Cambridge studies in advanced mathematics 143

TOM LEINSTER

CAMBRIDGE



Basic Category Theory

TOM LEINSTER
University of Edinburgh

AMBRIDGE
NIVERSITY PRESS




CAMBRIDGE

UNIVERSITY PRESS
University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of

education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107044241

© Tom Leinster 2014

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2014
Printed in the United Kingdom by CPI Group Ltd, Croydon CRO 4YY
A catalogue record for this publication is available from the British Library
ISBN 978-1-107-04424-1 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of
URLSs for external or third-party internet websites referred to in this publication,
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.



Contents

Note to the reader page vii
Introduction 1
1 Categories, functors and natural transformations 9
1.1  Categories 10
1.2 Functors 17
] 3 D ']IJ]I‘]| I]:’!I]SﬂQ]:m’![]'QDS 21
2 Adjoints 41
2.1 Definition and examples 41
2.2 Adjunctions via units and counits 50
2.3 Adjunctions via initial objects 58
3 Interlude on sets 65
3.1  Constructions with sets 66
3.2 Small and large categories 13
4 Representables 83
4.1 Definitions and examples 84
4.2 The Yoneda lemma 93
4.3  Consequences of the Yoneda lemma 99
5 Limits 107
5.1  Limits: definition and examples 107
5.2 Colimits: definition and examples 126
6 Adjoints, representables and limits 141
6.1  Limits in terms of representables and adjoints 141
6.2  Limits and colimits of presheaves 145
6.3  Interactions between adjoint functors and limits 157
Appendix Proof of the general adjoint functor theorem 171
Further reading 174
Index of notation 177
Index 178



Copyrighted material



Note to the reader

This is not a sophisticated text. In writing it, I have assumed no more mathe-
matical knowledge than might be acquired from an undergraduate degree at an
ordinary British university, and I have not assumed that you are used to learn-
ing mathematics by reading a book rather than attending lectures. Furthermore,
the list of topics covered is deliberately short, omitting all but the most funda-
mental parts of category theory. A ‘further reading’ section points to suitable
follow-on texts,

There are two things that every reader should know about this book. One
concerns the examples, and the other is about the exercises,

Each new concept is illustrated with a generous supply of examples, but it is
not necessary to understand them all. In courses I have taught based on earlier
versions of this text, probably no student has had the background to understand
every example. All that matters is to understand enough examples that you can
connect the new concepts with mathematics that you already know.

As for the exercises, I join every other textbook author in exhorting you to do
them; but there is a further important point. In subjects such as number theory
and combinatorics, some questions are simple to state but extremely hard to
answer. Basic category theory is not like that, To understand the question is
very nearly to know the answer. In most of the exercises, there is only one
possible way to proceed. So, if you are stuck on an exercise, a likely remedy is
to go back through each term in the question and make sure that you understand
it in full. Take your time, Understanding, rather than problem solving, is the
main challenge of learning category theory.

Citations such as Mac Lane (1971) refer to the sources listed in ‘Further
reading’.

This book developed out of master’s-level courses taught several times at
the University of Glasgow and, before that, at the University of Cambridge.
In turn, the Cambridge version was based on Part III courses taught for many
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viii Note to the reader

years by Martin Hyland and Peter Johnstone. Although this text is significantly
different from any of their courses, I am conscious that certain exercises, lines
of development and even turns of phrase have persisted through that long evo-
lution. I would like to record my indebtedness to them, as well as my thanks
to Frangois Petit, my past students, the anonymous reviewers, and the staff of
Cambridge University Press.



Introduction

Category theory takes a bird’s eye view of mathematics. From high in the sky,
details become invisible, but we can spot patterns that were impossible to de-
tect from ground level. How is the lowest common multiple of two numbers
like the direct sum of two vector spaces? What do discrete topological spaces,
free groups, and fields of fractions have in common? We will discover answers
to these and many similar questions, seeing patterns in mathematics that you
may never have seen before.

The most important concept in this book is that of universal property. The
further you go in mathematics, especially pure mathematics, the more universal
properties you will meet. We will spend most of our time studying different
manifestations of this concept,

Like all branches of mathematics, category theory has its own special vo-
cabulary, which we will meet as we go along. But since the idea of universal
property is so important, [ will use this introduction to explain it with no jargon
at all, by means of examples,

Our first example of a universal property is very simple.

Example 0.1 Let 1 denote a set with one element. (It does not matter what
this element is called.) Then 1 has the following property:

for all sets X, there exists a unique map from X to 1.

(In this context, the words ‘map’, ‘mapping’ and ‘function’ all mean the same
thing.)

Indeed, let X be a set. There exists amap X — 1, because we can define f:
X — 1 by taking f(x) to be the single element of 1 for each x € X. This is the
unique map X — 1, because there is no choice in the matter: any map X — 1
must send each element of X to the single element of 1.

Phrases of the form ‘there exists a unique such-and-such satisfying some
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condition’ are common in category theory. The phrase means that there is one
and only one such-and-such satisfying the condition. To prove the existence
part, we have to show that there is at least one. To prove the uniqueness part,
we have to show that there is at most one; in other words, any two such-and-
suches satisfying the condition are equal.

Properties such as this are called ‘universal’ because they state how the ob-
ject being described (in this case, the set 1) relates to the entire universe in
which it lives (in this case, the universe of sets). The property begins with
the words ‘for all sets X”, and therefore says something about the relationship
between 1 and every set X: namely, that there is a unique map from X to 1.

Example 0.2 This example involves rings, which in this book are always
taken to have a multiplicative identity, called 1. Similarly, homomorphisms of
rings are understood to preserve multiplicative identities.

The ring Z has the following property: for all rings R, there exists a unique
homomorphism Z — R.

To prove existence, let R be aring. Define a function ¢: Z — R by

I1+---+1 ifn>0,
————

#m =19 ifn=0,
—¢p(—n) ifn<0

(n € Z). A series of elementary checks confirms that ¢ is a homomorphism.

To prove uniqueness, let R be aring and let ¢: Z — R be a homomorphism.
We show that i is equal to the homomorphism ¢ just defined. Since homomor-
phisms preserve multiplicative identities, ¥(1) = 1. Since homomorphisms
preserve addition,

bm)=y(l+ -+ D=vD)+- (D) =14---+1=0pn)

n n n

for all n > 0. Since homomorphisms preserve zero, ¢(0) = 0 = ¢(0). Finally,
since homomorphisms preserve negatives, ¥(n) = —y(—n) = —¢(—n) = ¢(n)
whenever n < 0.

Crucially, there can be essentially only one object satisfying a given univer-
sal property. The word ‘essentially’” means that two objects satisfying the same
universal property need not literally be equal, but they are always isomorphic.
For example:

Lemma 0.3 Let A be a ring with the following property: for all rings R, there
exists a unique homomorphism A — R. Then A = Z.
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map out of U X V’. In other words, there exist a certain vector space T and a
certain bilinear map b: U x V — T with the following universal property:

UxV—LsT

\ gﬂflinearf (01)
¥ bilinear f v
YW.
Roughly speaking, this property says that bilinear maps out of U x V corre-
spond one-to-one with linear maps out of 7.

Even without knowing that such a T and b exist, we can immediately prove
that this universal property determines 7" and b uniquely up to isomorphism.

The proof is essentially the same as that of Lemma 0.3, but looks more com-
plicated because of the more complicated universal property.

Lemma 0.7 Let U and V be vector spaces. Suppose that b: U xV — T
and b': U XV — T’ are both universal bilinear maps out of U x V. Then
T = T’. More precisely, there exists a unique isomorphism j: T — T’ such
that job = b’

In the proof that follows, it does not actually matter what ‘bilinear’, ‘linear’
or even ‘vector space’ mean. The hard part is getting the logic straight. That
done, you should be able to see that there is really only one possible proof. For
instance, to use the universality of b, we will have to choose some bilinear map
Joutof U x V. There are only two in sight, » and &', and we use each in the
appropriate place.

Proof In diagram (0.1), take (U x V N W) to be (UxV 2, T’). This gives

a linear map j: T — T’ satisfying j o b = b’. Similarly, using the universality
of b’, we obtain a linear map j' : T — T salisfying j o b’ = b:

ol

UxV—r—=T'
\ l
T.

Now j' o j: T — T is a linear map satisfying (j' o j) o b = b; but also, the
identity map 17y: T — T is linear and satisfies 1 ob = b, So by the uniqueness
part of the universal property of b, we have j* o j = 1. (Here we took the ‘f”
of (0.1) to be b.) Similarly, jo j/ = 17-. So jis an isomorphism, m|
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In Example 0.6, it was stated that given vector spaces U and V, there exists
a pair (T, b) with the universal property of (0.1). We just proved that there is
essentially only one such pair (T, b). The vector space T is called the tensor
product of U and V, and is written as U ® V. Tensor products are very impor-
tant in algebra. They reduce the study of bilinear maps to the study of linear
maps, since a bilinear map out of U x V is really the same thing as a linear map
outof U@ V.

However, tensor products will not be important in this book. The real lesson
for us is that it is safe to speak of the tensor product, not just a tensor product,
and the reason for that is Lemma 0.7. This is a general point that applies to
anything satisfying a universal property.

Once you know a universal property of an object, it often does no harm
to forget how it was constructed. For instance, if you look through a pile of
algebra books, you will find several different ways of constructing the ten-
sor product of two vector spaces. But once you have proved that the tensor
product satisfies the universal property, you can forget the construction. The
universal property tells you all you need to know, because it determines the
object uniquely up to isomorphism.

Example 0.8 Letf: G — H be ahomomorphism of groups. Associated with
# is a diagram

4]
ker(§) ——= G —= H, (0.2)

where ¢ is the inclusion of ker(#) into G and e is the trivial homomorphism,
‘Inclusion’ means that «(x) = x for all x € ker(#), and ‘trivial’ means that
e(g) = 1 for all g € G. The symbol < is often used for inclusions; it is a
combination of a subset symbol C and an arrow.

The map ¢ into G satisfies fot = go1, and is universal as such. Exercise 0.11
asks you to make this precise.

Here is our final example of a universal property.

Example 0.9 Take a topological space covered by two open subsets: X =
U U V. The diagram

UQV(—i"[{\

[

V%X

of inclusion maps has a universal property in the world of topological spaces
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and continuous maps, as follows:

Urlvié U

I

ye—" =%

(0.3)

The diagram means that given Y, f and g such that f'oi = go j, there is exactly
one continuous map h: X — Y suchthatho j/ = fand hoi' =g.
Under favourable conditions, the induced diagram

nUNV) ——= m,(U)

/] |»

m(V) ——= m(X)

of fundamental groups has the same property in the world of groups and group
homomorphisms. This is van Kampen’s theorem. In fact, van Kampen stated
his theorem in a much more complicated way. Stating it transparently requires
some categorical language, but he was working in the 1930s, before category
theory had been born.

You have now seen several examples of universal properties. As this book
progresses, we will develop different ways of talking about them. Once we
have set up the basic vocabulary of categories and functors, we will study ad-
Jjoint functors, then representable functors, then limits, Each of these provides
an approach to universal properties, and each places the idea in a different light.
For instance, Examples 0.4 and 0.5 can most readily be described in terms of
adjoint functors, Example 0.6 via representable functors, and Examples 0.1,
0.2, 0.8 and 0.9 in terms of limits,

Exercises

0.10 LetS be a set. The indiscrete topological space I(S) is the space whose
set of points is S and whose only open subsets are @) and § itself. Imitating
Example 0.5, find a universal property satisfied by the space I(S).
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0.11 Fix a group homomorphism 6: G — H. Find a universal property satis-
fied by the pair (ker(8), ¢) of diagram (0.2). (This property can — indeed, must —
make reference to 6.)

0.12  Verify the universal property shown in diagram (0.3).
0.13 Denote by Z[x] the polynomial ring over Z in one variable.

(a) Prove that for all rings R and all r € R, there exists a unique ring homo-
morphism ¢: Z[x] — R such that ¢(x) = r.

(b) Let A be aring and @ € A. Suppose that for all rings R and all r € R, there
exists a unique ring homomorphism ¢: A — R such that ¢(a) = r. Prove
that there is a unique isomorphism ¢: Z[x] — A such that «(x) = a.

0.14 Let X and Y be vector spaces.

(a) For the purposes of this exercise only, a cone is a triple (V, fi, f2) consisting
of a vector space V, alinear map f;: V — X, and alinearmap f>: V — Y.
Find a cone (P, p1, p2) with the following property: for all cones (V, fi, f>),
there exists a unique linear map f: V — P such that p; o f = f; and
pao f = /o

(b) Prove that there is essentially only one cone with the property stated in (a).
That is, prove that if (P, p1, p2) and (7, p}, p5) both have this property then
there is an isomorphism i: P — P’ such that pj ei = p; and p} oi = ps.

(c) For the purposes of this exercise only, a cocone is a triple (V, fi, f2) con-
sisting of a vector space V, a linear map fj: X — V, and a linear map
f+Y — V. Find a cocone (Q, q1,q>) with the following property: for all
cocones (V, fi, f2), there exists a unique linear map f: Q@ — V such that
Joqi=/fiand foq: = [o

(d) Prove that there is essentially only one cocone with the property stated
in (¢), in a sense that you should make precise.



Categories, functors and natural transformations

A category is a system of related objects. The objects do not live in isolation:
there is some notion of map between objects, binding them together.

Typical examples of what ‘object’ might mean are ‘group’ and ‘topological
space’, and typical examples of what ‘map’ might mean are ‘homomorphism’
and ‘continuous map’, respectively. We will see many examples, and we will
also learn that some categories have a very different flavour from the two just
mentioned. In fact, the ‘maps’ of category theory need not be anything like
maps in the sense that you are most likely to be familiar with.

Categories are themselves mathematical objects, and with that in mind, it
is unsurprising that there is a good notion of ‘map between categories’. Such
maps are called functors. More surprising, perhaps, is the existence of a third
level: we can talk about maps between functors, which are called natural trans-
formations. These, then, are maps between maps between categories.

In fact, it was the desire to formalize the notion of natural transformation that
led to the birth of category theory. By the early 1940s, researchers in algebraic
topology had started to use the phrase ‘natural transformation’, but only in
an informal way. Two mathematicians, Samuel Eilenberg and Saunders Mac
Lane, saw that a precise definition was needed. But before they could define
natural transformation, they had to define functor; and before they could define
functor, they had to define category. And so the subject was born.

Nowadays, the uses of category theory have spread far beyond algebraic
topology. Its tentacles extend into most parts of pure mathematics. They also
reach some parts of applied mathematics; perhaps most notably, category the-
ory has become a standard tool in certain parts of computer science. Applied
mathematics is more than just applied differential equations!

9



12 Categories, functors and natural transformations

(d) For each field k, there is a category Vect; of vector spaces over k and linear
maps between them.
(e) There is a category Top of topological spaces and continuous maps.

This chapter is mostly about the interaction between categories, rather than
what goes on inside them. We will, however, need the following definition.

Definition 1.1.4 A map f: A — B in a category & is an isomorphism if
there exists amap g: B — Ain &/ suchthatgf = 1, and fg = lp.

In the situation of Definition 1.1.4, we call g the inverse of f and write
g = f~'. (The word ‘the’ is justified by Exercise 1.1.13.) If there exists an
isomorphism from A to B, we say that A and B are isomorphic and write
A =B

Example 1.1.5 The isomorphisms in Set are exactly the bijections. This
statement is not quite a logical triviality. It amounts to the assertion that a
function has a two-sided inverse if and only if it is injective and surjective.

Example 1.1.6 The isomorphisms in Grp are exactly the isomorphisms of
groups. Again, this is not quite trivial, at least if you were taught that the def-
inition of group isomorphism is ‘bijective homomorphism’. In order to show
that this is equivalent to being an isomorphism in Grp, you have to prove that
the inverse of a bijective homomorphism is also a homomorphism.

Similarly, the isomorphisms in Ring are exactly the isomorphisms of rings.

Example 1.1.7 The isomorphisms in Top are exactly the homeomorphisms.
Note that, in contrast to the situation in Grp and Ring, a bijective map in Top
is not necessarily an isomorphism. A classic example is the map

[0,1) — {zeCllz=1}

o
t — e,

which is a continuous bijection but not a homeomorphism.

The examples of categories mentioned so far are important, but could give
a false impression. In each of them, the objects of the category are sets with
structure (such as a group structure, a topology, or, in the case of Set, no struc-
ture at all). The maps are the functions preserving the structure, in the appro-
priate sense. And in each of them, there is a clear sense of what the elements
of a given object are.

However, not all categories are like this, In general, the objects of a category
are not ‘sets equipped with extra stuff’. Thus, in a general category, it does not
make sense to talk about the ‘elements’ of an object. (At least, it does not make
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sense in an immediately obvious way; we return to this in Definition 4.1.25.)
Similarly, in a general category, the maps need not be mappings or functions
in the usual sense. So:

The objects of a category need not be remotely like sets.
The maps in a category need not be remotely like functions.

The next few examples illustrate these points. They also show that, contrary
to the impression that might have been given so far, categories need not be
enormous. Some categories are small, manageable structures in their own right,
as we Now see.

Examples 1.1.8 (Categories as mathematical structures) (a) A category
can be specified by saying directly what its objects, maps, composition and
identities are. For example, there is a category @ with no objects or maps
at all. There is a category 1 with one object and only the identity map. It
can be drawn like this:

(Since every object is required to have an identity map on it, we usually
do not bother to draw the identities.) There is another category that can be
drawn as

= or AL)B,

with two objects and one non-identity map, from the first object to the
second. (Composition is defined in the only possible way.) To reiterate the
points made above, it is not obvious what an ‘element’ of A or B would be,
or how one could regard f as a ‘function” of any sort.

It is easy to make up more complicated examples. For instance, here are
three more categories:

B f
7 .\*}.
f/ 8 kj /l J
[ J— J| hi=gf |
/ |
A C o< o >
8f k h

(b) Some categories contain no maps at all apart from identities (which, as
categories, they are obliged to have). These are called discrete categories.
A discrete category amounts to just a class of objects. More poetically, a
category is a collection of objects related to one another to a greater or
lesser degree; a discrete category is the extreme case in which each object
is totally isolated from its companions,
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(c) A group is essentially the same thing as a category that has only one object

and in which all the maps are isomorphisms.

To understand this, first consider a category .o with just one object.
It is not important what letter or symbol we use to denote the object; let
us call it A. Then & consists of a set (or class) &/ (A,A), an associative
composition function

o (A, A) % (A, A) — o (A,A),

and a two-sided unit 14 € /(A,A). This would make </ (A,A) into a
group, except that we have not mentioned inverses. However, to say that
every map in &/ is an isomorphism is exactly to say that every element of
&/(A, A) has an inverse with respect to o.

If we write G for the group 47 (A, A), then the situation is this:

category &/ with single object A corresponding group G
maps in & clements of G

oin & -in G

1A l1eG

The category & looks something like this:
G

The arrows represent different maps A — A, that is, different elements of
the group G.

What the object of o7 is called makes no difference. It matters exactly
as much as whether we choose x or y or 7 to denote some variable in an
algebra problem, which is to say, not at all. Later we will define ‘equiv-
alence’ of categories, which will enable us to make a precise statement:
the category of groups is equivalent to the category of (small) one-object
categories in which every map is an isomorphism (Example 3.2.11).

The first time one meets the idea that a group is a kind of category, it is
tempting to dismiss it as a coincidence or a trick. But it is not; there is real
content.

To see this, suppose that your education had been shuffled and that you
already knew about categories before being taught about groups. In your
first group theory class, the lecturer declares that a group is supposed to be
the system of all symmetries of an object. A symmetry of an object X, she
says, is a way of mapping X to itself in a reversible or invertible manner.
At this point, you realize that she is talking about a very special type of
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(e)
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category. In general, a category is a system consisting of all the mappings
(not usually just the invertible ones) between many objects (not usually
just one). So a group is just a category with the special properties that all
the maps are invertible and there is only one object.

The inverses played no essential part in the previous example, suggesting
that it is worth thinking about ‘groups without inverses’. These are called
monoids.

Formally, a monoid is a set equipped with an associative binary opera-
tion and a two-sided unit element. Groups describe the reversible transfor-
mations, or symmetries, that can be applied to an object; monoids describe
the not-necessarily-reversible transformations. For instance, given any set
X, there is a group consisting of all bijections X — X, and there is a mo-
noid consisting of all functions X — X. In both cases, the binary operation
is composition and the unit is the identity function on X. Another example
of a monoid is the set N = {0, 1,2, ...} of natural numbers, with + as the
operation and 0 as the unit. Alternatively, we could take the set IN with - as
the operation and 1 as the unit.

A category with one object is essentially the same thing as a monoid,

by the same argument as for groups. This is stated formally in Exam-
ple 3.2.11.
A preorder is a reflexive transitive binary relation. A preordered set
(§,<) is a set S together with a preorder < on it. Examples: § = R and
< has its usual meaning; S is the set of subsets of {1,...,10} and < is C
(inclusion); § = Z and a < b means that a divides b.

A preordered set can be regarded as a category ./ in which, for each
A,B € o, there is at most one map from A to B. To see this, consider a
category & with this property. It is not important what letter we use to
denote the unique map from an object A to an object B; all we need to
record is which pairs (A, B) of objects have the property thata map A — B
does exist. Let us write A < B to mean that there exists amap A — B.

Since ¢ is a category, and categories have composition, if A < B <
C then A < C. Since categories also have identities, A < A for all A.
The associativity and identity axioms are automatic. So, & amounts to
a collection of objects equipped with a transitive reflexive binary relation,
that is, a preorder. One can think of the unique map A — B as the statement
or assertion that A < B.

An order on a set is a preorder < with the property that if A < B and
B < A then A = B. (Equivalently, if A = B in the corresponding category
then A = B.) Ordered sets are also called partially ordered sets or posets.
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An example of a preorder that is not an order is the divisibility relation |
on Z: for there we have 2| -2 and -2 |2 but 2 # 2.

Here are two ways of constructing new categories from old.

Construction 1.1.9 Every category ./ has an opposite or dual category
/P, defined by reversing the arrows. Formally, ob(.&/°?) = ob(&) and
o/ P(B,A) = 4/(A,B) for all objects A and B. Identities in /P are the
same as in /. Composition in &/ °P is the same as in &/, but with the argu-
ments reversed. To spell this out: if A i) B % Care maps in &/°P then
A L B <& Care maps in & these give rise to a map A Pl Cin &/, and
the composite of the original pair of maps is the corresponding map A — C in
P,

So, arrows A — B in @ correspond to arrows B — A in &/°P, According
to the definition above, if f: A — Bis an arrow in &/ then the corresponding
arrow B — A in &P is also called f. Some people prefer to give it a different
name, such as f°F.

Remark 1.1.10 The principle of duality is fundamental to category theory.
Informally, it states that every categorical definition, theorem and proof has
a dual, obtained by reversing all the arrows. Invoking the principle of du-
ality can save work: given any theorem, reversing the arrows throughout its
statement and proof produces a dual theorem. Numerous examples of duality
appear throughout this book.

Construction 1.1.11 Given categories &/ and #, there is a product cate-
gory & X #,in which
ob(.@ x %) = ob() X ob(A),
(g{ X @)((Aa B)a (Als B’)) = M(A,A’) X '@(Ba B,)'
Put another way, an object of the product category & X % is a pair (A, B) where
Aego/and Be . Amap (A, B) —» (A", B') in & x A is a pair (f, g) where

fiA— A"ing& and g: B — B’ in #. For the definitions of composition and
identities in &/ x %, see Exercise 1.1.14.

Exercises

1.1.12 Find three examples of categories not mentioned above,
1.1.13 Show that a map in a category can have at most one inverse. That is,

given amap f: A — B, show that there is at most one map g: B — A such
that gf = 14 and fg = 1.
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The forgetful functors in examples (a)—(c) forget structure on the objects,
but that of example (d) forgets a property. Nevertheless, it turns out to be con-
venient to use the same word, ‘forgetful’, in both situations.

Although forgetting is a trivial operation, there are situations in which it
is powerful. For example, it is a theorem that the order of any finite field is
a prime power. An important step in the proof is to simply forget that the

field is a field, remembering only that it is a vector space over its subfield
{0,,1+1,1+14+1,...}.

Examples 1.2.4 Free functors are in some sense dual to forgetful functors
(as we will see in the next chapter), although they are less elementary. Again,
“free functor’ is an informal but useful term.

(a) Given any set S, one can build the free group F(S) on S. This is a group
containing S as a subset and with no further properties other than those it is
forced to have, in a sense made precise in Section 2.1. Intuitively, the group
F(S) is obtained from the set § by adding just enough new elements that
it becomes a group, but without imposing any equations other than those
forced by the definition of group.

A little more precisely, the elements of F(S) are formal expressions or
words such as x_4yxzzy"3 (where x,v,z € §). Two such words are seen
as equal if one can be obtained from the other by the usual cancellation
rules, so that, for example, x*xy, x*y, and x>y~'yx?y all represent the same
element of F(S). To multiply two words, just write one followed by the
other; for instance, x *yx times xzy™> is x *yx?zy 3.

This construction assigns to each set S a group F(S). In fact, F is a
functor: any map of sets f/: S — S’ gives rise to a homomorphism of
groups F(f): F(§) — F(S'). For instance, take the map of sets

Sfidw,x v,z — {u,v)
defined by f(w) = f(x) = f(y) = uand f(z) = v. This gives rise to a

homomorphism

F(f): F({w, x,v,.z}) = F({u,v}),

which maps x *yx?zy™ € F({w, x,y,2}) to

w il = v € F(lu,v}).

(b) Similarly, we can construct the free commutative ring F(S) on a set §,
giving a functor F from Set to the category CRing of commutative rings.
In fact, F(S) is something familiar, namely, the ring of polynomials over
Z in commuting variables x; (s € S). (A polynomial is, after all, just a



20 Categories, functors and natural transformations

formal expression built from the variables using the ring operations +, —
and -.) For example, if § is a two-element set then F(§) = Z[x, y].

(c) We can also construct the free vector space on a set. Fix a field k. The free
functor F: Set — Vecty is defined on objects by taking F(S) to be a vector
space with basis §. Any two such vector spaces are isomorphic; but it is
perhaps not obvious that there is any such vector space at all, so we have to
construct one. Loosely, F(S) is the set of all formal k-linear combinations
of elements of S, that is, expressions

Z/Ls

SES
where each A; is a scalar and there are only finitely many values of s such

that A; # 0. (This restriction is imposed because one can only take finite
sums in a vector space.) Elements of F(§) can be added:

Z Ags + Z HsS = Z:(/lj + (Ly)S.

seS SES seS

There is also a scalar multiplication on F(S):

c- Z Ags = Z((:/ls)s
se8§ )
(c € k). In this way, F(S) becomes a vector space.

To be completely precise and avoid talking about ‘expressions’, we can
define F(S) to be the set of all functions A: § — k such that {s € S |
A(s) # 0} is finite. (Think of such a function A as corresponding to the
expression ) ¢ A(s)s.) To define addition on F(S), we must define for
each A,p € F(S)asum A+ p € F(S);itis given by

(A4 w@)(s5) = As) + p(s)

(s € §). Similarly, the scalar multiplication is given by (¢ - A)(s) = ¢ - A(s)
(cek,Ae F(S),s€S).

Rings and vector spaces have the special property that it is relatively easy to
write down an explicit formula for the free functor, The case of groups is much
more typical. For most types of algebraic structure, describing the free functor
requires as much fussy work as it does for groups. We return to this point in
Example 2.1.3 and Example 6.3.11 (where we see how to avoid the fussy work
entirely),

Examples 1.2.5 (Functors in algebraic topology) Historically, some of the
first examples of functors arose in algebraic topology. There, the strategy is



1.2 Functors 21

to learn about a space by extracting data from it in some clever way, assem-
bling that data into an algebraic structure, then studying the algebraic structure
instead of the original space. Algebraic topology therefore involves many func-
tors from categories of spaces to categories of algebras.

(a) Let Top, be the category of topological spaces equipped with a basepoint,
together with the continuous basepoint-preserving maps. There is a func-
tor ry: Top, — Grp assigning to each space X with basepoint x the fun-
damental group (X, x) of X at x. (Some texts use the simpler notation
m1(X), ignoring the choice of basepoint. This is more or less safe if X is
path-connected, but strictly speaking, the basepoint should always be spec-
ified.)

That m; is a functor means that it not only assigns to each space-with-
basepoint (X, x) a group m;(X, x), but also assigns to each basepoint-pre-
serving continuous map

[ (X, x0) = (Xy)
a homomorphism
m(f): m(X,x) = m (¥, y).

Usually m;(f) is written as f.. The functoriality axioms say that (g ¢ f). =
g Of* and (I(X,x))* = lm(X,x)-

(b) For each n € N, there is a functor H,: Top — Ab assigning to a space its
nth homology group (in any of several possible senses).

Example 1.2.6 Any system of polynomial equations such as

2 +yt -3 =1 (1.1)
)c3+x=y2 (1.2)

gives rise to a functor CRing — Set. Indeed, for each commutative ring A,
let F(A) be the set of triples (x,y,z) € A X A x A satisfying equations (1.1)
and (1.2). Whenever f: A — B is a ring homomorphism and (x, y,z) € F(A),
we have (f(x), f(y), f(z)) € F(B); so the map of rings f: A — B induces a
map of sets F(f): F(A) — F(B). This defines a functor F: CRing — Set.

In algebraic geometry, a scheme is a functor CRing — Set with certain
properties. (This is not the most common way of phrasing the definition, but it
is equivalent.) The functor F above is a simple example.

Example 1.2,7 Let G and H be monoids (or groups, if you prefer), regarded
as one-object categories ¢ and #. A functor F: ¥ — . must send the
unique object of ¢ to the unique object of 7, so it is determined by its effect
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on maps. Hence, the functor F: ¢ — . amounts to a function F: G — H
such that F(g'g) = F(g')F(g) for all g’,g € G, and F(1) = 1. In other words, a
functor ¥ — . is just a homomorphism G — H.

Example 1.2.8 Let G be a monoid, regarded as a one-object category &. A
functor F: ¥ — Set consists of a set § (the value of F at the unique object
of ¥) together with, for each ¢ € G, a function F(g): S — S, satisfying
the functoriality axioms. Writing (F(g))(s) = g - s, we see that the functor F
amounts to a set § together with a function

GxS - S
(g.8) = g-s
satisfying (g'¢)-s =g’ -(g-s)and 1 -s = sforall g,¢g’ e Gand s € S. In
other words, a functor ¢ — Set is a set equipped with a left action by G: a left
G-set, for short,
Similarly, a functor ¥ — Vecty is exactly a k-linear representation of G, in

the sense of representation theory. This can reasonably be taken as the defini-
tion of representation.

Example 1.2.9 When A and B are (pre)ordered sets, a functor between the
corresponding categories is exactly an order-preserving map, that is, a func-
tion f: A — Bsuchthata < a’ = f(a) < f(a’). Exercise 1.2,22 asks you
to verify this.

Sometimes we meet functor-like operations that reverse the arrows, with a
map A — A’ in & giving rise to a map F(A) « F(A’) in 4. Such operations
are called contravariant functors.

Definition 1.2,10 Let & and £ be categories., A contravariant functor
from o/ to % is a functor &/ P — A.

To avoid confusion, we write ‘a contravariant functor from .« to %" rather
than ‘a contravariant functor & — %°.

Functors 4 — % correspond one-to-one with functors 4"°F — Z°P, and
(/)P = &7, so a contravariant functor from & to % can also be described
as a functor & — Z8°P, Which description we use is not enormously important,
but in the long run, the convention in Definition 1.2.10 makes life easier.

An ordinary functor &/ — 4 is sometimes called a covariant functor from
o/ to A, for emphasis.

Example 1.2.11 We can tell a lot about a space by examining the functions
on it. The importance of this principle in twentieth- and twenty-first-century
mathematics can hardly be exaggerated.



1.2 Functors 23

For example, given a topological space X, let C(X) be the ring of continuous
real-valued functions on X. The ring operations are defined ‘pointwise’: for
instance, if p|, po: X — R are continuous maps then the map p; + p,: X - R

is defined by
(p1 + p2)(x) = pi(x) + pa(x)

(x € X). A continuous map f: X — Y induces a ring homomorphism C(f):
C(Y) — C(X), defined at ¢ € C(Y) by taking (C(f))(g) to be the composite
map

x Ly Le

Note that C(f) goes in the opposite direction from f. After checking some
axioms (Exercise 1.2.26), we conclude that C is a contravariant functor from
Top to Ring.

While this particular example will not play a large part in this text, it is worth
close attention. It illustrates the important idea of a structure whose elements
are maps (in this case, a ring whose elements are continuous functions). The
way in which C becomes a functor, via composition, is also important. Similar
constructions will be crucial in later chapters.

For certain classes of space, the passage from X to C(X) loses no informa-
tion: there is a way of reconstructing the space X from the ring C(X). For this
and related reasons, it is sometimes said that ‘algebra is dual to geometry’.

Example 1.2.12 Let k be a field. For any two vector spaces V and W over &,
there is a vector space

Hom(V, W) = {linear maps V — W}.

The elements of this vector space are themselves maps, and the vector space
operations (addition and scalar multiplication) are defined pointwise, as in the
last example.

Now fix a vector space W. Any linear map f: V — V' induces a linear map

7 Hom(V', W) — Hom(V, W),
defined at ¢ € Hom(V’, W) by taking f*(g) to be the composite map
vLv Lw
This defines a functor

Hom(—, W): Vect,” — Vect;.



