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PREFACE

The data explosion

We live in a world that is rich in data, ever increasing in scale. This data comes from many different
sources in science (bioinformatics, astronomy, physics, environmental monitoring) and commerce
(customer databases, financial transactions, engine monitoring, speech recognition, surveillance,
search). Possessing the knowledge as to how to process and extract value from such data is therefore
a key and increasingly important skill. Our society also expects ultimately to be able to engage
with computers in a natural manner so that computers can ‘talk’ to humans, ‘understand” what they
say and ‘comprehend’ the visual world around them. These are difficult large-scale information
processing tasks and represent grand challenges for computer science and related fields. Similarly,
there is a desire to control increasingly complex systems, possibly containing many interacting parts,
such as in robotics and autonomous navigation. Successfully mastering such systems requires an
understanding of the processes underlying their behaviour. Processing and making sense of such
large amounts of data from complex systems is therefore a pressing modern-day concern and will
likely remain so for the foreseeable future.

Machine learning

Machine learning is the study of data-driven methods capable of mimicking, understanding and
aiding human and biological information processing tasks. In this pursuit, many related issues arise
such as how to compress data, interpret and process it. Often these methods are not necessarily
directed to mimicking directly human processing but rather to enhancing it, such as in predicting
the stock market or retrieving information rapidly. In this probability theory is key since inevitably
our limited data and understanding of the problem forces us to address uncertainty. In the broadest
sense, machine learning and related fields aim to ‘learn something useful” about the environment
within which the agent operates. Machine learning is also closely allied with artificial intelligence,
with machine learning placing more emphasis on using data to drive and adapt the model.

In the early stages of machine learning and related areas, similar techniques were discovered
in relatively isolated research communities. This book presents a unified treatment via graphical
models, a marriage between graph and probability theory, facilitating the transference of machine
learning concepts between different branches of the mathematical and computational sciences.

Whom this book is for

The book is designed to appeal to students with only a modest mathematical background in under-
graduate calculus and linear algebra. No formal computer science or statistical background is
required to follow the book, although a basic familiarity with probability, calculus and linear algebra



Xvi

Preface

would be useful. The book should appeal to students from a variety of backgrounds, including
computer science, engineering, applied statistics, physics and bioinformatics that wish to gain an
entry to probabilistic approaches in machine learning. In order to engage with students, the book
introduces fundamental concepts in inference using only minimal reference to algebra and calculus.
More mathematical techniques are postponed until as and when required, always with the concept
as primary and the mathematics secondary.

The concepts and algorithms are described with the aid of many worked examples. The exercises
and demonstrations, together with an accompanying MATLARB toolbox, enable the reader to exper-
iment and more deeply understand the material. The ultimate aim of the book is to enable the reader
to construct novel algorithms. The book therefore places an emphasis on skill learning, rather than
being a collection of recipes. This is a key aspect since modern applications are often so specialised
as to require novel methods. The approach taken throughout is to describe the problem as a graphical
model, which is then translated into a mathematical framework, ultimately leading to an algorithmic
implementation in the BRMLTOOLBOX.

The book is primarily aimed at final year undergraduates and graduates without significant
experience in mathematics. On completion, the reader should have a good understanding of the
techniques, practicalities and philosophies of probabilistic aspects of machine learning and be well
equipped to understand more advanced research level material.

The structure of the book

The book begins with the basic concepts of graphical models and inference. For the independent
reader Chapters 1, 2, 3,4, 5,9, 10, 13, 14, 15, 16, 17, 21 and 23 would form a good introduction to
probabilistic reasoning, modelling and machine learning. The material in Chapters 19, 24, 25 and 28
is more advanced, with the remaining material being of more specialised interest. Note that in each
chapter the level of material is of varying difficulty, typically with the more challenging material
placed towards the end of each chapter. As an introduction to the area of probabilistic modelling, a
course can be constructed from the material as indicated in the chart.

The material from Parts I and II has been successfully used for courses on graphical models. [
have also taught an introduction to probabilistic machine learning using material largely from Part
II1, as indicated. These two courses can be taught separately and a useful approach would be to teach
first the graphical models course, followed by a separate probabilistic machine learning course.

A short course on approximate inference can be constructed from introductory material in Part |
and the more advanced material in Part V, as indicated. The exact inference methods in Part I can be
covered relatively quickly with the material in Part V considered in more depth.

A timeseries course can be made by using primarily the material in Part IV, possibly combined
with material from Part I for students that are unfamiliar with probabilistic modelling approaches.
Some of this material, particularly in Chapter 25, is more advanced and can be deferred until the
end of the course, or considered for a more advanced course.

The references are generally to works at a level consistent with the book material and which are
in the most part readily available.
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A calligraphic symbol typically denotes a set of random variables
Domain of a variable

The variable x is in the state x

Probability of event/variable x being in the state true

Probability of event/variable x being in the state false

Probability of x and y

Probability of x and y

Probability of x or y

The probability of x conditioned on y

Variables X" are independent of variables ) conditioned on variables Z
Variables X’ are dependent on variables ) conditioned on variables Z

For continuous variables this is shorthand for f‘_ f(x)dx and for
discrete variables means summation over the states of x, 3 f(x)
Indicator : has value 1 if the statement S is true, () otherwise

The parents of node x

The children of node x

Neighbours of node x

For a discrete variable x, this denotes the number of states x can take
The average of the function f(x) with respect to the distribution p(x)

Delta function. For discrete a, b, this is the Kronecker delta, 8, ; and for
continuous a, b the Dirac delta function §(a — b)
The dimension of the vector/matrix x

The number of times x is in state s and y in state t simultaneously
The number of times variable x is in state y

Dataset

Data index

Number of dataset training points

Sample Covariance matrix

The logistic sigmoid 1/(1 + exp(—x))

The (Gaussian) error function

The set of unique neighbouring edges on a graph

The m x m identity matrix

!

=
%
a1
-

I e N N N ¥ P VR e



BRMLrooLBox

The BRMLTooLBOX is a lightweight set of routines that enables the reader to experiment with
concepts in graph theory, probability theory and machine learning. The code contains basic routines
for manipulating discrete variable distributions, along with more limited support for continuous
variables. In addition there are many hard-coded standard machine learning algorithms. The website
contains also a complete list of all the teaching demos and related exercise material.

BRMLTOOLKIT
Graph theory

ancestors - Return the ancestors of nodes x in DAG A

ancestralorder - Return the ancestral order or the DAG A (oldest first)
descendents - Return the descendents of nodes x in DAG A

children - Return the children of variable x given adjacency matrix A
edges - Return edge list from adjacency matrix A

elimtri - Return a variable elimination sequence for a triangulated graph
connectedComponents - Find the connected components of an adjacency matrix
istree - Check if graph is singly connected

neigh - Find the neighbours of vertex v on a graph with adjacency matrix G
noselfpath - Return a path excluding self-transitions

parents - Return the parents of variable x given adjacency matrix A
spantree - Find a spanning tree from an edge list

triangulate - Triangulate adjacency matrix A

triangulatePorder - Triangulate adjacency matrix A according to a partial ordering

Potential manipulation

condpot - Return a potential conditioned on another variable

changevar - Change variable names in a potential

dag - Return the adjacency matrix (zeros on diagonal) for a belief network
deltapot - A delta function potential

disptable - Print the table of a potential

divpots - Divide potential pota by potb

drawFG - Draw the factor graph A

drawID - Plot an influence diagram

drawJTree - Plot a junction tree

drawNet - Plot network

evalpot - Evaluate the table of a potential when variables are set

exppot - Exponential of a potential

syepot - Return a unit potential

grouppot - Form a potential based on grouping variables together

groupstate - Find the state of the group variables corresponding to a given ungrouped state
logpot - Logarithm of the potential

markov - Return a symmetric adjacency matrix of Markov network in pot
maxpot - Maximise a potential over variables

maxsumpot - Maximise or sum a potential over variables

multpots - Multiply potentials into a single potential



numstates
orderpot
orderpotfields
potsample
potscontainingonly
potvariables
setevpot
setpot
setstate
sgueezepots
sumpot
sumpotID
sumpcts

table
ungrouppot
uniguepots
whichpet

Routines also extend the

BRMLrooLBox

- Number of states of the variables in a potential

- Return potential with variables reordered according to order

- Order the fields of the potential, creating blank entries where necessary
- Draw sample from a single potential

- Returns those potential numbers that contain only the required variables
- Returns information about all variables in a set of potentials

- Sets variables in a potential into evidential states

- Sets potential variables to specified states

- Set a potential’s specified joint state to a specified value

- Eliminate redundant potentials (those contained wholly within another)
- Sum potential pot over variables

- Return the summed probability and utility tables from an 1D

- Sum a set of potentials

- Return the potential table

- Form a potential based on ungrouping variables

- Eliminate redundant potentials (those contained wholly within another)
- Returns potentials that contain a set of variables

toolbox to deal with Gaussian potentials: multpotsGaussianMoment.m, sumpotGaus-

sianCanenical.m, sumpetGaussianMoment.m, multpetsGaussianCanenical.m See demoSumpreodGaussCanon.m, demo-

SumprodGaussCanonLDS.m, demoSumprodGaussMoment.m

Inference

absorb

absorption
absorptionID
ancestralsample
binaryMRFmap
bucketelim

condindep
condindepEmp
condindepPot

condMI
FactorConnectingVariable
FactorGraph

IDvars

jtassignpot

jtrees

jtreelD

LoopyBP

MaxFlow

maxNpot

maxNprodFG
maxprodFG
MDPemDeterministicPolicy
MDPsclve

MesstoFact
metropolis
mostprobablepath
mostprobakblepathmult
sumprodFG

Specific models

ARlds

ARtrain

BayesLinReg
BayesLogRegressionRVM

CancnVar

- Update potentials in absorption message passing on a junction tree

- Perform full round of absorption on a junction tree

- Perform full round of absorption on an influence diagram

- Ancestral sampling from a belief network

- Get the MAP assignment for a binary MRF with positive W

- Bucket elimination on a set of potentials

- Conditional independence check using graph of variable interactions
- Compute the empirical log Bayes factor and MI for independence/dependence
- Numerical conditional independence measure

- Conditional mutual information I(x.y|z) of a potential

- Factor nodes connecting to a set of variables

- Returns a factor graph adjacency matrix based on potentials

- Probability and decision variables from a partial order

- Assign potentials to cliques in a junction tree

- Setup a junction tree based on a set of potentials

- Setup a junction tree based on an influence diagram

- Loopy belief propagation using sum-product algorithm

- Ford Fulkerson max-flow min-cut algorithm (breadth first search)

- Find the N most probable values and states in a potential

- N-max-product algorithm on a factor graph (returns the Nmax most probable states)
- Max-product algorithm on a factor graph

- Solve MDP using EM with deterministic policy

- Solve a Markov decision process

- Returns the message numbers that connect into factor potential

- Metropolis sample

- Find the most probable path in a Markov chain

- Find the all source all sink most probable paths in a Markov chain

- Sum-product algorithm on a factor graph represented by A

- Learn AR coefficients using a linear dynamical system

- Fit auto-regressive (AR) coefficients of order L to v.

- Bayesian linear regression training using basis functions phi(x)
- Bayesian logistic regression with the relevance vector machine
- Canonical variates (no post rotation of variates)
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cca - Canonical correlation analysis

covinGE - Gamma exponential covariance function

FA - Factor analysis

GMMem - Fit a mixture of Gaussian to the data X using EM

GPclass - Gaussian process binary classification

GPreg - Gaussian process regression

HebbML - Learn a sequence for a Hopfield network

HMMbackward - HMM backward pass

HMMbackwardSAR - Backward pass (beta method) for the switching Auto-regressive HMM
HMMem - EM algorithm for HMM

HMMforward - HMM forward pass

HMMforwardSAR - Switching auto-regressive HMM with switches updated only every Tskip timesteps
HMMgamma - HMM posterior smoothing using the Rauch-Tung-Striebel correction method
yHMMsmooth - Smoothing for a hidden Markov model (HMM)

HMMsmoothSAR - Switching auto-regressive HMM smoothing

HMMviterbi - Viterbi most likely joint hidden state of HMM

kernel - A kernel evaluated at two points

Emeans - K-means clustering algorithm

LDSbackward - Full backward pass for a latent linear dynamical system (RTS correction method)
LDSbackwardUpdate - Single backward update for a latent linear dynamical system (RTS smoothing update)
LDSforward - Full forward pass for a latent linear dynamical system (Kalman filter)
LDSforwardUpdate - Single forward update for a latent linear dynamical system (Kalman filter)
LDSsmooth - Linear dynamical system: filtering and smoothing

LDSsubspace - Subspace method for identifying linear dynamical system

LogReg - Learning logistic linear regression using gradient ascent
MIXprodBern - EM training of a mixture of a product of Bernoulli distributions
mixMarkov - EM training for a mixture of Markov models
NaiveBayesDirichletTest - Naive Bayes prediction having used a Dirichlet prior for training
NaiveBayesDirichletTrain - Naive Bayes training using a Dirichlet prior

NaiveBayesTest - Test Naive Bayes Bernoulli distribution after max likelihood training
NaiveBayesTrain - Train Naive Bayes Bernoulli distribution using max hkelihood
nearNeigh - Nearest neighbour classification

pca - Principal components analysis

plsa - Probabilistic latent semantic analysis

plsaCond - Conditional PLSA (probabilistic latent semantic analysis)

£bE - Radial basis function output

SARlearn - EM training of a switching AR model

SLDSbackward - Backward pass using a mixture of Gaussians

SLDSforward - Switching latent linear dynamical system Gaussian sum forward pass
SLDSmargGauss - Compute the single Gaussian from a weighted SLDS mixture
softloss - Soft loss function

svdm - Singular value decomposition with missing values

SVMtrain - Train a support vector machine

General

argmax - Performs argmax returning the index and value

assign - Assigns values to variables

betaXbiggery - p(x>y) for x~Beta(a,b), y~Beta(c,d)

bar3zcolor - Plot a 3D bar plot of the matrix Z

avsigmaGauss - Average of a logistic sigmoid under a Gaussian

cap - Cap x at absolute value ¢

chiZtest - Inverse of the chi square cumulative density

count - For a data matrix (each column is a datapoint), return the state counts
condexp - Compute normalised p proportional to exp(logp)

condp - Make a conditional distribution from the matrix

dirrnd - Samples from a Dirichlet distribution

field2cell - Place the field of a structure in a cell

CaussCond - Return the mean and covariance of a conditioned Gaussian



XXiv

hinten
ind2subv
ismember_sorted
lengthcell
logdet

logeps
logGaussGamma
logsumexp
logZdirichlet
majerity
maxarray
maxNarray
mix2mix
mvrandn
mygamrnd
mynanmearn
mynansum
mynchoosek
myones

myrand
myzeros

normp

randgen
replace

sigma

sigmeid
sgdist
subv2ind

sumleog

Miscellaneous

compat

logp
placeocbject
plotCov
pointsCowv
setup

validgridposition

- Plot a Hinton diagram

- Subscript vector from linear index
- True for member of sorted set

- Length of each cell entry

BRMLrooLBox

- Log determinant of a positive definite matrix computed in a numerically stable manner

- log(x+eps)

- Unnormalised log of the Gauss-Gamma distribution

- Compute log(sum{exp(a).*b)) valid for large a

- Log normalisation constant of a Dirichlet distribution with parameter u
- Return majority values in each column on a matrix

- Maximise a multi-dimensional array over a set of dimensions

- Find the highest values and states of an array over a set of dimensions
- Fit a mixture of Gaussians with another mixture of Gaussians

- Samples from a multivariate Normal (Gaussian) distribution

- Gamma random variate generator

- Mean of values that are not nan

- Sum of values that are not nan

- Binomial coefficient v choose k

- Same as ones(x), but if X is a scalar, interprets as ones([x 1])

- Same as rand(x) but if x is a scalar interprets as rand([x 1])

- Same as zeros(x) but if x is a scalar interprets as zeros([x 1])

- Make a normalised distribution from an array

- Generates discrete random variables given the pdf

- Replace instances of a value with another value

- Li(1+exp(-x))
- L/ 1+exp(-beta*x))

- Square distance between vectors in x and y
- Linear index from subscript vector.
- sum(log(x)) with a cutoff at 10e-200

- Compatibility of object F being in position h for image v on grid Gx.Gy
- The logarithm of a specific non-Gaussian distribution

- Place the object F at position h in grid Gx,Gy

- Return points for plotting an ellipse of a covariance

- Unit variance contours of a 2D Gaussian with mean m and covariance S
- Run me at initialisation — checks for bugs in matlab and initialises path
- Returns 1 if point is on a defined grid
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‘ Probabilistic reasoning

We have intuition about how uncertainty works in simple cases. To reach sensible con-
clusions in complicated situations, however — where there may be many (possibly) related
events and many possible outcomes — we need a formal ‘calculus’ that extends our intuitive
notions. The concepts, mathematical language and rules of probability give us the formal
framework we need. In this chapter we review basic concepts in probability — in particu-
lar, conditional probability and Bayes’ rule, the workhorses of machine learning. Another
strength of the language of probability is that it structures problems in a form consistent
for computer implementation. We also introduce basic features of the BRMLTooLsox that
support manipulating probability distributions.

Probability refresher

Variables, states and notational shortcuts

Variables will be denoted using either upper case X or lower case x and a set of variables will
typically be denoted by a calligraphic symbol, for example V = {a, B, c}.

The domain of a variable x is written dom (x), and denotes the states x can take. States will
typically be represented using sans-serif font. For example, for a coin ¢, dom (¢) = {heads, tails} and
p(c = heads) represents the probability that variable ¢ is in state heads. The meaning of p(state)
will often be clear, without specific reference to a variable, For example, if we are discussing an
experiment about a coin ¢, the meaning of p(heads) is clear from the context, being shorthand for
p(c = heads). When summing over a variable > f(x), the interpretation is that all states of x are
included, i.e. 3. f(x) = Zsedﬂm(t) f(x =s). Given a variable, x, its domain dom (x) and a full
specification of the probability values for each of the variable states, p(x), we have a distribution for
x. Sometimes we will not fully specify the distribution, only certain properties, such as for variables
x, v, plx,y) = p(x)p(y) for some unspecified p(x) and p(y). When clarity on this is required we
will say distributions with structure p(x)p(y), or a distribution class p(x)p(y).

For our purposes, events are expressions about random variables, such as Two heads in
six coin tosses. Two events are mutually exclusive if they cannot both be true. For example the
events The coin is heads and The coin is tails are mutually exclusive. One can think of defining
a new variable named by the event so, for example, p(The coin is tails) can be interpreted as
p(The coin is tails = true). We use the shorthand p(x = tr) for the probability of event/variable x
being in the state true and p(x = fa) for the probability of variable x being in the state false.

Definition 1.1  Rules of probability for discrete variables The probability p(x = x) of variable x
being in state x is represented by a value between 0 and 1. p(x = x) = 1 means that we are certain x
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is in state x. Conversely, p(x = x) = 0 means that we are certain x is not in state x. Values between
0 and 1 represent the degree of certainty of state occupancy.
The summation of the probability over all the states is 1:

Y pla=x=1 (1.1.1)
xedom(x)
This is called the normalisation condition. We will usually more conveniently write ). p(x) = 1.
Two variables x and y can interact through
p(x =aory=b)=p(x=a)+ p(y=b)— p(x =aand y = b). (1.1.2)
Or, more generally, we can write
p(xory) = p(x) + p(y) — p(x and y). (1.1.3)

We will use the shorthand p(x, y) for p(x and y). Note that p(y, x) = p(x,y) and p(x or y) =
p(y orx).

Definition 1.2 Set notation An alternative notation in terms of set theory is to write

p(xory)=p(xUy). plx,y) = plxNy). (1.1.4)

Definition 1.3 Marginals Given a joint distribution p(x, y) the distribution of a single variable is
given by
plx) = Z plx, y). (1.1.5)

v

Here p(x) istermed amarginal of the joint probability distribution p(x, y). The process of computing
a marginal from a joint distribution is called marginalisation. More generally, one has

PUXL o Xy X1y ey Xy) = Zp(xl, ey Xp). (1.1.6)

X

Definition 1.4 Conditional probability/ Bayes’ rule The probability of event x conditioned on
knowing event y (or more shortly, the probability of x given y) is defined as
p(x.y)

p(y)

If p(y) = 0 then p(x|y) is not defined. From this definition and p(x, y) = p(y, x) we immediately
arrive at Bayes’ rule

p(ylx)p(x)
plxly) = ————. (1.1.8)
p(y)
Since Bayes’ rule trivially follows from the definition of conditional probability, we will sometimes

be loose in our language and use the terms Bayes’ rule and conditional probability as synonymous.

plxly) = (1.1.7)

As we shall see throughout this book, Bayes’ rule plays a central role in probabilistic reasoning
since it helps us ‘invert’ probabilistic relationships, translating between p(y|x) and p(x|y).

Definition 1.5 Probability density functions For a continuous variable x, the probability density
f(x) is defined such that

f(x) =0, /m Fx)dx =1, (1.1.9)

o0
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and the probability that x falls in an interval [a, b] is given by

b
pla<x <b)= fx)dx. (1.1.10)

As shorthand we will sometimes write fx J(x), particularly when we want an expression to be valid
for either continuous or discrete variables. The multivariate case is analogous with integration over
all real space, and the probability that x belongs to a region of the space defined accordingly. Unlike
probabilities, probability densities can take positive values greater than 1.

Formally speaking, for a continuous variable, one should not speak of the probability that x = 0.2
since the probability of a single value is always zero. However, we shall often write p(x) for
continuous variables, thus not distinguishing between probabilities and probability density function
values. Whilst this may appear strange, the nervous reader may simply replace our p(x) notation
for j;eA f(x)dx, where A is a small region centred on x. This is well defined in a probabilistic
sense and, in the limit A being very small, this would give approximately Af(x). If we consistently
use the same A for all occurrences of pdfs, then we will simply have a common prefactor A in all
expressions. Our strategy is to simply ignore these values (since in the end only relative probabilities
will be relevant) and write p(x). In this way, all the standard rules of probability carry over, including
Bayes’ rule.

Remark 1.1 (Subjective probability) Probability is a contentious topic and we do not wish to
get bogged down by the debate here, apart from pointing out that it is not necessarily the rules
of probability that are contentious, rather what interpretation we should place on them. In some
cases potential repetitions of an experiment can be envisaged so that the ‘long run’ (or frequentist)
definition of probability in which probabilities are defined with respect to a potentially infinite
repetition of experiments makes sense. For example, in coin tossing, the probability of heads might
be interpreted as ‘If I were to repeat the experiment of flipping a coin (at “random”), the limit of
the number of heads that occurred over the number of tosses is defined as the probability of a head
occurring.”

Here’s a problem that is typical of the kind of scenario one might face in a machine learning situation.
A film enthusiast joins a new online film service. Based on expressing a few films a user likes and
dislikes, the online company tries to estimate the probability that the user will like each of the 10 000
films in their database. If we were to define probability as a limiting case of infinite repetitions of the
same experiment, this wouldn’t make much sense in this case since we can’t repeat the experiment.
However, if we assume that the user behaves in a manner consistent with other users, we should be
able to exploit the large amount of data from other users’ ratings to make a reasonable ‘guess’ as to
what this consumer likes. This degree of belief or Bayesian subjective interpretation of probability
sidesteps non-repeatability issues — it’s just a framework for manipulating real values consistent with
our intuition about probability [158].

Interpreting conditional probability

Conditional probability matches our intuitive understanding of uncertainty. For example, imagine
a circular dart board, split into 20 equal sections, labelled from 1 to 20. Randy, a dart thrower,
hits any one of the 20 sections uniformly at random. Hence the probability that a dart thrown by
Randy occurs in any one of the 20 regions is p(region i) = 1/20. A friend of Randy tells him that
he hasn’t hit the 20 region. What is the probability that Randy has hit the 5 region? Conditioned on
this information, only regions 1 to 19 remain possible and, since there is no preference for Randy to
hit any of these regions, the probability is 1/19. The conditioning means that certain states are now
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inaccessible, and the original probability is subsequently distributed over the remaining accessible
states. From the rules of probability:

, , plregion 3, not region 20) plregion 5) 1/20 1
p(region 5|not region 20) = - = _ = = —
plnot region 20) p(not region 20~ 19/20 19

giving the intuitive result. An important point to clarify is that p(A = a|B = b) should not be
interpreted as ‘Given the event B = b has occurred, p(A = a|B = b) is the probability of the event
A = a occurring’. In most contexts, no such explicit temporal causality is implied' and the correct
interpretation should be ‘p(A = a| B = b) is the probability of A being in state a under the constraint
that B is in state b’.

The relation between the conditional p(A = a|B = b) and the joint p(A = a, B =b) is just a
normalisation constant since p(A = a, B = b) is not a distribution in A —in other words, } ", p(A =
a, B =b) # 1. To make it a distribution we need to divide: p(A =a, B=b)/) , p(A=a, B=b)
which, when summed over a does sum to 1. Indeed, this is just the definition of p(A = a|B = b).

Definition 1.6 Independence Variables x and y are independent if knowing the state (or value in the
continuous case) of one variable gives no extra information about the other variable. Mathematically,
this is expressed by

plx.y) = plx)p(y). (1.1.11)

Provided that p(x) # 0 and p(y) # 0 independence of x and y is equivalent to

p(xly) = p(x) & p(ylx) = p(y). (1.1.12)
If p(x|y) = p(x) for all states of x and y, then the variables x and y are said (o be independent. If
plr.y) = kf(x)g(y) (1.1.13)

for some constant k, and positive functions f(-) and g(-) then x and y are independent and we write
x Al y.

Example 1.1 Independence

Let x denote the day of the week in which females are born, and y denote the day in which males
are born, with dom (x) = dom (¥) = {1, ..., 7}. It is reasonable to expect that x is independent
of y. We randomly select a woman from the phone book, Alice, and find out that she was born
on a Tuesday. We also select a male at random, Bob. Before phoning Bob and asking him, what
does knowing Alice’s birthday add to which day we think Bob is born on? Under the independence
assumption, the answer is nothing. Note that this doesn’t mean that the distribution of Bob’s birthday
is necessarily uniform — it just means that knowing when Alice was born doesn’t provide any extra
information than we already knew about Bob’s birthday, p(y|x) = p(y). Indeed, the distribution of
birthdays p(y) and p(x) are non-uniform (statistically fewer babies are born on weekends), though
there is nothing to suggest that x are y are dependent.

Deterministic dependencies

Sometimes the concept of independence is perhaps a little strange. Consider the following: variables
x and y are both binary (their domains consist of two states). We define the distribution such that x

! 'We will discuss issues related to causality further in Section 3.4.
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and y are always both in a certain joint state:
plx=ay=1)=1, px=ay=2)=0, plx=b,y=2)=0, plx=by=1)=0.

Are x and y dependent? The reader may show that p(x =a) =1, p(x =b) =0and p(y =1) =1,
p(y =2) = 0. Hence p(x)p(y) = p(x,y) for all states of x and y, and x and y are therefore
independent. This may seem strange — we know for sure the relation between x and y, namely that
they are always in the same joint state, yet they are independent. Since the distribution is trivially
concentrated in a single joint state, knowing the state of x tells you nothing that you didn’t anyway
know about the state of y, and vice versa. This potential confusion comes from using the term
‘independent’ which may suggest that there is no relation between objects discussed. The best way
to think about statistical independence is to ask whether or not knowing the state of variable y tells
you something more than you knew before about variable x, where ‘knew before’ means working
with the joint distribution of p(x, y) to figure out what we can know about x, namely p(x).

Definition 1.7 Conditional independence

X1y Z (1.1.14)

denotes that the two sets of variables X" and ) are independent of each other provided we know the
state of the set of variables Z. For conditional independence, X" and ) must be independent given
all states of Z. Formally, this means that

p(X.YI2) = p(X|12)p(VIZ) (1.1.15)

for all states of X, YV, Z. In case the conditioning set is empty we may also write X' 1L Y for
X L Y|4, in which case X is (unconditionally) independent of ).
If X and Y are not conditionally independent, they are conditionally dependent. This is written

XTTY 2 (1.1.16)
Similarly XTT Y| @ can be written as XTT).

Intuitively, if x is conditionally independent of y given z, this means that, given z, y contains
no additional information about x. Similarly, given z, knowing x does not tell me anything more
abouty. Notethat Y L V| Z = X' 1LY |Zfor X' C Xand ) C ).

Remark 1.2 (Independence implications) It’s tempting to think that if a is independent of » and
b is independent of ¢ then a must be independent of c:

{allb.bllc} = allc. (1.1.17)

However, this does not follow. Consider for example a distribution of the form

pla,b,c)= pb)pla,c). (1.1.18)
From this
p(a,b):Zp(a,b,c): p{b)z;)(a,c.‘). (1.1.19)

Hence p(a, b) is a function of b multiplied by a function of a so that @ and b are independent.
Similarly, one can show that b and ¢ are independent. However, a is not necessarily independent
of ¢ since the distribution p(a, ¢) can be set arbitrarily.
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prior criminal knowledge can be formulated mathematically as follows:
dom (B) = dom (M) = {murderer, not murderer}, dom (K ) = {knife used, knife notused}  (1.2.4)

p(B = murderer) = 0.6, p(M = murderer) = 0.2 (1.2.5)

p(knife used| B = not murderer, M = murderer) =0.2
p(knife used| B = murderer, M = not murderer) = 0.6
p(knife used| B = murderer, M = murderer) = 0.1.

(B
p(knife used| B = not murderer, M = not murderer) = 0.3
E (1.2.6)

In addition p(K, B, M) = p(K|B, M) p(B)p(M). Assuming that the knife is the murder weapon,
what is the probability that the Butler is the murderer? (Remember that it might be that neither is
the murderer.) Using b for the two states of B and m for the two states of M,

p(BIK) = p(B.m|K) = Z 2(B. m, K) % ip fgb"g);g ::))
_ By, p(KIB,m p(m
>, p(B) X, p(K1b,m)p(m)

where we used the fact that in our model p(B, M) = p(B)p(M). Plugging in the values we have
(see also demoClouseau.m)

(1.2.7)

6 (2,1 , 8 6
sExm+axs 300
p(B = murderer|knife used) = ———— ‘OB('Ob '04 'g '02) - = ~0.73.
o (o*xw+oXm) oo x5+ wxw) 412

(1.2.8)

Hence knowing that the knife was the murder weapon strengthens our belief that the butler did it.

Remark 1.3 The role of p(knife used) in the Inspector Clouseau example can cause some confusion.
In the above,

p (knife used) Zp(b)zp(kmfe used|b, m) p(m) (1.2.9)

i

is computed to be 0.456. But surely, p(knife used) = 1, since this is given in the question! Note that
the quantity p(knife used) relates to the prior probability the model assigns to the knife being used
(in the absence of any other information). If we know that the knife is used, then the posterior

knife used, knife used knife used
p (knife used|knife used) = p(knife used, knife used) _p (knife used)

. =1 (1.2.10)
p(knife used) = p(knife used)

which, naturally, must be the case.

Example 1.4 Who’s in the bathroom?

Consider a household of three people, Alice, Bob and Cecil. Cecil wants to go to the bathroom but
finds it occupied. He then goes to Alice’s room and sees she is there. Since Cecil knows that only
either Alice or Bob can be in the bathroom, from this he infers that Bob must be in the bathroom.
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To arrive at the same conclusion in a mathematical framework, we define the following events

A = Alice is in her bedroom, B = Bob is in his bedroom, O = Bathroom occupied.

(1.2.11)

We can encode the information that if either Alice or Bob are not in their bedrooms, then they must
be in the bathroom (they might both be in the bathroom) as

p(O=tA=1fa,B)=1, p(O=1lA,B=1a) = 1. (1.2.12)

The first term expresses that the bathroom is occupied if Alice is not in her bedroom, wherever Bob
is. Similarly, the second term expresses bathroom occupancy as long as Bob is not in his bedroom.
Then
p(B=fa, 0=1tr,A=1)

p(O=tr, A=tr)
_ p(O=tulA=1t,B="f)p(A ="t B=rf)
- p(O =1, A =1tr)

p(B=falO=tr,A=1) =

(1.2.13)

where

p(O=tr,A=1tr) = p(O=t|A=1tr, B="fa)p(A =tr, B=fa)
+p(O=tlA=tr, B=tr)p(A=1tr, B=1r). (1.2.14)

Using the fact p(O = tr|A = tr, B = fa) = l and p(O = trf|A = tr, B = tr) = 0, which encodes that
if Alice is in her room and Bob is not, the bathroom must be occupied, and similarly, if both Alice
and Bob are in their rooms, the bathroom cannot be occupied,

p(A =1, B =fa)

p(B=1fa0 =tr, A=tr) = == - (1.2.15)

This example is interesting since we are not required to make a full probabilistic model in this case
thanks to the limiting nature of the probabilities (we don’t need to specify p(A, B)). The situation is
common in limiting situations of probabilities being either 0 or 1, corresponding to traditional logic
Systems.

Example 1.5 Aristotle: Resolution

We can represent the statement ‘All apples are fruit’ by p(F = tr|A = tr) = 1. Similarly, ‘All fruits
grow on trees’” may be represented by p(7T = tr|F = tr) = 1. Additionally we assume that whether
or not something grows on a tree depends only on whether or not it is a fruit, p(T|A, F) = P(T|F).
From this we can compute

p(T=tA=1t)= Z p(T =t|F, A=t)p(F|A=1)= Z p(T = t|F)p(F|A = 1)
F F
= p(T =tr|F = fa) p(F = fajlA = tr)+p{T =tr|F = tr)_p(F =tr|A = tr)_: 1. (1.2.16)

=0 =1 =1

In other words we have deduced that ‘All apples grow on trees’ is a true statement, based on the
information presented. (This kind of reasoning is called resolution and is a form of transitivity: from
the statements A = F and F = T wecaninfer A = T.)
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Example 1.6 Aristotle: Inverse Modus Ponens

According to Logic, from the statement: ‘If A is true then B is true’, one may deduce that ‘If B
is false then A is false’. To see how this fits in with a probabilistic reasoning system we can first
express the statement: ‘If A is true then B is true’ as p(B = tr|A = tr) = 1. Then we may infer
p(A=fa|B=1fa)=1— p(A =tr|B = fa)
p(B=falA=m)p(A=1)

— 1= _

p(B =falA = tr)p(A = tr) + p(B = fa|]A = fa) p(A = fa)

(1.2.17)

This follows since p(B = fa|A =tr) = 1 — p(B = trl]A = tr) = | — 1 = 0, annihilating the second
term.

Both the above examples are intuitive expressions of deductive logic. The standard rules of
Aristotelian logic are therefore seen to be limiting cases of probabilistic reasoning.

Example 1.7 Soft XOR gate

A standard XOR logic gate is given by the table on the right. If we observe A| B | AxorB
that the output of the XOR gate is 0, what can we say about A and B? 0|0 0
In this case, either A and B were both (), or A and B were both 1. This 0 1 1
means we don’t know which state A was in — it could equally likely have 1|0 1
been 1 or 0. 1|1 0
A | B | p(C=1]A, B)
Consider a ‘soft” version of the XOR gate given on the right, with 0|0 0.1
additionally A Il B and p(A = 1) = 0.65, p(B = 1) = 0.77. 0|1 0.99
Whatis p(A = 1|C = 0)? 1 {0 0.8
1|1 0.25

p(A=1,C=0)=)> p(A=1,B.C=0)=)Y p(C=0|A=1 B)p(A=1)p(B)
B B
=p(A=1)(p(C=0lA=1,B=0)p(B =0)
+p(C=0lA=1,B=1)p(B=1))
= 0.65 x (0.2 x 0.23 + 0.75 x 0.77) = 0.405 275. (1.2.18)

p(A=0,C=0)=) p(A=0,B,C=0)=) p(C=0/A=0,B)p(A=0)p(B)
B B
= p(A = O)(p(c = OIA = 0, B = 0)p(B = 0)
+p(C=0A=0,B=1)p(B=1))
= 0.35 x (0.9 x 0.23 4+ 0.01 x 0.77) = 0.075 145.

Then
p(A=1,C=0) 3 0.405275
p(A=1.C=0)+p(A=0.C=0) 0405275+ 0.075 145

p(A=1]C=0)= =0.8436.

(1.2.19)
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Example 1.8 Larry

Larry is typically late for school. If Larry is late, we denote this with L = late, otherwise, L = not late.
When his mother asks whether or not he was late for school he never admits to being late. The response
Larry gives Ry is represented as follows

p(Ry = notlate| L = not late) = 1, p(Ry = late|L = late) = 0. (1.2.20)
The remaining two values are determined by normalisation and are
p(R;, = late|L = not late) = 0, p(R, = notlate|L = late) = 1. (1.2.21)

Given that R; = not late, what is the probability that Larry was late, i.e. p(L = late| R; = not late)?
Using Bayes’ we have
p(L = late, R; = not late)
p(R; = not late)
p(L = late, Ry = not late)
- p(L = late, R; = notlate) + p(L = notlate, R; = not late)

p(L = late| Ry, = not late) =

(1.2.22)

In the above

p(L = late, R; = not late) = p(R; = notlate|L = late) p(L = late) (1.2.23)

=1

and

p(L = notlate, R; = notlate) = p(R; = not late|L = not late) p(L = not late). (1.2.24)

=1

Hence

p(L = late| Ry, = not late) = P(L = late) = p(L = late). (1.2.25)

p(L = late) + p(L = not late)

Where we used normalisation in the last step, p(L = late) + p(L = not late) = 1. This result is
intuitive — Larry’s mother knows that he never admits to being late, so her belief about whether or
not he really was late is unchanged, regardless of what Larry actually says.

Example 1.9 Larry and Sue

Continuing the example above, Larry’s sister Sue always tells the truth to her mother as to whether
or not Larry was late for school.

p(Rs = not late| L = not late) = 1, p(Rs = late| L = late) = 1. (1.2.26)
The remaining two values are determined by normalisation and are

p(Rs = late|L = notlate) = 0,  p(Rs = not late| L = late) = 0. (1.2.27)
We also assume p(Rs, Ry |L) = p(Rs|L)p(RL|L). We can then write

p(Ry. Rs. L) = p(Ry|L)p(Rs|L)p(L). (1.2.28)
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Given that Ry = late and R; = not late, what is the probability that Larry was late?
Using Bayes’ rule, we have
p(L = late| R, = not late, Ry = late)
1
= Ep(R_g = late| L = late) p(R; = not late|. = late) p(L = late) (1.2.29)

where the normalisation Z is given by

p(Rs = late| L = late) p(R; = not late| L = late) p(L = late)
+ p(Rs = late| L = not late) p( R, = not late| L = not late) x p(L = not late).
(1.2.30)
Hence
1 x1x p(L = late)

L = late|R; = not late, Ry = late) = =
P IRy T ) 1 x 1x p(L=late) + 0 x 1 x p(L = not late)

(1.2.31)

This result is also intuitive — since Larry’s mother knows that Sue always tells the truth, no matter
what Larry says, she knows he was late.

Example 1.10 Luke

Luke has been told he’s lucky and has won a prize in the lottery. There are five prizes available
of value £10, £100, £1000, £10 000, £1 000 000. The prior probabilities of winning these five prizes
are pi, P2. P3. P4, Ps, With py being the prior probability of winning no prize. Luke asks eagerly
‘Did I win £1 000 0007?!". ‘I'm afraid not sir’, is the response of the lottery phone operator. ‘Did I
win £10000?!" asks Luke. ‘Again, I'm afraid not sir’. What is the probability that Luke has won
£10007?

Note first that pg + p1 + p2 + p3 + pa + ps = 1. We denote W = 1 for the first prize of £10,
and W = 2, ..., 5 for the remaining prizes and W = 0 for no prize. We need to compute

p(W=3W#S5W£4W#0)
p(W#£SWH#4 W£0)
p(W =3) _ P3
p(W=1lorW=20rW=3) p+p+p;
(1.2.32)

p(W=3W#S5W=#4 W#0)=

where the term in the denominator is computed using the fact that the events W are mutually
exclusive (one can only win one prize). This result makes intuitive sense: once we have removed
the impossible states of W, the probability that Luke wins the prize is proportional to the prior
probability of that prize, with the normalisation being simply the total set of possible probability
remaining.

Prior, likelihood and posterior

Much of science deals with problems of the form: tell me something about the variable 6 given that
I have observed data D and have some knowledge of the underlying data generating mechanism.
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The posterior is then given by,

p(t =950, s5) p(sa) p(sp) p(sa, splt = 9):
p(sa, splt =9) = (i =9) =15, =25, =35, =4[5, =55, =6
sp=1 0 0 0 0 0 0
(1.3.10) s =2 0 0 0 0 0 0
where 5p = 0 0 0 0 0 1/4
sp =4 0 0 0 0 1/4 0
plt =9) = Z p(t = 9ls., 1) p(s.) p(sp). sy, = 0 0 0 1/4 0 0
Sar S s,=6| 0 0 1/4 0 0 0
(1.3.11)

The term p(t =9) = > p(t = 9lsa, 53) p(sa) p(sp) = 4 x 1/36 = 1/9. Hence the posterior is
given by equal mass in only four non-zero elements, as shown.

Summary

e The standard rules of probability are a consistent, logical way to reason with uncertainty.
e Bayes’ rule mathematically encodes the process of inference.

A useful introduction to probability is given in [292]. The interpretation of probability is contentious
and we refer the reader to [158, 197, 193] for detailed discussions. The website understandin-
guncertainty.org contains entertaining discussions on reasoning with uncertainty.

Code

The BRMLTooLBox code accompanying this book is intended to give the reader some insight into
representing discrete probability tables and performing simple inference. We provide here only the
briefest of descriptions of the code and the reader is encouraged to experiment with the demos to
understand better the routines and their purposes.

Basic probability code

At the simplest level, we only need two basic routines. One for multiplying probability tables
together (called potentials in the code), and one for summing a probability table. Potentials are
represented using a structure. For example, in the code corresponding to the Inspector Clouseau
example demoClouseau.m, we define a probability table as

>> pot (1)
ans =
variables: [1 3 2]
table: [2x2x2 double]

This says that the potential depends on the variables 1, 3, 2 and the entries are stored in the array
given by the table field. The size of the array informs how many states each variable takes in the
order given by variables. The order in which the variables are defined in a potential is irrelevant
provided that one indexes the array consistently. A routine that can help with setting table entries is
setstate.m. For example,

>>» pot(l) = setstate(pot(l),[2 1 3],[2 1 1],0.3)
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means that for potential 1, the table entry for variable 2 being in state 2, variable 1 being in state 1

and variable 3 being in state 1 should be set to value 0.3.

The philosophy of the code is to keep the information required to perform computations to a
minimum. Additional information about the labels of variables and their domains can be useful to
interpret results, but is not actually required to carry out computations. One may also specify the

name and domain of each variable, for example

>>variable(3)
ans =
domain: {'murderer’ ‘not murderer’}

name: ‘butler’

The variable name and domain information in the Clouseau example is stored in the

variable, which can be helpful to display the potential table:

>> disptable(pot(1),variable);

knife = used maid = murderer butler
knife = not used maid = murderer butler
knife = used maid = not murderer butler
knife = not used maid = not murderer butler
knife = used maid = murderer butler
knife = not used maid = murderer butler
knife = used maid = not murderer butler
knife = not used maid = not murderer butler

Multiplying potentials

murderer
murderer
murderer
murderer
not murderer
not murderer
not murderer

not murderer

o O O O O o o o

structure

.100000
.900000
.600000
.400000
.200000
.800000
.300000
700000

In order to multiply potentials, (as for arrays) the tables of each potential must be dimensionally
consistent — that is the number of states of variable i must be the same for all potentials. This can be
checked using potvariables.m. This consistency is also required for other basic operations such

as summing potentials.

multpots.m: Multiplying two or more potentials
divpots.m: Dividing a potential by another

Summing a potential

sumpot.m: Sum (marginalise) a potential over a set of variables
sumpots.m: Sum a set of potentials together

Making a conditional potential

condpot .m: Make a potential conditioned on variables

Setting a potential

setpot.m: Set variables in a potential to given states

setevpot .m: Set variables in a potential to given states and return also an identity potential on the

given states
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The philosophy of BRMLTooLgoX is that all information about variables is local and is read off from
a potential. Using setevpot .m enables one to set variables in a state whilst maintaining information
about the number of states of a variable.

Maximising a potential
maxpot .m: Maximise a potential over a set of variables

See also maxNarray.m and maxNpot .m which return the N-highest values and associated states.

Other potential utilities

setstate.m: Set a potential state to a given value

table.m: Return a table from a potential

whichpot.m: Return potentials which contain a set of variables

potvariables.m: Variables and their number of states in a set of potentials
orderpotfields.m: Order the fields of a potential structure

uniquepots.m: Merge redundant potentials by multiplication and return only unique ones
numstates.m: Number of states of a variable in a domain

squeezepots.m: Find unique potentials and rename the variables 1,2,...

normpot .m: Normalise a potential to form a distribution

General utilities

condp.m: Return a table p(x|y) from p(x, y)

condexp .m: Form a conditional distribution from a log value

logsumexp.m: Compute the log of a sum of exponentials in a numerically precise way
normp.m: Return a normalised table from an unnormalised table

assign.m: Assign values to multiple variables

maxarray.m: Maximise a multi-dimensional array over a subset

An example

The following code highlights the use of the above routines in solving the Inspector Clouseau,
Example 1.3, and the reader is invited to examine the code to become familiar with how to numerically
represent probability tables

demoClouseau.m: Solving the Inspector Clouseau example

Exercises
Prove

rlx,ylz) = p(x|z2)p(y|x, 2) (1.6.1)
and also

pxly,z) = M (1.6.2)

r(ylz)
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Prove the Bonferront inequality
pla.b) = pla)+ p(b) - 1. (1.63)

(Adapted from [181]) There are two boxes. Box 1 contains three red and five white balls and box 2
contains two red and five white balls. A box is chosen at random p(box = 1) = p(box = 2) = 0.5 and
a ball chosen at random from this box turns out to be red. What is the posterior probability that the red
ball came from box 1?7

(Adapted from [181]) Two balls are placed in a box as follows: A fair coin is tossed and a white ball is
placed in the box if a head occurs, otherwise a red ball is placed in the box. The coin is tossed again
and a red ball is placed in the box if a tail occurs, otherwise a white ball is placed in the box. Balls are
drawn from the box three times in succession (always with replacing the drawn ball back in the box). It
is found that on all three occasions a red ball is drawn. What is the probability that both balls in the box
are red?

(From David Spiegelhalter understandinguncertainty.org) A secret government agency has devel-
oped a scanner which determines whether a person is a terrorist. The scanner is fairly reliable; 95% of all
scanned terrorists are identified as terrorists, and 95% of all upstanding citizens are identified as such. An
informant tells the agency that exactly one passenger of 100 aboard an aeroplane in which you are seated
is a terrorist. The agency decides to scan each passenger and the shifty-looking man sitting next to you is
the first to test positive. What are the chances that this man is a terrorist?

Consider three variable distributions which admit the factorisation

pla.b.c) = p(a|b)p(blc)p(c) (1.64)

where all variables are binary. How many parameters are needed to specify distributions of this
form?

Repeat the Inspector Clouseau scenario, Example 1.3, but with the restriction that either the Maid or the
Butler is the murderer, but not both. Explicitly, the probability of the Maid being the murderer and not
the Butler is 0.04, the probability of the Butler being the murderer and not the Maid is 0.64. Modify
demoClouseau.m to implement this.

Prove

pla, (bore)) = pla,b)+ pla,c) = pla. b, c). (1.6.5)
Prove

p(xlz) =Y pxly. 2)p(vlz2) = Y plxlw, y,2)p(wly, 2)p(yl2). (1.6.6)

yow

As a young man Mr Gott visits Berlin in 1969. He’s surprised that he cannot cross into East Berlin
since there is a wall separating the two halves of the city. He’s told that the wall was erected eight years
previously. He reasons that: The wall will have a finite lifespan; his ignorance means that he arrives
uniformly at random at some time in the lifespan of the wall. Since only 5% of the time one would
arrive in the first or last 2.5% of the lifespan of the wall he asserts that with 95% confidence the wall
will survive between 8/0.975 = 8.2 and 8/0.025 = 320 years. In 1989 the now Professor Gott is pleased
to find that his prediction was correct and promotes his prediction method in prestigious journals. This
‘delta-t” method is widely adopted and used to form predictions in a range of scenarios about which
researchers are ‘totally ignorant’. Would you *buy’ a prediction from Professor Gott? Explain carefully
your reasoning.

Implement the soft XOR gate, Example 1.7 using BRMLtooLBoX. You may find condpot .m of use.

Implement the hamburgers, Example 1.2 (both scenarios) using BRMLTooLBsox. To do so you will need
to define the joint distribution p(hamburgers, K J) in which dom(hamburgers) = dom (K J) = {tr, fa}.
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Implement the two-dice example, Section 1.3.1 using BRMLToOLBOX.

A redistribution lottery involves picking the correct four numbers from | to 9 (without replacement, so
3.4.4,1 for example is not possible). The order of the picked numbers is irrelevant. Every week a million
people play this game, each paying £1 to enter, with the numbers 3,5,7,9 being the most popular (1 in
every 100 people chooses these numbers). Given that the million pounds prize money is split equally
between winners, and that any four (different) numbers come up at random, what is the expected amount
of money each of the players choosing 3,5,7,9 will win each week? The least popular set of numbers is
1,2,3,4 with only 1 in 10000 people choosing this. How much do they profit each week, on average? Do
you think there is any ‘skill” involved in playing this lottery?

Inatestof “psychometry’ the car keys and wristwatches of five people are given to a medium. The medium
then attempts to match the wristwatch with the car key of each person. What is the expected number of
correct matches that the medium will make (by chance)? What is the probability that the medium will
obtain at least one correct match?

1. Show that for any function f

> Py () = F). (1.6.7)

x

2. Explain why, in general,

DI F ) # Y Fx ), (1.6.8)

(Inspired by singingbanana.com). Seven friends decide to order pizzas by telephone from Pizzad4U
based on a flyer pushed through their letterbox. Pizza4U has only four kinds of pizza, and each person
chooses a pizza independently. Bob phones Pizza4U and places the combined pizza order, simply stating
how many pizzas of each kind are required. Unfortunately, the precise order is lost, so the chef makes
seven randomly chosen pizzas and then passes them to the delivery boy.

1. How many different combined orders are possible?

2. What is the probability that the delivery boy has the right order?

Sally is new to the area and listens to some friends discussing about another female friend. Sally knows
that they are talking about either Alice or Bella but doesn’t know which. From previous conversations
Sally knows some independent pieces of information: She’s 90% sure that Alice has a white car, but
doesn’t know if Bella’s car is white or black. Similarly, she’s 90% sure that Bella likes sushi, but doesn’t
know if Alice likes sushi. Sally hears from the conversation that the person being discussed hates sushi
and drives a white car. What is the probability that the friends are talking about Alice?

The weather in London can be summarised as; if it rains one day there’s a 70% chance it will rain the
following day; if it’s sunny one day there’s a 40% chance it will be sunny the following day.

1. Assuming that the prior probability it rained yesterday is 0.5, what is the probability that it was raining
yesterday given that it’s sunny today?

2. If the weather follows the same pattern as above, day after day, what is the probability that it will rain
on any day (based on an effectively infinite number of days of observing the weather)?

3. Use the result from part 2 above as a new prior probability of rain yesterday and recompute the
probability that it was raining yesterday given that it’s sunny today.
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° o o o o o Figure 2.1 (a) Singly
connected graph. (b) Multiply
o o e o connected graph.

(a) (b)

Cliques play a central role in both modelling and inference. In modelling they will describe
variables that are all dependent on each other, see Chapter 4. In inference they describe sets of
variables with no simpler structure describing the relationship between them and hence for which
no simpler efficient inference procedure is likely to exist. We will discuss this issue in detail in
Chapter 5 and Chapter 0.

Definition 2.8 Connected graph An undirected graph is connected if there is a path between
every pair of nodes (i.e. there are no isolated islands). For a graph which is not connected, the
connected components are those subgraphs which are connected.

Definition 2.9 Singly-connected graph A graph is singly connected if there is only one path from
any node A to any other node B. Otherwise the graph is multiply connected (see Fig. 2.1). This
definition applies regardless of whether or not the edges in the graph are directed. An alternative
name for a singly connected graph is a tree. A multiply connected graph is also called loopy.

Definition 2.10 Spanning tree

A spanning tree of an undirected graph G is a singly con-

nected subset of the existing edges such that the resulting O—O—i
singly connected graph covers all nodes of G. On the right Oo:i—o—o

is a graph and an associated spanning tree. A maximum

weight spanning tree is a spanning tree such that the sum

of all weights on the edges of the tree is at least as large as S

any other spanning tree of G.

Procedure 2.1 (Finding a maximal weight spanning tree) An algorithm to find a spanning tree with
maximal weight is as follows: Start by picking the edge with the largest weight and add this to the
edge set. Then pick the next candidate edge which has the largest weight and add this to the edge
set — if this results in an edge set with cycles, then reject the candidate edge and propose the next
largest edge weight. Note that there may be more than one maximal weight spanning tree.

Numerically encoding graphs

Our ultimate goal is to make computational implementations of inference. Therefore, if we want to
incorporate graph structure into our models, we need to express graphs in a way that a computer can
understand and manipulate. There are several equivalent possibilities.
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Figure 2.2 (a) An undirected graph can be represented as a
o o o o symmetric adjacency matrix. (b) A directed graph with nodes
labelled in ancestral order corresponds to a triangular
o ° adjacency matrix.
(a)

(b)

Edge list

As the name suggests, an edge list simply lists which node-node pairs are in the graph. For Fig.
2.2(a), an edge list is L = {(1,2), (2, 1), (1,3),(3,1),(2,3),(3,2),(2,4), (4,2),(3,4).(4,3)}.
Undirected edges are listed twice, once for each direction.

Adjacency matrix

An alternative is to use an adjacency matrix

(2.2.1)

o = = O
_— O =
—_ O = =
o = = O

where A;; = 1 if there is an edge from node / to node j in the graph, and 0 otherwise. Some authors
include self-connections and place 1’s on the diagonal in this definition. An undirected graph has a
symmetric adjacency matrix.

Provided that the nodes are labelled in ancestral order (parents always come before children) a
directed graph Fig. 2.2(b) can be represented as a triangular adjacency matrix:

(2.2.2)

oo oo
oo O =
[ R
=)

Adjacency matrix powers

Adjacency matrices may seem wasteful since many of the entries are zero. However, they have a
useful property that more than redeems them. For an N x N adjacency matrix A, powers of the
adjacency matrix [Ak]jj. specify how many paths there are from node 7 to node j in k edge hops. If
we include 1’s on the diagonal of A then [AN I]U is non-zero when there is a path connecting 7 to
J in the graph. If A corresponds to a DAG the non-zero entries of the jth row of [AN_I} correspond
to the descendants of node j.
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Clique matrix

For an undirected graph with N nodes and maximal cliques Cy, ..., Cg aclique matrixisan N x K
matrix in which each column ¢; has zeros except for ones on entries describing the clique. For
example
1 0
11
C= 223
) ( )
0 1

is a clique matrix for Fig. 2.2(a). A cliquo matrix relaxes the constraint that cliques are required to
be maximal. A cliquo matrix containing only two-node cliques is called an incidence maitrix. For

example
11 0 0 0
10 1 1 0
Cine = 01 1 0 1 (2.2.4)
00 0 1 1

is an incidence matrix for Fig. 2.2(a). It is straightforward to show that C;,,(‘C,Tm. is equal to the
adjacency matrix except that the diagonals now contain the degree of each node (the number of
edges it touches). Similarly, for any cliquo matrix the diagonal entry of [CC"];; expresses the number
of cliquos (columns) that node i occurs in. Off-diagonal elements [CC"];; contain the number of

cliquos that nodes i and j jointly inhabit.

Remark 2.1 (Graph confusions) Graphs are widely used, but differ markedly in what they
represent. Two potential pitfalls are described below.

State-tramsition diagrams Such representations are used in Markov chains and finite state
automata. Each state is a node and a directed edge between node i and node j (with an asso-
ciated weight p;;) represents that a transition from state i to state j can occur with probability p;;.
From the graphical models perspective we use a directed graph x(¢#) — x(f + 1) to represent this
Markov chain. The state-transition diagram provides a more detailed graphical description of the
conditional probability table p(x(r 4+ 1)[x(¢)).

Neural networks Neural networks also have nodes and edges. In general, however, neural net-
works are graphical representations of functions, whereas graphical models are representations of
distributions.

Summary

e A graph is made of nodes and edges, which we will use to represent variables and relations
between them.

e A DAG is an acyclic graph and will be useful for representing ‘causal’ relationships between
variables.

» Neighbouring nodes on an undirected graph will represent dependent variables.

e A graph is singly connected if there is only one path from any node to any other — otherwise
the graph is multiply connected.
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e Aclique is group of nodes all of which are connected to each other.

o The adjacency matrix is a machine-readable description of a graph. Powers of the adjacency
matrix give information on the paths between nodes.

Good references for graphs, associated theories and their uses are [86, 121].

Code

Utility routines

drawNet .m: Draw a graph based on an adjacency matrix
ancestors.m: Find the ancestors of a node in a DAG
edges.m: Edge list from an adjacency matrix
ancestralorder.m: Ancestral order from a DAG
connectedComponents.m: Connected components
parents.m: Parents of a node given an adjacency matrix
children.m: Children of a node given an adjacency matrix
neigh.m: Neighbours of a node given an adjacency matrix

A connected graph is a tree if the number of edges plus | is equal to the number of nodes. However,
for a disconnected graph this is not the case. The code istree.m below deals with the disconnected
case. The routine is based on the observation that any singly connected graph must always pos-
sess a simplical node (a leaf node) which can be eliminated to reveal a smaller singly connected
graph.

istree.m: If graph is singly connected return 1 and elimination sequence
spantree.m: Return a spanning tree from an ordered edge list
singleparenttree.m: Find a directed tree with at most one parent from an undirected tree

Additional routines for basic graph manipulations are given at the end of Chapter 0.

Exercises

Consider an adjacency matrix A with elements [A] i = 1 if one can reach state i from state j in one
timestep, and 0 otherwise. Show that the matrix [A*]U represents the number of paths that lead from state
j toiin k timesteps. Hence derive an algorithm that will find the minimum number of steps to get from

state j to state 7.

Foran N x N symmetric adjacency matrix A, describe an algorithm to find the connected components.
You may wish to examine connectedComponents.m.

Show that for a connected graph that is singly connected, the number of edges E must be equal to
the number of nodes minus 1, £ = V — 1. Give an example graph with £ = V — 1 that is not singly
connected. Hence the condition E = V — 1 is a necessary but not sufficient condition for a graph to be
singly connected.

Describe a procedure to determine if a graph is singly connected.

Describe a procedure to determine all the ancestors of a set of nodes in a DAG.

WikiAdjisSmall.mat contains a random selection of 1000 Wiki authors, with a link between two authors
if they ‘know’ each other (see snap.stanford.edu/data/wiki-vote.html). Plot a histogram of the
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separation (the length of the path between two users on the graph corresponding to the adjacency matrix)
between all users based on separations from 1 to 20. That is the bin s(s) in the histogram contains the
number of pairs with separation s.

The file cliques.mat contains a list of 100 non-maximal cliques defined on a graph of 10 nodes. Your
task is to return a set of unique maximal cliques, eliminating cliques that are wholly contained within
another. Once you have found a clique, you can represent it in binary form as, for example

(1110011110)

which says that this clique contains variables 1,2, 3,6, 7, 8, 9, reading from left to right. Converting
this binary representation to decimal (with the rightmost bit being the units and the leftmost 2”) this
corresponds to the number 926. Using this decimal representation, write the list of unique cliques,
ordered from lowest decimal representation to highest. Describe fully the stages of the algorithm you use
to find these unique cliques. Hint: you may find examining uniquepots.m useful.

Explain how to construct a graph with N nodes, where N is even, that contains at least (N /2)* maximal
cliques.

Let N be divisible by 3. Construct a graph with N nodes by partitioning the nodes into N /3 subsets, each
subset containing 3 nodes. Then connect all nodes, provided they are not in the same subset. Show that
such a graph has 3"/3 maximal cliques. This shows that a graph can have an exponentially large number
of maximal cliques [217].
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Figure 3.1 (a) Belief network structure for

the ‘wet grass’ example. Each node in the
e o o graph represents a variable in the joint
distribution, and the variables which feed

0 o e e in (the parents) to another variable
(a)

represent which variables are to the right
(b) of the conditioning bar. (b) Belief network
for the Burglar model.
Similarly, we assume that Jack’s grass is wet is influenced only directly by whether or not it has
been raining, and write

p(JIR. S) = p(J|R). (3.1.5)
Furthermore, we assume the rain is not directly influenced by the sprinkler,

p(R|S) = p(R) (3.1.6)
which means that our model equation now becomes

p(T.J, R, S) = p(T|R. S)p(JIR)p(R)p(S). (3.1.7)

We can represent these conditional independencies graphically, as in Fig. 3.1(a). This reduces the
number of values that we need to specify to4 + 2+ 1+ 1 = 8, a saving over the previous 15 values
in the case where no conditional independencies had been assumed.

To complete the model, we need to numerically specify the values of each Conditional Probability
Table (CPT). Let the prior probabilities for R and S be p(R =1) = 0.2 and p(S =1) = 0.1. We
set the remaining probabilities to p(J =1|R =1) =1, p(J = 1|R = 0) = 0.2 (sometimes Jack’s
grass is wet due to unknown effects, other than rain), p(T =1|R=1,S=0) =1, p(T =1|R =
1,S=1)=1,p(T =1|R =0,5 =1) = 0.9 (there’s a small chance that even though the sprinkler
was left on, it didn’t wet the grass noticeably), p(T = 1R =0,5 =0) = 0.

Inference

Now that we've made a model of an environment, we can perform inference. Let’s calculate the
probability that the sprinkler was on overnight, given that Tracey’s grass is wet: p(S =1|T =1).
To do this we use:

p(S=1.T=1) Y, xp(T=1.J,R S=1)

S=1T=1) = = (3.1.8)
P =) = e ) T Y pT =1 LR S)
S, PJIR)p(T =1R,S=1)p(R)p(S=1)
— (3.1.9)
ZJ‘R.S p(JIR)p(T =1|R, S)p(R)p(S)
g p(T=1R.S=1)p(R)p(S=1)
— (3.1.10)
Y rs P(T =1R,S)p(R)p(S)
_ 0.9x08x0.1+1x0.2x0.1 03382
0.9%x0.8x0.1 +1x0.2x0.1+0x0.8x0.9+1x0.2x 0.9
(3.1.11)

so the (posterior) belief that the sprinkler is on increases above the prior probability 0.1, due to the
evidence that the grass is wet. Note that in Equation (3.1.9), the summation over J in the numerator
is unity since, for any function f(R),a summation of the form >, p(J|R) f(R) equals f(R). This



Belief networks

follows from the definition that a distribution p(J|R) must sum to one, and the fact that f(R) does
not depend on J. A similar effect occurs for the summation over J in the denominator.

Let us now calculate the probability that Tracey’s sprinkler was on overnight, given that her grass is
wet and that Jack’s grass is also wet, p(§ = 1|T =1, J = 1). We use conditional probability again:

pS=1.T=1,7=1)

p(S=1T=1,J=1)= p(T =17 =1) (3.1.12)
B >ep(T=1,J7J=1R S=1)
= ZR‘,qP(T=1-J=1=RsS) (3.1.13)
>rsP(J=1R)p(T =1|R.S)p(R)p(S) “
= 0.0334 = 0.1604. (3.1.15)
0.2144

The probability that the sprinkler is on, given the extra evidence that Jack’s grass is wet, is lower
than the probability that the grass is wet given only that Tracey’s grass is wet. This occurs since
the fact that Jack’s grass is also wet increases the chance that the rain has played a role in making
Tracey’s grass wet.

Naturally, we don’t wish to carry out such inference calculations by hand all the time. General
purpose algorithms exist for this, such as the junction tree algorithm, Chapter 6.

Example 3.1 Was it the burglar?

Here’s another example using binary variables, adapted from [236]. Sally comes home to find that
the burglar alarm is sounding (A = 1). Has she been burgled (B = 1), or was the alarm triggered by
an earthquake (E = 1)? She turns the car radio on for news of earthquakes and finds that the radio
broadcasts an earthquake alert (R = 1).

Using Bayes’ rule, we can write, without loss of generality,

p(B,E,A R)= p(A|B,E,R)p(B, E, R). (3.1.16)
We can repeat this for p(B, E, R), and continue
p(B.E,A,R)= p(A|B. E. R)p(R|B. E)p(E|B)p(B). (3.1.17)

However, the alarm is surely not directly influenced by any report on the radio — that is,
p(A|B, E, R) = p(A|B, E). Similarly, we can make other conditional independence assumptions
such that

p(B,E, A, R) = p(A|B, E)p(R|E)p(E)p(B) (3.1.18)
as depicted in Fig. 3.1(b).

Specifying conditional probability tables

Alarm = 1 | Burglar | Earthquake
Lieds ] 1 Radio = 1 | Earthquake
0.99 1 0 I 1
0.99 0 1 0 0
0.0001 0 0
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0 @)
(a) (b) (c)

Figure 3.2 (a) If all variables are binary 2° = 32 states are required to specify p (y|xi, . ... Xs). (b) Here only
16 states are required. (c) Noisy logic gates.

The remaining tables are p(B = 1) = 0.01 and p(E = 1) = 0.000001. The tables and graphical
structure fully specify the distribution. Now consider what happens as we observe evidence.

Initial evidence: the alarm is sounding

. Xpgp(B=1LEA=1R)
pE=TA=1= ZB.E,R p(B,E,A=1R)

_ YerP(A=1B=1E)p(B=1)p(E)p(RIE) _
Y prrp(A=1[B,.E)p(B)p(E)p(RIE) i (3.1.20)

Additional evidence: the radio broadcasts an earthquake warning: A similar calculation gives
p(B =1|A =1, R = 1) ~ 0.01. Thus, initially, because the alarm sounds, Sally thinks that she’s
been burgled. However, this probability drops dramatically when she hears that there has been an
earthquake. That is, the earthquake ‘explains away’ to an extent the fact that the alarm is ringing.

(3.1.19)

See demoBurglar.m.

Remark 3.1 (Causal intuitions) Belief networks as we’ve defined them are ways to express inde-
pendence statements. Nevertheless, in expressing these independencies it can be useful (though
also potentially misleading) to think of ‘what causes what’. In Example 3.1 we chose the ordering
of the variables as (reading from right to left) B, E. R, A in Equation (3.1.17) since B and E can
be considered root ‘causes’ and A and R as ‘effects’.

Reducing the burden of specification

Consider a discrete variable y with many discrete parental variables x4, ..., x,, Fig. 3.2(a). Formally,
the structure of the graph implies nothing about the form of the parameterisation of the table
p(ylxy, ..., x, ). If each parent x; has dim (x;) states, and there is no constraint on the table, then the
table p(y|x, ..., x,) contains (dim (y) — 1) [, dim (x;) entries. If stored explicitly for each state,
this would require potentially huge storage. An alternative is to constrain the table to have a simpler
parametric form. For example, one might write a decomposition in which only a limited number
of parental interactions are required (this is called divorcing parents in [161]). For example, in
Fig. 3.2(b), we have

pyIxt, .oy x5) = Z p(ylzi. z2) p(zilx1. x2. x3) p(22 x4, x5). (3.1.21)

Z1.22
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Assuming all variables are binary, the number of states requiring specification is 2> 4+ 2% + 22 = 16,
compared to the 2° = 32 states in the unconstrained case.

Logic gates

Another technique to constrain tables uses simple classes of conditional tables. For example, in
Fig. 3.2(c), one could use a logical OR gate on binary z;, say

1 if at least one of the z; is in state 1

= 3.1.22
0 otherwise. ( )

We can then make a table p(y|x|, ..., xs5) by including the additional terms p(z; = 1|x;). When
each x; is binary there are in total only 2 + 2 + 2 + 2 + 2 = 10 quantities required for specifying
p(y|x). In this case, Fig. 3.2(c) can be used to represent any noisy logic gate, such as the noisy OR
or noisy AND, where the number of parameters required to specify the noisy gate is linear in the
number of parents.

The noisy-OR is particularly common in disease—symptom networks in which many diseases x
can give rise to the same symptom y — provided that at least one of the diseases is present, the

probability that the symptom will be present is high.

Uncertain and unreliable evidence

In the following we make a distinction between evidence that is uncertain, and evidence that is
unreliable.

Uncertain evidence

In soft or uncertain evidence, the evidence variable is in more than one state, with the strength of
our belief about each state being given by probabilities. For example, if x has the states dom (x) =
{red, blue, green} the vector (0.6, 0.1, 0.3) represents the belief in the respective states. In contrast,
for hard-evidence we are certain that a variable is in a particular state. In this case, all the probability
mass is in one of the vector components, for example (0, 0, 1).

Performing inference with soft-evidence is straightforward and can be achieved using Bayes’ rule.
For example, for a model p(x, y), consider that we have some soft-evidence § about the variable y,
and wish to know what effect this has on the variable x — that is we wish to compute p(x|¥). From
Bayes’ rule, and the assumption p(x|y, §) = p(x|y), we have

p(x17) =Y plx.y3) =Y pxly. 5)p(yI5) = Y p(xly) p(yI5) (3.2.1)

where p(y = i|¥) represents the probability that y is in state i under the soft-evidence. This is a
generalisation of hard-evidence in which the vector p(y|¥) has all zero component values, except
for all but a single component. This procedure in which we first define the model conditioned on the
evidence, and then average over the distribution of the evidence is also known as Jeflrey’s rule.

In the BN we use a dashed circle to represent that a variable is in a soft- @ P
evidence state. Yo'

-



3.2 Uncertain and unreliable evidence 35

(a) (c) (d)

Figure 3.3 (a) Mr Holmes’ burglary worries as given in [236]: (B)urglar, (A)larm, (W)atson, Mrs (G)ibbon.

(b) Mrs Gibbon's uncertain evidence represented by a dashed circle. (c) Virtual evidence or the replacement of
unreliable evidence can be represented by a dashed line. (d) Mrs Gibbon is uncertain in her evidence. Holmes
also replaces the unreliable Watson with his own interpretation.

Example 3.2 Soft-evidence

Revisiting the burglar scenario, Example 3.1, imagine that we are only 70 per cent sure we heard the
burglar alarm sounding. For this binary variable case we represent this soft-evidence for the states
(1,0) as A = (0.7, 0.3). What is the probability of a burglary under this soft-evidence?

p(B=1]A) = Zp(B =1A)p(AlA) = p(B=1A=1)x 0.7+ p(B=1]A=0) x 0.3.
A
(3.2.2)

The probabilities p(B =1|A =1) =~ 0.99 and p(B = 1|A = 0) = 0.0001 are calculated using
Bayes’ rule as before to give

p(B = 1|A) ~ 0.6930. (3.2.3)

This is lower than 0.99, the probability of having been burgled when we are sure we heard the
alarm.

Holmes, Watson and Mrs Gibbon

An entertaining example of uncertain evidence is given by Pearl [236] that we adapt for our purposes
here. The environment contains four variables:

B € {tr,fa} B = trmeans that Holmes’ house has been burgled
A € {tr,fa} A = tr means that Holmes’ house alarm went off
W e {tr.fa} W = tr means that Watson heard the alarm

G € {tr,fa} G = tr means that Mrs Gibbon heard the alarm.

The BN below for this scenario is depicted in Fig. 3.3(a)
p(B.A. G, W)= p(A|B)p(B)p(W[A)p(G|A). (3.2.4)
Watson states that he heard the alarm is sounding. Mrs Gibbon is a little deaf and cannot be

sure herself that she heard the alarm, being 80 per cent sure she heard it. This can be dealt with
using the soft-evidence technique, Fig. 3.3(b). From Jeffrey’s rule, one uses the original model
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T € Ty | s 4 Iy I3 |4 Ty 4 T £ Hip]

(a) (b)

Figure 3.4 Two BNs for a four-variable distribution. Both graphs (a) and (b) represent the same distribution

p (X1, X2, X3, X4). Strictly speaking they represent the same (lack of) independence assumptions — the graphs say
nothing about the content of the tables. The extension of this ‘cascade’ to many variables is clear and always
results in a directed acyclic graph.

to deleting one of the edges. More formally, this corresponds to an ordering of the variables which,

without loss of generality, we may write as x;, ..., x,. Then, from Bayes’ rule, we have
plxp, ... xy) = plxglxa, oo, x,)p(xa, .0, x,) (3.3.4)
= P(x||-¥2, ---s-xn)P(xﬂXS-: ----- \ ::)P(Xs- ---sxn) (335)
n—1
= p(e) [ [ p(xilxipr, oo x). (3.3.6)

i=1

The representation of any BN is therefore a directed acyclic graph.

Every probability distribution can be written as a BN, even though it may correspond to a fully
connected ‘cascade’ DAG. The particular role of a BN is that the structure of the DAG corresponds
to a set of conditional independence assumptions, namely which ancestral parental variables are
sufficient to specify each conditional probability table. Note that this does not mean that non-
parental variables have no influence. For example, for distribution p(xq|x2)p(xa|xs) p(x3) with
DAG x| < x, < x3, this does not imply p(x;|x;, x3) = p(x1|x3). The DAG specifies conditional
independence statements of variables on their ancestors — namely which ancestors are direct ‘causes’
for the variable. The ‘effects’, given by the descendants of the variable, will generally be dependent
on the variable. See also Remark 3.3.

Remark 3.3 (Dependencies and the Markov blanket) Consider a distribution on a set of variables
X. For a variable x; € X and corresponding belief network represented by a DAG G, let M B(x;)
be the variables in the Markov blanket of x;. Then for any other variable y that is also not in the
Markov blanket of x; (y € X\ {x; U M B(x;)}), then x; IL y| M B(x;). That is, the Markov blanket
of x; carries all information about x;. As an example, for Fig. 3.2(b), MB(z;) = {x}, x2, x3, ¥, 22}
and z; 1L xy| M B(z,).

The DAG corresponds to a statement of conditional independencies in the model. To complete
the specification of the BN we need to define all elements of the conditional probability tables
p(xilpa(x;)). Once the graphical structure is defined, the entries of the Conditional Probability
Tables (CPTs) p(x:|lpa(x;)) can be expressed. For every possible state of the parental variables
pa(x;), a value for each of the states of x; needs to be specified (except one, since this is determined
by normalisation). For a large number of parents, writing out a table of values is intractable, and the
tables are usually parameterised in a low-dimensional manner. This will be a central topic of our
discussion on the application of BNs in machine learning.
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Figure 3.5 p(x1, Xo, X3, Xa) = p (X11Xa)p (X2 %3, Xa)p (X3)P (Xa).

Conditional independence

Whilst a BN corresponds to a set of conditional independence assumptions, it is not always imme-
diately clear from the DAG whether a set of variables is conditionally independent of a set of other
variables (see Definition 1.7). For example, in Fig. 3.5 are x; and x; independent, given the state of
x4? The answer is yes, since we have

1 1
pxy, x2lxy) = 200 Z plxi,x2, x3,x4) = 20 Z pxy|xq) p(xa)xs. xq) p(x3) p(xg)
(3.3.7)
= p(x1|xs) Z pxalxs, x4) p(x3). (3.3.8)
Now
1 1
plaalxy) = o) -E‘P(Xlexzr X3, X4) = 20 ;:‘ p(xilxs) plaalxs, x4) p(x3) p(xs)  (3.3.9)
=Y plxalxs. x4)p(x3). (3.3.10)
Combining the two results above we have
p(xi, x20x4) = pxilxs) p(xzlxs) (3.3.11)

so that x; and x; are indeed independent conditioned on x4.

We would like to have a general algorithm that will allow us to avoid doing such tedious manipu-
lations by reading the result directly from the graph. To help develop intuition towards constructing
such an algorithm, consider the three-variable distribution p(x, x2, x3). We may write this in any
of the six ways

p(xp, X2, x3) = plx;, |xi,, xi,) pa, 1xi,) plxi,) (3.3.12)

where (ij, i, i3) is any of the six permutations of (1, 2, 3). Whilst each factorisation produces
a different DAG, all represent the same distribution, namely one that makes no independence
statements. If the DAGs are of the cascade form, no independence assumptions have been made.
The minimal independence assumptions then correspond to dropping a single link in the cascade
graph. This gives rise to the four DAGs in Fig. 3.6. Are any of these graphs equivalent, in the sense
that they represent the same distribution? Applying Bayes’ rule gives:

p(x2lx3) p(xslxr) p(xi) = p(x2, x3) p(x3, x1)/ p(x3) = p(xi]x3) p(x2, x3) (3.3.13)

graphic)
= p(xilxs) p(xslx2) p(x2) = pxilas) plxalas) p(xs) (3.3.14)

graph(d) graph(b)
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O O (o} o)
(a) (b) (c) (d)

Figure 3.6 By dropping say the connection between variables x; and x,, we reduce the six possible BN graphs
amongst three variables to four. (The six fully connected ‘cascade’ graphs correspond to (a) with x; — x3, (a) with
X3 = X1, (b) with x; — x3, (b) with x; — x4, (c) with x; — x3 and (d) with x; — x;. Any other graphs would be
cyclic and therefore not distributions.)

so that DAGs (b), (c) and (d) represent the same conditional independence (CI) assumptions — given
the state of variable x5, variables x| and x, are independent, x| 1L x;| x3.

However, graph (a) represents something fundamentally different, namely: p(x;,x;) =
p(x;)p(x2). There is no way to transform the distribution p(x3|x;, x;)p(x;)p(x2) into any of
the others.

Remark 3.4 (Graphical dependence) Belief network (graphs) are good for encoding conditional
independence but are not well suited for encoding dependence. For example, consider the graph
a — b. This may appear to encode the relation that @ and » are dependent. However, a specific
numerical instance of a belief network distribution could be such that p(bla) = p(b), for which
a 1l b. The lesson is that even when the DAG appears to show ‘graphical’ dependence, there can
be instances of the distributions for which dependence does not follow. The same caveat holds for
Markov networks, Section 4.2, We discuss this issue in more depth in Section 3.3.5.

The impact of collisions

Definition 3.2 Given a path 7, a collider is a node ¢ on P with neighbours @ and b on P such that
a — ¢ « b. Note that a collider is path specific, see Fig. 3.8.

In a general BN, how can we check if x 1L y|z? In Fig. 3.7(a), x and y are independent when
conditioned on z since

p(x, ylz) = p(x|z) p(¥|z). (3.3.15)

& @
L
) ) () ()
(a) (b) (c) (d)
Figure 3.7 In graphs (a) and (b), variable z is not a collider. (c) Variable z is a collider. Graphs (a) and

(b) represent conditional independence x LL y]| z. In graphs (c) and (d), x and y are 'graphically’ conditionally
dependent given variable z.
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(a) The variable d is a collider along the path a — b — d — ¢, but not along the path
a—b—d—elsalle|b?Variables a and e are not d-connected since there are no

o o colliders on the only path between a and e, and since there is a non-collider b which
is in the conditioning set. Hence a and e are d-separated by b, = a1l e|b.

(b) The variable d is a collider along the path a — d — e, but not along the path
a—b—c—d—elsalle|c? There are two paths between a and e, namely
o o a—d—eanda—b— c— d— e The path a — d — eis not blocked since although
dis a collider on this path and d is not in the conditioning set, we have a descendant
° of the collider d in the conditioning set, namely c. For thepatha — b—c—d — e,
the node c is a collider on this path and c is in the conditioning set. For this path d is
o not a collider. Hence this path is not blocked and a and e are (graphically) dependent
given c.

Figure 3.8 Collider examples for d-separation and d-connection.

Similarly, for Fig. 3.7(b), x and y are independent conditioned on z.

p(x.ylz) o« p(zlx)p(x) p(¥lz) (3.3.16)

which is a function of x multiplied by a function of y. In Fig. 3.7(c), however, x and y are graphically
dependent since p(x. y|z) o« p(z|x. y)p(x)p(y);in this situation, variable z is called a collider — the
arrows of its neighbours are pointing towards it. What about Fig. 3.7(d)? In (d), when we condition
on z, x and y will be graphically dependent, since

plx,ylz) = (;(v) o _ Zp Zw)p(wlx, y)p(x)p(y) # p(xlz) p(ylz) (3.3.17)

— intuitively, variable w becomes dependent on the value of z, and since x and y are conditionally
dependent on w, they are also conditionally dependent on z.

If there is a non-collider z which is conditioned along the path between x and y (as in Fig. 3.7(a,b)),
then this path cannot induce dependence between x and y. Similarly, if there is a path between x and
y which contains a collider, provided that this collider is not in the conditioning set (and neither are
any of its descendants) then this path does not make x and y dependent. If there is a path between x
and y which contains no colliders and no conditioning variables, then this path ‘d-connects’ x and
y. Note that a collider is defined relative to a path. In Fig. 3.8(a), the variable d is a collider along
the path ¢« — b — d — ¢, but not along the path «a — b — d — e (since, relative to this path, the two
arrows do not point inwards to d).

Consider the BN: A — B « C. Here A and C are (unconditionally) independent. However,
conditioning of B makes them ‘graphically’ dependent. Intuitively, whilst we believe the root causes
are independent, given the value of the observation, this tells us something about the state of both the
causes, coupling them and making them (generally) dependent. In Definition 3.3 below we describe
the effect that conditioning/marginalisation has on the graph of the remaining variables.
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Definition 3.3 Some properties of belief networks It is useful to understand what effect condi-
tioning or marginalising a variable has on a belief network. We state here how these operations effect
the remaining variables in the graph and use this intuition to develop a more complete description
in Section 3.3.4.

(4] @ p(A. B.C) = p(C|A. B) p(A) p(B) (3.3.18)

From a ‘causal” perspective, this models the ‘causes” A and B as a priori
o independent, both determining the effect C.

Marginalising over C makes A and B indepen-

e e — @ dent. A and B are (unconditionally) indepen-
dent: p(A, B) = p(A)p(B). In the absence of

@ any information about the effect C, we retain

this belief.

Conditioning on C makes A and B (graph-

ically) dependent — in general p(A. B|C) +

0 e — p(A|C)p(B|C). Although the causes are a pri-
o ori independent, knowing the effect C in gen-

eral tells us something about how the causes
colluded to bring about the effect observed.

@ (-
Conditioning on D, a descendent of a collider
e C, makes A and B (graphically) dependent — in
general p(A, B|D) # p(A|D)p(B|D).

o e p(A, B.C) = p(A|C)p(B|C)p(C) (3.3.19)
@ Here there is a ‘cause’” C and independent ‘effects” A and B.

Marginalising over C makes A and B (graph-
0 e — ically) dependent. In general, p(A, B) #
p(A)p(B). Although we don’t know the
@ ‘cause’, the ‘effects’ will nevertheless be depen-
dent.
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Remark 3.5 (Bayes ball) The Bayes ball algorithm [258] provides a linear time complexity
algorithm which given a set of nodes A" and Z determines the set of nodes Y such that X' 1L )| Z.
Y is called the set of irrelevant nodes for X’ given Z.

Graphical and distributional in/dependence

We have shown

X and ) d-separated by Z = X Il Y| Z in all distributions consistent with the belief network
structure.

In other words, if one takes any instance of a distribution P which factorises according to the belief
network structure and then writes down a list £ p of all the conditional independence statements that
can be obtained from P, if X’ and Y are d-separated by Z then this list must contain the statement
X 1l Y| Z. Note that the list £p could contain more statements than those obtained from the graph.
For example for the belief network graph

pla, b, c) = p(cla, b)p(a) p(b) (3.3.20)

which is representable by the DAG a — ¢ <« b, then a 1L b is the only graphical independence
statement we can make. Consider a distribution consistent with Equation (3.3.20), for example, on
binary variables dom («) = dom (b) = dom (¢) = {0, 1}

puj(c=1la,b)y=(a—=b)*. pyla=1)=03, pyb=1) =04 (3.3.21)

then numerically we must have a L b for this distribution py(;). Indeed the list £;) contains only the
statement a 1L b. On the other hand, we can also consider the distribution

pplc=lla.b) =05, ppala=1)=03. ppb=1)=04 (3.3.22)

from which [,[2] = {a U b,alle, bJ_Lc}. In this case C:z] contains more statements than
allb.

An interesting question is whether or not d-connection similarly implies dependence? That is,
do all distributions P consistent with the belief network possess the dependencies implied by the
graph? If we consider the belief network structure Equation (3.3.20) above, a and b are d-connected
by ¢, so that graphically @ and b are dependent, conditioned on c. For the specific instance py;| we
have numerically @bl ¢ so that the list of dependence statements for p(;; contains the graphical
dependence statement. Now consider pjy. The list of dependence statements for p(y is empty.
Hence the graphical dependence statements are not necessarily found in all distributions consistent
with the belief network. Hence

X and Y d-connected by Z # X V| Z in all distributions consistent with the belief network
structure.

See also Exercise 3.17. This shows that belief networks are powerful in ensuring that distributions
necessarily obey the independence assumptions we expect from the graph. However, belief networks
are not suitable for ensuring that distributions obey desired dependency statements.
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(a) (b)

Figure 3.10 (a) tand f are d-connected by
g.(b) band f are d-separated by u.

Example 3.3
Consider the graph in Fig. 3.10(a).

1. Are the variables f and f unconditionally independent, i.e. ¢ 1L f|?#? Here there are two colliders,
namely g and s — however, these are not in the conditioning set (which is empty), and hence f and
f are d-separated and therefore unconditionally independent.

2. Whataboutz 1l f|g? Thereis a path between # and f for which all colliders are in the conditioning
set. Hence t and f are d-connected by g, and therefore ¢ and f are graphically dependent
conditioned on g.

Example 3.4

Is {b, f} 1L u|# in Fig. 3.10(b)? Since the conditioning set is empty and every path from either b or
f to u contains a collider, ‘b and f’ are unconditionally independent of u.

Markov equivalence in belief networks

We have invested a lot of effort in learning how to read conditional independence relations from
a DAG. Happily, we can determine whether two DAGs represent the same set of conditional
independence statements (even when we don’t know what they are) by using a relatively simple
rule.

Definition 3.5 Markov equivalence Two graphs are Markov equivalent if they both represent
the same set of conditional independence statements. This definition holds for both directed and
undirected graphs.

Example 3.5

Consider the belief network with edges A — C <« B, from which the set of conditional statements
is A 1L B|@. For another belief network with edges A — C <« B and A — B, the set of conditional
independence statements is empty. In this case, the two belief networks are not Markov equivalent.

Procedure 3.1 (Determining Markov equivalence) Define an inunorality ina DAG as a configuration
of three nodes, A, B, C such that C is a child of both A and B, with A and B not directly connected.
Define the skeleton of a graph by removing the directions on the arrows. Two DAGs represent the
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Figure 3.11 (a) Two treatments t;, &, and corresponding

o o outcomes y;, y;. The health of a patient is represented by h.
This DAG embodies the conditional independence
statements t; 1L &, y;| ¥, &, 1L &, y4| 3, namely that the
@ @ treatments have no effect on each other. (b) One could
represent the effect of marginalising over h using a
o e @ bi-directional edge.
(a) (b)

same set of independence assumptions (they are Markov equivalent) if and only if they have the
same skeleton and the same set of immoralities [78].

Using Procedure 3.1 we see that in Fig. 3.6, BNs (b,c,d) have the same skeleton with no immoralities
and are therefore equivalent. However BN (a) has an immorality and is therefore not equivalent to
BNs (b,c.d).

Belief networks have limited expressibility

Belief networks fit well with our intuitive notion of modelling ‘causal’ independencies. However,
formally speaking they cannot necessarily graphically represent all the independence properties of
a given distribution.

Consider the DAG in Fig. 3.1 [(a) (from [249]). This DAG could be used to represent two successive
experiments where f; and ¢, are two treatments and y, and y, represent two outcomes of interest; &
is the underlying health status of the patient; the first treatment has no effect on the second outcome
hence there is no edge from y, to y,. Now consider the implied independencies in the marginal
distribution p(f;, . 1, y2), obtained by marginalising the full distribution over 4. There is no DAG
containing only the vertices 1, y;, f2, y» which represents the independence relations and does not
also imply some other independence relation that is not implied by Fig. 3.11(a). Consequently,
any DAG on vertices f1, y;, f2, > alone will either fail to represent an independence relation of
p(ti, 12, ¥1, ¥2), or will impose some additional independence restriction that is not implied by the
DAG. In the above example

p(ti. b2, y1, y2) = p(t) p(t2) Z pilty, ) p(y21t2. h) p(h) (3.3.23)

cannot in general be expressed as a product of functions defined on a limited set of the variables.
However, it is the case that the conditional independence conditions #; 1L (t2, y2), > 1L (¢, y;) hold
in p(ty,t2, y1, y2) — they are there, encoded in the form of the conditional probability tables. It is
just that we cannot ‘see’ this independence since it is not present in the structure of the marginalised
graph (though one can naturally infer this in the larger graph p(#, f2. y1, ¥2, h)). For example, for
the BN with link from y, to y;, we have #| 1L ;] y,, which is not true for the distribution in (3.3.23).
Similarly, for the BN with link from y, to y», the implied statement #, L #;| y; is also not true for
(3.3.23).

This example demonstrates that BNs cannot express all the conditional independence statements
that could be made on that set of variables (the set of conditional independence statements can be
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increased by considering additional variables however). This situation is rather general in the sense
that any graphical model has limited expressibility in terms of independence statements [281]. It is
worth bearing in mind that BNs may not always be the most appropriate framework to express one’s
independence assumptions and intuitions.

A natural consideration is to use a bi-directional arrow when a variable is marginalised. For
Fig. 3.11(a), one could depict the marginal distribution using a bi-directional edge, Fig. 3.11(b).
For a discussion of extensions of BNs using bi-directional edges see [249].

Causality

Causality is a contentious topic and the purpose of this section is to make the reader aware of some
pitfalls that can occur and which may give rise to erroneous inferences. The reader is referred to
[237] and [78] for further details.

The word ‘causal’ is contentious particularly in cases where the model of the data contains no
explicit temporal information, so that formally only correlations or dependencies can be inferred.
For a distribution p(a, b), we could write this as either (i) p(a|b) p(b) or (ii) p(bla) p(a). In (i) we
might think that b ‘causes’ a, and in (ii) a ‘causes’ b. Clearly, this is not very meaningful since they
both represent exactly the same distribution, see Fig. 3.12. Formally BNs only make independence
statements, not causal ones. Nevertheless, in constructing BNs, it can be helpful to think about
dependencies in terms of causation since our intuitive understanding is usually framed in how one
variable ‘influences” another. First we discuss a classic conundrum that highlights potential pitfalls
that can arise.

Simpson’s paradox

Simpson’s ‘paradox’ is a cautionary tale in causal reasoning in BNs. Consider a medical trial in
which patient treatment and outcome are recovered. Two trials were conducted, one with 40 females
and one with 40 males. The data is summarised in Table 3.1, The question is: Does the drug cause
increased recovery? According to the table for males, the answer is no, since more males recovered
when they were not given the drug than when they were. Similarly, more females recovered when
not given the drug than recovered when given the drug. The conclusion appears that the drug cannot
be beneficial since it aids neither subpopulation.

However, ignoring the gender information, and collating both the male and female data into one
combined table, we find that more people recovered when given the drug than when not. Hence,
even though the drug doesn’t seem to work for either males or females, it does seem to work overall!
Should we therefore recommend the drug or not?

(b)

Figure 3.12 Both (a) and (b) represent the same distribution p (a, b) = p(alb)p (b) = p(bla)p(a). (c) The graph
represents p (rain, grasswet) = p (grasswet|rain)p (rain). (d) We could equally have written p (rain|grasswet)p
(grasswet), although this appears to be causally non-sensical.
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Figure 3.13 (a) A DAG for the relation
between Gender (G), Drug (D) and Recovery
(R), see Table 3.1. (b) Influence diagram. No

decision variable is required for G since G
e e Fp e 9 has no parents.

(a) (b)

Resolution of the paradox

The ‘paradox’ occurs because we are asking a causal (interventional) question — If we give someone
the drug, what happens? — but we are performing an observational calculation. Pearl [237] would
remind us that there is a difference between “given that we see’ (observational evidence) and ‘given
that we do’ (interventional evidence). We want to model a causal experiment in which we first
intervene, setting the drug state, and then observe what effect this has on recovery.

A model of the Gender, Drug and Recovery data (which makes no conditional independence
assumptions) is, Fig. 3.13(a),

p(G, D, R) = p(R|G, D)p(D|G)p(G). (34.1)

In a causal interpretation, however, if we intervene and give the drug, then the term p(D|G) in
Equation (3.4.1) should play no role in the experiment — we decide to give the drug or not independent
of gender. The term p(D|G) therefore needs to be replaced by a term that reflects the set-up of the
experiment. We use the idea of an atomic intervention, in which a single variable is set in a particular
state. In our atomic causal intervention, where we set DD, we deal with the modified distribution

p(G. RID) = p(R|G. D)p(G) (3.4.2)
where the terms on the right-hand side of this equation are taken from the original BN of the data.
To denote an intervention we use ||:

p(R|G, D)p(G)

p(R||G. D) = p(R|G. D) = = (RIG.D)p(G) p(R|G. D). (3.4.3)
R .

Table 3.1 Table for Simpson’s Paradox (from [237])

Recovered Notrecovered Rec. rate

Males

Given drug 18 12 60%
Not given drug 7 3 T0%
Females

Given drug 2 8 20%
Not given drug 9 21 30%
Combined

Given drug 20 20 50%

Not given drug 16 24 40%
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Figure 3.14 Party animal. Here all variables are binary. P = Been to party, H = Got
a headache, D = Demotivated at work, U = Underperform at work, A = Boss angry.
Shaded variables are observed in the true state.

Code

Naive inference demo

demoBurglar.m: Was it the burglar demo
demoChestClinic.m: Naive inference on chest clinic. See Exercise 3.4.

Conditional independence demo

The following demo determines whether X 1L Y| Z for the Chest Clinic network, Fig. 3.15,
and checks the result numerically.” The independence test is based on the Markov method of
Section 4.2.4. This is an alternative to the d-separation method and also more general in that it deals
also with conditional independence in Markov Networks as well as belief networks. Running the
demo code below, it may happen that the numerical dependence is very small — that is

p(X. VIZ) =~ p(X|Z)p(YV|Z) (3.6.1)

even though X' V| Z. This highlights the difference between ‘structural” and ‘numerical’ indepen-
dence.

condindepPot .m: Numerical measure of conditional independence
demoCondindep.m: Demo of conditional independence (using Markov method)

Utility routines

dag.m: Find the DAG structure for a belief network

Exercises

(Party animal) The party animal problem corresponds to the network in Fig. 3.14. The boss is angry and
the worker has a headache — what is the probability the worker has been to a party? To complete the
specifications, the probabilities are given as follows:

pU=tP=t,D=1)=0999 p(U=t|P=faD=1)=09 p(H=1t/P=1t)=09
pU=ulP=t.D=1fa)=09  p(U=tlP=fa.D=fa)=001 p(H=1uP=1f)=02
pP(A =1t|U =tr) = 0.95 pP(A=tulU =fa) =05 p(P=tr)=02, p(D=1tr) =04

Consider the distribution p(a, b, ¢) = p(cla, b)p(a)p(b). (i) Isa 1L b| @7 (ii) Is a 1L b| c¢?

* The code for graphical conditional independence is given in Chapter 4.
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x = Positive X-ray

d = Dyspnea (shortness of breath)

e = Either tuberculosis or lung cancer
t = Tuberculosis

| = Lung cancer

o b = Bronchitis
a = Visited Asia
s = Smoker

Figure 3.15 Belief network structure for the Chest Clinic example.

The Chest Clinic network [184] concerns the diagnosis of lung disease (tuberculosis, lung cancer, or
both, or neither), see Fig. 3.15. In this model a visit to Asia is assumed to increase the probability of
tuberculosis. State if the following conditional independence relationships are true or false

1. tuberculosis 1L smoking| shortness of breath

2. lung cancer L bronchitis| smoking

3. visit to Asia Il smoking|lung cancer

4. visit to Asia_ L smoking|lung cancer, shortness of breath

Consider the Chest Clinic belief network in Fig. 3.15 [184]. Calculate by hand the values for p(d),
p(d|s =tr), p(d|s = fa). The table values are:

pla =tr) = 0.01 p(s =1tr) =05
p(t =trja =tr) = 0.05 p(t = trla = fa) = 0.01
p(l =trls =1r) = 0.1 p(l = trls = fa) = 0.01
p(b=trls =1r) =0.6 p(b = tr|s = fa) =03
plx =trle = tr) = 0.98 p(x = trle = fa) = 0.05

pld=tle=tr,b=1tr) =09
pld =trle=fa,b=1r) = 0.8

p(d =trle=1tr,b =fa) =0.7
p(d =trle =fa,b =fa) = 0.1
ple =tr|t, ) = 0 only if both t and 1 are fa, 1 otherwise.

If we interpret the Chest Clinic network Exercise 3.4 causally, how can we help a doctor answer the
question ‘If I could cure my patients of bronchitis, how would this affect my patients’ chance of being
short of breath?”. How does this compare with p(d = tr|b = fa) in a non-causal interpretation, and what
does this mean?

([140]) The network in Fig. 3.16 concerns the probability of a car starting, with

p(g = empty|b = good, f = notempty) = 0.04
p(g = empty|b = bad, f = notempty) = 0.1
p(t = falb = good) = 0.03

p(s =fajt = tr, f = notempty) = 0.01

p(s = fa|t = fa, f = notempty) = 1.0

p(g = empty|b = good, f = empty) = 0.97
p(g = empty|b = bad, f = empty) = 0.99
p(t = fa|b = bad) = 0.98

pl(s =fajt =tr, f = empty) = 0.92

p(s = falt =fa, f = empty) = 0.99

Calculate P(f = empty|s = ne), the probability of the fuel tank being empty conditioned on the obser-

vation that the car does not start.

There is a synergistic relationship between Asbestos (A) exposure, Smoking (S) and Cancer (C). A model

describing this relationship is given by

P(A, 8, C)= p(C|A, S)p(A)p(S).

(3.7.1)
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@ Figure 3.16 Belief network of car starting, see Exercise 3.6.

1. Is ALl S|9?

2. IsAllS|C?

3. How could you adjust the model to account for the fact that people who work in the building industry
have a higher likelihood to also be smokers and also a higher likelihood to be exposed to asbestos?

Consider the belief network on the right which represents Mr Holmes’ e

burglary worries as given in Fig. 3.3(a): (B)urglar, (A)larm, (W)atson, ° o
Mrs (G)ibbon. 0

All variables are binary with states {tr, fa}. The table entries are

p(B =tr) = 0.01

p(A=u|B=1tr) =099 p(A =tr|B =fa) =0.05
p(W=trlA=1tr) =0.9 p(W=1tA=1a) =05
p(G=tA=1tr) =0.7 p(G=tlA="fa) =0.2

(3.7.2)

1. Compute ‘by hand” (i.e. show your working):

(a) p(B=tu|W =tr)
(b) p(B=trlW =1tr, G = fa)

2. Consider the same situation as above, except that now the evidence is uncertain. Mrs Gibbon thinks
that the state is G = fa with probability 0.9. Similarly, Dr Watson believes in the state W = fa with
value 0.7. Compute ‘by hand’ the posteriors under these uncertain (soft) evidences:

(@) p(B =t W)
(b) p(B =tr|W,G)

A doctor gives a patient a (D)rug (drug or no drug) dependent on their (A)ge (old or young) and (G)ender
(male or female). Whether or not the patient (R)ecovers (recovers or doesn’t recover) dependson all D, A, G.
In addition A 1l G| 9.

1. Write down the belief network for the above situation.
2. Explain how to compute p(recover|drug).
3. Explain how to compute p(recover|do(drug), young).

Implement the Wet Grass scenario in Section 3.1.1 using the BRMLTooLBOX.

(LA Burglar) Consider the Burglar scenario, Example 3.1. We now wish to model the fact that in Los
Angeles the probability of being burgled increases if there is an earthquake. Explain how to include this
effect in the model.

Given two belief networks represented as DAGs with associated adjacency matrices A and B, write a
MATLAB function MarkovEqguiv (A, B) .m that returns 1 if A and B are Markov equivalent, and zero
otherwise.
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The adjacency matrices of two belief networks are given below (see ABmatrices.mat). State if they are
Markov equivalent.

( 00 1 1 01 000 001 100000
00 1 01 0000 00 1 00 O0O0O0O0
00 0000100 00 0O0O0OO0OT1TO0O0
00 000 0 0 11 00 00 0 0 011
A=]0 0 1 0 0 O 1 0 0 B=]J0 1 1 0 0 0 1 0 0
000100010 1 00 1 0 0010
00 00 00 0 01 00 00 0 0 0 01
00 0 0 O0O0O0O0O0 00 00 O0O0O0O0O0
KO 00 00 0 000 \0 0 0 0 0 0 0 0 0

(3.7.3)

There are three computers indexed by i € {1, 2, 3}. Computer i can send a message in one timestep to
computer j if C;; = 1, otherwise C;; = 0. There is a fault in the network and the task is to find out some
information about the communication matrix C (C is not necessarily symmetric). To do this, Thomas, the
engineer, will run some tests that reveal whether or not computer i can send a message to computer j in
t timesteps, t € {1, 2}. This is expressed as C;;(t), with C;;(1) = C;. For example, he might know that
C13(2) = 1, meaning that according to his test, a message sent from computer 1 will arrive at computer
3 in at most two timesteps. Note that this message could go via different routes — it might go directly
from 1 to 3 in one timestep, or indirectly from 1 to 2 and then from 2 to 3, or both. You may assume
C;; = 1. A priori Thomas thinks there is a 10% probability that C;; = 1, 7 # j, and assumes that each
such connection is independent of the rest. Given the test information € = {C2(2) = 1, C23(2) = 0},
compute the a posteriori probability vector

[p(Ci2 = 1|C), p(C13 = 1|C), p(Cys = 1IC), p(C32 = 1|C), p(Cay = 1|C), p(Cs1 = 1IC)]. (3.74)

A belief network models the relation between the variables oil, inf, eh, bp. rt which stand for the price
of oil, inflation rate, economy health, British Petroleum Stock price, retailer stock price. Each variable
takes the states low, high, except for bp which has states low. high, normal. The belief network model for
these variables has tables

pleh=low)=0.2

p(bp=low|oil=low)=0.9 p(bp=normal|oil=low)=0.1
p(bp=low|eil=high)=0.1 p(bp=normal|oil=high)=0.4
ploil=low|eh=low)=0.9 ploil=low|eh=high)=0.05

p(rt=low|inf=low,eh=low)=0.9 p(ri=low|inf=low,eh=high)=0.1
plri=low|inf=high,ehi=low)=0.1 plri=low|inf=high,efz=high)=0.01
plinf=low|oil=low,eh=low)=0.9 | p(inf=Ilow|oii=low,e/i=high)=0.1
plinf=low|oil=high,eh=low)=0.1 | p(inf=low|oil=high,eh=high)=0.01

1. Draw a belief network for this distribution.
2. Given that the BP stock price is normal and the retailer stock price is high, what is the probability that
inflation is high?

There is a set of C potentials with potential ¢ defined on a subset of variables X,. If X, € A; we can
merge (multiply) potentials ¢ and d since the variables in potential ¢ are contained within potential d.
With reference to suitable graph structures, describe an efficient algorithm to merge a set of potentials so
that for the new set of potentials no potential is contained within the other.
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This exercise explores the distinction between d-connection and dependence. Consider the distribution
class

pla,b,c) = p(c|b)p(bla)p(a) (3.7.5)

for which a is d-connected to ¢. One might expect that this means that @ and ¢ are dependent, alle. Our
interest is to show that there are non-trivial distributions for which a 1L c.

1. Consider dom (a) = dom (¢) = {1,2} and dom (b) = {1, 2, 3}. For

/4 15/40
3/5 1/3 1/2 15/40
pla) = (2j5) el =112 178 |, pleln) = (2;3 AN ) (3.7.6)
2/3 1/2
show thata 1L .
2. Consider
1
p(a, b,C) = E@(G,b}ﬂf(b,tﬁ') (3.7.7)
for positive function ¢, ¥ and Z =}, _é(a, b)¥ (b, ¢). Defining matrices M and N with elements
My = ¢la=ib=j), N =y¢(b=j,c=k) (3.7.8)
show that the marginal distribution p(a = i, ¢ = k) is represented by the matrix elements
1
pla=ic=k)= Z [MNT]... (3.7.9)

3. Show that if

MN' = myn]. (3.7.10)
for some vectors mg and ng, then a 1L c.

4. Writing
M=[m m; ma, N=[n, ny nj (3.7.11)
for two-dimensional vectors m;. n;.i = 1..... 3, show that
MN' = m;n| + m;n} + msn}. (3.7.12)

5. Show that by setting
m; =im;, n;=y(n +iny) (3.7.13)
for scalar A, y then MN' can be written as monL where
mg = m; + yms, ng = n; + Ans. (3.7.14)

6. Hence construct example tables p(a), p(bla), p(c|b) for which a 1L c. Verify your examples explicitly
using BRMLTooLBOX.

Alice and Bob share a bank account which contains an a priori unknown total amount of money 7.
Whenever Alice goes to the cash machine, the available amount for withdrawal A for Alice is always
10% of the total T. Similarly, when Bob goes to the cash machine the available amount for withdrawal
B for Bob is 10% of the total T. Whatever the amount in the bank, Alice and Bob check their available
amounts for withdrawal independently. Draw a belief network that expresses this situation and show that
ATB.
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(a)

Figure 4.1 (a) ¢(x1, X2)@ (X2, X3 )P (X3, Xa)P(Xa, X1)/Za. (B) ¢(X1, X2, X3, Xa) /Zp. (€) G(X1, X24 Xa)P(X2, X3, Xa) ¥
$(xa, Xs)d(x3, Xe) /Zc.

Whilst not a strict separation, GMs tend to fall into two broad classes — those useful in modelling,
and those useful in representing inference algorithms. For modelling, belief networks, Markov
networks, chain graphs and influence diagrams are some of the most popular. For inference one
typically ‘compiles’ a model into a suitable GM for which an algorithm can be readily applied. Such
inference GMs include factor graphs and junction trees.

Belief networks correspond to a special kind of factorisation of the joint probability distribution in
which each of the factors is itself a distribution. An alternative factorisation is, for example

1
pla.b.c) = —¢(a. b)¢(b.c) (4.2.1)

where ¢(a, b) and ¢ (b, c) are potentials (see below) and Z is a constant which ensures normalisation,
called the partition function

Z=3Y ¢(a.b)p(b.c). (4.2.2)

a,b,c

Definition4.1 Potential A potential ¢(x) is a non-negative function of the variable x, ¢(x) > 0. A
joint potential ¢(xy, ..., x,) is a non-negative function of the set of variables. A distribution is a

special case of a potential satisfying normalisation, 3 ¢(x) = 1. This holds similarly for continuous
variables, with summation replaced by integration.

We will typically use the convention that the ordering of the variables in the potential is not relevant
(as for a distribution) — the joint variables simply index an element of the potential table, Markov
Networks (MNs) are defined as products of potentials defined on maximal cliques of an undirected
graph — see below and Fig. 4.1,

Definition 4.2 Markov network For a set of variables X = {xj,..., x,} a Markov network is
defined as a product of potentials on subsets of the variables X, € A"

1 C
Pl x) = - [Toc(x0). (4.2.3)
c=1

The constant Z ensures the distribution is normalised. Graphically this is represented by an undirected
graph G with X, ¢ =1,..., C being the maximal cliques of G. For the case in which clique
potentials are strictly positive, this is called a Gibbs distribution.
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Definition 4.3 Pairwise Markov network In the special case that the graph contains cliques of
only size 2, the distribution is called a parrwise Markov Network, with potentials defined on each
link between two variables.

Whilst a Markov network is formally defined on maximal cliques, in

practice authors often use the term to refer to non-maximal cliques. For o o
example, in the graph on the right, the maximal cliques are x, x,, x3 and v

X5, X3, Xy, S0 that the graph describes a distribution p(x,, x5, X3, x4) = "
@ (x1, x2, x3)@(x7, X3, x4)/Z. In a pairwise network though the poten-

tials are assumed to be over two cliques, giving p(x, x2, X3, x4) = o °

$(x1, x2)@(x1, x3)@ (X2, ¥3) (X2, X4)@(x3, x4)/ Z.

Example 4.1 Boltzmann machine

A Boltzmann machine is an MN on binary variables dom (x;) = {0, 1} of the form

px) = z(u]r, b)

where the interactions w;; are the ‘weights’ and the b; the ‘biases’. This model has been studied in
the machine learning community as a basic model of distributed memory and computation [2]. The
graphical model of the BM is an undirected graph with a link between nodes ¢ and j for w;; # 0.
Consequently, for all but specially constrained W, the graph is multiply connected and inference
will be typically intractable.

EE' <j WijXiX; +22; bix; (424)

Definition 4.4 Properties of Markov networks

e e e Marginalising over C makes A and B

(graphically) dependent. In general p(A, B) #

@ p(A)p(B).

p(A, B,C) = ¢ac(A,C)ppc(B,C)/Z (4.2.5)

‘p @ @ Conditioning on C makes A and B independent:

p(A, BIC) = p(A|C)p(BIC).
o

Markov properties

We consider here informally the properties of Markov networks and the reader is referred to [182]
for detailed proofs. Consider the MN in Fig. 4.2(a) in which we use the shorthand p(1) = p(x;),
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(a)

Figure 4.2 (a) ¢(1,2,3)¢(2, 3, 4)¢ (4, 5,
6)¢(5, 6, 7). (b) By the global Markov
property, since every path from 1 to 7 passes
through 4, then 1 1L 7| 4.

¢(1,2,3) = ¢(x|, x2, x3) etc. We will use this undirected graph to demonstrate conditional indepen-
dence properties. Note that throughout we will be often dividing by potentials and, in order to ensure
this is well defined, we assume the potentials are positive. For positive potentials the following local,
pairwise and global Markov properties are all equivalent.

Definition 4.5 Separation A subset S separates a subset A from a subset B (for disjoint .4 and
B) if every path from any member of A to any member of B passes through &. If there is no path
from a member of 4 to a member of B then .4 is separated from B. If S = ¢ then provided no path
exists from A to B, A and B are separated.

Definition 4.6 Global Markov property For disjoint sets of variables, (A, B, S) where §
separates A from B in G, then A 1L B|S.

As an example of the global Markov property, consider

p(1.714) o 3" p(1.2.3.4.5.6.7) (4.2.6)
2,356
= > $(1.2.3)6(2.3,4)¢(4.5.6)$(5.6.7) (4.2.7)
2,356
=1 0(1,2.3)6(2.3.4) £ { ) 6(4.5.6)(5.6.7) ¢ . (4.2.8)
2,3 5.6

This implies that p(1,7|4) = p(1|4) p(7]4). This can be inferred since all paths from 1 to 7 pass
through 4, see Fig. 4.2(a).

Procedure 4.1 (An algorithm for independence) The separation property implies a simple algo-
rithm for deciding A L B|S. We simply remove all links that neighbour the set of variables S.
If there is no path from any member of A to any member of B, then AL B|S is true — see also
Section 4.2.4,

For positive potentials, the so-called local Markov property holds
plx|X\x) = p(x|ne (x)). (4.2.9)

That is, when conditioned on its neighbours, x is independent of the remaining variables of the
graph. In addition, the so-called pairwise Markov property holds that for any non-adjacent vertices
xandy

x 1Ly AN\ {x. v} (4.2.10)
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Markov random fields

A Markov Random Field (MRF) is a set of conditional distributions, one for each indexed ‘location’.

Definition 4.7 Markov random field A MRF is defined by a set of distributions p(x;|ne (x;))
wherei € {I,..., n} indexes the distributions and ne (x;) are the neighbours of variable x;, namely
that subset of the variables x|, ..., x, that the distribution of variable x; depends on. The term

Markov indicates that this is a proper subset of the variables.
A distribution is an MRF with respect to an undirected graph G if

pxilx) = p(xilne (x;)) 4.2.11)

where ne (x;) are the neighbouring variables of variable x;, according to the undirected graph G.
The notation xy; is shorthand for the set of all variables A" excluding variable x;, namely A'\.x; in set
notation.

Hammersley—Clifford theorem

An undirected graph G specifies a set of independence statements. An interesting challenge is to
find the most general functional form of a distribution that satisfies these independence statements.
A trivial example is the graph x; — x, — x5, from which we have x; 1L x3| x5. From this requirement
we must have

p(xilx2, x3) = p(xilx2). (4.2.12)
Hence
p(x1, X2, x3) = p(x1lxa, x3) p(xa, x3) = p(xilx2) plxa, x3) = ¢ra(xr, ¥2)¢aa(x2, x3)  (4.2.13)

where the ¢ are potentials.

More generally, for any decomposable graph G, see Definition 6.9, we can start at the edge and
work inwards to reveal that the functional form must be a product of potentials on the cliques of G.
For example, for Fig. 4.2(a), we can start with the variable x; and the corresponding local Markov
statement x; 1L x4, X5, Xg, Xg| X2, X3 tO Write

p(x1. ..o x7) = plalxa. x3) p(x2, X3, x4, X5, X6, X7). (4.2.14)

Now we consider x; eliminated and move to the neighbours of x|, namely x,, x5. The graph specifies
that x,, x-, x5 are independent of xs, x4, x7 given x4:

p(x1, x2, X3]x4, X5, X6, x7) = p(x1, X2, x3|x4). (4.2.15)
By summing both sides above over x; we have that p(xz, x3]x4., X5, X6, X7) = p(x2. x3]x4). Hence

p(x2. x3, X4, X5, Xg, X7) = p(X2, X3]|X4, X5, Xg, X7) p(X4, X5, X6, x7) = p(x2, x3]x4) p(x4. X5, X6, X7)

(4.2.16)

plxr. ..., x7) = p(x1]x2, x3) p(x2, X3]x8) p(X4, X5, X6, X7). (4.2.17)

Having eliminated x», x3, we now move to their neighbour(s) on the remaining graph, namely x4,
Continuing in this way, we necessarily end up with a distribution of the form

p(xr. ... x7) = p(xi|xa, x3) p(x2, x30x48) p(x4|x5, x6) P35, X6]x7) px7). (4.2.18)
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The pattern here is clear and shows that the Markov conditions mean that the distribution is express-
ible as a product of potentials defined on the cliques of the graph. That is G = F where F is a
factorisation into clique potentials on G. The converse is easily shown, namely that given a factori-
sation into clique potentials, the Markov conditions on G are implied. Hence G & F'. It is clear that
for any decomposable G, this always holds since we can always work inwards from the edges of the
graph.

The Hammersley—Clifford theorem is a stronger result and shows that this factorisation property
holds for any undirected graph, provided that the potentials are positive. For a formal proof, the
reader is referred to [182, 36, 219]. An informal argument can be made by considering a specific
example, and we take the 4-cycle x| — x» — x3 — x4 — x; from Fig. 4.1(a). The theorem states that
for positive potentials ¢, the Markov conditions implied by the graph mean that the distribution must
be of the form

Py, Xa, X3, X4) = Praxy, X2) a3 (X2, X3)P3a (X3, xg) P (x4, x1)- (4.2.19)
One may readily verify that for any distribution of this form x| L x3| x2, x4. Consider including an

additional term that links x, to a variable not a member of the cliques that x, inhabits. That is we
include a term ¢;5(x;, x3). Our aim is to show that a distribution of the form

P(x1, X2, X3, x4) = @12(x1, X2)@a3(x2. x3)P3a(x3, Xa)Par (x4, x1)13(x1, x3) (4.2.20)
cannot satisfy the Markov property x; 1L x3| x2, x4. To do so we examine

¢|2(11= X2)¢23(121 x3}¢34(x3, -¥4)¢41(X4, Il)¢|3(-’(|a13)

Xy |X2. X3, x4) = (4.2.21)
plxile. x3 x4) 2o Br2(x1, X2) a3 (X2, X3)B3a (x5, x4) a1 (x4, X1) 13 (21, x3)
_ ¢|2(-’-’1,-‘-‘2)¢41(141x1}¢|3(-’-’1--\‘3) ) (4.2‘22)
Z_\.‘ ¢’|2(x1=X2)¢41(I4311)¢|3(X1,-’CJ)
If we assume that the potential ¢,3 is weakly dependent on x; and x3,
P13(x1, x3) = 1 +er(xy, x3) (4.2.23)

where € < 1, then p(x||x3, x3, x4) is given by

P12(x1, X2)Pay (x4, x1)
2, ialxrs x2)bar (x4, x1)

2o, P12l x2)an (x4, x1) ¥ (%1, x3) -
(I+eyr(x1.x3)) (1 +e S draler, 52w (rer 1) ) :

(4.2.24)
By expanding (1+e¢f) '=1—¢f+ 0 (62) and retaining only terms that are first order in €, we
obtain
P12(x1. X2)Pa1 (x4, X1)
> Pralxr, x2)gar (xa, x1)

2y, bralxr, x2)pan (xa, X)) ¥ (x1, X3) 5
: (l e |:¢(I1»-’f3) - 2y, Bialxi, x2)pai (xa, x1) ]) +o().

p(xi|x2, x3, x4) =

(4.2.25)
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Figure 4.5 Onsagar magnetisation. As the temperature T

= os decreases towards the critical temperature T, a phase transition
occurs in which a large fraction of the variables become aligned
0 . in the same state.
0 0.5 1 1.5 2

/T,

Consider a model in which our desire is that states of the binary

valued variables x;, ..., x¢, arranged on a lattice (right) should prefer
their neighbouring variables to be in the same state
1
p(.r[,...,).‘()) = EH(ﬁ;j(I;,Xj) (4228)
i~
where i ~ j denotes the set of indices where 7 and j are neighbours in

the undirected graph.

The Ising model

A set of potentials for Equation (4.2.28) that encourages neighbouring variables to have the same
state is

Bii(xix;) = e 70 xie (=1, +1}. (4.2.29)

This corresponds to a well-known model of the physics of magnetic systems, called the Ising model
which consists of ‘mini-magnets’ which prefer to be aligned in the same state, depending on the
temperature 7. For high T the variables behave independently so that no global magnetisation
appears. For low T, there is a strong preference for neighbouring mini-magnets to become aligned,
generating a strong macro-magnet. Remarkably, one can show that, in a very large two-dimensional
lattice, below the so-called Curie temperature, 7, = 2.269 (for £1 variables), the system admits
a phase change in that a large fraction of the variables become aligned — above 7., on average,

the variables are unaligned. This is depicted in Fig. 4.5 where M = ‘Zt, x;i| /N is the average
alignment of the variables. That this phase change happens for non-zero temperature has driven
considerable research in this and related areas [41]. Global coherence effects such as this that arise
from weak local constraints are present in systems that admit emergent behaviour. Similar local
constraints are popular in image restoration algorithms to clean up noise, under the assumption that

noise will not show any local spatial coherence, whilst ‘signal’ will.

Example 4.2 Cleaning up images

Consider a binary image defined onasetof pixelsx; € {—1,+1},i=1,..., D.
We observe a noise-corrupted version y; of each pixel x;, in which the state of
vi € {—1,+1} is opposite to x; with some probability. Here the filled nodes
indicate observed noisy pixels and the unshaded nodes the latent clean pixels.
Our interest is to ‘clean up’ the observed dirty image ), and find the most
likely joint clean image A’
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A model for this situation is

[ & ! .
P(X’y)z E[n¢(x"y'):| HW(xiexj s ‘P(xivyi):eﬂn'hi Ip(xhxj)=ecrx,x,
(=]

i~j

(4.2.30)

here i ~ j indicates the set of latent variables that are neighbours. The potential ¢ encourages
the noisy and clean pixel to be in the same state. Similarly, the potential v (x;, x;) encourages
neighbouring pixels to be in the same state. To find the most likely clean image, we need to compute

argmax p(X|)) = argmax p(X, ). (4.2.31)
x X

This is a computationally difficult task but can be approximated using iterative methods, see
Section 28.9,

On the left is the clean image, from which a noisy corrupted image ) is formed (middle). The most
likely restored image is given on the right. See demoMRFclean.m. Note that the parameter B is
straightforward to set, given knowledge of the corruption probability peupe. since p(yi # xilx;) =
o (2B),so that B = 30 ' ( peorupr). Setting « is more complex since relating p(x; = x;) to & is not
straightforward, see Section 28.4.1. In the demonstration we set & = 10, peoyrpe = 0.15.

Chain Graphs (CGs) contain both directed and undirected links. To develop the intuition, consider
Fig. 4.6(a). The only terms that we can unambiguously specify from this depiction are p(a) and
p(b) since there is no mixed interaction of directed and undirected edges at the a and b vertices. By
probability, therefore, we must have

pla,b,c,d) = p(a)p(b)p(c,dla,b). (4.3.1)
Looking at the graph, we might expect the interpretation to be
ple. dla,b) = ¢(c. d) p(cla) p(d|b). (43.2)

However, to ensure normalisation, and also to retain generality, we interpret this as

ple.dla,b) = ¢(c, d)p(cla) p(d|b)¢(a, b), with ¢(a.b) = (Z #(c, d)P(CIa)p(dlb)) -

c.d

(4.3.3)

This leads to the interpretation of a CG as a DAG over the chain components see below.
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O—) ()
(a) (b)

Figure 4.6 Chain graphs. The chain components are identified by deleting the directed edges and identifying the
remaining connected components. (a) Chain components are (a), (b), (c, d), which can be written as a BN on the
cluster variables in (b). (c) Chain components are (a, e, d, f, h), (b, g), (c), which has the cluster BN
representation (d).

(d)

Definition 4.8 Chain component The chain components of a graph G are obtained by:

1. Forming a graph G’ with directed edges removed from G.
2. Then each connected component in G’ constitutes a chain component.

Each chain component represents a distribution over the variables of the component, conditioned
on the parental components. The conditional distribution is itself a product over the cliques of
the undirected component and moralised parental components, including also a factor to ensure
normalisation over the chain component.

Definition 4.9 Chain graph distribution The distribution associated with a chain graph G is
found by first identifying the chain components, t. Then

p(x) =[] r(Xlpa(x,)) (4.3.4)
and
p(Xlpa (X)) o« [ | 6 (Ac,) (4.3.5)
ceC,

where C; denotes the union of the cliques in component 7 together with the moralised parental
components of 7, with ¢ being the associated functions defined on each clique. The proportionality
factor is determined implicitly by the constraint that the distribution sums to 1.

BNs are CGs in which the connected components are singletons. MNs are CGs in which the
chain components are simply the connected components of the undirected graph. Chain graphs can
be useful since they are more expressive of CI statements than either belief networks or Markov
networks alone. The reader is referred to [182] and [106] for further details.

Example 4.3 Chain graphs are more expressive than belief or Markov networks
Consider the chain graph in Fig. 4.7(a), which has chain component decomposition

p(a, b,c,d,e, f) = p(a)p(b)p(c, d,e. fla, b) (4.3.6)
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o @ Figure 4.7 The CG (a) expresses a L b| ¥ and
d 1l ¢ (c, f). No directed graph could express
both these conditions since the marginal
distribution p (¢, d, e, f ) is an undirected
0 ° e 4-cycle, (b). Any DAG on a 4-cycle must contain
a collider, as in (c) and therefore express a
different set of Cl statements than (b).
Similarly, no connected Markov network can
o ° o express unconditional independence and hence
(a) expresses Cl statements that no belief
(b) (c) network or Markov network alone can express.

where

plc.d,e, fla,b) = ¢(a,c)p(c, e)p(e, f)p(d, f)¢(d. b)gp(a,b) (4.3.7)
with the normalisation requirement
-1

$a.b)=| D ¢la,c)p(c.e)¢le. f)d(d, f)d(d.b) | . (43.8)

cd,e, f

The marginal p(c, d, e, f) is given by

p(c.e)ple. N)p(d. £) Y ¢la.b)p(a)p(b)p(a, c)p(d. b). (4.3.9)
a,b

p(c.d)

Since the marginal distribution of p(c, d, e, f) is an undirected 4-cycle, no DAG can express the
CI statements contained in the marginal p(c. d, e, f). Similarly no undirected distribution on the
same skeleton as Fig. 4.7(a) could express that ¢ and b are independent (unconditionally), i.e.

pla,b) = p(a)p(b).

Factor graphs
Factor Graphs (FGs) are mainly used as part of inference algorithms.’

Definition 4.10 Factor graph Given a function

Flrnox) = [T v (%), 44.1)

the FG has a node (represented by a square) for each factor v;, and a variable node (represented by
a circle) for each variable x;. For each x; € A; an undirected link is made between factor ; and
variable x;.

! Formally a FG is an alternative graphical depiction of a hypergraph [86] in which the vertices represent variables, and a
hyperedge a factor as a function of the variables associated with the hyperedge. A FG is therefore a hypergraph with the
additional interpretation that the graph represents a function defined as products over the associated hyperedges. Many
thanks to Robert Cowell for this observation.
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g0 eﬁ?&a C?”T?

(d) (

Figure 4.8 (a) ¢(a, b, c). (b) ¢(a, b)(b, c)é(c, a). () ¢(a, b, c). Both (a) and (b) have the same undirected
graphical model, (c). (d) (a) is an undirected FG of (d). (e) Directed FG of the BN in (d). A directed factor represents a
term p (children|parents). The advantage of (e) over (a) is that information regarding the marginal independence of
variables b and c is clear from graph (e), whereas one could only ascertain this by examination of the numerical
entries of the factors in graph (a).

When used to represent a distribution
1
POt x) = — ]_[ i (X) (4.4.2)

a normalisation constant Z =}, []; ¥; (&;) is assumed.

For a factor v; (X;) which is a conditional distribution p(x;|pa(x;)), we may use directed links
from the parents to the factor node, and a directed link from the factor node to the child x;. This
has the same structure as an (undirected) FG, but preserves the information that the factors are
distributions.

Factor graphs are useful since they can preserve more information about the form of the distribution
than either a belief network or a Markov network (or chain graph) can do alone. Consider the
distribution

pla,b,c) = ¢(a,b)d(a, c)p(b, c). (4.4.3)

Represented as an MN, this must have a single clique, as given in Fig. 4.8(c). However, Fig. 4.8(c)
could equally represent some unfactored clique potential ¢(a, b, ¢) so that the factorised structure
within the clique is lost. In this sense, the FG representation in Fig. 4.8(b) more precisely conveys
the form of distribution equation (4.4.3). An unfactored clique potential ¢(a, b, ¢) is represented
by the FG Fig. 4.8(a). Hence different FGs can have the same MN since information regard-
ing the structure of the clique potential is lost in the MN. Similarly, for a belief network, as in
Fig. 4.8(d) one can represent this using a standard undirected FG, although more information about
the independence is preserved by using a directed FG representation, as in Fig. 4.8(e). One can also
consider partially directed FGs which contain both directed and undirected edges; this requires a
specification of how the structure is normalised, one such being to use an approach analogous to the
chain graph — see [103] for details.

Conditional independence in factor graphs

Conditional independence questions can be addressed using a rule which works with directed,
undirected and partially directed FGs [103]. To determine whether two variables are independent
given a set of conditioned variables, consider all paths connecting the two variables. If all paths
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For this we have
Lo = {61 (t, y)} (4.5.10)

Hence L C L p so that the BN is an I-map for (4.5.7) since every independence statement in the
BN is true for the distribution class in Equation (4.5.7). However, it is not a D-map since Lp € Lg.
In this case no perfect map (a BN or an MN) can represent (4.5.7).

Remark 4.1 (Forcing dependencies?) Whilst graphical models as we have defined them ensure
specified independencies, they seem to be inappropriate for ensuring specified dependencies. Con-
sider the undirected graph x — y — z. Graphically this expresses that x and z are dependent.
However, there are numerical instances of distributions for which this does not hold, for example

pi(x,y,z) = ¢lx, y)¢(v, 2)/Z, 4.5.11)

with ¢(x, y) = const. One might complain that this is a pathological case since any graphical repre-
sentation of this particular instance contains no link between x and y. Maybe one should therefore
‘force’ potentials to be non-trivial functions of their arguments and thereby ensure dependency?
Consider

p(x,y) = —, d(y,z) = yz. (4.5.12)

= | =

In this case both potentials are non-trivial in the sense that they are truly functionally dependent
on their arguments. Hence, the undirected network contains ‘genuine’ links x — y and y — z.
Nevertheless,

pa(x,y,z) = ¢(x, ¥)p(v,2)/Z2 x gyz = xz. (4.5.13)

Hence p(x, z) o« xz = x 1l z. So “forcing’ local non-trivial functions does not guarantee depen-
dence of path-connected variables. In this case, the algebraic cancellation is clear and the prob-
lem is again rather trivial since for p;, x 1Ly and y 1l z, so one might assume that x 1l z (see
however, Remark 1.2). However, there may be cases where such algebraic simplifications are
highly non-trivial, though nevertheless true. See, for example, Exercise 3.17 in which we construct
plx,y.z) o< p(x, y)p(y. z) for which xTTy and yTTz, yet x 1l z.

Summary

¢ Graphical modelling is the discipline of representing probability models graphically.

¢ Belief networks intuitively describe which variables ‘causally’ influence others and are repre-
sented using directed graphs.

¢ A Markov network is represented by an undirected graph.

o Intuitively, linked variables in a Markov network are graphically dependent, describing local
cliques of graphically dependent variables.

e Markov networks are historically important in physics and may be used to understand how
global collaborative phenomena can emerge from only local dependencies.

e Graphical models are generally limited in their ability to represent all the possible logical
consequences of a probabilistic model.

e Some special probabilistic models can be ‘perfectly’ mapped graphically.



74

4.7

4.8

4.1

4.2

4.3

4.4

Graphical models

e Factor graphs describe the factorisation of functions and are not necessarily related to prob-
ability distributions.

A detailed discussion of the axiomatic and logical basis of conditional independence is given in [47]
and [280].

Code

condindep.m: Conditional independence test p(X, Y|Z) = p(X|Z)p(Y|Z)?

Exercises

1. Consider the pairwise Markov network,

p(x) = o (x1, x2)d(x2, x3)P (X3, X4)P (x4, X1). (4.8.1)

Express in terms of ¢ the following:

Py |xg, xy). pxz|xg, x3), p(x3]xa, xq), p(xglxy, x3). (4.8.2)

2. For a set of local distributions defined as

pi(xi|x2, xa), pa(x2|x1, x3), p3(x3lxz, xa), palxalx1, x3) (4.8.3)
is it always possible to find a joint distribution p(x;, x», x3. x4) consistent with these local conditional

distributions?

Consider the Markov network

p(“v b, C) = ¢(rb ((I, b)qbb(' (bv ':')- (484)
Nominally, by summing over b, the variables @ and ¢ are dependent. For binary b, explain a situation in
which this is not the case, so that marginally, @ and ¢ are independent.

Show that for the Boltzmann machine defined on binary variables x; with

p(x) = exp (x'Wx + x'h) (4.8.5)

1
Z(W.b)

one may assume, without loss of generality, W = W',

The restricted Boltzmann machine (or Harmonium [269]) is a con-

strained Boltzmann machine on a bipartite graph, consisting of a

layer of visible variables v = (v;,...,vy) and hidden variables o °

h = (,’H ..... h H ): ""\
p(v,h) = _ exp (V'Wh +a'v + b'h) (4.8.6)

Z(W,a,b)
All variables are binary taking states 0, 1.

1. Show that the distribution of hidden units conditional on the visible units factorises as

p(hlv) = l_[ p(hi|v), with p(h; = 1|v) =0 | b; + Z Wiiv; (4.8.7)
i j

where o (x) = e /(1 + e7).
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2. By symmetry arguments, write down the form of the conditional p(v|h).
3. Is p(h) factorised?
4. Can the partition function Z(W, a, h) be computed efficiently for the RBM?

You are given that
x ALyl (z,u), ull z|9. (4.8.8)

Derive the most general form of probability distribution p(x, v, z, #) consistent with these statements.
Does this distribution have a simple graphical model?

The undirected graph Q represents a Markov network with nodes x, x3, x3, x4, x5, counting clock-
wise around the pentagon with potentials ¢ (x;, x;). Show that the joint distribution can be written as

p(xy, x2, x5) p(xa, x4, x5) p(x2, X3, x4)
P(X1, %2, X3, x4, X5) = (4.8.9)

P(-‘fzs x5)p(x21 X4)

and express the marginal probability tables explicitly as functions of the potentials ¢ (x;, x;).

Consider the belief network on the right. o @

1. Write down a Markov network of p(x, x2, x3).

2. Is your Markov network a perfect map of p(x;, x2, x3)? o @ 0

Two research labs work independently on the relationship between discrete variables x and y. Lab A
proudly announces that they have ascertained distribution p, (x|y) from data. Lab B proudly announces
that they have ascertained pg(y|x) from data.

1. Is it always possible to find a joint distribution p(x, y) consistent with the results of both labs?
2. Is it possible to define consistent marginals p(x) and p(y), in the sense that p(x) = 3~ pa(x|y)p(y)
and p(y) = 3, pa(ylx)p(x)? If so, explain how to find such marginals. If not, explain why not.

Research lab A states its findings about a setof variablesx,. ..., x, asalist L 4 of conditional independence
statements. Lab B similarly provides a list of conditional independence statements L .

1. Is it always possible to find a distribution which is consistent with L4 and Lg?

2. If the lists also contain dependence statements, how could one attempt to find a distribution that is
consistent with both lists?

Consider the distribution

plx,y,w,z) = p(zlw)p(w|x, y) p(x)p(y). (4.8.10)

1. Write p(x|z) using a formula involving (all or some of) p(z|w), p(w|x. y¥), p(x), p(¥).
2. Write p(y|z) using a formula involving (all or some of) p(z|w), p(w|x, y), p(x), p(¥).

3. Using the above results, derive an explicit condition for x 1L y| z and explain if this is satisfied for this
distribution.

Consider the distribution

plti 2. y1.y2. h) = p(yilya. b1, ) p(yalta. h)p(t) p(t2) p(R). (4.8.11)
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Graphical models

1. Draw a belief network for this distribution.

2. Does the distribution

Pt yiy2) = Y p(nlyas tista, ) p(valta, k) p(t1) p(t2) p(h) (4.8.12)
h

have a perfect map belief network?

3. Show that for p(t), t2, ¥;., ¥2) as defined above ¢, 1L y,| @

Consider the distribution

pla,b,c,d) = ¢apla, b)pp. (b, c)pealc, d)pga(d, a) (4.8.13)
where the ¢ are potentials.

1. Draw a Markov network for this distribution.
2. Explain if the distribution can be represented as a (‘non-complete’) belief network.

3. Derive explicitly if a 1L ¢[ 9.

Show how for any singly connected Markov network, one may construct a Markov equivalent belief
network.

Consider a pairwise binary Markov network defined on variables s; € {0, 1},i = 1,..., N, with p(s) =
[T jee Dij (s7,57), where € is a given edge set and the potentials ¢;; are arbitrary. Explain how to translate
such a Markov network into a Boltzmann machine.
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5.1.1

‘ Efficient inference in trees

In previous chapters we discussed how to set up models. Inference then corresponds to
operations such as summing over subsets of variables. In machine learning and related
areas we will often deal with distributions containing hundreds of variables. In general
inference it is computationally very expensive and it is useful to understand for which
graphical structures this could be cheap in order that we may make models which we can
subsequently compute with. In this chapter we discuss inference in a cheap case, nhamely
trees, which has links to classical algorithms in many different fields from computer science
(dynamic programming) to physics (transfer matrix methods).

Marginal inference

Givenadistribution p(xy, ..., x,, ), inference is the process of computing functions of the distribution.
Marginal inference is concerned with the computation of the distribution of a subset of variables,
possibly conditioned on another subset. For example, given a joint distribution p(xy, x5, X3, x4, X5)
and evidence x; = tr, a marginal inference calculation is

plxs|x; =tr) o« Z p(x; = 1, xa, X3, X3, Xs)- (5.1.1)

X2, X3.X4

Marginal inference for discrete models involves summation and will be the focus of our development.
In principle the algorithms carry over to continuous variable models although the lack of closure of
most continuous distributions under marginalisation (the Gaussian being a notable exception) can
make the direct transference of these algorithms to the continuous domain problematic. The focus
here is on efficient inference algorithms for marginal inference in singly connected structures. An
efficient algorithm for multiply connected graphs will be considered in Chapter 6.

Variable elimination in a Markov chain and message passing

A key concept in efficient inference is message passing in which information from the graph is
summarised by local edge information. To develop this idea, consider the four-variable Markov
chain (Markov chains are discussed in more depth in Section 23.1)

pla,b.c.d) = plalb)p(blc)p(cld)p(d) (5.1.2)
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where M;; is an element of the transition matrix

0.7 05 0
M=|03 03 05]. (5.1.12)
0 02 05

The matrix M is called ‘stochastic’ meaning that, as required of a conditional probability table,
its columns sum to 1, Zf:l M;; = 1. Given that the fly is in room 1 at time ¢ = I, what is the
probability of room occupancy at time £ = 5? Assume a Markov chain which is defined by the joint
distribution

T-1
p(xy, ..., x7) = P(II)HP(X:+1|X:)- (5.1.13)
=1
We are asked to compute p(xs|x; = 1) which is given by
Z p(xslxs) p(x4lx3) p(x3lxa) p(x2 ] = 1). (5.1.14)
X4,%3,X2

Since the graph of the distribution is a Markov chain, we can easily distribute the summation over
the terms. This is most easily done using the transfer matrix method, giving

plxs=ilx; = 1) = [M*), (5.1.15)

where v is a vector with components (1, 0, O)T, reflecting the evidence that at time r = 1 the fly is in
room 1. Computing this we have (to four decimal places of accuracy)

0.5746
M*v={ 03180 | . (5.1.16)
0.1074

Similarly, at time ¢ = 6, the occupancy probabilities are (0.5612, 0.3215, 0.1173). The room occu-
pancy probability is converging to a particular distribution — the stationary distribution of the Markov
chain. One might ask where the fly is after an infinite number of timesteps. That is, we are interested
in the large ¢ behaviour of

p(xier) = Y plxegalx) p(x:). (5.1.17)
At convergence p(x,:) = p(x,). Writing p for the vector describing the stationary distribution, this
means

p = Mp. (5.1.18)

In other words, p is the eigenvector of M with eigenvalue 1 [134]. Computing this numerically,
the stationary distribution is (0.5435, 0.3261, 0.1304). Note that software packages usually return
eigenvectors with Y, e? = | — the unit eigenvector therefore will usually require normalisation to
make this a probability with >, ¢; = 1.

The sum-product algorithm on factor graphs

Both Markov and belief networks can be represented using factor graphs. For this reason it is
convenient to derive a marginal inference algorithm for FGs since this then applies to both Markov



5.1 Marginal inference 81

Figure 5.2 For singly connected structures

1 2 3 4 without branches, simple messages from one
u ( ) u () u . B yariable to its neighbour may be defined to form

an efficient marginal inference scheme.

and belief networks. This is termed the sum-product algorithm since to compute marginals we need
to distribute the sum over variable states over the product of factors. In other texts, this is also
referred to as belief propagation.

Non-branching graphs: variable-to-variable messages

Consider the distribution

pla.b.e.d) = fi(a.b) f2 (b, <) fs(c.d) fi (d) (5.1.19)

which has the factor graph represented in Fig. 5.2. To compute the marginal p(a. b, ¢), since the
variable d only occurs locally, we use

pla.b.c) =Y pla.bc.d) =Y fi(a.b) fr(b.c) fs(c.d) fu(d)
d d

= fi(a.b) fr(b.c) Y fi(c.d) fs(d). (5.1.20)
d )

fa—c(c)

Here ;... (c) defines a message from node d to node ¢ and is a function of the variable c.
Similarly,

pla.b) =Y pla.b.c)= fi(a.b) ) fr(b.c)pie(c). (5.1.21)
fe—p(b)
Hence
ey (B) =Y falb,c) e (o). (5.1.22)

It is clear how one can recurse this definition of messages so that for a chain of n variables the
marginal of the first node can be computed in time linear in n. The term .5 (b) can be interpreted
as carrying marginal information from the graph beyond ¢. For simple linear structures with no
branching, messages from variables to variables are sufficient. However, as we will see below in
more general structures with branching, it is useful to consider two types of messages, namely those
from variables to factors and vice versa.

General singly connected factor graphs

The slightly more complex example,

plalb)p(blc. d)p(c)p(d)pleld) (5.1.23)

has the factor graph depicted in Fig. 5.3

fi(a.b) f2(b.e.d) f3(c) fa(d. ) f5(d). (5.1.24)
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I3
|
@_. ( ) ) Figure 5.3 For a branching singly connected graph, it is
fi 5 useful to define messages from both factors to variables,
and variables to factors.
n
fa

mf

The marginal p(a, b) can be represented by an amputated graph with a message, since

pla,b) = fi(a, b)Zfo (bye,d) falc) fs(d Zf4 (d,e) (5.1.25)

#—n(b)

where ji g5 (D) is a message from a factor to a variable. This message can be constructed from
messages arriving from the two branches through ¢ and d, namely

typ (b) = Zdj flb.e.d) £(0) fs (d)g fi(d,e). (5.1.26)

o1y (€)

Hi— fy (d)
Similarly, we can interpret

s 1, (d) = Zﬁ d.e). (5.1.27)

.«;s-m(d) <
Hpyald)

To complete the interpretation we identify u ., r, (¢) = g (¢). In a non-branching link, one can
more simply use a variable-to-variable message. To compute the marginal p(a), we then have

pla) =" fi(a.b) s (b). (5.1.28)
b

Jfy—ala)

For consistency of interpretation, one also can view the above as

1foa(@) =Y fi(a.b) s (). (5.1.29)
b "-_.\f_—f

o5, (B)

We can now see how a message from a factor to a node is formed from summing the product of
incoming node-to-factor messages. Similarly, a message from a node to a factor is given by the
product of incoming factor-to-node messages.

A convenience of this approach is that the messages can be reused to evaluate other marginal
inferences. For example, it is clear that p(b) is given by

p(b) =" fi(a,b) s s (). (5.1.30)
<
= (P)
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If we additionally desire p(c), we need to define the message from f> to ¢,

e (€)= fo(boe,d) g, (B) pus g, (d) (5.1.31)
b.d

where ., 7, (b) = ps,—p (b). This demonstrates the reuse of already computed message from d to
f> to compute the marginal p(c).

Definition 5.1 Message schedule A message schedule is a specified sequence of message updates.
A valid schedule is that a message can be sent from a node only when that node has received all
requisite messages from its neighbours. In general, there is more than one valid updating schedule.

Sum-product algorithm

The sum-product algorithm is described below in which messages are updated as a function of
incoming messages. One then proceeds by computing the messages in a schedule that allows the
computation of a new message based on previously computed messages, until all messages from all
factors to variables and vice versa have been computed.

Procedure 5.1 (Sum-product messages on factor graphs) Given a distribution defined as a product
on subsets of the variables, p(X) = %]’[Jr ¢ s (Xy), provided the factor graph is singly connected
we can carry out summation over the variables efficiently.

Initialisation Messages from leaf node factors are initialised to the factor. Messages from leaf
variable nodes are set to unity.

Variable-to-factor message

ol
por ()= [ ser )
ge{ne(x)\f}

Factor-to-variable message

e ()= dpX) [1 #ymr

Xp\x ve{ne(f)\x} e

We write ZA’; \« to denote summation over all states
in the set of variables X¢\ x.




