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Chapter 1
Gravitation and Newton’s Laws

Our Sun is a star of intermediate size with a set of major planets describing closed
orbits around it. These are Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and
Neptune. Pluto, considered the Solar System’s ninth planet until 2006, was reclas-
sified by the International Astronomical Union as a dwarf planet, due to its very
small mass, together with other trans-Neptunian objects (Haumea, Makemake, Eris,
Sedna, and others) recently discovered in that zone, called the Kuiper belt. Except
for Mercury and Venus, all planets and even certain dwarf planets have satellites.
Some of them, like the Moon and a few of the Jovian satellites, are relatively large.
Between Mars and Jupiter, there are a lot of small planets or asteroids moving in
a wide zone, the largest one being Ceres, classified as a dwarf planet. Other distin-
guished members of the Solar System are the comets, such as the well-known comet
bearing the name of Halley. It seems that most comets originate in the Kuiper belt.

The Sun is located approximately 30,000 light-years (1 light-year = 9.4x 10'2
km) from the Galactic Centre, around which it makes a complete turn at a speed
of nearly 250 km/s in approximately 250 million years. The number of stars in our
galaxy is estimated to be of the order of 10'!, classified by age, size, and state of
evolution: young, old, red giants, white dwarfs, etc. (Fig. 1.1).

In fact, our galaxy, the Milky Way, is one member of a large family estimated
to contain of the order of 10!3 galaxies. These are scattered across what we call
the visible Universe, which seems to be in expansion after some initial event. The
galaxies are moving away from each other like dots painted on an inflating rubber
balloon.

At the present time, our knowledge of the Universe and the laws governing it is
increasing daily. Today we possess a vast knowledge of our planetary system, stellar
evolution, and the composition and dynamics of our own galaxy, not to mention mil-
lions of other galaxies. Even the existence of several extra-solar planetary systems
has been deduced from the discovery of planets orbiting around 51 Pegasi, 47 Ursae
Majoris, and several other stars. But barely five centuries ago, we only knew about
the existence of the Sun, the Moon, five planets (Mercury, Venus, Mars, Jupiter,
and Saturn), some comets, and the visible stars. For thousands of years, people had
gazed intrigued at those celestial objects, watching as they moved across the back-
ground of fixed stars, without knowing what they were, nor why they were moving
like that.

M. Chaichian et al., Basic Concepts in Physics, Undergraduate Lecture Notes in 1
Physics, DOI 10.1007/978-3-642-19598-3_1,
© Springer-Verlag Berlin Heidelberg 2014
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1 Gravitation and Newton's Laws

The discovery of the mechanism underlying the planetary motion, the starting
point for our knowledge of the fundamental laws of physics, required a prolonged
effort, lasting several centuries. Sometimes scientific knowledge took steps forward,
but subsequently went back to erroneous concepts. However, fighting against the
established dogma and sometimes going against their own prior beliefs, passionate
scholars finally discovered the scientific truth. In this way, the mechanism guiding
planetary motions was revealed, and the first basic chapter of physics began to be
written: the science of mechanics.

1.1 From Pythagoras to the Middle Ages

Pythagoras of Samos (c. 580—-c. 500 BCE) was the founder of a mystic school,
where philosophy, science, and religion were blended together. For the Pythagorean
school, numbers had a magical meaning. The Cosmos for Pythagoras was formed
by the spherical Earth at the centre, with the Sun, the Moon and the planets fixed to
concentric spheres which rotated around it. Each of these celestial bodies produced

Fig. 1.1 The Andromeda galaxy, at a distance of two million light-years from our own galaxy.
They are similar in size.



1.1 From Pythagoras to the Middle Ages 3

a specific musical sound in the air, but only the master, Pythagoras himself, had the
gift of hearing the music of the spheres.

Philolaus (c. 470—c. 385 BCE), a disciple of Pythagoras, attributed to the Earth
one motion, not around its axis, but around some external point in space, where there
was a central fire. Between the Earth and the central fire, Philolaus assumed the
existence of an invisible planet, Antichthon, a sort of “counter-Earth”. Antichthon
revolved in such a way that it could not be seen, because it was always away from the
Greek hemisphere. The central fire could not be seen from the Greek world either,
and with its shadow Antichthon protected other distant lands from being burned.
Antichthon, the Earth, the Sun, the Moon, and the other known planets Mercury,
Venus, Mars, Jupiter, and Saturn revolved in concentric orbits around the central
fire. The fixed stars were located on a fixed sphere behind all the above celestial
bodies.

Heraclides of Pontus (c. 390-c. 310 BCE) took the next step in the Pythagorean
conception of the Cosmos. He admitted the rotation of the Earth around its axis, and
that the Sun and the Moon revolved around the Earth in concentric orbits. Mercury
and Venus revolved around the Sun, and beyond the Sun, Mars, Jupiter, and Saturn
also revolved around the Earth (Fig. 1.2).

Around the year when Heraclides died, Aristarchus (c. 310—c. 230 BCE) was
born in Samos. From him, only a brief treatise has reached us: On the Sizes and
Distances from the Sun and the Moon. In another book, Aristarchus claimed that the
centre of the Universe was the Sun and not the Earth. Although this treatise has been
lost, the ideas expressed in it are known through Archimedes and Plutarch. In one
of his books Archimedes states: “He [Aristarchus] assumed the stars and the Sun
as fixed, but that the Earth moves around the Sun in a circle, the Sun lying in the

Fig. 1.2 The system of
Heraclides.
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middle of the orbit.” Plutarch also quotes Aristarchus as claiming that: “The sky is
quiet and the Earth revolves in an oblique orbit, and also revolves around its axis.”

Aristarchus was recognized by posterity as a very talented man, and one of the
most prominent astronomers of his day, but in spite of this, his heliocentric system
was ignored for seventeen centuries, supplanted by a complicated and absurd system
first conceived by Apollonius of Perga in the third century BCE, later developed by
Hipparchus of Rhodes in the next century, and finally completed by Ptolemy of
Alexandria (c. 70—c. 147 CE).

The Earth’s sphericity was accepted as a fact from the time of Pythagoras, and
its dimensions were estimated with great accuracy by another Greek scholar Eratos-
thenes of Cyrene, in the third century BCE. He read in a papyrus scroll that, in the
city of Swenet (known nowadays as Aswan), almost on the Tropic of Cancer, in
the south of Egypt, on the day corresponding to our 21 June (summer solstice), a
rod nailed vertically on the ground did not cast any shadow at noon. He decided to
see whether the same phenomenon would occur in Alexandria on that day, but soon
discovered that this was not the case: at noon, the rod did cast some shadow. If the
Earth had been flat, neither rods would have cast a shadow on that day, assuming
the Sun rays to be parallel. But if in Alexandria the rod cast some shadow, and in
Swenet not, the Earth could not be flat, but had to be curved.

It is believed that Eratosthenes paid some money to a man to measure the distance
between Swenet and Alexandria by walking between the two cities. The result was
equivalent to approximately 800 km. On the other hand, if we imagine the rods to
extend down to the Earth’s centre, the shadow indicated that the angle o between
them was about 7° (Fig. 1.3). Then, establishing the proportionality

Y J/

l

I

/
i d

Y

Fig. 1.3 Eratosthenes concluded that the shape of the Earth was a sphere. He used the fact that,
when two rods were nailed vertically on the ground, one in the ancient Swenet and the other in
Alexandria, at the noon of the day corresponding to our 21 June, the second cast a shadow while
the first did not.
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Fig. 1.4 The system of the
world according to Ptolemy.
The Earth was the centre of
the Universe and the planets
were fixed to spheres, each
one rotating around some
axis, which was supported on
another sphere which in turn
rotated around some axis, and
S0 On.

360 x
7 800

the result is approximately x = 40, 000 km, which would be the length of the circum-
ference of the Earth if it were a perfect sphere. The value obtained by Eratosthenes
was a little less (0.5% smaller).

It is astonishing that, using very rudimentary instruments, angles measured from
the shadows cast by rods nailed on the ground, and lengths measured by the steps
of a man walking a long distance (but having otherwise an exceptional interest in
observation and experimentation), Eratosthenes was able to obtain such an accurate
result for the size of the Earth, and so long ago, in fact, twenty-two centuries ago.
He was the first person known to have measured the size of the Earth. We know at
present that, due to the flattening of the Earth near the poles, the length of a meridian
is shorter than the length of the equator. Later, Hipparchus measured the distance
from the Moon to the Earth as 30.25 Earth diameters, making an error of only 0.3%.

But let us return to Ptolemy’s system (Fig. 1.4). The reasons why it prevailed
over Aristarchus’ heliocentric system, are very complex. Some blame can proba-
bly be laid on Plato and Aristotle, but mainly the latter. Aristotle deeply influenced
philosophical and ecclesiastic thinking up to modern times. Neither Plato nor Aris-
totle had a profound knowledge of astronomy, but they adopted the geocentric
system because it was in better agreement with their philosophical beliefs, and their
preference for a pro-slavery society. Their cosmology was subordinated to their
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political and philosophical ideas: they separated mind from matter and the Earth
from the sky. And these ideas remained, and were adopted by ecclesiastic philos-
ophy, until the work begun by Copernicus, Kepler, and Galileo and completed by
Newton imposed a new way of thinking, where the angels who moved the spheres
were no longer strictly necessary.

The system proposed by Ptolemy (Fig. 1.4) needed more than 39 wheels or
spheres to explain the complicated motion of the planets and the Sun. When the
king Alphonse X of Castile, nicknamed the Wise (1221-1284 CE), who had a deep
interest in astronomy, learned about the Ptolemaic system, he exclaimed: “If only the
Almighty had consulted me before starting the Creation, I would have recommended
something simpler.”

In spite of this, the tables deviced by Ptolemy for calculating the motion of the
planets were very precise and were used, together with the fixed stars catalog of
Hipparchus, as a guide for navigation by Christopher Columbus and Vasco da Gama.
This teaches us an important lesson: an incorrect theory may be useful within the
framework of its compatibility with the results of observation and experimentation.

In the Middle Ages, most knowledge accumulated by the Ancient Greeks had
been forgotten, with very few exceptions, and even the idea of the Earth’s sphericity
was effaced from people’s minds.

1.2 Copernicus, Kepler, and Galileo

In the fifteenth century, a Polish astronomer, Nicolaus Copernicus (1473-1543)
brought Ptolemy’s system to crisis by proposing a heliocentric system. Copernicus
assumed the Sun (more exactly, a point near the Sun) to be the centre of the Earth’s
orbit and the centre of the planetary system. He considered that the Earth (around
which revolved the Moon), as well as the rest of the planets, rotated around that
point near the Sun describing circular orbits (Fig. 1.5). Actually, he rediscovered
the system that Aristarchus had proposed in ancient times. Copernicus delayed the
publication of his book containing the details of his system until the last few days
of his life, apparently so as not to contradict the official science of the ecclesiastics.
His system allowed a description of the planetary motion that was at least as good
as the one which was based on Ptolemaic spheres. But his work irritated many of his
contemporaries. The Catholic Church outlawed his book in 1616, and also Martin
Luther rejected it, as being in contradiction with the Bible.

The next step was taken by Johannes Kepler, born in 1571 in Weil, Germany.
Kepler soon proved to be gifted with a singular talent for mathematics and astron-
omy, and became an enthusiastic defender of the Copernican system. One day in
the year of 1595, he got a sudden insight. From the Ancient Greeks, it was known
that there are five regular polyhedra: tetrahedron, cube, octahedron, dodecahedron,
and icosahedron — the so-called “Platonic solids™ of antiquity. Each of these can be
inscribed in a sphere. Similarly, there were five spaces among the known planets.
Kepler guessed that the numbers might be related in some way. That idea became
fixed in his mind and he started to work to prove it.
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FIXED STARS

SATURN

JUPITER

Fig. 1.5 The system of the world according to Copernicus. The Sun was at the centre of the
planetary system, and around a point very near to it revolved the Earth and the rest of the planets,
all describing circular orbits.

He conceived of an outer sphere associated with Saturn, and circumscribed in a
cube. Between the cube and the tetrahedron came the sphere of Jupiter. Between
the tetrahedron and the dodecahedron was the sphere of Mars. Between the dodec-
ahedron and the icosahedron was the sphere of Earth. Between the icosahedron and
the octahedron, the sphere of Venus. And finally, within the octahedron came the
sphere of Mercury (Fig. 1.6). He soon started to compare his model with observa-
tional data. As it was known at that time that the distances from the planets to the
Sun were not fixed, he imagined the planetary spheres as having a certain thickness,
so that the inner wall corresponded to the minimum distance and the outer wall to
the maximum distance.

Kepler was convinced a priori that the planetary orbits must fit his model. So
when he started to do the calculations and realized that something was wrong, he
attributed the discrepancies to the poor reliability of the Copernican data. Therefore
he turned to the only man who had more precise data about planetary positions: the
Danish astronomer Tycho Brahe (1546-1601), living at that time in Prague, who had
devoted 35 years to performing exact measurements of the positions of the planets
and stars.
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Fig. 1.6 Kepler’s system of
spheres and inscribed regular
Platonic solids.

Tycho Brahe conceived of a system which, although geocentric, differed from
that of Ptolemy and borrowed some elements from the Copernican system. He
assumed that the other planets revolved around the Sun, but that the Sun and the
Moon revolved around the Earth (Fig. 1.7).

In an attempt to demonstrate the validity of his model, he made very accurate
observations of the positions of the planets with respect to the background of fixed
stars. Brahe was a first-rate experimenter and observer. For more than 20 years he
gathered the data of his observations, which were finally used by Kepler to deduce
the laws of planetary motion.

Kepler believed in circular orbits, and to test his model, he used Brahe’s observa-
tions of the positions of Mars. He found agreement with the circle up to a point, but
the next observation did not fit that curve. So Kepler hesitated. The difference was
8 min of arc. What was wrong? Could it be his model? Could it be the observations
made by Brahe? In the end, he accepted the outstanding quality of Brahe’s measure-
ments, and after many attempts, finally concluded that the orbit was elliptical. At
this juncture, he was able to formulate three basic laws of planetary motion:

1. All planets describe ellipses around the Sun, which is placed at one of the foci;

2. The radius vector or imaginary line which joins a planet to the Sun sweeps out
equal areas in equal intervals of time. Consequently, when the planet is nearest
to the Sun (at the point called perihelion), it moves faster than when it is at the
other extreme of the orbit, called aphelion (Fig. 1.8);

3. The squares of the periods of revolution of planets around the Sun are propor-
tional to the cubes of the semi-major axis of the elliptical orbit.

Galileo Galilei (1564-1642) was a contemporary of Kepler and also a friend.
At the age of 26, he became professor of mathematics at Pisa, where he stayed
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Fig. 1.7 Tycho Brahe’s system. The Earth is the centre of the Universe, but the other planets rotate
around the Sun, while this in turn moves around the Earth.

t;
perihelion aphelion
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Fig. 1.8 The radius vector or imaginary line joining a planet with the Sun, sweeps out equal areas
in equal intervals of time; when the planet is near the Sun, at perihelion, it moves faster than when
it is at the other extreme of the orbit, at aphelion.

until 1592. His disagreement with Aristotle’s ideas, and especially the claim that
a heavy body falls faster than a light one, caused him some personal persecution,
and he moved to the University of Padua as professor of mathematics. Meanwhile,
his fame as a teacher spread all over Europe. In 1608, Hans Lippershey, a Dutch
optician, invented a rudimentary telescope, as a result of a chance observation by an
apprentice. Galileo learnt about this invention in 1609, and by 1610, he had already
built a telescope. The first version had a magnifying factor of 3, but he improved it in
time to a factor of 30. This enabled him to make many fundamental discoveries. He
observed that the number of fixed stars was much greater than what could be seen
by the naked eye, and he also found that the planets appeared as luminous disks.
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In the case of Venus, Galileo discovered phases like those of the Moon. And he
found that four satellites revolved around Jupiter. Galileo’s observations with the
telescope provided definite support for the Copernican system. He became famous
also for his experiments with falling bodies and his investigations into the motion of
a pendulum.

Galileo’s work provoked a negative reaction, because it had brought Ptolemy’s
system into crisis. This left only two alternatives for explaining the phases of Venus:
either Brahe’s geocentric system or the Copernican system. The latter definitely
went against the ecclesiastical dogma. The Church had created scholasticism, a mix-
ture of religion and Aristotelian philosophy, which claimed to support the faith with
elements of rational thinking.

But the Church also had an instrument of repression in the form of the Holy
Inquisition, set up to punish any crime against the faith. When Galileo was 36, in
1600, the Dominican friar and outstanding scholar Giordano Bruno (1548-1600)
was burned at the stake. He had committed the unforgivable crimes of declaring

Fig. 1.9 Nicolaus Copernicus. His model was presented in his book De Revolutionibus Orbium
Coelestium (On the Revolutions of Celestial Spheres), published thanks to the efforts of his col-
laborator Rheticus. This book was considered by the Church as heresy, and its publication was
forbidden because it went against Ptolemy’s system and its theological implications.
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that he accepted the Copernican ideas of planetary motion, and holding opinions
contrary to the Catholic faith.

When Galileo made his first astronomical discoveries, Bruno’s fate was still fresh
in his mind. Now he was becoming more and more convinced of the truth of the
Copernican system, even though it was in conflict with official science, based on
Ptolemy’s system. The reaction of the Florentine astronomer Francesco Sizzi, when
he learned about the discovery of Jupiter’s satellites, was therefore no surprise: The
satellites are not visible to the naked eye, and for that reason they cannot influence
the Earth. They are therefore useless, so they do not exist.

On the one hand, Galileo’s discoveries put him in a position of high prestige
among many contemporaries, but on the other, he was attracting an increasing num-
ber of opponents. The support given by his discoveries to the Copernican theory
and his attacks on Aristotelian philosophy aroused the anger of his enemies. In
1616, possibly under threat of imprisonment and torture, he was ordered by the
Church “to relinquish altogether the said opinion that the Sun is the centre of the
world and immovable [...] not henceforth to hold, teach or defend it in any way.”
Galileo acquiesced before the decrees and was allowed to return to Pisa. The Church

Fig. 1.10 Johannes Kepler was named “legislator of the firmament” for his laws of planetary
motion, deduced as a result of long and patient work, using the extremely precise data gathered by
Tycho Brahe.
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Fig. 1.11 Tycho Brahe. Although his system of planetary motion was wrong, his very precise
observations of the planetary positions enabled Kepler to formulate his laws.

was afraid to weaken its position by accepting facts opposed to the established
Christian—Aristotelian—Ptolemaic doctrine.

In 1623, one of his friends, Cardinal Maffeo Barberini, became Pope Urban VIII,
and Galileo received assurances of pontifical good will. Considering that the decree
of 1616 would no longer be enforced, he wrote his book Dialogues on the Ptolemaic
and Copernican Systems. But he faced an ever increasing number of enemies, and
even the Pope became convinced that Galileo had tricked him. Galileo was called
for trial under suspicion of heresy before the Inquisition at the age of 67. He was
forced to retract under oath his beliefs about the Copernican system.

Later, a legend was concocted that Galileo, after abjuring, pronounced in low
voice the words And vyet it moves, referring to the Earth’s motion around the Sun.
That s, in spite of any court and any dogma, it was not possible to deny this physical
fact, the objective reality of Earth’s motion. However, it is interesting that Galileo
never accepted the elliptical orbits discovered by Kepler; he believed only in circular
orbits.

Among the most important achievements of Galileo, one must mention his laws
of falling bodies, which can be resumed in two statements:
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Fig. 1.12 Galileo Galilei. He discovered, among other things, four satellites of Jupiter and the
phases of Venus, using a telescope of his own improved design. He enunciated the basic laws of
falling bodies. His works stirred the antagonistic attitude of the ecclesiastical authorities, and he
was forced to stand trial and to abjure his beliefs about the Copernican system.

1. All bodies fall in vacuum with the same acceleration. That is, if we let one sheet
of paper, one ball of lead, and a piece of wood fall simultaneously in vacuum,
they will fall with the same acceleration;

2. All bodies fall in vacuum with uniformly accelerated motion. This means that
their acceleration is constant, that is, their velocity increases in proportion to the
time elapsed from the moment the bodies started to fall.

The work initiated by Copernicus, Kepler, and Galileo was completed by Isaac
Newton. He was born in 1642, the year in which Galileo died, and lived until 1727.

1.3 Newton and Modern Science

One day, Edmund Halley visited his friend Newton after a discussion with Robert
Hooke and Christopher Wren, in which Hooke had claimed that he was able to
explain planetary motions on the basis of an attractive force, inversely proportional
to the square of the distance. When asked his opinion about it, Newton replied that
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he had already demonstrated that the trajectory of a body under such a central force
was an ellipse.

Newton subsequently sent his calculations to Halley, and after looking through
the manuscript, Halley convinced Newton to write in detail about the problem,
since it could provide an explanation for the complicated motion of the whole
planetary system. And this is how Newton started to write his Philosophiae Natu-
ralis Principia Mathematica, a monograph which produced a revolution in modern
science.

In the first book Newton stated his laws of motion, which owed much to Galileo,
and laid their mechanical foundations. He deduced Kepler’s laws by assuming a
force inversely proportional to the square of the distance, and demonstrated that
according to this law the mass of a homogeneous sphere can be considered as
concentrated at its centre.

The second book is devoted to motion in a viscous medium, and it is the first
known study of the motion of real fluids. In this book Newton dealt with wave
motion and even with wave diffraction.

In the third book Newton studied the motion of the satellites around their plan-
ets, and of the planets around the Sun, due to the force of gravity. He estimated the
density of the Earth as between 5 and 6 times that of water (the presently accepted
value is 5.5), and with this value he calculated the masses of the Sun and the planets.
He went on to give a quantitative explanation for the flattened shape of the Earth.
Newton demonstrated that, for that shape of the Earth, the gravitational force exerted
by the Sun would not behave as if all its mass were concentrated at its centre, but
that its axis would describe a conical motion due to the action of the Sun: this
phenomenon is known as the precession of the equinoxes.

Although Newton used the differential and integral calculus (which he invented
himself, independently of Gottfried Leibniz) to get his results, he justified them
in his book by using the methods of classical Greek geometry. One of the most
practical consequences of his work was to supply a calculational procedure for deter-
mining the orbit of the Moon and the planets with much greater accuracy than ever
before, using a minimum number of observations. Only three observations were
enough to predict the future position of a planet over a long period of time. A con-
firmation of this was given by his friend Edmund Halley, who predicted the return of
the comet which bears his name. Some other very important confirmations appeared
in the nineteenth and twentieth centuries due to Le Verrier and Lowell, who pre-
dicted the existence of the then undiscovered planets Neptune and Pluto, deducing
their existence from the perturbations they produced on other planetary motions.

The theory of gravitation conceived by Newton, together with all his other con-
tributions to modern astronomy, marked the end of the Aristotelian world adopted
by the scholastics and challenged by Copernicus. Instead of a Universe composed
of perfect spheres moved by angels, Newton proposed a mechanism of planetary
motion which was the consequence of a simple physical law, without need for the
continuous application of direct holy action.
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1.4 Newton’s Laws

Newton established the following three laws as the basis of mechanics:

1. Every body continues in its state of rest or in uniform motion in a straight line
unless it is compelled to change that state by forces acting on it;

2. The rate of change of momentum is proportional to the applied force, and it is in
the direction in which the force acts;

3. To every action there is always opposed an equal reaction.

In the second law, momentum is defined as the product of the mass and the velocity
of the body.

1.4.1 Newton’s First Law

Newton’s first law is known as the law or principle of inertia. It can only be veri-
fied approximately, since to do it exactly, a completely free body would be required
(without external forces), and this would be impossible to achieve. But in any case
it has a great value, since it establishes a limiting law, that is, a property which,
although never exactly satisfied, is nevertheless satisfied more and more accurately,
as the conditions of experimentation or observation approach the required ideal
conditions.

As an example, an iron ball rolling along the street would move forward a little
way, but would soon come to a stop. However, the same ball rolling on a polished
surface like glass, would travel a greater distance, and in the first part of its tra-
jectory, it would move uniformly along a straight line. Furthermore, the length of
its trajectory would be longer if the friction between the ball and the surface (and
between the ball and air) could be reduced. The only applied force is friction (act-
ing in the opposite direction to the motion of the ball). The weight of the body acts
perpendicular to the surface, and it is balanced by the reaction force of the surface.

1.4.2 Newton’s Second Law

Newton’s second law, known also as the fundamental principle of dynamics, states
the proportionality between the acceleration a and the force F acting on a given
body:

F = ma. (1.1)

The constant of proportionality m is called mass. The mass can be interpreted as a
measure of the inertia of the body. The larger the mass, the larger the force required
to produce a given acceleration on a given body. The smaller the mass of a body, the
larger the acceleration it would get when a given force is applied, and obviously, the
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Fig. 1.13 Isaac Newton. His scientific work marks the beginning of physics as a modern science.
His formulation of the laws of mechanics and universal gravitation laid the basis for explaining
planetary motion and obtaining the Kepler laws. His work in optics, as well as in mathematics,
was also remarkable, and he invented the differential and integral calculus independently of his
contemporary Gottfried Leibniz.

more quickly it would reach high speeds. In modern physics this is observed with
elementary particles: much less energy (and force) is required to accelerate electrons
than to accelerate protons or heavy nuclei. On the other hand, photons (light quanta)
move at the highest possible velocity (the speed of light, which is about 300,000
km/s), since they behave as massless particles (see Chap. 5).

But let us return to the second law. Its extraordinary value is due essentially to
the fact that, if the interaction law is known for two bodies, from the mathematical
expression for the mutual forces exerted it is possible to obtain their trajectories.

For instance, in the case of the Sun and a planet, as mentioned above, Newton
established that a mutual force of attraction is exerted between them, a manifestation
of universal gravitation. That force is directed along the line joining their centres,
and it is proportional to the product of their masses and inversely proportional to the
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square of the distance between them. That is,

GM
F=—"""r, (1.2)
F

where M and m are the masses of the Sun and planet, respectively, r is the distance
between their centres, G is a constant whose value depends on the system of units
used, and ry is a unit vector along r. F is a central force, that is, its direction always
passes through a point which is the so-called centre of forces (in this case, it is a
point inside the Sun).

Then, taking into account the fact that acceleration is a measure of the instanta-
neous rate of change of velocity with respect to time (the time derivative of velocity)
and that in turn velocity is the rate of change of the position of the planet (time
derivative of position), we have a mathematical problem that is easily solved (at least
in principle) using differential calculus. Since acceleration is the second derivative
with respect to time of the position vector of the planet with respect to the Sun, we
can write:

d’r GM mr,

m 77 = p (1.3)
This differential equation can be solved using the fact that the solar mass M is much
greater than that of the planet m. The solution tells us that the orbit described by the
planet is a conic section in which the Sun is placed at one of the foci. The type of
orbit depends on the total energy of the body.

If the energy is negative, we have elliptical orbits (in the case of a minimum
energy value, the ellipse degenerates into a circular orbit). If the energy is zero, the
orbits are parabolic. Here we consider the total energy as the sum of the potential
and kinetic energies, so that the zero corresponds to the case in which these are equal
in absolute value; as we shall see later, in this case the potential energy is negative.
Finally, for positive energies we have hyperbolic orbits.

The known planets describe elliptic orbits, but some comets coming from outer
space describe parabolic or hyperbolic orbits. In that case, they get close to the Sun,
move around it, and later disappear for ever. For most known comets, like Halley’s,
the orbit is elliptical but highly eccentric (i.e., very flattened).

As pointed out earlier, the application of Newtonian mechanics to the study of
planetary motion gave astronomers an exceptionally important tool for the calcu-
lation of planetary orbits. But from the methodological point of view, Newtonian
mechanics was of transcendental importance in modern science, since for the first
time in physics a theory was established from which it was possible to predict con-
sequences compatible with the results of observation. In that sense, Newton closed
a circle which was initiated by Brahe, and which was continued by Kepler when he
derived the laws of planetary motion from the data of Brahe’s observations. Newton
showed that such laws could be obtained by starting from very general physical
principles: the equations of mechanics and the gravitational force between bodies.
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For observers at rest or in uniform motion along a straight line, the laws of
mechanics are the same. But the validity of Newton’s laws depends on the accel-
eration of the observer: they do not hold equally for observers who are accelerated
in different ways. For that reason it became necessary to introduce the concept of
frame of reference, in particular, the concept of inertial frame, in which Newton’s
laws are valid. An inertial frame is something more than a system of reference; it
includes the time, i.e., some clock. A simple geometrical change of coordinates does
not change the frame of reference. We shall return to inertial frames in Sect. 1.7.

Vectors. We have already spoken about vectors indicating the position of the plan-
ets, and when discussing forces, velocities, and accelerations. Implicitly we have
referred to the vectorial nature of these quantities. In order to characterize vectors, it
is not sufficient to use simple numbers or scalars indicating their magnitude or abso-
lute value. For vectors, besides the magnitude or modulus, we need to indicate their
direction. Vectors are represented by arrows whose length and direction represent
the magnitude and direction of the vector, respectively.

For instance, when referring to the velocity of a body, it is not enough to say
how many meters per second it moves. We must also specify in which direction it is
moving. A body that falls has a velocity which increases proportionally to the time
elapsed, and its direction is vertical, from up to down. We represent that velocity as
a vertical vector of increasing magnitude, with its end pointing downward.

Sometimes vectors are used to indicate the position of a point that moves with
respect to another one taken as fixed. This is the case of the radius vector, to which
we referred when describing Kepler’s laws. The origin of the radius vector is at the
Sun and the end is at the planet that moves.

Two parallel vectors, A and B, are simply summed, and the sum has the same
direction as the added vectors. If they are parallel and of opposite directions, their
sum is a vector of modulus equal to the difference of the moduli of the given vectors
and its direction is that of the vector of larger modulus.

If two vectors A and B are not parallel, but have different orientations, their sum
is geometrically a third vector obtained by displacing B parallel to itself so that its
origin coincides with the end of A, and then, by joining the origin of A with the end
of B we get the sum A + B of the two vectors.

Given a system of orthogonal coordinates Oxyz, the vector A can be written
in terms of its three components along the coordinate axes, A = (Ax.4,.4;),
obtained from the projection of the vector on them. The modulus of A is given by

A= \JAZ+ A2 4 A2,

where Ay =Acosa, Ay =Acosff, A, = Acosy, with a, .y being the angles
between A and the axes Ox, Oy, and Oz, respectively. Thus, a vector in three
dimensions is defined by an ordered set of three numbers, which are its components.
Let us define the unit vectors

i=(1.0.0), j=(0.1.0). k=(0,0,1).
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One can write
A=A,i+4,j+ Ak

In the same way,
B = B,i—+ Byj + Bk,

and their sum is obviously
A+ B = (A + By)i+ (A4y + By)j + (4; + Bk.
An important vector is the position vector,
r = xi+ yj+ zk,

of any arbitrarily chosen point with respect to the system of coordinates O xyz.

Mechanical quantities such as displacements, velocities, accelerations, forces,
etc., are to be summed in accordance with this procedure of vectorial or geometri-
cal sum.

If two forces have opposite directions but equal moduli, their vector sum is a null
vector, that is, a vector of modulus zero. However, that does not necessarily mean
that the physical effect is canceled: if the forces are applied at different points, both
of them will have a mechanical effect. Opposite forces are responsible for static
equilibrium — for instance, for a body having the weight G lying on a table. The
weight G is applied to the table and the reaction of the table R = —G is applied to
the body. Opposite forces of equal modulus also appear in dynamics, as in the case
of the Sun and a planet: their mutual action is expressed by opposite forces, but the
forces are applied at different points, on the Sun and on the planet: the vector sum
of the forces is zero, nevertheless they produce the motion of the bodies.

Given two vectors A and B, their scalar product is a number obtained by mul-
tiplying together the modulus of each vector by the cosine of the angle formed by
their directions. Usually, the scalar product is represented by means of a dot between
the two vectors:

A:-B = ABcosu. (1.4)

The scalar product of two vectors can also be expressed as the product of the mod-

ulus of one of the vectors by the projection of the other on it. The scalar product is

commutative, A - B = B - A. Moreover, A - A = A2, that is, the modulus squared

of a vector is given by the scalar product of the vector with itself. If A and B are

perpendicular, then A-B = 0. If ¢ is a number, it is obvious that (cA)-B = ¢(A-B).
The unit vectors satisfy the properties

iri=j-j=k-k=1

and
irj=j-k=k-i=0.
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Fig. 1.14 The scalar product
is used, for example, for
calculating the work
performed by a force.

Then one can write the scalar product in the form
A-B=AxB,+ A,B, + A.B.. (1.5)

The scalar product is particularly useful in expressing the work performed by
a force on a particle that describes an arbitrary trajectory between two points, Py
and P. At each point of the curve the force forms an angle with the tangent to
the curve at the point. The total work performed by the force can be calculated in the
following way: divide the curve into segments at the points 1, 2, 3, etc., and draw the
corresponding chords AS;, AS;. AS3 as vectors that join the points Py, Py, Pa, P3,
etc. Then take the value of the force at an arbitrary point inside each of these seg-
ments. Let Fy, Fy, F3, etc., be the values of the force at such points (Fig. 1.14). Then
take the sum of the scalar products:

Fi-AS, +F5-ASs + ...+ F,-AS,. (1.6)

When the number of the points of the division tends to infinity, such that the modulus
of the largest of the vectors AS; tends to zero, the work done by the force is obtained
as

[e.2]
W = lim F; - AS;. (1.7)
AS; =0 —
This is represented by the symbol
W = F-ds, (1.8)
PyP

which is called the line integral between Py and P.

The vector product (or cross product) of two vectors is a new vector, obtained
by performing a mathematical operation on them. To illustrate it, let A and B be
two vectors in a plane (Fig. 1.15). Decompose B into two other vectors, B; and B,
(whose sum is B). The vector B, is in the direction of A, while the vector B, is
perpendicular to A. We now define a third vector that we call the vector product
of A by B, denoted by A x B, whose characteristics are:

1. Its modulus is the product of the moduli of A and B». In other words, it is equal
to the product of the moduli of A and B with the sine of the angle between them,
ABsina;

2. Tts direction is perpendicular to the plane spanned by A and B and is determined
as follows. If the direction of rotation to superpose A on B is indicated by the
index, middle, ring, and little fingers of the right hand (as shown in Fig. 1.15),
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Fig. 1.15 (a) The vector product of two vectors A and B is a third vector, perpendicular to A and B,
whose modulus is the product of the moduli of A and B with the sine of the angle between them.,
or equivalently, the product of the modulus of one of them with the projection of the other on the
direction perpendicular to the first. The direction of the vector product is given by the right-hand
rule as shown in the figure. (b) The mirror image does not satisfy the definition for the vector
product of two vectors, but obeys a left-hand rule, since the image of the right hand is the left hand.

then the thumb indicates the direction of A x B (assuming that the angle «
between the vectors is smaller than 180°).

Strictly speaking, the vector product of two vectors is not a true vector, but a
pseudovector, since the mirror image does not satisfy the previous definition, but
the left-hand rule, which is obviously not equivalent to it: the mirror image of the
right hand is the left hand.

Consequently, the product B x A gives a vector of the same modulus but opposite
direction to A x B. This is an interesting result: the vector product is not commuta-
tive, but rather one can write B x A 4+ A x B = 0, meaning that the vector product
is anticommutative. In particular, A x A = 0 = B x B. This property can be gener-
alized to higher dimensional spaces, and leads to the definition of exterior algebras
or Grassmann algebras (see Chap. 7).

For the unit vectors, we have the properties:

ixi=jxj=kxk=0

and

ixj=k jxk=i kxi=j.

L

Since the product is anticommutative, if we exchange the pair on the left, the sign is
changed on the right. In terms of components, we get
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AxB=(AyB,— AB)i+ (A.By — AxB)j + (A:By — A Bk (19)

It is easily seen that the vector product vanishes if the vectors are parallel.

Transformations of vectors. Vector components transform like coordinates. For
instance, under a rotation of the system of coordinates, the components Ay, Ay, A,
transform like the coordinates x, y,z. Under a positive (counterclockwise) rota-
tion of angle € around the z-axis, the position vector of a point P, expressed as
r = xi+ yj + zk in the original system, is transformed in the rotated system to
r = x'i' + y'j’ + 7k, where the new coordinates x’, y’, 7’ are given by the prod-
uct of the rotation matrix R with the initial vector r. The unit vectors in the rotated
system are i, j', whereas k does not change. The rotation matrix is an array of 3 x 3
numbers in three rows and three columns. The components of a matrix are labeled
by two indices (i, j), where the first identifies the row and the second indicates the
column. The rotated vector r’ is the product of the rotation matrix R with the orig-
inal vector r. For the particular rotation of angle € around the z-axis, we write this
product as

x! cosf sinf 0 X
y | =1\ —-sinfcosb0]|y] (1.10)
7 0 0 1 z

Under this rotation, the components of a vector A transform as

Al = AccosO + Ay sinb,
Ay = —Aysin@ + Ay cos b,
Al = A,

Under an inversion of the coordinate axis, (x, y,z) — (x,y,—z), the vector
A transforms as (Ay. A,.A;)) — (Ax,Ay.—A;). A pseudovector P transforms
under rotations like the coordinates, but under an inversion, it remains the same,
(Py.Py.P.)— (Py. Py, P,).

There is an alternative way of writing the previous ‘vector’ rotation. If we now
denote the indices of components along x, y,z by i = 1,2, 3, respectively, we may
write the vector components as A;. Further, we shall write the matrix R in terms of
its elements as R;; (row i and column j). Then, for instance,

A’3 = Z joAJ. = R31A1 + R32A2 + R33A3-
J

In what follows, we adopt Einstein’s summation convention: if a term contains the
same index twice, the summation over all values of that index is to be understood.
Thus, A} = R3;A; means the sum over j, as j ranges over 1,2, 3. (From now
on, we shall use the indices x. y,z as an alternative to 1,2, 3, understanding the
correspondence x — 1,y — 2,z — 3.)
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Tensors. The dyadic product AB of two vectors A and B is a quantity with the
property that
(AB)-C = A(B-C). (1.11)

The result is a vector in the direction A, since B - C is a scalar. As
(AB) - (cC) = c[(AB)-C)]
and

(AB)- (C + D) = (AB)- C + (AB) - D.

the quantity AB is called a linear operator, or tensor, and (1.11) is a linear function
of C. A tensor is a quantity whose components transform as a product of the coordi-
nates. For instance, the component T, of a tensor T transforms as the product xy.
The unit tensor is the dyadic I = ii + jj + kK. It is easy to check that I- A = A.In
three-dimensional space, a second rank tensor can be written in the form

T = Tyyii + Tyyij + Toik (1.12)
+ Tyxji + Tyyjj + Ty;jk
+ T.ki+ T, kj + T.kk.

However, it is simpler to write it in the matrix form

Txx Txy Tx:
T=|TyxTyy Ty; |- (1.13)

TEX TL_V TZZ
By using the numerical indices i, j = 1,2, 3, we may write the general component
of T as T;;. A tensor is symmetric if T;; = T};, and antisymmetric if T;; = —T;.

An arbitrary tensor can be written as the sum of a symmetric and an antisymmetric
tensor.

In a similar way we can define tensors of third rank as T;, etc. For us, the most
interesting third rank tensor is the completely antisymmetric unit tensor €;, called
the Levi-Civita tensor. (Actually, it is a pseudotensor, because it behaves as a tensor
except under the inversion of coordinates.) Its components are as follows: zero, if
at least two indices are equal; +1, if the permutation of the (unequal) indices ijk
is even (i.e. 123,312,231), and —1, if the permutation of the indices is odd (i.e.,
213.321,132).

Let us consider two vectors represented by their components 4; and By. If we
write the product of ¢;;; with these vectors, and sum over j and k, we get

C,_: =€(jkAjBk. (114)

Cy =€12342B3 + €13243 B3,
= €23143B1 + €21341 B3,
C3 = €31241 B2 + €21342B).

\p
|
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Hence, C,‘ = (AzB;; — A3Bz.A3Bl — AlB3, Ale — AzBl); in other words, Ct'
withi = 1,2, 3 are the components of the vector product A x B.

Thus, the vector product C = A x B can be written in components as C; =
%e,-jk T'j, where T are the components of the antisymmetric tensor T:

0 Cp —Cs
T=\|-C, 0 C; |. (1.15)
C; —C; 0

The pseudovector C is called the dual pseudovector of the tensor T.

Very important physical quantities are usually expressed as vector products.
Examples are the angular momentum L, or the magnetic field B. The vector product
will also be used in the expression (1.27) for the velocity written in a rotating system
of coordinates, and it is useful to remember in these cases that it is a pseudovector,
i.e., the dual of an antisymmetric tensor.

For a satellite of mass m that moves around the Earth, we can assume its velocity
at each instant to be the sum of two vectors: a component along the radius vector
and another perpendicular to it, contained in the plane of the orbit. The angular
momentum of the satellite around the Earth (Fig. 1.16) is given by the cross product
of the radius vector r of the satellite with respect to the Earth with the momentum
p = myv of the satellite:

L=rxp. (1.16)

1.4.3 Planetary Motion in Newton’s Theory

It is instructive to analyze the motion of a planet around the Sun (or of the Moon
around the Earth) as a consequence of Newton’s second law.

Assume that at a given instant the momentum of the planet is p = mv around
the Sun. If the gravitational attraction could be switched off at that precise moment,
the planet would continue to move uniformly in a straight line, that is, with a con-
stant momentum p. In the time interval Az elapsed between two adjacent positions
| and 2, the planet suffers a change in its momentum due to the action of the Sun’s
attractive force F.

Fig. 1.16 Angular
momentum of a satellite .§
that moves around the Earth
E. The angular momentum is
L=rxp
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intermediate agent for the interaction, propagating with finite speed. This will be
discussed in more detail in later chapters.

Newton’s third law should be interpreted with care in the atomic world, because
of the finite velocity of propagation of the interactions. For instance, two charged
particles in motion exert mutual forces of attraction or repulsion, but at a given
instant the force exerted on one of the particles is determined by the position of the
other at some previous instant, and the effect of its new position will be felt some
time later.

Newton’s third law can be considered as a manifestation of a much more general
law. In fact, the expression action < reaction does not necessarily establish their
equality, but rather the relation stimulus—response, in which the second is opposed
to the first one. This can be found in all fields of physics. For instance, in electro-
magnetic theory, it is found that, when a magnetic field varies near a conductor,
an electric current is induced on the latter (Faraday’s law). But this electric cur-
rent in turn creates a magnetic field which acts oppositely to the applied field (Lenz
law). Furthermore, an electric charge in a medium creates an electric field, attracting
charges of opposite sign, and the net effect is a screening of the charge and the field
created by it.

In thermodynamics, that general law is expressed by Le Chatelier’s principle:
if some external actions are applied to a system in equilibrium, and if these tend to
alter it, some reactions originate in the system which tend to compensate the external
actions and take the system to a new state of equilibrium. For instance, if we heat
a jar with a match at some point, the jar alters its state of equilibrium. However,
the heat spreads across its mass cooling the hot point, and after some time, the
jar reaches a new state of equilibrium at a uniform temperature higher than before
because of the absorbed heat.

1.5 Conservation Laws

Starting from Newton’s laws, and on the basis of a simple hypothesis about the
interaction forces between the particles, it is possible to establish three conservation
laws:

1. Conservation of linear momentum;
2. Conservation of angular momentum;
3. Conservation of energy.

The conservation of these quantities is usually accepted as valid in all fields of
physics, and they can be derived as a consequence of the basic symmetry properties
of space and time. Thus, the conservation of linear momentum is a consequence of
the homogeneity of space, the conservation of the angular momentum is due to the
isotropy of space (meaning that all the directions of space are equivalent for a given
physical system, i.e., its properties do not vary when it is rotated as a whole), and
the conservation of energy is a consequence of the homogeneity of time (in other
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words, the evolution of a system with respect to time, starting from an initial instant
Io, is the same for any value of 1y). This correspondence between symmetry proper-
ties and conservation laws is extremely general and crops up again in other theories,
particularly in microscopic physics. The ultimate understanding of these relations
was given by the German Jewish mathematician Emmy Noether (1882—-1935), in the
theorem which bears her name and which turned out to be one of the most influential
works for the development of theoretical physics in the twentieth century.

1.5.1 Conservation of Linear Momentum

It is easy to demonstrate that for a system of particles under no external influences,
the total linear momentum (the sum of the linear momenta of all the particles) is
conserved when Newton’s third law is satisfied. Put another way, the total linear
momentum is conserved if the action and the reaction are equal in modulus but act
in opposite directions.

It may happen that one or both interacting particles emit some radiation. In that
case one must attribute some momentum to the radiation field in order that the linear
momentum be conserved. When the radiation is assumed to be composed of quan-
tum particles (for example, photons), the law of conservation of linear momentum
is restored by including newly created particles carrying a certain amount of linear
momentum.

We shall refer to an example from macroscopic physics. If we shoot a gun, the
bullet, having a small mass, leaves the gun at a speed of several meters per second.
The gun moves back in the opposite direction at a lower speed (at the moment of
shooting we can neglect the action of the force exerted by the Earth’s gravitational
field). If m is the mass and v the speed of the bullet, and if M and V are the mass
and speed of the gun, we find that MV = —mv. So the momentum acquired by
the bullet is the same (but of opposite sign) as that acquired by the gun. The sum of
two quantities equal in modulus but with opposite directions is zero, which was the
initial value of the total linear momentum.

But what happens if we fix the gun to a solid wall? In this case the gun does
not move back, the wall stops it. But now the conditions have changed. An external
force is exerted on the gun, since it has been fixed to the wall, and this in turn is
fixed to the Earth.

This means that the Earth should move back with a speed which, when multiplied
by its mass, yields a momentum equal in modulus but opposite to that carried by the
bullet. Let us suppose that the bullet has a mass of 100 g, and that its speed is
100 m/s = 10* cm/s. The mass M of the Earth is 5.98 x 10?7 g. From the equation
MYV = —mv, we find that, after the gun is fired, the Earth should recoil with a speed
of the order of 1072° ¢cm/s. For all practical purposes, this is zero.

Something similar happens if we throw a rubber ball against a wall. The ball
bounces and comes back with a velocity of approximately the same modulus, but in
the opposite direction. Apparently, the linear momentum is not conserved, but the
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ball has subtracted a certain amount of momentum from the wall, or from the Earth,
which recoils with insignificant velocity.

We should emphasize that, in the previous example, the velocity of the ball
bouncing off the wall has opposite direction to what it had before the collision, but
its modulus is actually somewhat smaller. The wall did not give back all the incident
momentum, but absorbed a part of it. An extreme case occurs if we throw a ball of
clay against the wall. In this case the ball does not rebound. All the linear momen-
tum of the ball is transmitted to the wall, and as it is fixed to the Earth, its resulting
change of motion is not perceptible. But if the wall were supported by wheels that
could move without friction, it would start to move with the colliding ball of clay
stuck to it. Its speed would be easily obtained: if M is its mass, and m and v are the
mass and velocity of the ball of clay, we conclude that the modulus of the velocity
of the wall V would be

V=y (1.17)

m
m+ M’
Conservation of Linear Momentum and the Mossbauer Effect. The previous
example of the gun fixed to the Earth (that does not recoil) has an interesting analogy
in nuclear physics, in the so-called Mdssbauer effect. In this case, the gun is an
atomic nucleus, and the bullet is the gamma radiation emitted by it. The gamma
radiation emitted by a nucleus has a constant frequency, but when the nucleus is
able to move, as happens in a gas, we have a case similar to the first example of the
recoiling gun. The nucleus recoils when emitting the gamma radiation. This causes a
range of frequencies to be observed, within a certain bandwidth Aw, that is, there are
many values of the frequency in such an interval and a continuous set of frequencies
is observed due to the different values of the energy lost by the recoil of the nucleus.
The frequency no longer has a precise value, but lies in an interval of possible values,
which we may call the imprecision or error.

However, in certain crystals (for example, iridium 197 and iron 57) phenomena
occur as in the example of the gun fixed to the Earth, since the emitting nucleus is
effectively fixed to the crystal (which does not recoil significantly). Then the fre-
quency of the emitted radiation has an extraordinarily narrow band width Aw. In
the case of iron 57, the band width divided by the frequency w is of the order of
Aw/w ~ 3 x 10713, This is equivalent in units of time to an error of one second in
an interval of 30,000 years.

As can be seen from this, the Mdssbauer effect can be used to make very precise
measurements of frequency.

1.5.2 Conservation of Angular Momentum

For the case of motion under the action of a central force (directed along the radius
vector joining the planet with the Sun), angular momentum is conserved: it does
not vary with time. Referring again to Fig. 1.16 of a satellite around the Earth,
the change Ap in the linear momentum that the satellite acquires by the action
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of the terrestrial gravity force is always directed along r. For that reason it does
not contribute to the angular momentum, which is due only to the component p,
perpendicular to r.

If r decreases, p2 increases so that the product L = rp» remains constant. This is
equivalent to the statement of Kepler’s second law, which is nothing but an expres-
sion of the conservation of angular momentum. The planets move faster when they
approach the Sun (the radius vector diminishes) than when they are more distant.

In addition to the angular momentum due to the orbital motion around the Sun,
the planets have an angular momentum due to the rotation around their axis. This
creates a magnetic field due to the rotation of electric charges inside them.

Something similar takes place in the atomic world. An electron in an atom has
some intrinsic angular momentum or spin that is retained even if it moves outside
the atom, although it would not be correct to imagine the electron as a sphere that
rotates around its axis.

The spin angular momentum is measured in terms of a unit #z which is the Planck
constant /2 divided by 27, and whose value is 1.05x 10~27 erg - 5. Electrons, protons,
neutrons, neutrinos, and other particles have spin equal to 1/2 of this unit. Photons
have spin equal to 1 and 7 mesons have spin 0.

Particles with spin 1/2 (or any half-integer) are called fermions, in honour of
the Ttalian physicist Enrico Fermi (1901-1954), and they obey Pauli’s exclusion
principle, formulated in 1925 by Wolfgang Pauli (1900-1958). On the other hand,
if a particle has integer spin, it is called a boson, in honour of the Indian physicist
Satyendra Nath Bose (1894—-1974). Bosons do not obey the Pauli principle.

The angular momentum of an isolated system of particles is also conserved if the
particles exert equal and opposite forces on one another.

As in the case of the linear momentum, it may happen that a particle loses a
certain amount of angular momentum, which is carried by a newly created particle.
This is the case of an electron in an atom: upon jumping from some level of energy
to another one, it loses a certain amount of angular momentum, but the emitted
photon carries precisely the missing angular momentum.

When neutron decay was investigated, it was observed that the resulting particles
were a proton and an electron. Since the neutron had a spin angular momentum
equal to 1/2, the same as the proton and the electron, it was a mystery why the
total spin of the resulting particles was not 1/2. Furthermore, the energy was not
conserved either. Then, in 1931, Pauli proposed the existence of a neutral particle
that carries the missing spin and energy. This particle was called the neutrino and
was assumed to have spin 1/2. Although it took more than 20 years, the existence
of the neutrino was finally demonstrated in the laboratory. It took so long because
neutrinos are particles whose interaction with matter is very weak. Neutrinos and
weak interactions will be discussed in Chaps. 9, 10, and 11.
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1.5.3 Conservation of Energy

For a body of mass m that moves with speed v, its kinetic energy is %mvz. Unlike
the linear momentum and the angular momentum, which are vectorial, the kinetic
energy does not depend on the direction of motion.

Another form of energy is potential energy. If the same body of mass m is placed
at a certain height /1 above the Earth, we say that it has a potential energy mgh with
respect to the surface of the Earth (g is the acceleration due to the Earth’s gravity,
with the value 9.8 m/s?), that is to say, this potential energy is equal to the product
of the weight by the height. If the object falls freely, the potential energy diminishes
due to the decreasing height with respect to the floor. But on the other hand, the body
acquires an increasing speed: the decrease in potential energy produces an increase
in kinetic energy, in such way that their sum is constant:

1
Emv2 + mgz = const. = mgh,

where z is the height at any instant between the moment when the object was
released and the moment when it touched the Earth.

For a planet of mass m that moves around the Sun, for example, its kinetic energy,
denoted by T, is:

1
T:Em(verrvIz). (1.18)

where v, is its radial speed, directed along the radius that joins the planet with the
Sun, and v; is the velocity perpendicular to the radius vector. The potential energy
(which is equal to the energy required to bring the planet from infinity to the point
where it is located) is denoted by V' and is equal to

(1.19)

Here, G is the universal constant of gravitation, M is the solar mass, r is the distance
from the planet to the Sun (or from the centre of the planet to the centre of mass of
the Sun—planet system, which is a point located in the Sun). The negative sign of
the potential energy is due to the fact that the force between the planet and the Sun
is attractive and the energy required to bring it from infinity to its present position
is negative: it is not necessary to waste energy, because the Sun gives up this energy
through its attractive force. The total energy would thus be

1 GM.
E=T+V= 5m(u§+u})——m. (1.20)
r

But as the angular momentum L = mu;r is constant, one can write

v; = L/mr, (1.21)
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Fig. 1.22 If it were possible

to make a hole right through

the Earth, passing through its

centre, a particle thrown

down the hole would oscillate

permanently between the two \
ends of the diameter.

Returning to our example, if the angular momentum is zero, U = V. This is the
case for a body thrown vertically upward. If rp is the Earth radius, the body could
reach a height ry, and then fall back to the Earth’s surface.

Let us imagine what would happen if a hypothetical hole were dug through the
Earth, along one of its diameters. Then the body could pass through the centre of
the Earth, where it would arrive with the maximum kinetic energy. After crossing
the centre, it would exit through the opposite end, reaching a position entirely sym-
metrical in the land of the antipodes. In principle, it would then come back to its
starting point and thereafter oscillate indefinitely (Fig. 1.22). Tts orbit would be a
linear oscillator. At a point inside the Earth at a distance r from its centre, the force
of gravity exerted on a body of mass m falling down the hole is the force produced
by a sphere of radius r (due to Gauss’s law). If p is the average Earth density, this
mass is M’ = 4mwr3p/3, leading to a force F = 47 Gmpr/3.

Of course, not only is it technically impossible to make such a hole through
the Earth, but other factors must be considered. For instance, among other things,
friction could not be avoided, and this would damp the oscillations.

If the body comes from infinity with an energy greater than or equal to zero (and
L = 0), it will move toward the centre of forces (for example, the Earth) until it is
stopped by the Earth’s surface, at a distance r from the centre of forces.

What would happen in the case of a repulsive force? If the force is repulsive, the
potential energy is positive, resulting in an effective potential that looks like the one
depicted in Fig. 1.23. The total energy is always positive and the resulting orbits are
hyperbolas.

A problem of this type occurs in the case of relative motion of electric charges
of equal sign. This is interesting in connection with the famous experiment per-
formed by Ernest Rutherford (1871-1937), in which a sheet of gold was bombarded
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Fig. 1.23 For a positive Ea
potential, the total energy can
be only positive. A positive
potential occurs when
particles repel each other, as
in the case of an atomic
nucleus interacting with alpha
particles.

.

with alpha particles (positively charged helium nuclei). By studying their devia-
tions (assuming that the particles describe hyperbolic orbits), Rutherford proposed
a planetary model of the atom in which the nucleus was positively charged. We shall
return to this point in Chap. 6.

If the sum of the kinetic and potential energies is constant, we say that the energy
is conserved or that the system is conservative. This is the case for planets in their
motion around the Sun, or for a falling object, until some instant when it hits the
Earth. At the moment of impact, all the kinetic energy of the body is dissipated in
the form of vibrations (for example, sound), elastic deformations, friction, and heat
produced by friction.

1.6 Degrees of Freedom

A particle moving freely has three degrees of freedom — it can move independently
in the three directions of space.

A pendulum oscillating in a plane has only one degree of freedom, which is the
angle formed between the suspending cord and the vertical (Fig. 1.24).

Two free particles have six degrees of freedom, three for each. But if the particles
are fixed to the ends of a bar, they lose one degree of freedom, and retain five: the
three directions of space in which the bar can move, and the two angles which
indicate its inclination say, around its midpoint (Fig. 1.25).

L/

Fig. 1.24 A pendulum that
oscillates in a plane has only
one degree of freedom: the
angle 6.
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X

Fig. 1.25 Two particles joined by a rigid bar have five degrees of freedom: the three directions of
space in which their centre of mass can move, and the two angles determining the positions of the
particles with respect to it. This is almost the case for diatomic molecules, although for them the
“bar” is not completely rigid, and can oscillate longitudinally. Therefore, diatomic molecules have
six degrees of freedom.

We shall discuss the mechanism of energy dissipation by using the example of
the pendulum. We consider the pendulum as a mass hanging by a thread tied to a
nail. When the pendulum oscillates, an enormous number of molecules of air (each
of them having three degrees of freedom) collide with it. When the thread moves
relative to the nail at the point of contact, it collides with a very large number of
constituent particles of the nail (atoms and ions forming the lattice of the metal, and
electrons). Energy dissipation in the pendulum (and in other physical systems) is
related to the energy transfer from a system with very few degrees of freedom to
other systems with a very large number of degrees of freedom, and the energy is in
this case disordered.

The energy absorbed by a system with a very large number of degrees of freedom
increases its infernal energy. We shall consider this problem in more detail in the
next chapter.

1.7 Inertial and Non-inertial Systems

As mentioned earlier, in order to describe the position and motion of a body, clas-
sical mechanics needs the concept of frames of reference. Such a frame could be a
system of three perpendicular axes and a clock to measure the time. The origin O
could be fixed to some body (Fig. 1.26).

For instance, in order to describe the Earth’s motion around the Sun, the origin of
the system of coordinates could be at the centre of the Sun. A frame of reference is
said to be inertial if a free particle (on which no force acts) is at rest or moves with
constant velocity along a straight line with respect to the frame (assuming that the
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Fig. 1.26 A frame of y

reference is characterized by

three perpendicular axes

along which the three spatial

coordinates x, y, z are

measured, and a clock with @

which the time ¢ is measured.

other two laws of Newton are also valid). This definition is not free from difficulties,
but it is very useful. Given an inertial frame of reference S, all the frames S/, §”,
etc. moving with respect to § with uniform motion along a straight line are also
inertial.

When we travel in a car and it accelerates abruptly, we feel a force pushing us
back. If we brake, a force pushes us forward. If we follow a curved road in the car,
a force pushes us outward (centrifugal force). All these are so-called inertial forces
which appear in non-inertial frames of reference.

If the car accelerates, a pendulum will move away from the vertical line to some
angle a. The same deviation @ would occur in other cars if pendulums were placed
in them when these cars move with respect to the first with the same acceleration,
although different speeds. We thus conclude that the laws of mechanics (indicated
by the verticality of the thread of the pendulum at rest with respect to the car) are
not satisfied in a non-inertial frame, because fictitious forces, called inertial forces,
appear. Furthermore, the laws of mechanics would not be valid in any frame of
reference moving with constant velocity with respect to the first, non-inertial frame.

For such frames, some other set of mechanical laws is valid, modified by the
inertial forces. Then the question arises: does a frame of reference exist in which
the laws of mechanics are actually satisfied, if in fact one could have an enormous
variety of frames of references?

In classical mechanics, we assume the existence of an absolute frame of reference
in which Newton’s laws are satisfied. They would also be satisfied for all the systems
in uniform motion with regard to the absolute frame. Furthermore, an absolute time
is assumed: in all the inertial frames the time is measured with the same universal
clock.

Moreover, classical mechanics assumes that the interaction between particles
takes place instantaneously. In such conditions, Galileo’s relativity principle is sat-
isfied. This states that the laws of mechanics are the same in all inertial systems.
The principle implies that Galileo’s transformations (1.24) are used when we want
to describe the position of a particle with respect to two different inertial systems
(Fig. 1.27).

If (x, y,z) are the numbers giving the position of a particle at some time ¢ in
the system S, and (x’, ', Z/) the position at the same time ¢ = ¢’ in the system S’
moving with respect to S with the speed V along the x-axis, as shown in the figure,
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Fig. 1.27 Position of a SAY shy
particle with respect to two
systems of coordinates S
and §’.

Fig. 1.28 Variation of a
vector rotating around an axis
with angular velocity @ in the
time interval Az.

then the following equations hold between the two sets of numbers:

! ’ /

X'=x=-Vt, y=y, =z t'=1. (1.24)
This is a Galilean transformation. As we shall see in Chap. 5, these transformations
are not satisfied by electromagnetic phenomena (in other words, Maxwell’s equa-
tions are not covariant with respect to these transformations), nor indeed by any kind
of physical phenomenon, although they are approximately valid for bodies moving
at small velocities.

The need for a new principle of relativity in physics led to Einstein’s principle of
relativity, as we shall see in Chap. 5.

It is important to be able to compare two reference systems, the first § at rest
and the second, non-inertial, S’ rotating around an arbitrary axis at angular velocity
o radians per second (Fig. 1.28). The angular velocity is represented by a vector
directed along the axis of rotation, as specified by the right-hand rule (Fig. 1.28). If
we consider a vector A fixed to S’ and forming an angle 6 with the rotation axis,
as shown in the figure, the change in A during the time interval from ¢ to t + At is
given by

AA =A(t + A1) —A(t) = AwAtsinfu., (1.25)
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Fig. 1.29 The action takes a Py

minimum value along the

dynamic trajectory P,CP;.

For another trajectory, like

the straight line P, P, its c
value would be larger.

P2

dv 0 1.33
m I =vu, ( el )
with the solution v = constant.

Consider two positions of a planet, Py and P, on its orbit around the Sun §. If
the variation of the action is calculated between P and P> when the planet follows
the usual elliptical trajectory and when it is constrained to follow the straight line
P1 P>, one finds that the action is smaller for the elliptical trajectory P; CP>. More-
over, it remains smaller than any other value obtained by varying the trajectories
between P and P> (Fig. 1.29).

The principle of least action is of the utmost importance in all branches of
physics, and it was first formulated by Pierre-Louis Moreau de Maupertuis (1698—
1759), and in more complete form by William Rowan Hamilton (1805-1863).

A similar principle exists in optics for the trajectory followed by light when
it propagates through a medium. This is Fermat’s principle, established by Pierre
Fermat (1601-1665). The principle states that, when light travels from one point to
another in a medium, it does it in such a way that the required time has an extremum
value, generally a minimum, although it could be a maximum.

Principles of least action have great importance in modern theoretical physics.

Lagrange Equations and Planetary Motion. Consider again the case of a planet
moving around the Sun. To describe its motion, it is convenient to use polar coordi-
nates with the pole located at the Sun. Remember that the force exerted by the Sun
on the planet is a vector F = —GM mr/r?. The polar coordinates are

x = rcosf, y=rsind (1.34)

where r, f are the radius vector and the angle with respect to the polar axis,
respectively. The velocities along and perpendicular to r are given by

v, = F = dr/dt, v =rb = rdf/d. (1.35)

The Lagrangian for the planet is the difference between the kinetic energy 7 and the
potential energy V', that is,
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1 . GM
L= Em(i’z 4242y 4 2271 (1.36)
r

Since 8 does not appear explicitly in L (only 8 appears), the first Lagrange equation,

d JL oL
di g 90
leads to the following equation:
d(mr2)
— =0, (1.37)
dt

that is to say, mr2f = C = const., which is the law of conservation of angular
momentum (in this example only, we denote the value of the conserved angu-
lar momentum by C, not to confuse it with the Lagrangian). If 6 = C/mr?is
substituted into the expression for the total energy, T + V, we find that

c? G
E=imizy Mm

2 2mr2 (1.38)

This in turn implies that

. dr 2 GMm C2
F=" = [ ZlE+ B
dt m r 2mr?

By combining 7 and 6, one obtains an equation for r as a function of 8, which is the
parametric equation of the orbit:

0 cdr/r?
V2m[E + GMm/r—C2/2mr?]

leading, upon integration, to

C/r—-GMm?/C

. (1.39)
V2mE + G2M2m*/C?

6 = arccos

If we make the notations d = C2/GMm?, ¢ = /1 +2EC2/G2M2m3, we can
finally write the equation for the orbit as the typical equation of a conic:

d

L — 1.40
4 1 4+ ecos@ ( )



1.9 Hamilton Equations 43

where € is the eccentricity. If £ < 0, then € < 1 and the orbit is elliptic. If E = 0,
then ¢ = | and the orbit is parabolic. If £ > 0, then ¢ > 1 and the orbit is
hyperbolic.

1.9 Hamilton Equations

Instead of using generalized coordinates and velocities to describe the motion of a
physical system with N degrees of freedom, it is sometimes easier to use coordinates
and momenta, as an independent set of N pairs of canonical coordinates. If L is the
Lagrangian of a system, considered as a function of the coordinates ¢;, the velocities
gi, and the time ¢, where i = 1,2,..., N, one can write the Lagrangian’s total
differential in terms of the generalized coordinates and velocities as

N N
aL aL . dL

i=1 i=1

By definition,
pi = dL/dg;

are the generalized momenta (also called canonically conjugated momenta). Recall-
ing the Euler-Lagrange equations, it follows that

N N aL
dL = E P'fdﬁh+ZPfd6}i+WdI- (1.41)
i=1 i—1

We can write Y pidg; = d( 3 p,g;) — 3" g;dp;. Then, reorganizing the terms
and defining

H=Y pgi—L

=1

as the Hamiltonian function, such that

N N
oL
dH:*ZPidqa‘+thde —Edﬂ (1.42)

i=1 i=1

we conclude that
q; = 0H/9p;. pi=—-0H/dq;, i=1.2,..., N. (1.43)
We also obtain the equation

IH /ot = —dL/ot.
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If the Lagrangian does not depend explicitly on time, the Hamiltonian does not
depend on it either. Then H is a constant of motion, similar to the total energy.
Equations (1.43) are called Hamilton’s equations. They constitute a set of 2N first
order differential equations, equivalent to the set of N Euler-Lagrange equations of
second order.

We consider as an example the harmonic oscillator of mass m and elastic
constant k, described by the Lagrangian

1 1
L =-mg*— —kq>.
5Ma” — kg

The velocity can be written as § = p/m. The Hamiltonian is then

1 1
H=—p2+5kq2,

which is the expression for the total energy. The Hamilton equations are

qg=p/m. P =—kq.

Taking the derivative with respect to time of the first and substituting the result into
the second, we get the equation

whose general solution is
q = Acos(wt + ¢).

where w = /k/m, A is the amplitude, and ¢ is an arbitrary angle (initial conditions
must be given for fixing the values of 4 and ¢). The same equation and solution can
be obtained from the Euler-Lagrange equations.

The Hamiltonian formalism is of exceptional importance, mainly in connection
with the transformation of a set of canonical coordinates p;.¢g; to another P;, Q;.
We can consider the mechanical motion of a system as a canonical transformation
of coordinates from some initial conditions to the set of canonical coordinates at
some arbitrary instant . It is possible to obtain a fundamental differential equation
for the action S, the so-called Hamilton—Jacobi equation, whose solution allows us
to find the equations of motion.

One can define a phase space, determined by the set p;, ¢;. The volume in phase
space is invariant under canonical transformations. In this way, the phase space is
an essential tool when dealing with systems having a very large number of particles,
as it happens in statistical mechanics. The Hamiltonian formalism is also essential
in quantum theory (see Chaps. 6 and 7).

Poisson Brackets. It is often necessary to define functions of the coordinates, the
momenta, and the time, f = f(g;. pi.t). The total derivative with respect to time is



