Basic Category Theory
for Computer Scientists

Benjamin C. Pierce

B e I I e R e e e e i I e e e I e I I e e I e e]

Foundations of Computing
Michael Garey and Albert Meyer, editors

Complexity Issues in VLSI; Optimal Layouts for the Shuffle-Exchange Graph
‘and Other Networks, Frank Thomson Leighton, 1983

Equational Logic as a P ing Language, Michael J. O’'Donnell, 1985

General Theory of Deductive Systems and Its Applications, S. Yu Maslov,
1987

Resource Allocation Problems: ithmic A hes, Toshihide Ibaraki
and Naoki Katoh, 1988

Algebraic Theory of Processes, Michael Hennessy, 1988

PX: A Cc i Logic, Susumu Hayashi and Hiroshi Nakano, 1989

The Stable Marriage Problem: Structure and Algorithms, Dan Gusfield and
Robert Irving, 1989

Realistic Compiler Generation, Peter Lee, 1989
Single-Layer Wire Routing and Compaction, F. Miller Maley, 1990

Categories, Types, and Structures: An Introduction_to Category Theory for
the Working Computer Sci—"+ %=~ *-perti and Giuseppe Longo,
1991

Basic Category Theory for Computer Scientists, Benjamin C. Pierce, 1991

Basic Category Theory
for Computer Scientists

This One

A

Foundations of Computing
Michael Garey and Albert Meyer, editors

Complexity Issues in VLSI: Optimal Layouts for the Shuffle-Exchange Graph
and Other Networks, Frank Thomson Leighton, 1983

Equational Logic as a Programming Language, Michael]. O'Donnel], 1985

General Theory of Deductive Systems and Its Applications, S. Yu Maslov,
1987

Resource Allocation Problems: Algorithmic Approaches, Toshihide Ibaraki
and Naoki Katoh, 1988

Algebraic Theory of Processes, Michael Hennessy, 1988
PX: A Computational Logic, Susumu Hayashi and Hiroshi Nakano, 1989

The Stable Marriage Problem: Structure and Algorithms, Dan Gusfield and
Robert Irving, 1989

Realistic Compiler Generation, Peter Lee, 1989

Single-Layer Wire Routing and Compaction, F. Miller Maley, 1990
Categories, Types, and Structures: An Introduction to Category Theory for
the Working Computer Scientist, Andrea Asperti and Giuseppe Longo,
1991

Basic Category Theory for Computer Scientists, Benjamin C. Pierce, 1991

Basic Category Theory
for Computer Scientists

Benjamin C. Pierce

The MIT Press
Cambridge, Massachusetts
London, England

© 1991 Massachusetts Institute of Technology

All right reserved. No part of this book may be reproduced in any form by any
electronic or mechanical means (including photocopying, recording, or information
storage and retrieval) without permission in writing from the publisher.

This book was typeset by the author using TgX 3.0 and converted to PostScript
using Yé&Y's DVIPSONE™. Camera-ready copy was produced by Chiron, Inc,

Printed and bound in the United States of America.
Library of Congress Cataloging-in-Publication Data

Pierce, Benjamin C.

Basic category theory for computer scientists / Benjamin C. Pierce.

p- com.— (Foundations of computing)

Includes bibliographical references and index.

ISBN 0-262-66071-7

1. Computer science—Mathematics. 2. Categories (Mathematics) L Title. II. Series.
QA76.9.M35P54 1991
511.3—dc20 91-8489

CIP

098

To Roger, Alexandra, and Jessica

Contents

Series Foreword

Preface

1

Basic Constructions

1.1 Categories

1.2 Diagrams

1.3 Monomorphisms, Epimorphisms, and Isomorphisms
1.4 Initial and Terminal Objects
1.5 Products

1.6 Universal Constructions

1.7 Equalizers

1.8 Pullbacks

1.9 Limits

1.10 Exponentiation

Functors, Natural Transformations, and Adjoints
2.1 Functors

2.2 F-Algebras

2.3 Natural Transformations

24 Adjoints

Applications

3.1 Cartesian Closed Categories

3.2 Implicit Conversions and Generic Operators
3.3 Programming Language Semantics

3.4 Recursive Domain Equations

Further Reading

41 Textbooks

4.2 Introductory Articles

4.3 Reference Books

4.4 Selected Research Articles

Bibliography

Summary of Notation

Index

10
13
16
17
20
21

26
33

73
73
74
76

81
93
95

Series Foreword

Theoretical computer science has now undergone several decades of
development. The “classical” topics of automata theory, formal lan-
guages, and computational complexity have become firmly established,
and their importance to other theoretical work and to practice is widely
recognized. Stimulated by technological advances, theoreticians have
been rapidly expanding the areas under study, and the time delay be-
tween theoretical progress and its practical impact has been decreasing
dramatlcaﬂy Much publicity has been given recently to breakthmughﬁ
in cryptography and linear programming, and steady progress is being
made on programming language semantics, computational geometry,
and efficient data structures. Newer, more speculative, areas of study
include relational databases, VLSI theory, and parallel and distributed
computation. As this list of topics continues expanding, it is becoming
more and more difficult to stay abreast of the progress that is being
made and increasingly important that the most significant work be dis-
tilled and communicated in a manner that will facilitate further research
and application of this work. By publishing comprehensive books and
specialized monographs on the theoretical aspects of computer science,
the series on Foundations of Computing provides a forum in which im-
portant research topics can be presented in their entirety and placed in
perspective for researchers, students, and practitioners alike.

Michael R. Garey
Albert R. Meyer

Preface

What we are probably seeking is a “purer” view of functions: a
theory of functions in themselves, not a theory of functions de-
rived from sets. What, then, is a pure theory of functions? Answer:
category theory.

— Scott [104, p. 406]

Category theory is a relatively young branch of pure mathematics, stem-
ming from an area—algebraic topology—that most computer scientists
would consider esoteric. Yet its influence is being felt in many parts
of computer science, including the design of functional and imperative
programming languages, implementation techniques for functional lan-
guages, semantic models of programming languages, models of concur-
rency, type theory, polymorphism, specification languages, constructive
logic, automata theory, and the development of algorithms.

The breadth of this list underscores an important point: category the-
ory is not specialized to a particular setting. It is a basic conceptual and
notational framework in the same sense as set theory or graph theory,
though it deals in more abstract constructions and requires somewhat
heavier notation. The cost of its generality is that category-theoretic
formulations of concepts can be more difficult to grasp than their coun-
terparts in other formalisms; the benefit is that concepts may be dealt
with at a higher level and hidden commonalities allowed to emerge.

Recent issues of theoretical computer science journals give ample
evidence that category theory is already an important tool in some parts
of the field. In a few areas—notably domain theory and semantics—it
is now a standard language of discourse. Fortunately for the beginner,
most computer science research papers draw only on the notation and
some relatively elementary results of category theory. The ADJ group,
early proponents of category theory in computer science, sound a reas-
suring note in the introduction to one of their papers [116]: “...do not
succumb to a feeling that you must understand all of category theory be-
fore you put it to use. When one talks of a ‘set theoretic’ model for some
computing phenomenon, [one] is not thinking of a formulation in terms
of measurable cardinals! Similarly, a category theoretic model does not
necessarily involve the Kan extension theorem or double categories.”

The first drafts of this book were written while I was studying cat-
egory theory myself, as background for graduate research in program-

xii Preface

ming languages. Its aim, therefore, is not to promote a particular point of
view about how category theory can be applied in computer science—a
task better undertaken by more experienced practitioners—but simply
to orient the reader in the fundamental vocabulary and synthesize the
explanations and intuitions that were most helpful to me on a first en-
counter with the material.

The tutorial in Chapters 1 and 2 should provide a thorough enough
treatment of basic category theory that the reader will feel prepared
to approach current research papers applying category theory to com-
puter science or proceed to more advanced texts—for example, the ex-
cellent new books by Asperti and Longo [2] and Barr and Wells [5]—for
deeper expositions of specific areas. It covers essential notation and con-
structions and a few more advanced topics (notably adjoints) that are
sometimes skipped in short introductions to the subject but are rele-
vant to an appreciation of the field. Chapter 3 illustrates the concepts
presented in the tutorial with a sketch of the connection between carte-
sian closed categories and A-calculi, an application in the design of
programming languages, a summary of work in categorical models of
programming language semantics, and a detailed description of some
category-theoretic tools for the solution of recursive domain equations.
Chapter 4 briefly surveys some of the available textbooks, introductory
articles, reference works, and research articles on category theory ap-
plied to computer science. A summary of notation and an index appear
at the end.

This book could not have been written without the encouragement
and generous assistance of my teachers, colleagues, and friends. I am
especially grateful to Nico Habermann for suggesting the project; to
DEC Systems Research Center, Carnegie Mellon University, and the
Office of Naval Research for support while it was underway; to Rod
Burstall, Luca Cardelli, Peter Freyd, Robert Harper, Giuseppe Longo,
Simone Martini, Gordon Plotkin, John Reynolds, and Dana Scott for
informative conversations about its subject matter; to Bob Prior at MIT
Press for patient editorial advice; and to Lorrie LeJeune for efficient
handling of the manuscript. Comments and suggestions from Martin
Abadi, Penny Anderson, Violetta Cavalli-Sforza, Scott Dietzen, Conal
Elliott, Andrzej Filinski, Susan Finger, Robert Goldblatt, John Greiner,
Nico Habermann, Robert Harper, Nevin Heintze, Dinesh Katiyar, Peter
Lee, Mark Maimone, Spiro Michaylov, Frank Pfenning, David Plaut,
John Reynolds, Dwight Spencer, Robert Tennent, James Thatcher, Todd
Wilson, Elizabeth Wolf, and two anonymous referees greatly improved
my presentation of the material and eliminated a number of errors in
previous drafts.

Preface xiii

Finally, I am pleased to acknowledge a huge debt to the labors
of other authors, particularly to Robert Goldblatt [40], Saunders
Mac Lane [67], and David Rydeheard [95,96,98]. Their books, foremost
among many others, were frequent guides in the choice of examples
and exercises, organization of material, and proper presentation of the
subject’s “folklore.” There are a few points—marked in the text—where
I have closely followed the structure of a particularly beautiful presen-
tation of a concept by another author. Errors in these sections, as in the
rest of the text, are of course solely my responsibility.

Pittsburgh, Pennsylvania
January 25, 1991

1 Basic Constructions

This chapter and the following one present a brief tutorial on basic
concepts of category theory. The goals of the tutorial are, first, to be
complete enough to prepare the reader for more difficult textbooks and
research papers applying category theory in computer science; second,
to cover important topics in sufficient depth that the reader comes away
with some sense of the contribution of category theory to mathematical
thinking; and third, to be reasonably short. Most sections begin with a
rigorous definition, prefaced with an informal explanation of the con-
struction and followed by examples and exercises illustrating its use in
various contexts.

1.1 Categories

We begin by defining the notion of category and presenting a variety of
examples from computer science and algebra.

1.1.1 Definition A category C comprises:

1. a collection of objects;
2. a collection of arrows (often called morphisms);
3. operations assigning to each arrow f an object dom f, its domain,
and an object cod f, its codomain (we write f : A — Bor A LB
to show that dom f = A and cod f = B; the collection of all arrows
with domain A and codomain B is written C(A, B));
4. a composition operator assigning to each pair of arrows f and
g, with cod f = dom g, a composite arrow g o f : dom f — cod g,
satisfying the following associative law:
forany arrows f: A — B,g: B— C,and h: C — D (with
A, B, C, and D not necessarily distinct),
ho(gof)=(hog)of;
5. for each object A, an identity arrow idy : A — A satisfying the
following identity law:
for any arrow f: A — B,
idpof=f and foidsq=Ff.

2 1.1 Categories

1.1.2 Remark Categories are defined here in terms of ordinary set
theory. “Collections” are just sets, or occasionally proper classes, since
we want to talk about things like the “collection of all sets,” which is
too big to be a set. “Operations” are set-theoretic functions. “Equality”
is set-theoretic identity.

Our first example, an important source of intuition throughout the
tutorial, is the category whose objects are sets and whose arrows are
functions. There is no circularity here: we are not defining sets in terms
of categories, but merely presenting a well-known mathematical domain
as a category.

1.1.3 Example The category Set has sets as objects and total functions
between sets as arrows. Composition of arrows is set-theoretic function
composition. Identity arrows are identity functions.

To see that Set is a category, let us restate its definition in the same
format as Definition 1.1.1 and check that the laws hold:

1. An object in Set is a set.

2. Anarrow f : A — B in Set is a total function from the set A into
the set B.

3. For each total function f with domain 4 and codomain B, we
havedom f = A, cod f = B, and f € Set(A, B).

4. The composition of a total function f : A — B with another total
function g : B — C is the total function from A to C mapping each
element a € A to g(f(a)) € C. Composition of total functions on
sets is associative: for any functions f : A — B, ¢ : B — C, and
h:C— D,wehaveho(go f)=(hog)o f.

5. For each set A, the identity function id 4 is a total function with
domain and codomain A. For any function f : A — B, the identity
functions on A and B satisfy the equations required by the identity
law:idgo f = fand foidy = f.

11.4 Remark There is one subtlety in the definition of the category Set:
each function on sets corresponds to many arrows in Set. For example,
the function that takes every real number r to.r* maps elements of R
(the set of real numbers) into elements of R, and hence corresponds to
an arrow s : R — R. But it also maps elements of R into elements of
R* (the set of nonnegative real numbers), and hence corresponds to an
arrow s’ : R — R™". These are two different arrows of the category Set.
To be rigorous, we should define a Set-arrow f: A — Btobea
tuple (f, B), where f is a total function with domain A and B is a set

Basic Category Theory for Computer Scientists
Benjamin C. Pierce

Category theory is a branch of pure mathematics
that is becoming an increasingly important tool in
theoretical computer science, especially in
programming language semantics, domain
theory, and concurrency, where it is already a
standard language of discourse.

Assuming a minimum of mathematical prepara-
tion, Basic Category Theory for Computer Scien-
fists provides a straightforward presentation of the
basic constructions and terminology of category
theory, including limits, functors, natural transfor-
mations, adjoints, and cartesian closed categories.
Four case studies illustrate applications of cat-
egory theory to programming language design,
semantics, and the solution of recursive domain
equations. A brief literature survey offers sugges-
tions for further study in more advanced texts.

The tutorial in section 1 provides a treatment of
basic category theory that is deep enough to
prepare readers for some of the current research
papers applying category theory to computer
science. It covers essential notation and construc-
tions and a few more advanced topics, such as
adjoints, that are sometimes skipped in short
introductions but are relevant to an appreciation
of the field.

Section 2 illustrates the concepts presented in
the tutorial with four case studies — a sketch of
the connections between cartesian closed catego-
ries and lambda calculi, an application to the
design of programming languages, a summary of
work in categorical models of programming
language semantics, and a detailed description of
some category-theoretic tools for the solution of
recursive domain equations.

Section 3 provides a useful guide to the existing
literature, including textbooks, standard reference
works, and selected research papers.

Benjamin C. Pierce received his doctoral degree
from Carnegie Mellon University.

Foundations of Computing series, Research
Reports and Notes

T1-7

ISBN O
“ ‘ | 90000>
780262"660716 ‘ |‘

The MIT Press
Massachusetts Institute of Technology
Cambridge, Massachusetts 02142

