical justifications. We hope this will convince the reader that measure theory is an
important and intuitive tool. Some chapters use techniques from information theory and
convex analysis, and we devote a short chapter to each.

Most chapters are short and should be readable in an afternoon or presented in a single
lecture. Some components of the book contain content that is not really about bandits. These
can be skipped by knowledgeable readers, or otherwise referred to when necessary. They
are marked with a (-#) because ‘Skippy the Kangaroo® skips things.] The same mark is used
for those parts that contain useful, but perhaps overly specific information for the first-time
reader. Later parts will not build on these chapters in any substantial way. Most chapters
end with a list of notes and exercises. These are intended to deepen intuition and highlight

! Taking inspiration from Tor’s grandfather-in-law, John Dillon [Anderson et al., 1977].
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the connections between various subsections and the literature. There is a table of notation
at the end of this preface.
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Notation

Some sections are marked with special symbols, which are listed and described below.

This symbol is a note. Usually this is a remark that is slightly tangential to the topic
at hand.

A warning to the reader.

Something important.

An experiment.

Nomenclature and Conventions

A sequence (a, )o—, isincreasingif a,, ;1 > a, foralln > 1 and decreasingif a,, ;1 < a,.
When the inequalities are strict, we say strictly increasing/decreasing. The same terminol-
ogy holds for functions. We will not be dogmatic about what is the range of argmin/argmax.
Sometimes they return sets, sometimes arbitrary elements of those sets and, where stated,
specific elements of those sets. We will be specific when it is non-obvious/matters. The
infimum of the empty set is inf ) = oc and the supremum is sup ) = —oc. The empty sum

is > ;20 @i = 0 and the empty product is [, 4 a; = 1.

Landau Notation

We make frequent use of the Bachmann-Landau notation. Both were nineteenth century
mathematicians who could have never expected their notation to be adopted so enthusiasti-
cally by computer scientists. Given functions f, g : N — [0, ), define

f(n) =0(g(n)) < limsup f(n) < 00,
n—oo _(}(H)
f(n) =o(g(n)) < lim f(n) _ 0

n—r oo g('ﬂ,) -



Notation XVi

f(n) = Q(g(n)) © liminf f(n)

oo g(n)

f(n) = olaw) > imint L84 —

f(n) = ©(g(n) & f(n) = O(g(n)) and f(n) = Qg(n)).

We make use of the (Bachmann-)Landau notation in two contexts. First, in proofs where
limiting arguments are made, we sometimes write lower-order terms using Landau nota-
tion. For example, we might write that f(n) = \/n + o(y/n), by which we mean that
lim,, o f(n)/+/n = 1. In this case we use the mathematical definitions as envisaged by
Bachmann and Landau. The second usage is to informally describe a result without the
clutter of uninteresting constants. For better or worse, this usage is often a little imprecise.
For example, we will often write expressions of the form: R,, = O(m+/dn). Almost always
what is meant by this is that there exists a universal constant ¢ > 0 (a constant that does
not depend on either of the quantities involved) such that 17, < em/dn for all (reasonable)
choices of m, d and n. In this context we are careful not to use Landau notation to hide large
lower-order terms. For example, if f(x) = 22 4+ 10192, we will not write f(x) = O(z?),
although this would be true.

> 0,

Bandits

A, action in round ¢

k number of arms/actions

n time horizon

X, reward in round ¢

Y, loss in round ¢

i a policy

v a bandit

Hi mean reward of arm ¢

Sets

0 empty set

N, Nt natural numbers, N = {0,1,2,...} and N* = N\ {0}
R real numbers

R RU{—o00,00}

[n] {1,2,3,..., n—1,n}

24 the power set of set A (the set of all subsets of A)
A* set of finite sequences over A, A* = ;2 A
BY d-dimensional unit ball, {z € R? : |lz|> < 1}
P probability simplex, {z € [0,1]%*! : ||z[/; = 1}
P(A) set of distributions over set A

B(A) Borel g-algebra on A

[z, 9] convex hull of vectors or real values x and y

Functions, Operators and Operations
| Al the cardinality (number of elements) of the finite set A
(z)* max(xz,0)



Notation Xvii

amodb remainder when natural number a is divided by b

|z, [2] floor and ceiling functions of x

dom(f) domain of function f

E expectation

v variance

Supp support of distribution or random variable

V f(x) gradient of f at x

Vo f(x) directional derivative of f at  in direction v

V2f(x) Hessian of f at x

V, A maximum and minimum, a V b = max(a, b) and a A b = min(a, b)

erf(z) 7= Jo exp(—y?)dy

erfe(x) 1 — erf(z)

I'(2) Gamma function, ['(z) = [~ 2° ! exp(—z)dx

Palr) support function ¢ 4 (x) = sup,¢c o (7, y)

() convex conjugate, f*(y) = sup,. 4 (@, 5} — f()

() binomial coefficient

argmax, f(z) maximiser or maximisers of f

argmin,, f(x) minimiser or minimisers of f

Ip indicator function: converts Boolean ¢ into binary

Ig indicator of set B

D(P,Q) Relative entropy between probability distributions P and ()

d(p,q) Relative entropy between B(p) and B(g)

Linear Algebra

€1....,€4 standard basis vectors of the d-dimensional Euclidean space

0,1 vectors whose elements are all zeros and all ones, respectively

det(A) determinant of matrix A

trace(A) trace of matrix A

im(A) image of matrix A

ker(A) kernel of matrix A

span(vy,...,vq)  spanof vectors vy, ..., u4

Amin(G) minimum eigenvalue of matrix G

(z,y) inner product, (x,y) = >, z;¥;

1z, p-norm of vector x

llz||Z x T G for positive definite G € R™ and z € R?

=, = Loewner partial order of positive semidefinite matrices: A < B
(A < B)if B — A is positive semidefinite (respectively, definite).

Distributions

N(u,0?) Normal distribution with mean y and variance o2

B(p) Bernoulli distribution with mean p

U(a,b) uniform distribution supported on [a, b]

Beta(a, B) Beta distribution with parameters a, § > 0

O Dirac distribution with point mass at &
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Introduction

Bandit problems were introduced by William R. Thompson in an article published in 1933
in Biometrika. Thompson was interested in medical trials and the cruelty of running a trial
blindly, without adapting the treatment allocations on the fly as the drug appears more or
less effective. The name comes from the 1950s,
when Frederick Mosteller and Robert Bush decided
to study animal learning and ran trials on mice and Lo ZrreoD
then on humans. The mice faced the dilemma of T
choosing to go left or right after starting in the

bottom of a T-shaped maze, not knowing each time
at which end they would find food. To study a
similar learning setting in humans, a ‘two-armed
bandit” machine was commissioned where humans
could choose to pull either the left or the right arm
of the machine, each giving a random pay-off with
the distribution of pay-offs for each arm unknown
to the human player. The machine was called a “two-
armed bandit’ in homage to the one-armed bandit, an old-fashioned name for a lever-
operated slot machine (*bandit’ because they steal your money).

There are many reasons to care about bandit problems. Decision-making with uncertainty
is a challenge we all face, and bandits provide a simple model of this dilemma. Bandit
problems also have practical applications. We already mentioned clinical trial design, which
researchers have used to motivate their work for 80 years. We can’t point to an example
where bandits have actually been used in clinical trials, but adaptive experimental design
is gaining popularity and is actively encouraged by the US Food and Drug Administration,
with the justification that not doing so can lead to the withholding of effective drugs until
long after a positive effect has been established.

While clinical trials are an important application for the future, there are applications
where bandit algorithms are already in use. Major tech companies use bandit algorithms
for configuring web interfaces, where applications include news recommendation, dynamic
pricing and ad placement. A bandit algorithm plays a role in Monte Carlo Tree Search, an
algorithm made famous by the recent success of AlphaGo.

Finally, the mathematical formulation of bandit problems leads to a rich structure with
connections to other branches of mathematics. In writing this book (and previous papers),
we have read books on convex analysis/optimisation, Brownian motion, probability theory,

Figure 1.1 Mouse learning a T-maze.
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concentration analysis, statistics, differential geometry, information theory, Markov chains,
computational complexity and more. What fun!

A combination of all these factors has led to an enormous growth in research over the
last two decades. Google Scholar reports less than 1000, then 2700 and 7000 papers when
searching for the phrase ‘bandit algorithm’ for the periods of 2001-5, 2006—10, and 2011-
15, respectively, and the trend just seems to have strengthened since then, with 5600 papers
coming up for the period of 2016 to the middle of 2018. Even if these numbers are somewhat
overblown, they are indicative of a rapidly growing field. This could be a fashion, or maybe
there is something interesting happening here. We think that the latter is true.

A Classical Dilemma

Imagine you are playing a two-armed bandit machine and you already pulled each lever
five times, resulting in the following pay-offs (in dollars):

Rounp 1 2 3 4 5 6 7 8 9 10

LEFT 0 10 0 0 10
RIGHT 10 0 0 0 0

The left arm appears to be doing slightly better. The average pay-
off for this arm is $4, while the average for the right arm is only $2.
Let’s say you have 10 more trials (pulls) altogether. What is your
strategy? Will you keep pulling the left arm, ignoring the right? Or
would you attribute the poor performance of the right arm to bad luck and try it a few more
times? How many more times? This illustrates one of the main interests in bandit problems.
They capture the fundamental dilemma a learner faces when choosing between uncertain
options. Should one explore an option that looks inferior or exploit by going with the option
that looks best currently? Finding the right balance between exploration and exploitation is
at the heart of all bandit problems.

Figure 1.2 Two-armed
bandit

The Language of Bandits

A bandit problem is a sequential game between a learner and an environment. The game
is played over n rounds, where n is a positive natural number called the horizon. In each
round ¢ € [n], the learner first chooses an action A, from a given set A, and the environment
then reveals a reward X; € R.

In the literature, actions are often also called ‘arms’. We talk about k-armed bandits
when the number of actions is &, and about multi-armed bandits when the number of
arms is at least two and the actual number is immaterial to the discussion. If there are
multi-armed bandits, there are also one-armed bandits, which are really two-armed
bandits where the pay-off of one of the arms is a known fixed deterministic number.
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Of course the learner cannot peek into the future when choosing their actions, which
means that A; should only depend on the history H;_, = (A1, Xq,..., 41, X;_1). A
policy is a mapping from histories to actions: A learner adopts a policy to interact with
an environment. An environment is a mapping from history sequences ending in actions to
rewards. Both the learner and the environment may randomise their decisions, but this detail
is not so important for now. The most common objective of the learner is to choose actions
that lead to the largest possible cumulative reward over all n rounds, which is ;' | X.

The fundamental challenge in bandit problems is that the environment is unknown to
the learner. All the learner knows is that the true environment lies in some set £ called
the environment class. Most of this book is about designing policies for different kinds
of environment classes, though in some cases the framework is extended to include side
observations as well as actions and rewards.

The next question is how to evaluate a learner. We discuss several performance measures
throughout the book, but most of our efforts are devoted to understanding the regret. There
are several ways to define this quantity. To avoid getting bogged down in details, we start
with a somewhat informal definition.

DeriNITION 1.1. The regret of the learner relative to a policy 7 (not necessarily that fol-
lowed by the learner) is the difference between the total expected reward using policy 7 for
n rounds and the total expected reward collected by the learner over n rounds. The regret
relative to a set of policies I is the maximum regret relative to any policy = € Il in the set.

The set IT is often called the competitor class. Another way of saying all this is that the
regret measures the performance of the learner relative to the best policy in the competitor
class. We usually measure the regret relative to a set of policies II that is large enough to
include the optimal policy for all environments in £. In this case, the regret measures the
loss suffered by the learner relative to the optimal policy.

ExampLE 1.2. Suppose the action set is A = {1,2,...,k}. An environment is called a
stochastic Bernoulli bandit if the reward X, € {0,1} is binary valued and there exists
a vector u € [0,1]* such that the probability that X; = 1 given the learner chose action
Ay = ais [,. The class of stochastic Bernoulli bandits is the set of all such bandits, which
are characterised by their mean vectors. If you knew the mean vector associated with the
environment, then the optimal policy is to play the fixed action a* = argmax, . 4 flq- This
means that for this problem the natural competitor class is the set of & constant polices
IT = {m,..., i}, where 7; chooses action ¢ in every round. The regret over n rounds
becomes

T
R, = nl‘;ﬂéii{“a —E ZXt ;
t=1
where the expectation is with respect to the randomness in the environment and policy. The
first term in this expression is the maximum expected reward using any policy. The second
term is the expected reward collected by the learner.

For a fixed policy and competitor class, the regret depends on the environment. The
environments where the regret is large are those where the learner is behaving worse. Of
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course the ideal case is that the regret be small for all environments. The worst-case regret
is the maximum regret over all possible environments.

One of the core questions in the study of bandits is to understand the growth rate of
the regret as n grows. A good learner achieves sublinear regret. Letting I?,, denote the
regret over n rounds, this means that 2,, = o(n) or equivalently that lim,, ., 12,/n = 0.
Of course one can ask for more. Under what circumstances is R, = O(y/n) or R, =
O(log(n))? And what are the leading constants? How does the regret depend on the specific
environment in which the learner finds itself? We will discover eventually that for the
environment class in Example 1.2, the worst-case regret for any policy is at least Q(y/n)
and that there exist policies for which R,, = O(y/n).

A large environment class corresponds to less knowledge by the learner. A large
competitor class means the regret is a more demanding criteria. Some care is
sometimes required to choose these sets appropriately so that (a) guarantees on the
regret are meaningful and (b) there exist policies that make the regret small.

The framework is general enough to model almost anything by using a rich enough
environment class. This cannot be bad, but with too much generality it becomes impossible
to say much. For this reason, we usually restrict our attention to certain kinds of environment
classes and competitor classes.

A simple problem setting is that of stochastic stationary bandits. In this case the envir-
onment is restricted to generate the reward in response to each action from a distribution that
is specific to that action and independent of the previous action choices and rewards. The
environment class in Example 1.2 satisfies these conditions, but there are many alternatives.
For example, the rewards could follow a Gaussian distribution rather than Bernoulli. This
relatively mild difference does not change the nature of the problem in a significant way. A
more drastic change is to assume the action set A is a subset of R? and that the mean reward
for choosing some action a € A follows a linear model, X; = {a, ) + n, for 6 € R and
1, a standard Gaussian (zero mean, unit variance). The unknown quantity in this case is 0,
and the environment class corresponds to its possible values (£ = R?).

For some applications, the assumption that the rewards are stochastic and stationary may
be too restrictive. The world mostly appears deterministic, even if it is hard to predict and
often chaotic looking. Of course, stochasticity has been enormously successful in explain-
ing patterns in data, and this may be sufficient reason to keep it as the modelling assumption.
But what if the stochastic assumptions fail to hold? What if they are violated for a single
round? Or just for one action, at some rounds? Will our best algorithms suddenly perform
poorly? Or will the algorithms developed be robust to smaller or larger deviations from the
modelling assumptions?

An extreme idea is to drop all assumptions on how the rewards are generated, except that
they are chosen without knowledge of the learner’s actions and lie in a bounded set. If these
are the only assumptions, we get what is called the setting of adversarial bandits. The trick
to say something meaningful in this setting is to restrict the competitor class. The learner
is not expected to find the best sequence of actions, which may be like finding a needle
in a haystack. Instead, we usually choose 1I to be the set of constant policies and demand
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it positively. There are many challenges. First of all, Netflix shows a long list of movies,
so the set of possible actions is combinatorially large. Second, each user watches relatively
few movies, and individual users are different. This suggests approaches such as low-rank
matrix factorisation (a popular approach in ‘collaborative filtering’). But notice this is not
an offline problem. The learning algorithm gets to choose what users see and this affects
the data. If the users are never recommended the AlphaGo movie, then few users will watch
it, and the amount of data about this film will be scarce.

Network Routing

Another problem with an interesting structure is network routing, where the learner tries
to direct internet traffic through the shortest path on a network. In each round the learner
receives the start/end destinations for a packet of data. The set of actions is the set of all paths
starting and ending at the appropriate points on some known graph. The feedback in this
case is the time it takes for the packet to be received at its destination, and the reward is the
negation of this value. Again the action set is combinatorially large. Even relatively small
graphs have an enormous number of paths. The routing problem can obviously be applied
to more physical networks such as transportation systems used in operations research.

Dynamic Pricing

In dynamic pricing, a company is trying to automatically optimise the price of some product.
Users arrive sequentially, and the learner sets the price. The user will only purchase the
product if the price is lower than their valuation. What makes this problem interesting is (a)
the learner never actually observes the valuation of the product, only the binary signal that
the price was too low/too high, and (b) there is a monotonicity structure in the pricing. If a
user purchased an item priced at $10, then they would surely purchase it for $5, but whether
or not it would sell when priced at $11 is uncertain. Also, the set of possible actions is close
to continuous.

Waiting Problems

Every day you travel to work, either by bus or by walking. Once you get on the bus, the trip
only takes 5 minutes, but the timetable is unreliable, and the bus arrival time is unknown
and stochastic. Sometimes the bus doesn’t come at all. Walking, on the other hand, takes 30
minutes along a beautiful river away from the road. The problem is to devise a policy for
choosing how long to wait at the bus stop before giving up and walking to minimise the time
to get to your workplace. Walk too soon, and you miss the bus and gain little information.
But waiting too long also comes at a price.

While waiting for a bus is not a problem we all face, there are other applications of
this setting. For example, deciding the amount of inactivity required before putting a hard
drive into sleep mode or powering off a car engine at traffic lights. The statistical part of
the waiting problem concerns estimating the cumulative distribution function of the bus
arrival times from data. The twist is that the data is censored on the days you chose to
walk before the bus arrived, which is a problem analysed in the subfield of statistics called
survival analysis. The interplay between the statistical estimation problem and the challenge
of balancing exploration and exploitation is what makes this and the other problems studied
in this book interesting.
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Resource Allocation

A large part of operations research is focussed on designing strategies for allocating scarce
resources. When the dynamics of demand or supply are uncertain, the problem has ele-
ments reminiscent of a bandit problem. Allocating too few resources reveals only partial
information about the true demand, but allocating too many resources is wasteful. Of course,
resource allocation is broad, and many problems exhibit structure that is not typical of bandit
problems, like the need for long-term planning.

Tree Search

The UCT algorithm is a tree search algorithm commonly used in perfect-information game-
playing algorithms. The idea is to iteratively build a search tree where in each iteration the
algorithm takes three steps: (/) chooses a path from the root to a leaf; (2) expands the leaf (if
possible); (3) performs a Monte Carlo roll-out to the end of the game. The contribution of a
bandit algorithm is in selecting the path from the root to the leaves. At each node in the tree,
abandit algorithm is used to select the child based on the series of rewards observed through
that node so far. The resulting algorithm can be analysed theoretically, but more importantly
has demonstrated outstanding empirical performance in game-playing problems.

Notes

The reader may find it odd that at one point we identified environments with maps from histories
to rewards, while we used the language that a learner ‘adopts a policy’ (a map from histories to
actions). The reason is part historical and part because policies and their design are at the center
of the book, while the environment strategies will mostly be kept fixed (and relatively simple). On
this note, strategy is also a word that sometimes used interchangeably with policy.

Bibliographic Remarks

As we mentioned in the very beginning, the first paper on bandits was by Thompson [1933]. The
experimentation on mice and humans that led to the name comes from the paper by Bush and Mosteller
[1953]. Much credit for the popularisation of the field must go to famous mathematician and statisti-
cian, Herbert Robbins, whose name appears on many of the works that we reference, with the earliest
being: [Robbins, 1952]. Another early pioneer is Herman Chernoff, who wrote papers with titles like
‘Sequential Decisions in the Control of a Spaceship’ [Bather and Chernoff, 1967].

Besides these seminal papers, there are already a number of books on bandits that may serve as
useful additional reading. The most recent (and also most related) is by Bubeck and Cesa-Bianchi
[2012] and is freely available online. This is an excellent book and is warmly recommended. The
main difference between their book and ours is that (a) we have the benefit of seven years of ad-
ditional research in a fast-moving field and (b) our longer page limit permits more depth. Another
relatively recent book is Prediction, Learning and Games by Cesa-Bianchi and Lugosi [2006]. This is
a wonderful book, and quite comprehensive. But its scope is ‘all of” online learning, which is so broad
that bandits are not covered in great depth. We should mention there is also a recent book on bandits
by Slivkins [2019]. Conveniently it covers some topics not covered in this book (notably Lipschitz
bandits and bandits with knapsacks). The reverse is also true, which should not be surprising since our
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book is currently 400 pages longer. There are also four books on sequential design and multi-armed
bandits in the Bayesian setting, which we will address only a little. These are based on relatively old
material, but are still useful references for this line of work and are well worth reading [Chernoff,
1959, Berry and Fristedt, 1985, Presman and Sonin, 1990, Gittins et al., 2011].

Without trying to be exhaustive, here are a few articles applying bandit algorithms; a recent survey
is by Bouneffouf and Rish [2019]. The papers themselves will contain more useful pointers to the vast
literature. We mentioned AlphaGo already [Silver et al., 2016]. The tree search algorithm that drives
its search uses a bandit algorithm at each node [Kocsis and Szepesviri, 2006]. Le et al. [2014] apply
bandits to wireless monitoring, where the problem is challenging due to the large action space. Lei
et al. [2017] design specialised contextual bandit algorithms for just-in-time adaptive interventions
in mobile health: in the typical application the user is prompted with the intention of inducing a long-
term beneficial behavioural change. See also the article by Greenewald et al. [2017]. Rafferty et al.
[2018] apply Thompson sampling to educational software and note the trade-off between knowledge
and reward. Sadly, by 2015, bandit algorithms still have not been used in clinical trials, as explicitly
mentioned by Villar et al. [2015]. Microsoft offers a ‘Decision Service’ that uses bandit algorithms

to automate decision-making [Agarwal et al., 2016].
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Foundations of Probability (<)

This chapter covers the fundamental concepts of measure-theoretic probability, on which
the remainder of this book relies. Readers familiar with this topic can safely skip the chapter,
but perhaps a brief reading would yield some refreshing perspectives. Measure-theoretic
probability is often viewed as a necessary evil, to be used when a demand for rigour com-
bined with continuous spaces breaks the simple approach we know and love from high
school. We claim that measure-theoretic probability offers more than annoying technical
machinery. In this chapter we attempt to prove this by providing a non-standard introduction.
Rather than a long list of definitions, we demonstrate the intuitive power of the notation and
tools. For those readers with little prior experience in measure theory this chapter will no
doubt be a challenging read. We think the investment is worth the effort, but a great deal of
the book can be read without it, provided one is willing to take certain results on faith.

Probability Spaces and Random Elements

The thrill of gambling comes from the fact that the bet is placed on future outcomes that
are uncertain at the time of the gamble. A central question in gambling is the fair value of
a game. This can be difficult to answer for all but the simplest games. As an illustrative
example, imagine the following moderately complex game: I throw a dice. If the result is
four, I throw two more dice; otherwise I throw one dice only. Looking at each newly thrown
dice (one or two), I repeat the same, for a total of three rounds. Afterwards, I pay you the
sum of the values on the faces of the dice. How much are you willing to pay to play this
game with me?

Many examples of practical interest exhibit a complex random interdependency between
outcomes. The cornerstone of modern probability as proposed by Kolmogorov aims to
remove this complexity by separating the randomness from the mechanism that produces
the outcome.

Instead of rolling the dice one by one, imagine that sufficiently many dice were rolled
before the game has even started. For our game we need to roll seven dice, because this
is the maximum number that might be required (one in the first round, two in the second
round and four in the third round. See Fig. 2.1). After all the dice are rolled, the game can
be emulated by ordering the dice and revealing the outcomes sequentially. Then the value
of the first dice in the chosen ordering is the outcome of the dice in the first round. If we
see a four, we look at the next two dice in the ordering; otherwise we look at the single
next dice.
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X := throw!

No f ) Yes

Xy, = throw [ X5, == throw(] [ X5 := throw(]

Figure 2.1 The initial phase of a gambling game with a random number of dice rolls. Depending on the
outcome of a dice roll, one or two dice are rolled for a total of three rounds. The number of dice used will
then be random in the range of three to seven.

Outcomes /— ~e|z\e >/
(a,F) l

Randomising device
= all randomness

Mechanisms

Figure 2.2 A key idea in probability theory is the separation of sources of randomness from game
mechanisms. A mechanism creates values from the elementary random outcomes, some of which are
visible for observers, while others may remain hidden.

By taking this approach, we get a simple calculus for the probabilities of all kinds of
events. Rather than directly calculating the likelihood of each pay-off, we first consider
the probability of any single outcome of the dice. Since there are seven dice, the set of
all possible outcomes is 2 = {1,...,6}7. Because all outcomes are equally probable, the
probability of any @ € € is (1/6)". The probability of the game pay-off taking value v can
then be evaluated by calculating the total probability assigned to all those outcomes w € (2
that would result in the value of v. In principle, this is trivial to do thanks to the separation of
everything that is probabilistic from the rest. The set €2 is called the outcome space, and its
elements are the outcomes. Fig. 2.2 illustrates this idea. Random outcomes are generated
on the left, while on the right, various mechanisms are used to arrive at values; some of
these values may be observed and some not.

There will be much benefit from being a little more formal about how we come up with
the value of our artificial game. For this, note that the process by which the game gets its
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sequences. Let (€2, F) be a measurable space, X be an arbitrary set and G C 2. A function
X : Q — X is called an F /G-measurable map if X ~'(A) € F for all A € G. Note that
G need not be a g-algebra. When F and G are obvious from the context, X is called a
measurable map. What are the typical choices for G? When X is real-valued, it is usual to
letG = {(a,b) : a < bwith a,b € R} be the set of all open intervals. The reader can verify
that if X is 7 /G-measurable, thenitis also F /o (G )-measurable, where a(G) is the smallest
c-algebra that contains G. This smallest g-algebra can be shown to exist. Furthermore, it
contains exactly those sets A that are in every ¢-algebra that contains G (see Exercise 2.5).
When G is the set of open intervals, a(G) is usually denoted by 8 or ‘B(IR) and is called the
Borel g-algebra of R. This definition is extended to R* by replacing open intervals with
open rectangles of the form HLI (a;,b;), where a < b € R* . If G is the set of all such open
rectangles, then ¢(G) is the Borel g-algebra: B(R*). More generally, the Borel g-algebra
of a topological space X is the g-algebra generated by the open sets of X'

DerFiNITION 2.2 (Random variables and elements). A random variable (random vector)
on measurable space (€2, F) is a F/B(R)-measurable function X : 2 — R (respectively
F /B (RF)-measurable function X :  — RF). A random element between measurable
spaces (2, F) and (X', G) is a F /G-measurable function X : {2 — X.

Thus, random vectors are random elements where the range space is (R*, B(R*)), and
random vectors are random variables when & = 1. Random elements generalise random
variables and vectors to functions that do not take values in R*. The push-forward measure
(or law) can be defined for any random element. Furthermore, random variables and vectors
work nicely together. If X, ..., X}, are k£ random variables on the same domain (2, F),
then X (w) = (X1(w), ..., Xj(w)) is an R¥-valued random vector, and vice versa (Exer-
cise 2.2). Multiple random variables X, ..., X} from the same measurable space can thus
be viewed as a random vector X = (Xy,..., X}).

Givenamap X : {2 — A between measurable spaces ({2, ) and (X, G), weleta(X) =
{X~'(A) : A € G} be the o-algebra generated by X . The map X is F/G-measurable
if and only if 6(X) C F. By checking the definitions one can show that a(X) is a sub-
o-algebra of F and in fact is the smallest sub-g-algebra for which X is measurable. If
G = 0(A) itself is generated by a set system A C 2%, then to check the F/G-measurability
of X, it suffices to check whether X ~*(A) = {X~!(A) : A € A} is a subset of F. The
reason this is sufficient is because a(X ~'(A4)) = X ~!(0(A)), and by definition the latter
is a(X). In fact, to check whether a map is measurable, either one uses the composition
rule or checks X ~'(A) C F for a ‘generator’ A of G.

Random elements can be combined to produce new random elements by composition.
One can show that if [ is F/G-measurable and g is G/H-measurable for ¢-algebras
F.G and H over appropriate spaces, then their composition g ¢ f is F/H-measurable
(Exercise 2.1). This is used most often for Borel functions, which is a special name
for B(R™)/B(R™)-measurable functions from R™ to R™. These functions are also
called Borel measurable. The reader will find it pleasing that all familiar functions are
Borel. First and foremost, all continuous functions are Borel, which includes elementary
operations such as addition and multiplication. Continuity is far from essential, however.
In fact one is hard-pressed to construct a function that is not Borel. This means the usual
operations are ‘safe’ when working with random variables.
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Indicator Functions
Given an arbitrary set {2 and A C €2, the indicator function of Ais 4 : @ — {0,1}
given by

L(w) 1, ifwe A;
w) =
4 0, otherwise.

Sometimes A has a complicated description, and it becomes convenient to abuse notation by
writing [ {w € A} instead of [ 4 (). Similarly, we will often write I {predicate(X,Y,...)}
to mean the indicator function of the subset of {2 on which the predicate is true. It is easy
to check that an indicator function [ 4 is a random variable on (€2, F) if and only if A is
measurable: A € F.

Why So Complicated?

You may be wondering why we did not define P on the power set of €2, which is equivalent to
declaring that all sets are measurable. In many cases this is a perfectly reasonable thing to do,
including the example game where nothing prevents us from defining 7 = 2. However,
beyond this example, there are two justifications not to have F = 2%, the first technical
and the second conceptual.

The technical reason is highlighted by the following surprising theorem according to
which there does not exist a uniform probability distribution on 2 = [0, 1] if F is chosen
to be the power set of  (a uniform probability distribution over [0, 1], if existed, would
have the property of assigning its length to every interval). In other words, if you want to
be able to define the uniform measure, then F cannot be too large. By contrast, the uniform
measure can be defined over the Borel g-algebra, though proving this is not elementary.

THEOREM 2.3. Let Q = [0, 1], and F be the power set of Q. Then there does not exist a
measure P on (2, F) such that P([a,b]) = b—aforall0 <a <b < 1.

The main conceptual reason of why not to have F = 2% is because then we can use
c-algebras represent information. This is especially useful in the study of bandits where
the learner is interacting with an environment and is slowly gaining knowledge. One useful
way to represent this is by using a sequence of nested g-algebras, as we explain in the
next section. One might also be worried that the Borel g-algebra does not contain enough
measurable sets. Rest assured that this is not a problem and you will not easily find a non-
measurable set. For completeness, an example of a non-measurable set will still be given
in the notes, along with a little more discussion on this topic.

A second technical reason to prefer the measure-theoretic approach to probabilities is that
this approach allows for the unification of distributions on discrete spaces and densities
on continuous ones (the uninitiated reader will find the definitions of these later). This
unification can be necessary when dealing with random variables that combine elements
of both, e.g. a random variable that is zero with probability 1,/2 and otherwise behaves like
a standard Gaussian. Random variables like this give rise to so-called “mixed continuous
and discrete distributions”, which seem to require special treatment in a naive approach to
probabilities, yet dealing with random variables like these are nothing but ordinary under
the measure-theoretic approach.
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From Laws to Probability Spaces and Random Variables

A big ‘conspiracy’ in probability theory is that probability spaces are seldom mentioned in
theorem statements, despite the fact that a measure cannot be defined without one. State-
ments are instead given in terms of random elements and constraints on their joint proba-
bilities. For example, suppose that X and Y are random variables such that

[ANne]l [BN[2
6 2
which represents the joint distribution for the values of a dice (X € [6]) and coin (Y €
[2]). The formula describes some constraints on the probabilistic interactions between the
outputs of X and Y, but says nothing about their domain. In a way, the domain is an
unimportant detail. Nevertheless, one must ask whether or not an appropriate domain exists
at all. More generally, one may ask whether an appropriate probability space exists given
some constraints on the joint law of a collection X1, ..., X of random variables. For this
to make sense, the constraints should not contradict each other, which means there is a
probability measure y on B(IR¥) such that y satisfies the postulated constraints. But then
we can choose Q = R*, F = B(RF), P = pand X; : €2 — IR to be the ith coordinate map:
Xi(@w) = w;. The push-forward of [P under X = (X1,...,X}) is u, which by definition

is compatible with the constraints.

A more specific question is whether for a particular set of constraints on the joint law
there exists a measure y compatible with the constraints. Very often the constraints are
specified for elements of the cartesian product of finitely many o-algebras, like in Eq. (2.1).
If (2, F1), ..., (2, F,,) are measurable spaces, then the cartesian product of 71, ... F,, is

P(X €AY eB)=

forall A, B € B(R), (2.1)

Firx-ooxF,={A1 x---xA,: Ay e Fy,..., A, € Fp} C 28X x8a,
Elements of this set are known as measurable rectangles in €27 x -+ x (.

THEOREM 2.4 (Carathéodory’s extension theorem). Let (21, F1),. .., (2, Fr) be mea-

surable spaces and |1 : Fy % -+ x F, — [0,1] be a function such that

(@) p(Qq x--xQ,)=1;and
(b) p(Ug, Ag) = 32707 B(Ay) for all sequences of disjoint sets with Ay, € Fy % -+« X F,,.

Let Q= Q) x---xQpand F = 6(Fy X --- x Fy). Then there exists a unique probability
measure [ on (S, F) such that |t agrees with [t on Fi x --- x JF,.

The theorem is applied by letting 2, = R and 7}, = ‘B(IR). Then the values of a measure
on all cartesian products uniquely determines its value everywhere.

It is not true that F; x F» = o(F; x Fs). Take, for example, F; = F, = 2112}
Then, |F; x Fa| = 1+ 3 x 3 = 10 (because () x X = (), while, since F; x Fo
includes the singletons of 2112112t o(F x Fy) = 2{1:21x{1.2} Hence, six sets
are missing from F; x F». For example, {(1,1),(2,2)} € a(F1 x F2) \ F1 x Fa.

The g-algebra o(F7 x --- x F,,) is called the product o-algebra of (F%)ic[, and is also
denoted by F; @ - - - @ JF,,. The product operation turns out to be associative: (F} @ F2) ®



2.2

2.2 o-Algebras and Knowledge 19

F3 = F; @ (Fy ® Fz), which justifies writing 7} ® Fs ® F3. As it turns out, things
work out well again with Borel g-algebras: for p, g € NT, B(RF7) = B(R?) @ B(R?).
Needless to say, the same holds when there are more than two terms in the product. The
n-fold product g-algebra of F is denoted by F®™,

o-Algebras and Knowledge

One of the conceptual advantages of measure-theoretic probability is the relationship be-
tween o-algebras and the intuitive idea of ‘knowledge’. Although the relationship is useful
and intuitive, it is regrettably not quite perfect. Let (€2, F), (X, G) and (¥, H) be measur-
able spaces and X : Q — X and Y : 2 — ) be random elements. Having observed
the value of X (‘knowing X), one might wonder what this entails about the value of
Y. Even more simplistically, under what circumstances can the value of Y be determined
exactly having observed X ? The situation is illustrated in Fig. 2.3. As it turns out, with
some restrictions, the answer can be given in terms of the o-algebras generated by X
and Y. Except for a technical assumption on (Y, #), the following result shows that ¥
is a measurable function of X if and only if Y is ¢(X)/H-measurable. The technical
assumption mentioned requires (), ) to be a Borel space, which is true of all probability
spaces considered in this book, including (R*, B(R¥)). We leave the exact definition of
Borel spaces to the next chapter.

LEMMA 2.5 (Factorisation lemma). Assume that (Y, H) is a Borel space. Then Y is o(X)-
measurable (¢(Y) C (X)) if and only if there exists a G /H-measurable map f : X — Y
suchthatY = fo X,

In this sense o (X) contains all the information that can be extracted from X via measur-
able functions. This is not the same as saying that ¥ can be deduced from X if and only
if Y is o(X)-measurable because the set of X — )’ maps can be much larger than the
set of G/H-measurable functions. When G is coarse, there are not many G /H-measurable
functions with the extreme case occurring when G = { X', #}. In cases like this, the intuition
that ¢(X') captures all there is to know about X is not true anymore (Exercise 2.6). The
issue is that ¢(X') does not only depend on X, but also on the g-algebra of (X, G) and
that if G is coarse-grained, then o(X) can also be coarse-grained and not many functions
will be ¢(X)-measurable. If X is a random variable, then by definition X = R and
G = B(R), which is relatively fine-grained, and the requirement that f be measurable
is less restrictive. Nevertheless, even in the nicest setting where 2 = X' = ) = R and

(x.9)
\‘ Jf
O, 1)

Figure 2.3 The factorisation problem asks whether there exists a (measurable) function f that makes the
diagram commute.
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F =G =H = B(R), it can still occur that Y = f o X for some non-measurable f. In
other words, all the information about ¥ exists in X but cannot be extracted in a measurable
way. These problems only occur when X maps measurable sets in {2 to non-measurable
sets in A, Fortunately, while such random variables exist, they are never encountered in
applications, which provides the final justification for thinking of ¢(.X) as containing all
that there is to know about any random variable X that one may ever expect to encounter.

Filtrations

In the study of bandits and other online settings, information is revealed to the learner
sequentially. Let X, ..., X, be a collection of random variables on a common measurable
space (€2, F). We imagine a learner is sequentially observing the values of these random
variables. First X, then X5 and so on, The learner needs to make a prediction, or act,
based on the available observations. Say, a prediction or an act must produce a real-valued
response. Then, having observed X.; = (X1,....X}), the set of maps f o X, where
[ : R* — Ris Borel, captures all the possible ways the learner can respond. By Lemma 2.5,
this set contains exactly the o(X1.;)/B(R)-measurable maps. Thus, if we need to reason
about the set of 2 — R maps available after observing X ., it suffices to concentrate
on the g-algebra F; = ¢(X,.;). Conveniently, F; is independent of the space of possible
responses, and being a subset of JF, it also hides details about the range space of X .. Itis
easy to check that 7y C 7y C F» C ... C F,, C F, which means that more and more
functions are becoming J;-measurable as ¢ increases, which corresponds to increasing
knowledge (note that F, = {0, 2}, and the set of Fy-measurable functions is the set of
constant functions on ).

Bringing these a little further, we will often find it useful to talk about increasing se-
quences of ¢-algebras without constructing them in terms of random variables as above.
Given a measurable space (€2, F), a filtration is a sequence (J;){_,, of sub-g-algebras of
F where F; C Fi4q forall t < n. We also allow n = oc, and in this case we define

()

to be the smallest g-algebra containing the union of all ;. Filtrations can also be defined
in continuous time, but we have no need for that here. A sequence of random variables
(X4)7, is adapted to filtration F = (F;)}-, if X, is F;-measurable for each ¢. We also
say in this case that (X;); is F-adapted. The same nomenclature applies if n is infinite.
Finally, (X), is F-predictable if X, is F;,_;-measurable for each ¢t € [n]. Intuitively we
may think of an [F-predictable process X = (X ), as one that has the property that X, can
be known (or ‘predicted’) based on JF;_;, while a F-adapted process is one that has the
property that X; can be known based on F; only. Since F;_; C JF;, a predictable process
is also adapted. A filtered probability space is the tuple (2, 7, F, P), where (Q, F,P) is
a probability space and F = (F}); is filtration of F.

Conditional Probabilities

Conditional probabilities are introduced so that we can talk about how probabilities should
be updated when one gains some partial knowledge about a random outcome. Let (€2, F, P)
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When we say that X;,...,X,, are independent random variables, we mean that
they are mutually independent. Independence is always relative to some probability
measure, even when a probability measure is not explicitly mentioned. In such cases
the identity of the probability measure should be clear from the context.

Integration and Expectation

A key quantity in probability theory is the expectation of a random variable. Fix a prob-
ability space (€2, F,[P) and random variable X : £ — R. The expectation X is often
denoted by E [X]. This notation unfortunately obscures the dependence on the measure
P. When the underlying measure is not obvious from context, we write Ep to indicate the
expectation with respect to P. Mathematically, we define the expected value of X as its
Lebesgue integral with respect to P:

E[X] = jn X (@) dP(w).

The right-hand side is also often abbreviated to [ X dP. The integral on the right-hand side
is constructed to satisfy the following two key properties:

(a) The integral of indicators is the probability of the underlying event. If X(w) =
I{w € A} is an indicator function for some A € F, then [ XdP = P (A).

(b) Integrals are linear. For all random variables X, X5 and reals a1, a3 such that ] X.dP
and [ X,dP are defined, [(a;X; + a2 X5)dP is defined and satisfies

f(a1X1+ang)dIP>:a1 /deP+a2[X2d]P’. (2.5)
Q JO J0

These two properties together tell us that whenever X (w) = Y"1 ;1 {w € A} for some
na; €ERand A; € Foi=1,..., n, then

XdP = P(A;). 2.6
.[n > ailP(4y) (2.6)

Functions of the form X are called simple functions.

In defining the Lebesgue integral of some random variable X, we use (2.6) as the defi-
nition of the integral when X is a simple function. The next step is to extend the definition
to non-negative random variables. Let X : @ — [0,00) be measurable. The idea is to
approximate X from below using simple functions and take the largest value that can be
obtained this way:

/ XdP = sup {] hdP : hissimpleand 0 < h < X} . (2.7)
Q Q

The meaning of U < V for random variables U/, V is that U(w) < V(w) for all w € .
The supremum on the right-hand side could be infinite, in which case we say the integral
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of X is not defined. Whenever the integral of X is defined, we say that X is integrable or,
if the identity of the measure PP is unclear, that X is integrable with respect to [P.

Integrals for arbitrary random variables are defined by decomposing the random variable
into positive and negative parts. Let X : 2 — R be any measurable function. Then define
XHw) = X(0)[{X(w) >0} and X (w) = —X(@)[{X(w) < 0} so that X (w) =
Xt (w) — X~ (w). Now X+ and X~ are both non-negative random variables called the
positive and negative parts of X. Provided that both X ™ and X ~ are integrable, we define

fXdIF’:/X*’dIP’ffX‘dIP.
Q Q Q

Note that X is integrable if and only if the non-negative-valued random variable | X| is
integrable (Exercise 2.12).

None of what we have done depends on [P being a probability measure. The definitions
hold for any measure, though for signed measures it is necessary to split £ into
disjoint measurable sets on which the measure is positive/negative, an operation that is
possible by the Hahn decomposition theorem. We will never need signed measures
in this book, however.

A particularly interesting case is when {2 = R is the real line, F = B(R) is the Borel
c-algebra and the measure is the Lebesgue measure A, which is the unique measure on
%B(R) such that A((a,b)) = b — a for any a < b. In this scenario, if f : R — Risa
Borel-measurable function, then we can write the Lebesgue integral of f with respect to
the Lebesgue measure as

f fda.
R

Perhaps unsurprisingly, this almost always coincides with the improper Riemann integral
of f, which is normally written as ffzo f(x)dz. Precisely, if | f| is both Lebesgue integrable
and Riemann integrable, then the integrals are equal.

There exist functions that are Riemann integrable and not Lebesgue integrable, and
also the other way around (although examples of the former are more exotic than the
latter).

The Lebesgue measure and its relation to Riemann integration is mentioned because
when it comes to actually calculating the value of an expectation or integral, this is often
reduced to calculating integrals over the real line with respect to the Lebesgue measure. The
calculation is then performed by evaluating the Riemann integral, thereby circumventing the
need to rederive the integral of many elementary functions. Integrals (and thus expectations)
have a number of important properties. By far the most important is their linearity, which
was postulated above as the second property in (2.5). To practice using the notation with
expectations, we restate the first half of this property. In fact, the statement is slightly more
general than what we demanded for integrals above.
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PROPOSITION 2.6. Let (X;); be a (possibly infinite) sequence of random variables on the
same probability space and assume that B [X;] exists for all i and furthermore that X =
> X and E[X] also exist. Then

]E[X]:ZE[XZ-].

This exchange of expectations and summation is the source of much magic in probability
theory because it holds even if X; are not independent. This means that (unlike probabilities)
we can very often decouple the expectations of dependent random variables, which often
proves extremely useful (a collection of random variables is dependent if they are not
independent). You will prove Proposition 2.6 in Exercise 2.14. The other requirement for
linearity is that if ¢ € R is a constant, then E [¢X]| = ¢E [X] (Exercise 2.15).

Another important statement is concerned with independent random variables.

PrROPOSITION 2.7. If X and Y are independent, then E[XY]| = E[X]|E[Y].

In general E [XY] # E[X]|E[Y] (Exercise 2.18). Finally, an important simple result
connects expectations of non-negative random variables to their tail probabilities.

ProrosiTiON 2.8. If X' > 0 is a non-negative random variable, then
o0
IE[X]:[ P(X > x)dz.
0

The integrand in Proposition 2.8 is called the tail probability function z — P (X > z)
of X. This is also known as the complementary cumulative distribution function of X.
The cumulative distribution function (CDF) of X is defined as = — P (X < x) and is
usually denoted by F'x. These functions are defined for all random variables, not just non-
negative ones. One can check that Fiy : R — [0, 1] is increasing, right continuous and
lim,_, s Fx(z) = 0 and lim,_,+ Fx(z) = 1. The CDF of a random variable captures
every aspect of the probability measure Px induced by X, while still being just a function
on the real line, a property that makes it a little more human friendly than Px . One can also
generalise CDFs to random vectors: if X is an R*-valued random vector, then its CDF is
defined as the Fx : R¥ — [0, 1] function that satisfies Fx (z) = P (X < z), where, in
line with our conventions, X < x means that all components of X are less than or equal to
the respective component of z. The pushforward Px of a random element is an alternative
way to summarise the distribution of X. In particular, for any real-valued, f : & — R
measurable function,

E[f(X)] = [X F(2)dPx ()

provided that either the right-hand side, or the left-hand side exist.

Conditional Expectation

Conditional expectation allows us to talk about the expectation of a random variable given
the value of another random variable, or more generally, given some o-algebra.
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ExaMPLE 2.9. Let (€2, F,P) model the outcomes of an unloaded dice: 2 = [6], F = 2%
and P(A) = |A|/6. Define two random variables X and Y by Y (w) =[{w > 3} and
X(w) = w. Suppose we are interested in the expectation of X given a specific value of
Y. Arguing intuitively, we might notice that Y = 1 means that the unobserved X must be
either 4, 5 or 6, and that each of these outcomes is equally likely, and so the expectation of
X given Y = 1should be (4 + 5+ 6)/3 = 5. Similarly, the expectation of X given Y =0
should be (1 + 2 + 3)/3 = 2. If we want a concise summary, we can just write that ‘the
expectation of X given Y is 53Y + 2(1 — Y'). Notice how this is a random variable itself.

The notation for this conditional expectation is E [X | Y. Using this notation, in Exam-
ple 2.9 we can concisely write E [X | Y] = 5Y + 2(1 — Y'). A little more generally, if
X:Q—=XandY : Q= YwithX, Y Cc Rand |X],|Y| <oo,thenE[X |Y]: Q — Ris
the random variable given by E[X | Y](w) = E[X | Y = Y (w)], where

zP(X =zY =y)

E[X|Y:y]:Z:ﬂP(X::I:|Y=?})=Z P(Y =y)

zEX TEX

(2.8)

This is undefined when P(Y = y) = 0 so that E[X | Y](w) is undefined on the measure
zeroset {w : P(Y =Y (w)) = 0}.

Eq. (2.8) does not generalise to continuous random variables because P (Y = y) in the
denominator might be zero for all y. For example, let ¥ be a random variable taking values
on [0,1] according to a uniform distribution and X € {0,1} be Bernoulli with bias Y.
This means that the joint measure on X and YV is P(X = 1.Y € [p,q]) = [pq xdz for
0 < p < g < 1. Intuitively it seems like E[X | Y] should be equal to Y, but how to
define it? The mean of a Bernoulli random variable is equal to its bias so the definition of
conditional probability shows that for 0 < p < g <1,

EX=1|Y €[pq]|=P(X=1]Y € p,q])
P(X =1Y € [pq])
P(Y € [p.q))
¢ -p?
~ 2(qg-p)
p+q
2

This calculation is not well defined when p = ¢ because P (Y € [p, p|) = 0. Nevertheless,
letting g = p + € for € > 0 and taking the limit as ¢ tends to zero seems like a reasonable
way to argue that P (X = 1|Y = p) = p. Unfortunately this approach does not generalise
to abstract spaces because there is no canonical way of taking limits towards a set of measure
zero, and different choices lead to different answers.

Instead we use Eq. (2.8) as the starting point for an abstract definition of conditional
expectation as a random variable satisfying two requirements. First, from Eq. (2.8) we see
that E[X | Y'](«) should only depend on ¥ (@) and so should be measurable with respect to
o(Y'). The second requirement is called the ‘averaging property’. For measurable 4 C ),
Eq. (2.8) shows that
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Efly-(nEX Y]] =D P(Y =y)E[X|Y =y
yeA
=) > eP(X ==Y =y)
ycAxeckX

- ]E[HY*](A)X].

This can be viewed as putting a set of linear constraints on E[X | Y] with one constraint for
each measurable A C ). By treating E[X | Y] as an unknown ¢(Y")-measurable random
variable, we can attempt to solve this linear system. As it turns out, this can always be done:
the linear constraints and the measurability restriction on E [X | Y] completely determine
E[X | Y] except for a set of measure zero. Notice that both conditions only depend on
c(Y') C F. The abstract definition of conditional expectation takes these properties as the
definition and replaces the role of Y with a sub-g-algebra.

DEeFINITION 2.10 (Conditional expectation). Let (€2, 7, P) be a probability space and X :
) — R be random variable and # be a sub-g-algebra of F. The conditional expectation of
X given H is denoted by E[X | H] and defined to be any H-measurable random variable
on {2 such that for all H € H,

fE[X\‘H]dIP:/ XdP. (2.9)
H H

Given a random variable Y, the conditional expectation of X given Y is E[X | Y] =
E[X|o(Y)].

THEOREM 2.11. Given any probability space (0, F,P), a sub-c-algebra H of F and a P-
integrable random variable X : £} — R, there exists an H-measurable function f : @ — R
that satisfies (2.9). Further, any two H-measurable functions f1, f> : Q — R that satisfy
(2.9) are equal with probability one: P(fi1 = fa) = 1.

When random variables X and Y agree with P-probability one, we say they are [P-almost
surely equal, which is often abbreviated to ‘X = Y P-a.s.’, or ‘X = Y a.s.” when the
measure is clear from context. A related useful notion is the concept of null sets: U € F
is a null set of P, or a P-null set if P(U/) = 0. Thus, X = Y P-as.ifandonly if X =Y
agree except on a [P-null set.

The reader may find it odd that E[X | Y] is a random variable on €2 rather than
the range of Y. Lemma 2.5 and the fact that E[X |¢(Y)] is o(Y )-measurable
shows there exists a measurable function f : (R,B(R)) — (R,B(R)) such that
EX |o(Y)|(w) = (feY)(w) (see Fig. 2.4). In this sense E[X | Y](w) only depends
on Y (w), and occasionally we write E[X | Y] (y).

Returning to Example 2.9, we see that E[X |Y] = E[X|o(Y)] and o(Y) =
{{1,2,3},{4,5,6},0,9}. Denote this set-system by H for brevity. The condition that
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5 Can you think of a set that is not Borel measurable? Such sets exist, but do not arise naturally in
applications. The classic example is the Vitali set, which is formed by taking the quotient group
G = R/Q and then applying the axiom of choice to choose a representative in [0, 1] from each
equivalence class in G. Non-measurable functions are so unusual that you do not have to worry
much about whether or not functions X : R — R are measurable. With only a few exceptions,
questions of measurability arising in this book are not related to the fine details of the Borel o-
algebra. Much more frequently they are related to filtrations and the notion of knowledge available
having observed certain random elements.

6 There is a lot to say about why the sum, or the product of random variables are also random
variables. Or why inf,, X, sup,, X, liminf,, X, limsup,, X,, are measurable when X,, are.
The key point is to show that the composition of measurable maps is a measurable map and that
continuous maps are measurable and then apply these results (Exercise 2.1). For lim sup,, X,
just rewrite it as limy;, 00 SUpP,,~.,,, X note thatsup,,~, X, is decreasing (we take suprema of
smaller sets as m increases), hence lim sup,, Xn = inf,, SUP,, >, <{n, reducing the question to
studying inf, X, and sup,, X,. Finally, for inf,, X, note that it suffices if {w :inf, X, >t}
is measurable for any ¢ real. Now, inf,, X,, > ¢ if and only if X,, > ¢ for all n. Hence, {w :
inf,, X,, > t} = Ny{w : X,, > t}, which is a countable intersection of measurable sets, hence
measurable (this latter follows by the elementary identity (M; A;)° = U; AY).

7 The factorisation lemma, Lemma 2.5, is attributed to Joseph Doob and Eugene Dynkin. The
lemma sneakily uses the properties of real numbers (think about why), which is another reason
why what we said about g-algebras containing all information is not entirely true. The lemma has
extensions to more general random elements [Taraldsen, 2018, for example]. The key requirement
in a way is that the g-algebra associated with the range space of Y should be rich enough.

8 We did not talk about basic results like Lebesgue’s dominated/monotone convergence theorems,
Fatou’s lemma or Jensen’s inequality. We will definitely use the last of these, which is explained in
a dedicated chapter on convexity (Chapter 26). The other results can be found in the texts we cite.
They are concerned with infinite sequences of random variables and conditions under which their
limits can be interchanged with Lebesgue integrals. In this book we rarely encounter problems
related to such sequences and hope you forgive us on the few occasions they are necessary (the
reason is simply because we mostly focus on finite time results or take expectations before taking
limits when dealing with asymptotics).

9 You might be surprised that we have not mentioned densities. For most of us, our first exposure
to probability on continuous spaces was by studying the normal distribution and its density

plz) = exp(—z”/2), (2.10)

1
V2n
which can be integrated over intervals to obtain the probability that a Gaussian random variable
will take a value in that interval. The reader should notice that p : R — R is Borel measurable
and that the Gaussian measure associated with this density is P on (R, B(IR)) defined by

P(A) = Lpd?t.

Here the integral is with respect to the Lebesgue measure A on (R, B(IR)). The notion of a density
can be generalised beyond this simple setup. Let P and @@ be measures (not necessarily probability

measures) on arbitrary measurable space (€2, F). The Radon-Nikodym derivative of P with

respect to () is an F-measurable random variable % : £2 — [0, 00) such that
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P4) = EdQ forall A € F. (2.11)

We can also write this in the form f]IAdP = f Ia jg d@), A € F, from which we may realise

that for any X P-integrable random variable, [ XdP = [ X 95 & dQ must also hold. This is often
called the change-of-measure formula. Another word for thc Radon—leodym derivative % is
the density of P with respect to (). Itis not hard to find examples where the density does not exist.
We say that P is absolutely continuous with respect to @ if Q(A) = 0 = P(A) = 0 for
all A € F. thn cants it follows immediately that I? is absolutely continuous with respect
to @ by Eq. (2. ll) Except for some pathological cases, it turns out that this is both necessary
and sufficient for the existence of dP/dQ). The measure @ is o-finite if there exists a countable

covering {A;} of {2 with F-measurable sets such that Q(A;) < oo for each i.

THEOREM 2.13. Let P, Q be measures on a common measurable space (0, F) and assume that
Q is o-finite. Then the density of P with respect to Q, %, exists if and only if P is absolutely
continuous with respect to (). Furthermore, % is uniquely defined up to a QQ-null set so that for
any f1, fa satisfying (2.11), fi = f2 holds Q-almost surely.

Densities work as expected. Suppose that £ is a standard Gaussian random variable. We usually
write its density as in Eq. (2.10), which we now know is the Radon—Nikodym derivative of the
Gaussian measure with respect to the Lebesgue measure. The densities of ‘classical’ continuous
distributions are almost always defined with respect to the Lebesgue measure.

In line with the literature, we will use P <€ @ to denote that P is absolutely continuous with re-
spect to (). When P is absolutely continuous with respect to (2, we also say that () dominates P.
A useful result for Radon—Nikodym derivatives is the chain rule, which states that if P < ) <
S, then ::;5 d—(g = ‘“D . The proof of this result follows from our earlier observation that [ fdQ =
Ik I35 49 48 for any Q integrable f.Indeed, the chain rule is obtained from this by taking f = H4
with A € F and noting that this is indeed @-integrable and fJ]A ‘“’dQ J14dQ. The cham
rule is often used to reduce the calculation of densities to calculanon with known densities.

The Radon-Nikodym derivative unifies the notions of distribution (for discrete spaces) and
density (for continuous spaces). Let §2 be discrete (finite or countable) and let p be the counting
measure on (€, 2%), which is defined by p(A) = |A|. For any P on (£, F), it is easy to see
that P < p and Z"I‘;( ) = P({#}), which is sometimes called the distribution function of P.

The Radon—Nikodym derivative provides another way to define the conditional expectation. Let
X be an integrable random variable on (Q, F,P) and H C F be a sub-g-algebra and P|y be
the restriction of P to (€2, H). Define measure  on (€2, H) by u(A) = [, XdP|s. It is easy
to check that y < P|y and that E[X | H] = 4 satisfies Eq. (2.9). We note that the proof of

dPF| gy
the Radon—-Nikodym theorem is nontrivial and that the existence of conditional expectations are

more easily guaranteed via an ‘elementary’ but abstract argument using functional analysis.

The Fubini-Tonelli theorem is a powerful result that allows one to exchange the order of
integrations. This result is needed for example for proving Proposition 2.8 (Exercise 2.19). To state
it, we need to introduce product measures. These work as expected: given two probability spaces,
(21, F1,P1) and (2, F2, P2), the product measure PP of PPy and P is defined as any measure
on (Ql X o, F1 ® ]'-g) that satisfies ]P(Al, Az) = ]Pl(Al)]P2(A2) for all (Al Az.) e F1 x Fa
(recall that F; @ F» = o(F, x JFz) is the product g-algebra of F, and F3). Theorem 2.4
implies that this product measure, which is often denoted by P; x P2 (or P1 @ P3) is uniquely
defined. (Think about what this product measure has to do with independence.) The Fubini—
Tonelli theorem (often just ‘Fubini’) states the following: let (Q1, F1,P1) and (Q2, F2,P2)
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be two probability spaces and consider a random variable X on the product probability space
(QF,P) = (1 x Q2,F1 @ Fo,Py x Pp). If any of the three integrals [ | X (w)|dP(w),
J(J | X (w1, wz2)|dP1(@1)) dP2(w3), ([ |X (@1, @2)| dP2(w32)) dPy (@) is finite, then

'/-X(cu)clIP’(w) - f(‘[X(au,an)dPl(ml)) dPs(w3)

:f(fX(wl,MQ)dPQ(&?Q)) dPy (wn).

15 For topological space X, the support of a measure u on (X, B(X)) is
Supp(p) = {z € X : u(U) > 0 for all neighborhoods U of z}.

When X is discrete, this reduces to Supp(u) = {z : u({z}) > 0}.

16 Let X be a topological space. The weak* topology on the space of probability measures P(X)
on (X,B(X)) is the coarsest topology such that g +— [ fdu is continuous for all bounded
continuous functions f : X — R. In particular, a sequence of probability measures ()
converges to u in this topology if and only if limpnoo [ fdun = [ fdu for all bounded
continuous functions f : X — R.

o0
n=1

THEOREM 2.14. When X is compact and Hausdorff and P(X) is the space of regular probability
measures on (X, B(X)) with the weak* topology, then P(X) is compact.

17 Mathematical terminology can be a bit confusing sometimes. Since [E maps (certain) functions
to real values, it is also called the expectation operator. ‘Operator’ is just a fancy name for a
function. In operator theory, the study of operators, the focus is on operators whose domain is
infinite dimensional, hence the distinct name. However, most results of operator theory do not
hinge upon this property. If the image space is the set of reals, we talk about functionals. The
properties of functionals are studied in yet another subfield of mathematics, functional analysis.
The expectation operator is a functional that maps the set of P-integrable functions (often denoted
by L'(Q,P) or L'(P)) to reals. Its most important property is linearity, which was stated as a
requirement for integrals that define the expectation operator (Eq. (2.5)). In line with the previous
comment, when we use [E, more often than not, the probability space remains hidden. As such,
the symbol E is further abused.

Bibliographic Remarks

Much of this chapter draws inspiration from David Pollard’s A user’s guide to measure theoretic
probability [Pollard, 2002]. We like this book because the author takes a rigourous approach, but still
explains the ‘why’ and ‘how’ with great care. The book gets quite advanced quite fast, concentrating
on the big picture rather than getting lost in the details. Other useful references include the book
by Billingsley [2008], which has many good exercises and is quite comprehensive in terms of its
coverage of the ‘basics’. These books are both quite detailed. For an outstanding shorter introduction
to measure-theoretic probability, see the book by Williams [1991], which has an enthusiastic style
and a pleasant bias towards martingales. We also like the book by Kallenberg [2002], which is
recommended for the mathematically inclined readers who already have a good understanding of the
basics. The author has put a major effort into organising the material so that redundancy is minimised
and generality is maximised. This reorganisation resulted in quite a few original proofs, and the book
is comprehensive. The factorisation lemma (Lemma 2.5) is stated in the book by Kallenberg [2002]
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(Lemma 1.13 there). Kallenberg calls this lemma the ‘functional representation’ lemma and attributes
it to Joseph Doob. Theorem 2.4 is a corollary of Carathéodory’s extension theorem, which says that
probability measures defined on semi-rings of sets have a unique extension to the generated -algebra.
The remaining results can be found in either of the three books mentioned above. Theorem 2.14
appears as theorem 8.9.3 in the two-volume book by Bogachev [2007]. Finally, for something older
and less technical, we recommend the philosophical essays on probability by Pierre Laplace, which
was recently reprinted [Laplace, 2012].

Exercises

2.1 (COMPOSING RANDOM ELEMENTS) Show that if f is F/G-measurable and g is G/?-measurable
for sigma algebras F, G and ‘H over appropriate spaces, then their composition, g o f (defined the
usual way: (g o f)(w) = g(f(w)), w € ), is F/H-measurable.

2.2 Let Xy, ..., X, be random variables on (2, 7). Prove that (X, ..., X,) is a random vector.

2.3 (RANDOM VARIABLE INDUCED 0-ALGEBRA) Let I be an arbitrary set and (V, X)) a measurable
space and X : { — V an arbitrary function. Show that ©x = {X~'(A) : A € £} is a g-algebra
overU.

2.4 Let (€2, F) be a measurable space and A € Qand Fl4a = {ANB: B e F}.

(a) Show that (A, F|a) is a measurable space.
(b) Show thatif A € F,then F|4 ={B:B e F,BC A}.

2.5Let G C 2 be a non-empty collection of sets and define d(G) as the smallest g-algebra that
contains G. By ‘smallest’ we mean that F € 2 is smaller than 7' € 2 if F ¢ F'.

(a) Show that ¢(G) exists and contains exactly those sets A that are in every g-algebra that con-
tains G.

(b) Suppose (', F) is a measurable space and X : €' — Q be F/G-measurable. Show that X
is also F /o (G)-measurable. (We often use this result to simplify the job of checking whether a
random variable satisfies some measurability property).

(c) Prove thatif A € F where F is a g-algebra, then [ { A} is F-measurable.

2.6 (KNOWLEDGE AND 0-ALGEBRAS: A PATHOLOGICAL EXAMPLE) In the context of Lemma 2.5, show
an example where ¥ = X and yet Y is not ¢(X ') measurable.

HINT  As suggested after the lemma, this can be arranged by choosingQ2 =Y =X =R, X (w) =
Y(w)=w, F=H=2(R)and G = {0, R} to be the trivial o-algebra.

2.7 Let (€2, F, P) be a probability space, B € F be such that P (B) > 0. Prove that A — P (A | B)
is a probability measure over (£2, F).

2.8 (BAYES LAW) Verify (2.2).

2.9 Consider the standard probability space (€2, F,P) generated by two standard, unbiased, six-sided
dice that are thrown independently of each other. Thus, Q@ = {1,...,6}% F = 2% and P(A) =
|A|/62 for any A € F so that X;(w) = w; represents the outcome of throwing dice i € {1,2}.
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(a) Show that the events “X; < 2" and ‘X5 is even’ are independent of each other,
(b) More generally, show that for any two events, A € o(X1) and B € ¢(Xz2), are independent of
each other.

2.10 (SERENDIPITOUS INDEPENDENCE) The point of this exercise is to understand independence more
deeply. Solve the following problems:

(a) Let (€2, F,P) be a probability space. Show that () and €2 (which are events) are independent of
any other event. What is the intuitive meaning of this?

(b) Continuing the previous part, show that any event A € F with P (A) € {0, 1} is independent of
any other event.

(c) What can we conclude about an event A € F that is independent of its complement, A° = 2\ A?
Does your conclusion make intuitive sense?

(d) What can we conclude about an event A € F that is independent of itself? Does your conclusion
make intuitive sense?

(e) Consider the probability space generated by two independent flips of unbiased coins with the
smallest possible g-algebra. Enumerate all pairs of events A, B such that A and B are indepen-
dent of each other.

(f) Consider the probability space generated by the independent rolls of two unbiased three-sided
dice. Call the possible outcomes of the individual dice rolls 1, 2 and 3. Let X; be the random
variable that corresponds to the outcome of the ith dice roll (i € {1,2}). Show that the events
{X1 <2} and {X; = X} are independent of each other.

(g) The probability space of the previous example is an example when the probability measure is
uniform on a finite outcome space (which happens to have a product structure). Now consider any
n-element, finite outcome space with the uniform measure. Show that A and B are independent
of each other if and only if the cardinalities | A|, | B|, |A N B| satisfy n|A N B| = |A] - | B|.

(h) Continuing with the previous problem, show that if n is prime, then no non-trivial events are
independent (an event A is trivial if P (A) € {0, 1}).

(i) Construct an example showing that pairwise independence does not imply mutual independence.

(j) Is it true or not that A, B,C are mutually independent if and only if P(ANBNC) =
P(A)P(B)P(C)? Prove your claim.

2.11 (INDEPENDENCE AND RANDOM ELEMENTS) Solve the following problems:

(a) Let X be a constant random element (that is, X (w) = x for any w € € over the outcome space
over which X is defined). Show that X is independent of any other random variable.

(b) Show that the above continues to hold if X is almost surely constant (that is, P (X = ) = 1 for
an appropriate value x).

(c) Show that two events are independent if and only if their indicator random variables are indepen-
dent (that is, A, B are independent if and only if X (w) = [{w € A} and YV (w) = I{w € B}
are independent of each other).

(d) Generalise the result of the previous item to pairwise and mutual independence for collections of
events and their indicator random variables.

2.12 Our goal in this exercise is to show that X is integrable if and only if | X| is integrable. This
is broken down into multiple steps. The first issue is to deal with the measurability of | X|. While a
direct calculation can also show this, it may be worthwhile to follow a more general path:

(a) Any f: R — R continuous function is Borel measurable.
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by reversing the process. To do this, we rearrange the ([F})72, sequence into a grid. For
example:

Fy Fy, Fy, I, - -
Fy, Fs5, Fg, -
Fs, Fy, - -
Fig,---

Letting X, ¢ be the tth entry in the mth row of this grid, we define X,, = >_,7, 27X, ;,
and again one can easily check that with this choice the sequence X7, X5, ... is independent
and A x, = p is uniform for each {. O

Stochastic Processes

Let T be an arbitrary set. A stochastic process on probability space (€2, F, IP) is a collection
of random variables {X; : ¢ € T'}. In this book 7 will always be countable, and so in the
following we restrict ourselves to 7 = N. The first theorem is not the most general, but
suffices for our purposes and is more easily stated than more generic alternatives.

THEOREM 3.2. For each n € N, let (Q,,, F,,) be a Borel space and [1,, be a measure on
(Q x - xQy, F1 & --- @ F,) and assume that 1, and [i,, 1 are related through

Pnt1(A X Qp41) = un(A4) forall Ae Q@ @8, (3.1)

Then there exists a probability space (), F,P) and random elements X, Xs, ... with X, :
Q — & such that Px, . x, = Up foralln.

Sequences of measures (11, ), satisfying Eq. (3.1) are called projective.

Theorem 3.1 follows immediately from Theorem 3.2. By assumption a random variable
takes values in (R, B(RR)), which is Borel. Then let p,, = @}, u be the n-fold product
measure of y with itself. That this sequence of measures is projective is clear, and the
theorem does the rest.

Markov Chains

A Markov chain is an infinite sequence of random elements (X, )7, where the conditional
distribution of X, given X,..., X is the same as the conditional distribution of X,
given X;. The sequence has the property that given the last element, the history is irrelevant
to ‘predict’ the future. Such random sequences appear throughout probability theory and

have many applications besides. The theory is too rich to explain in detail, so we give the
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basics and point towards the literature for more details at the end. The focus here is mostly
on the definition and existence of Markov chains.

Let (X, F) and (), G) be measurable spaces. A probability kernel or Markov kernel
from (X, F) to (V,G) is a function K : & x G — [0, 1] such that

(a) K(x,-)isameasure forall z € X'; and
(b) K (-, A)is F-measurable forall A € G.

The idea here is that K describes a stochastic transition. Having arrived at , a process’s next
state is sampled Y ~ K(z,-). Occasionally, we will use the notation K, (A) or K(A|x)
rather than K (x, A).

If Kyisa (X, F) — (), G) probability kernel and Ky isa (), G) — (Z, H) probability
kernel, then the product kernel K; ® K> is the probability kernel from (X, F) — (¥ x
Z.G @ H) defined by

(K © Ka) (z, A) = / [ La((y. ) Ka(y, d=) K (z, dy).
yvJ/z

When P is a measure on (X', F) and K is a kernel from A’ to )V, then P ® K is a measure
on (X x Y, F ® G) defined by

(PeK)A)= [ [y La((z. y)K (2, dy)dP(x).

There operations can be composed. When P is a probability measure on A and K a kernel
from A to )V and K akernel from A’ x Y to Z, then P& K| @ K5 is a probability measure
on X x Y x Z. The following provides a counterpart of Theorem 3.2,

THEOREM 3.3 (Ionescu-Tulcea). Let (§2y,, F, )02, be a sequence of measurable spaces
and K, be a probability measure on (24, F1). For n > 2, let K,, be a probability kernel
from ]_[;:11 Q0 to Q.. Then there exists a probability space (§, F,IP) and random elements
(X)72, with Xy + Q — Qq such that Px, . x, = @, K foralln € N*.

A homogeneous Markov chain is a sequence of random elements (X, )72 taking values
in state space S = (X', F) and with

P(Xipy €| X, Xy) =P( Xy €| Xy) = p(Xe ) almost surely,

where 1 is a probability kernel from (X', F) to (X, F) and we assume that P (X; € -) =
tio(+) for some measure g on (X, F).

The word ‘homogeneous’ refers to the fact that the probability kernel does not
change with time. Accordingly, sometimes one writes ‘time homogeneous’ instead
of homogeneous. The reader can no doubt see how to define a Markov chain where u
depends on £, though doing so is purely cosmetic since the state space can always be
augmented to include a time component.

Note that if u(z |-) = ug(-) forall z € X, then Theorem 3.3 is yet another way to prove
the existence of an infinite sequence of independent and identically distributed random
variables. The basic questions in Markov chains resolve around understanding the evolution
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of X in terms of the probability kernel. For example, assuming that €2, = , forallt € N,
does the law of X, converge to some fixed distribution as ¢ — oo, and if so, how fast is
this convergence? For now we make do with the definitions, but in the special case that X’
is finite, we will discuss some of these topics much later in Chapters 37 and 38.

Martingales and Stopping Times

Let X1, X5, ...beasequence of random variables on (Q, 7, P) and F = (F;)f_, afiltration
of F and where we allow n = oo. Recall that the sequence (X;)}-, is F-adapted if X; is
Fp-measurable forall 1 <t < n.

DErFNITION 3.4. A [F-adapted sequence of random variables (X} ), is a F-adapted mar-
tingale if

(a) E[X;|F; 1] = X;_ 1 almost surely forall t € {2,3,...}; and
(b) X is integrable.

If the equality is replaced with a less-than (greater-than), then we call (X, ), a supermartin-
gale (respectively, a submartingale).

The time index ¢ need not run over N*. Very often ¢ starts at zero instead.

ExamPLE 3.5. A gambler repeatedly throws a coin, winning a dollar for each heads and
losing a dollar for each tails. Their total winnings over time is a martingale. To model this sit-
uation, let Y7, Y, .. . be a sequence of independent Rademacher distributions, which means
that P(Y; =1) = P(Y; = —1) = 1/2. The winnings after ¢ rounds is S; = >.'_, Y.,
which is a martingale adapted to the filtration (F;)72, given by F; = o(¥7,...,Y;). The

definition of super/sub-martingales (the direction of inequality) can be remembered by
remembering that the definition favors the casino, not the gambler.

Can a gambler increase its expected winning by stopping cleverly? Precisely, the gambler
at the end of round ¢ can decide to stop (6; = 1) or continue (6; = 0) based on the infor-
mation available to them. Denoting by 7 = min{f : 6, = 1} the time when the gambler
stops, the question is whether by a clever choice of (8;)sen, E[S;] can be made positive.
Here, (0¢)¢cn. a sequence of binary, F-adapted random variables, is called a stopping rule,
while 7 is a stopping time with respect [F.

Note that the stopping rule is not allowed to inject additional randomness beyond what
is already there in F.

DEFINITION 3.6. Let F = (F});en be a filtration. A random variable T with values in
N U {oo} is a stopping time with respect to IF if 1{7 < ¢} is F;-measurable for all ¢ € N.
The g-algebra at stopping time T is

Fe={AeF . An{t <t} e Fforallt}.
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The filtration is usually indicated by writing ‘T is a F-stopping time’. When the
underlying filtration is obvious from context, it may be omitted. This is also true for
martingales.

Using the interpretation of ¢-algebras encoding information, if (F;); is thought of as the
knowledge available at time ¢, F; is the information available at the random time 7. Exer-
cise 3.7 asks you to explore properties of stopped o-algebras; amongst other things, it asks
you to show that F; is in fact a g-algebra.

ExampLE 3.7. In the gambler example, the first time when the gambler’s winnings hits 100
is a stopping time: T = min{¢ : S; = 100}. On the other hand, 7 = min{t : S;y; = —1}
is not a stopping time because I {T = ¢} is not F;-measurable.

Whether or not E [S;] can be made positive by a clever choice of a stopping time 7 is
answered in the negative by a fundamental theorem of Doob:

THEOREM 3.8 (Doob’s optional stopping). Let F = (F})ien be a filtration and (X )ien be
an F-adapted martingale and T an [F-stopping time such that at least one of the following
holds:

(a) There exists ann € N such that P (1t > n) = 0.

(b) E[7] < oo, and there exists a constant ¢ € R such that for all t € N, E[| X¢41 —
X¢|| Fi] < ¢ almost surely on the event that T > 1.

(c) There exists a constant ¢ such that | Xn.| < ¢ almost surely for all t € N.

Then X . is almost surely well defined, and E[X ] = E[X]. Furthermore, when (X) is a
super/sub-martingale rather than a martingale, then equality is replaced with less/greater-
than, respectively.

The theorem implies that if S; is almost-surely well defined then either E [t] = oo or
E[S:] = 0. Gamblers trying to outsmart the casino would need to live a very long life!
One application of Doob’s optional stopping theorem is a useful and a priori surprising
generalisation of Markov’s inequality to non-negative supermartingales.

THEOREM 3.9 (Maximal inequality). Let (X;)7<, be a supermartingale with X; > 0 almost
surely for all t. Then for any € > Q,

P (supXt > E) < E[X ]

teN &

Proof Let A, be the event thatsup,,, X; > ¢and 7 = (n+ 1) Amin{t < n: X; > ¢},
where the minimum of an empty set is assumed to be infinite so that T = n+1if X; < ¢ for
all 0 < ¢ < n. Clearly 7 is a stopping time and PP (7 < n + 1) = 1. Then by Theorem 3.8

and elementary calculation,
E[Xy] = E[X,] > E[X,I{t <n}] 2 Elel{r < n}] =¢P(1 <n) =¢cP(4,),

where the second inequality uses the definition of the stopping time and the non-negativity
of the supermartingale. Rearranging shows that P (A,,) < E[X,]/¢ for all n € N. Since
Ay € Ay C .. it follows that P (sup,cy Xt > €) = P (Unendn) < E[X]/e. O
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Markov’s inequality (which we will cover in the next chapter) combined with the
definition of a supermartingale shows that

P(Xn>¢) < @. (3.2)

In fact, in the above we have effectively applied Markov’s inequality to the random
variable X; (the need for the proof arises when the conditions of Doob’s optional
sampling theorem are not met). The maximal inequality is a strict improvement over
Eg. (3.2) by replacing X, with sup,cy X; at no cost whatsoever.

A similar theorem holds for submartingales. You will provide a proof in Exercise 3.8.

THEOREM 3.10. Let (X;)}, be a submartingale with Xy > 0 almost surely for all t. Then
forany € > 0,

E[X,]

IP’( max X; > a‘) < :

te{0,1,...,n}

Notes

1 Some authors include in the definition of a stopping time 7 that P (7 < oc) = 1 and call random
times without this property Markov times. We do nor adopt this convention and allow stopping
times to be infinite with non-zero probability. Stopping times are also called optional times.

2 There are several notations for probability kernels depending on the application. The following
are commonly seen and equivalent: K(z, A) = K(A|z) = K.(A). For example, in statistics a
parametric family is often given by {Ps : @ € O}, where © is the parameter space and Py is a
measure on some measurable space (€2, F). This notation is often more convenient than writing
P(6, -). In Bayesian statistics the posterior is a probability kernel from the observation space to
the parameter space, and this is often written as P(- | z).

3 There is some disagreement about whether or not a Markov chain on an uncountable state space
should instead be called a Markov process. In this book we use Markov chain for arbitrary state
spaces and discrete time. When time is continuous (which it never is in this book), there is general
agreement that ‘process’ is more appropriate. For more history on this debate, see [Meyn and
Tweedie, 2012, preface].

4 A topological space X is Polish if it is separable and there exists a metric d that is compatible with
the topology that makes (X', d) a complete metric space. All Polish spaces are Borel spaces. We
follow Kallenberg [2002], but many authors use standard Borel space rather than Borel space,
and define it as the o-algebra generated by the open sets of a Polish space.

5 In Theorem 3.2 it was assumed that each u,, was defined on a Borel space. No such assumption
was required for Theorem 3.3, however. One can derive Theorem 3.2 from Theorem 3.3 by using
the existence of regular conditional probability measures when conditioning on random elements
taking values in a Borel space (see the next note). Topological assumptions often creep into foun-
dational questions relating to the existence of probability measures satisfying certain conditions,
and pathological examples show these assumptions cannot be removed completely. Luckily, in this
book we have no reason to consider random elements that do not take values in a Borel space.
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(b) If T = k for some k > 1, then F; = F.

(c) If Ty < T2, then Fr, C Fr,.

(d) 7 is Fr-measurable.

(e) If (X¢) is F-adapted, then X is F;-measurable.

(f) F is the smallest g-algebra such that all F-adapted sequences (X ) satisfy X is F.-measurable.

3.8 Prove Theorem 3.10.

3.9 (DECOMPOSING JOINT DISTRIBUTIONS) Let X and Y be random elements on the same probability
space (92, F, P) taking values in measurable spaces A" and ) respectively and assume that A" is Borel.
Show that P(x yy = Py & [Px|y where [Px |y denotes a regular conditional distribution of X and Y
(the existence of which is guaranteed by Theorem 3.11).
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Stochastic Bandits

The goal of this chapter is to formally introduce stochastic bandits. The model introduced
here provides the foundation for the remaining chapters that treat stochastic bandits. While
the topic seems a bit mundane, it is important to be clear about the assumptions and defini-
tions. The chapter also introduces and motivates the learning objectives, and especially the
regret. Besides the definitions, the main result in this chapter is the regret decomposition,
which is presented in Section 4.5.

Core Assumptions

A stochastic bandit is a collection of distributions v = (P, : a € A), where A is the set
of available actions. The learner and the environment interact sequentially over n rounds.
In each round t € {1,...,n}, the learner chooses an action A; € A, which is fed to the
environment. The environment then samples a reward X; € R from distribution P4, and
reveals X to the learner. The interaction between the learner (or policy) and environment
induces a probability measure on the sequence of outcomes Ay, X, Az, Xo, ..., A,, Xy
Usually the horizon n is finite, but sometimes we allow the interaction to continue indefi-
nitely (n = o0). The sequence of outcomes should satisfy the following assumptions:

(a) The conditional distribution of reward X, given Ay, X1,..., Ai—1, Xi—1, Ay is Pa,,
which captures the intuition that the environment samples X; from P4, in round .

(b) The conditional law of action A; given Ay, X1,..., A; 1, Xe—q1is me(- | Ay, X1, .- -,
At_1,X¢_1), where 711, T2, . . . is a sequence of probability kernels that characterise
the learner. The most important element of this assumption is the intuitive fact that the

learner cannot use the future observations in current decisions.

A mathematician might ask whether there even exists a probability space carrying these
random elements such that (a) and (b) hold. Specific constructions showing this in the
affirmative are given in Section 4.6. These constructions are also valuable because they
teach us important lessons about equivalent models. For now, however, we move on.

The Learning Objective

The learner’s goal is to maximise the total reward S,, = ;" | X;, which is a random quan-
tity that depends on the actions of the learner and the rewards sampled by the environment.
This is not an optimisation problem for three reasons:
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1 What is the value of n for which we are maximising? Occasionally prior knowledge of
the horizon is reasonable, but very often the learner does not know ahead of time how
many rounds are to be played.

2 The cumulative reward is a random quantity. Even if the reward distributions were known,
then we require a measure of utility on distributions of .S,,.

3 The learner does not know the distributions that govern the rewards for each arm.

Of these points, the last is fundamental to the bandit problem and is discussed in the next
section. The lack of knowledge of the horizon is usually not a serious issue. Generally
speaking it is possible to first design a policy assuming the horizon is known and then
adapt it to account for the unknown horizon while proving that the loss in performance is
minimal. This is almost always quite easy, and there exist generic approaches for making
the conversion.

Assigning a utility to distributions of 5, is more challenging. Suppose that S,, is the
revenue of your company. Fig. 4.1 shows the distribution of .S, for two different learners;
call them A and B. Suppose you can choose between learners A and B. Which one would
you choose? One choice is to go with the
learner whose reward distribution has the
larger expected value. This will be our de-
fault choice for stochastic bandits, but it
bears remembering that there are other con-
siderations, including the variance or tail
behaviour of the cumulative reward, which
we will discuss occasionally. In particular, in
the situation shown on in Fig. 4.1, learner
B achieves a higher expected reward than
A. However B has a reasonable probability Reward
of earning less than the least amount that A
can earn, so a risk-sensitive user may prefer
learner A.

Density

Figure 4.1 Alternative revenue distributions

Knowledge and Environment Classes

Even if the horizon is known in advance and we commit to maximising the expected value
of S,,, there is still the problem that the bandit instance v = (P, : a € A) is unknown.
A policy that maximises the expectation of .S,, for one bandit instance may behave quite
badly on another. The learner usually has partial information about v, which we represent
by defining a set of bandits £ for which v € £ is guaranteed. The set £ is called the
environment class. We distinguish between structured and unstructured bandits.

Unstructured Bandits
An environment class £ is unstructured if A is finite and there exist sets of distributions
M, for each a € A such that

E={v=(P,:acA): P, € M, foralla € A},
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Table 4.1 Typical environment classes for stochastic bandits. Supp(P) is the (topological) support of
distribution P. The kurtosis of a random variable X is a measure of its tail behaviour and is defined by
E[(X —E[X])*1/VIX]2. Subgaussian distributions have similar properties to the Gaussian and will be defined
in Chapter 5.

Name Symbol Definition

Bernoulli &k {(B(u:))i : p €[0,1]%}

Uniform &k {(U(al b; ) s a,b € R® with a; < b; for all i}
Gaussian (known var.) Ex(a?) {NV : 4 € R¥}

Gaussian (unknown var.) Ex {(N( Wi, 0} ))l 1 € R¥ and 02 € [0, 00)"}
Finite variance E5(a?) {(P)i : Vxp,[X] < ¢® forall i}

Finite kurtosis EE e (K) {(P); : Kurtx ~p, [X] < & for all i}
Bounded support Ef;_bl {(P:): : Supp(F;) C [a,b]}

Subgaussian E&(0?) {(P:): : Piis o-subgaussian for all i}

or,inshort, £ = X, 4M,. The product structure means that by playing action a the learner
cannot deduce anything about the distributions of actions b # a.

Some typical choices of unstructured bandits are listed in Table 4.1. Of course, these are
not the only choices, and the reader can no doubt find ways to construct more, e.g. by al-
lowing some arms to be Bernoulli and some Gaussian, or have rewards being exponentially
distributed, or Gumbel distributed, or belonging to your favourite (non-)parametric family.

The Bernoulli, Gaussian and uniform distributions are often used as examples for il-
lustrating some specific property of learning in stochastic bandit problems. The Bernoulli
distribution is actually a natural choice. Think of applications like maximising click-through
rates in a web-based environment. A bandit problem is often called a ‘distribution bandit’,
where ‘distribution’ is replaced by the underlying distribution from which the pay-offs
are sampled. Some examples are: Gaussian bandit, Bernoulli bandit or subgaussian bandit.
Similarly we say ‘bandits with X’, where ‘X’ is a property of the underlying distribution
from which the pay-offs are sampled. For example, we can talk about bandits with finite
variance, meaning the bandit environment where the a priori knowledge of the learner is
that all pay-off distributions are such that their underlying variance is finite.

Some environment classes, like Bernoulli bandits, are parametric, while others, like
subgaussian bandits, are non-parametric. The distinction is the number of degrees of
freedom needed to describe an element of the environment class. When the number of
degrees of freedom is finite, it is parametric, and otherwise it is non-parametric. Of course,
if a learner is designed for a specific environment class £, then we might expect that it has
good performance on all bandits v € £. Some environment classes are subsets of other
classes. For example, Bernoulli bandits are a special case of bandits with a finite variance,
or bandits with bounded support. Something to keep in mind is that we expect that it will be
harder to achieve a good performance in a larger class. In a way, the theory of finite-armed
stochastic bandits tries to quantify this expectation in a rigourous fashion.

Structured Bandits

Environment classes that are not unstructured are called structured. Relaxing the require-
ment that the environment class is a product set makes structured bandit problems much
richer than the unstructured set-up. The following examples illustrate the flexibility.
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ExampLE 4.1. Let A = {1,2} and £ = {(B(0),B(1 — 0)) : 6 < [0,1]}. In this
environment class, the learner does not know the mean of either arm, but can learn the mean
of both arms by playing just one. The knowledge of this structure dramatically changes the
difficulty of learning in this problem.

EXAMPLE 4.2 (Stochastic linear bandit). Let A € R4 and 8 € R and
ve = (N({a,8),1):a € A) and £ = {vg : O € RY}.

In this environment class, the reward of an action is Gaussian, and its mean is given by the
inner product between the action and some unknown parameter. Notice that even if A is
extremely large, the learner can deduce the true environment by playing just d actions that
span R%,

ExampLE 4.3. Consider an undirected graph GG with vertices V = {1, ..., |V|} and edges
E = {1,...,|E|}. In each round the learner chooses a path from vertex 1 to vertex
[V'|. Then each edge e € [E] is removed from the graph with probability 1 — &, for
unknown 0 € [0, 1]/¥/. The learner succeeds in reaching their destination if all the edges
in their chosen path are present. This problem can be formalised by letting .4 be the set of

paths and

Vg = (B (H 9,,_) I(LEA) and E={vg:0€0,1]F}

eca

An important feature of structured bandits is that the learner can often obtain
information about some actions while never playing them.

The Regret

In Chapter 1 we informally defined the regret as being the deficit suffered by the learner
relative to the optimal policy. Let v = (P, : a € A) be a stochastic bandit and define

fa(v) = fx zdFP,(z).

—o0

Then let ¢* (v) = maxge.4 fa(v) be the largest mean of all the arms.

We assume throughout that p,(v) exists and is finite for all actions and that
argmax, . 4 Mq(v) is non-empty. The latter assumption could be relaxed by carefully
adapting all arguments using nearly optimal actions, but in practice this is never
required.

The regret of policy 7 on bandit instance v is

Ru(m,v) = nu*(v) — E [th], (4.1)
t=1
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Lemma 4.5 tells us that a learner should aim to use an arm with a larger suboptimality
gap proportionally fewer times.

Note that the suboptimality gap for optimal arm(s) is zero.

Proof of Lemma 4.5 Since It,, is based on summing over rounds, and the right-hand
side of the lemma statement is based on summing over actions, to convert one sum into
the other one, we introduce indicators. In particular, note that for any fixed ¢ we have
ZaeAH{At =a}=1Hence S, =5, X; =5, > X, I{A; = a}, and thus

R, =np"—E[S,] =) ZE (1 = X )T{A, = a}]. (4.6)

ac A t=1

The expected reward in round ¢ conditioned on A, is p4,, which means that

E[(p"— X)I{A =a} |A] =1{A, =a}E[u* — X, | A/
=I{A; =a} (0" — pa,)
=I{Ay = a} (p" — pa)
=I{A; =a}A,.

The result is completed by plugging this into Eq. (4.6) and using the definition of T, (n). O

The argument fails when A is uncountable because you cannot introduce the sum over
actions. Of course the solution is to use an integral, but for this we need to assume (A, G)
is a measurable space. Given a bandit v and policy 7 define measure G on (A, G) by

E]

G(U)=E [iH{At e U}

where the expectation is taken with respect to the measure on outcomes induced by the
interaction of 7 and v.

LEMMA 4.6. Provided that everything is well defined and appropriately measurable,

Rn =E lz AA,] = / Aa (EG(&)
t=1 JA

For those worried about how to ensure everything is well defined, see Section 4.7.

The Canonical Bandit Model (-*)

In most cases the underlying probability space that supports the random rewards and actions
is never mentioned. Occasionally, however, it becomes convenient to choose a specific
probability space, which we call the canonical bandit model.
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Finite Horizon

Letn € N be the horizon. A policy and bandit interact to produce the outcome, which is the
tuple of random variables H,, = (A1, X1,..., A,, X,,). The first step towards constructing
a probability space that carries these random variables is to choose the measurable space.
For each t € [n], let Q; = ([k] x R)! C R?" and F; = B(2;). The random variables

Ay, Xy, ..., Ay, X, that make up the outcome are defined by their coordinate projections:

Alar, 21, ..oy O, Tn) = ay and Xilay, oy, .. an,Ty) = Ty.

The probability measure on (£2,,, 7,,) depends on both the environment and the policy. Our
informal definition of a policy is not quite sufficient now.

DEFINITION 4.7. A policy 7t is a sequence (m;)},, where 7, is a probability kernel from
(1, Fo—1) to ([k], 2[¥). Since [k] is discrete, we adopt the notational convention that for
ie [k,

m(i]ar, @1, .o ai1, 2-1) = m({it a2, a1, To1).

Let v = (P;)Y_, be a stochastic bandit where each P; is a probability measure on
(R, B(R)). We want to define a probability measure on (£2,,, F,,) that respects our under-
standing of the sequential nature of the interaction between the learner and a stationary
stochastic bandit. Since we only care about the law of the random variables (X;) and (A;),
the easiest way to enforce this is to directly list our expectations, which are

(a) the conditional distribution of action A; given Ay, Xy,...,A;-1,X;—1 is
T(f( . | Al, Xl, ey At—ls Xt—l) almost Surely,
(b) the conditional distribution of reward X given Ay, X;,..., A, is P4, almost surely.

The sufficiency of these assumptions is asserted by the following proposition, which we
ask you to prove in Exercise 4.2.

PRrROPOSITION 4.8. Suppose that P and () are probability measures on an arbitrary measur-
able space (0, F) and Ay, X4, ..., A, X,, are random variables on (), where A, € [k]

and X, € R. If both P and Q satisfy (a) and (b), then the law of the outcome under P is the
same as under QQ:

IP:A‘MXJ ----- Ap,Xn = @AI)XI)---,AWH\"R'

Next we construct a probability measure on (£2,,, F,,) that satisfies (a) and (b). To empha-
sise that what follows is intuitively not complicated, imagine that X; € {0, 1} is Bernoulli,
which means the set of possible outcomes is finite and we can define the measure in terms
of a distribution. Let p;(0) = P;({0}) and p;(1) = 1 — p;(0) and define

The reader can check that p,, is a distribution on ([k] x {0,1})" and that the associated
measure satisfies (a) and (b) above. Making this argument rigourous when (FP;) are not
discrete requires the use of Radon—Nikodym derivatives. Let A be a g-finite measure on
(R,*B(RR)) for which P; is absolutely continuous with respect to A for all i, Next, let p; =
dP;/dA be the Radon-Nikodym derivative of I’ with respect to A, which is a function
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pi : R = R such that [, p;dA = P,(B) for all B € B(R). Letting p be the counting
measure with p(8) = | B/, the density p,,; : {2 — R can now be defined with respect to
the product measure (p x A)" by

The reader can again check (more abstractly) that (a) and (b) are satisfied by the probability
measure P, defined by

Py (B) = [ por(@)(p x A)"(dw) forall B € F,.
JB

It is important to emphasise that this choice of (£2,,, F,,,P,z) is not unique. Instead, all
that this shows is that a suitable probability space does exist. Furthermore, if some quantity
of interest depends on the law of H,,, by Proposition 4.8, there is no loss in generality in
choosing (©2,,, F,,,P,.;) as the probability space.

A choice of A such that P; < A for all 7 always exists since A = Z?:l F; satisfies
this condition. For direct calculations, another choice is usually more convenient, e.g.
the counting measure when ( P;) are discrete and the Lebesgue measure for continuous
(P).

There is another way to define the probability space, which can be useful. Define a
collection of independent random variables (Xs,;)ﬁe[n],ie[kl such that the law of X,; is F;.
By Theorem 2.4 these random variables may be defined on (2, F), where 2 = R™* and
F = B(R"™), Then let X; = X;a,, where the actions A; are JF;_;-measurable with
Fio1 = o(A, Xq,..., A1, X,_1). We call this the random table model. Yet another
way is to define (X;)s.; as above butlet X; = X4, (1),4,- This corresponds to sampling a
stack of rewards for each arm at the beginning of the game, giving rise to the reward-stack
model. Each time the learner chooses an action, they receive the reward on top of the stack.
All of these models are convenient from time to time. The important thing is that it does not
matter which model we choose because the quantity of ultimate interest (usually the regret)
only depends on the law of A, X4,..., A, X, and this is the same for all choices.

Infinite Horizon

We never need the canonical bandit model for the case that n = oo. It is comforting to
know, however, that there does exist a probability space (€2, 7, P,;;) and infinite sequences
of random variables X, X»,... and Ay, Ao, ... satisfying (a) and (b). The result follows
directly from the theorem of Ionescu-Tulcea (Theorem 3.3).

The Canonical Bandit Model for Uncountable Action Sets (-#)

For uncountable action sets, a little more machinery is necessary to make things rigourous.
The first requirement is that the action set must be a measurable space (A, G) and the
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collection of distribution v = (P, : a € A) that defines a bandit environment must be
a probability kernel from (A, G) to (R, B(RR)). A policy is a sequence (71;)},, where 71
is a probability kernel from (€2, 1, F; 1) to (A, G) with

t

%G =][(AxR) ad F=Q)(G@BR)).

s=1 s=1

The canonical bandit model is the probability measure [P, on (€2,,, F,,) obtained by taking
the product of the probability kernels 11, Py, ... 1, P, and using lonescu-Tulcea (Theo-
rem 3.3), where P, is the probability kernel from (2;_; x A, F; @ G) to (R, B(R)) given
by P(-| a1, o1, .. a1, 24 1,a;) = Pa,(+).

We did not define P,,; in terms of a density because there may not exist a common
dominating measure for either (P, : a € A) or the policy. When such measures exist,
as they usually do, then P, may be defined in terms of a density in the same manner
as the previous section.

You will check in Exercise 4.5 that the assumptions on v and 7t in this section are
sufficient to ensure the quantities in Lemma 4.6 are well defined and that Proposition 4.8
continues to hold in this setting without modification. Finally, in none of the definitions
above do we require that n be finite.

Notes

1 It is not obvious why the expected value is a good summary of the reward distribution. Decision
makers who base their decisions on expected values are called risk-neutral. In the example shown
on the figure above, a risk-averse decision maker may actually prefer the distribution labelled as A
because occasionally distribution /3 may incur a very small (even negative) reward. Risk-seeking
decision makers, if they exist at all, would prefer distributions with occasional large rewards to
distributions that give mediocre rewards only. There is a formal theory of what makes a decision
maker rational (a decision maker in a nutshell is rational if they do not contradict themself). Ra-
tional decision makers compare stochastic alternatives based on the alternatives’ expected utilities,
according to the von-Neumann—Morgenstern utility theorem. Humans are known not to do this.
We are irrational. No surprise here.

2 The study of utility and risk has a long history, going right back to (at least) the beginning of
probability [Bernoulli, 1954, translated from the original Latin, 1738]. The research can broadly
be categorised into two branches. The first deals with describing how people actually make choices
(descriptive theories), while the second is devoted to characterising how a rational decision maker
should make decisions (prescriptive theories). A notable example of the former type is ‘prospect
theory” [Kahneman and Tversky, 1979], which models how people handle probabilities (espe-
cially small ones) and earned Daniel Khaneman a Nobel Prize (after the death of his long-time
collaborator, Amos Tversky). Further descriptive theories concerned with alternative aspects of hu-
man decision-making include bounded rationality, choice strategies, recognition-primed decision-
making and image theory [Adelman, 2013].
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3 The most famous example of a prescriptive theory is the von Neumann—Morgenstern expected util-
ity theorem, which states that under (reasonable) axioms of rational behaviour under uncertainty,
a rational decision maker must choose amongst alternatives by computing the expected utility
of the outcomes [Neumann and Morgenstern, 1944]. Thus, rational decision makers, under the
chosen axioms, differ only in terms of how they assign utility to outcomes (i.e. rewards). Finance
is another field where attitudes towards uncertainty and risk are important. Markowitz [1952]
argues against expected return as a reasonable metric that investors would use. His argument is
based on the (simple) observation that portfolios maximising expected returns will tend to have a
single stock only (unless there are multiple stocks with equal expected returns, a rather unlikely
outcome). He argues that such a complete lack of diversification is unreasonable. He then proposes
that investors should minimise the variance of the portfolio’s return subject to a constraint on
the portfolio’s expected return, leading to the so-called mean-variance optimal portfolio choice
theory. Under this criteria, portfolios will indeed tend to be diversified (and in a meaningful way:
correlations between returns are taken into account). This theory eventually won him a Nobel
Prize in economics (shared with two others). Closely related to the mean-variance criterion are the
‘value-at-risk” (VaR) and the ‘conditional value-at-risk’, the latter of which has been introduced
and promoted by Rockafellar and Uryasev [2000] due to its superior optimisation properties. The
distinction between the prescriptive and descriptive theories is important: human decision makers
are in many ways violating rules of rationality in their attitudes towards risk.

4 We defined the regret as an expectation, which makes it unusable in conjunction with measures of
risk because the randomness has been eliminated by the expectation. When using a risk measure
in a bandit setting, we can either base this on the random regret or pseudo-regret defined by

R, = nu" — Z X:. (random regret)
t=1

R, = 'n.!u* — Z HA,- (pseudo-regret)
t=1

While 2, is influenced by the noise X; — 4, in the rewards, the pseudo-regret filters this out,
which arguably makes it a better basis for measuring the ‘skill’ of a bandit policy. As these random
regret measures tend to be highly skewed, using variance to assess risk suffers not only from the
problem of penalising upside risk, but also from failing to capture the skew of the distribution.

5 What happens if the distributions of the arms are changing with time? Such bandits are unimagina-
tively called non-stationary bandits. With no assumptions, there is not much to be done. Because
of this, it is usual to assume the distributions change infrequently or drift slowly. We’ll eventually
see that techniques for stationary bandits can be adapted to this set-up (see Chapter 31).

6 The rigourous models introduced in Sections 4.6 and 4.7 are easily extended to more sophisticated
settings. For example, the environment sometimes produces side information as well as rewards
or the set of available actions may change with time. You are asked to formalise an example in
Exercise 4.6.

Bibliographical Remarks

There is now a huge literature on stochastic bandits, much of which we will discuss in detail in the
chapters that follow. The earliest reference that we know of is by Thompson [1933], who proposed an
algorithm that forms the basis of many of the currently practical approaches in use today. Thompson
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Let T*(n) = >0, I{ua, = p”} be the number of times an optimal arm is chosen. Prove or
disprove each of the following statements:

(a) limp—ee E[T(n)]/n=1.
(b) lim, o P (A, > 0) = 0.

4.10 (ONE-ARMED BANDITS) Let M; be a set of distributions on (IR, B(IR)) with finite means and
Mz = {6,,} be the singleton set with a Dirac at 2 € R. The set of bandits £ = M; x My is
called a one-armed bandit because, although there are two arms, the second arm always yields a
known reward of pz. A policy m = (m¢); is called a retirement policy if once action 2 has been
played once, it is played until the end of the game. Precisely, if a; = 2, then

Me41(2 | ar, z1, ..., ae, z¢) = 1 forall (as)z;} and ($s)§=1.

(a) Let n be fixed and © = (71:)}=, be any policy. Prove there exists a retirement policy 7’ =
(7;)i~; such that forall v € £.

R, (', v) € R,(m.v).

(b) Let My = {B(u1) : p1 € [0,1]} and suppose that m = (71,)72, is a retirement policy. Prove
there exists a bandit v € £ such that

Ry (m,v)

lim sup > 0.

n—oo

4.11 (FAILURE OF FOLLOW-THE-LEADER (1)) Consider a Bernoulli bandit with two arms and means
u1 =0.5and pz = 0.6.

(a) Using a horizon of n = 100, run 1000 simulations of your implementation of follow-the-leader
on the Bernoulli bandit above and record the (random) pseudo regret, nu™ — > 1, Ha,.ineach
simulation.

(b) Plot the results using a histogram. Your figure should resemble Fig. 4.2.

B Follow-the-leader

400

200

Frequency

0 2 4 6 8 10
Regret

Figure 4.2 Histogram of regret for follow-the-leader over 1000 trials on a Bernoulli bandit with means
up =05, =06
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Figure 4.3 The regret for Follow-the-leader over 1000 trials on Bernoulli bandit with means y; =
0.5, u2 = 0.6 and horizons ranging from n = 100 to n = 1000.

(c) Explain the results in the figure.

4.12 (FAILURE OF FOLLOW-THE-LEADER (11)) Consider the same Bernoulli bandit as used in the
previous question.

(a) Run 1000 simulations of your implementation of follow-the-leader for each horizon n €
{100, 200, 300, ..., 1000}.

(b) Plot the average regret obtained as a function of n (see Fig. 4.3). Because the average regret
is an estimator of the expected regret, you should generally include error bars to indicate the
uncertainty in the estimation.

(c) Explain the plot. Do you think follow-the-leader is a good algorithm? Why/why not?
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Concentration of Measure

Before we can start designing and analysing algorithms, we need one more tool from
probability theory, called concentration of measure. Recall that the optimal action is the
one with the largest mean. Since the mean pay-offs are initially unknown, they must be
learned from data. How long does it take to learn about the mean reward of an action? In
this section, after introducing the notion of tail probabilities, we look at ways of obtaining
upper bounds on them. The main point is to introduce subgaussian random variables and the
Cramér—Chernoff exponential tail inequalities, which will play a central role in the design
and analysis of the various bandit algorithms.

Tail Probabilities

Suppose that X, X7, Xo, ..., X, is a sequence of independent and identically distributed
random variables, and assume that the mean p = E[X] and variance 02 = V[X] exist.
Having observed X, X, ..., Xy, we would like to estimate the common mean p. The
most natural estimator is

which is called the sample mean or empirical mean. Linearity of expectation (Proposi-
tion 2.6) shows that IE[{,L} = u, which means that Ifl is an unbiased estimator of u. How
far from p do we expect [i to be? A simple measure of the spread of the distribution of a
random variable Z is its variance, V [Z] = E [(Z — E[Z])?]. A quick calculation using
independence shows that
a2

VIg =E[(f - p)?] =, (5.1)
which means that we expect the squared distance between u and [i to shrink as n grows
large at a rate of 1/n and scale linearly with the variance of X. While the expected squared
error is important, it does not tell us very much about the distribution of the error. To do
this we usually analyse the probability that i overestimates or underestimates ;1 by more
than some value ¢ > 0. Precisely, how do the following quantities depend on ¢£?

P(a>u+e) and P(p<p—e).
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Figure 5.1 The figure shows a probability density, with the tails shaded indicating the regions where X is
at least ¢ away from the mean p.

The expressions above (as a function of ¢) are called the tail probabilities of 1 — u
(Fig. 5.1). Specifically, the first is called the upper tail probability and the second the lower
tail probability. Analogously, P (|{i — u| > ¢) is called a two-sided tail probability.

The Inequalities of Markov and Chebyshev

The most straightforward way to bound the tails is by using Chebyshev’s inequality, which
is itself a corollary of Markov’s inequality. The latter is one of the golden hammers of
probability theory, and so we include it for the sake of completeness.

LemmMA 5.1. For any random variable X and ¢ > 0, the following holds:

(a) (Markov): P(|X| > ¢) < M

(6) (Chebyshev): B(IX ~E[X]| 2 ¢) < 2

We leave the proof of Lemma 5.1 as an exercise for the reader. By combining (5.1) with

Chebyshev’s inequality, we can bound the two-sided tail directly in terms of the variance by
. a?

Plp-plze) <. (52)
This result is nice because it was so easily bought and relied on no assumptions other than
the existence of the mean and variance. The downside is that when X is well behaved,
the inequality is rather loose. By assuming that higher moments of X exist, Chebyshev’s
inequality can be improved by applying Markov’s inequality to | it — p|*, with the positive
integer k to be chosen so that the resulting bound is optimised. This is a bit cumbersome,
and thus instead we present the continuous analog of this, known as the Cramér-Chernoff
method.

To calibrate our expectations on what improvement to expect relative to Chebyshev’s
inequality, let us start by recalling the central limit theorem (CLT). Let S,, = > | (X, —
{t). The CLT says that under no additional assumptions than the existence of the variance,
the limiting distribution of ST,,,:"W as n — oo 1s a Gaussian with mean zero and unit
variance. If Z ~ N(0, 1), then
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<1 z?
P(Z>u)= / \/?cxp (—2) dz.
Ju T

The integral has no closed-form solution, but is easy to bound:

exp | —— | dx zexp | —— | dzx
V271 P 2 T a2 Sy P 2
1 u?
=/ — -, 3
V 27?2 exp( 2 ) ' (5-3)
which gives

Plpzu+e)=P (S,,,.,:"Vagn > f\/n,.-’"og) =P (Z > f\/n;’UQJ
a? ne?
< - . .
=V anner P ( 202) 4
This is usually much smaller than what we obtained with Chebyshev’s inequality
(Exercise 5.3). In particular, the bound on the right-hand side of (5.4) decays slightly

faster than the negative exponential of ne? /o2, which means that {1 rapidly concentrates
around its mean.

An oft-taught rule of thumb is that the CLT provides a reasonable approximation for
n > 30. We advise caution. Suppose that X7, ..., X,, are independent Bernoulli with
bias p = 1/n. As n tends to infinity the distribution of Z?:l X converges to a
Poisson distribution with parameter 1, which does not look Gaussian at all.

The asymptotic nature of the CLT makes it unsuitable for designing bandit algorithms.
In the next section, we derive finite-time analogs, which are only possible by making
additional assumptions.

The Cramér-Chernoff Method and Subgaussian Random Variables

For the sake of moving rapidly towards bandits, we start with a straightforward and
relatively fundamental assumption on the distribution of X, known as the subgaussian
assumption.

DEFINITION 5.2 (Subgaussianity). A random variable X is og-subgaussian if for all A € R,
it holds that E [exp(A X)) < exp (A1%02/2).

An alternative way to express the subgaussianity condition uses the moment-generating
function of X, which is a function My : R — R defined by Mx (A1) = E [exp(AX)]. The
condition in the definition can be written as

Px(A) =log Mx(A) < %A%@ forall A € R.

The function 1 x is called the cumulant-generating function. It is not hard to see that M x
(or ¥ x) need not exist for all random variables over the whole range of real numbers. For
example, if X is exponentially distributed and A > 1, then



